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Reverse-engineering the cortical 
processing of speech



Anatomy of speech communication 

Production Perception

Ear drum

Cocktail party problem, Cherry, (1953)



Challenging problem
Segregating sound mixtures into separate perceptual 
acoustic events (sources) (Bregman’90)



Creating a model of speech communication

Cochlear

Mid brain

Inferior 
Colliculus

Cortex

Computation 

Representation 

Implementation

Closing the gap between artificial 
and biological computing

Understanding the brain, 
speech disorders, prosthesis



Speech processing in the brain



ElectroCorticoGraphy (ECoG)
• Implanted chronic grids for localization of epileptogenic foci 

usually 7-10 days.





Making sense of the cortical 
representation of speech

• Are different auditory 
sites selective to specific 
speech sounds?

• What features organize 
the neural responses?

• What natural variabilities 
are encoded? 
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Using phonemes to segment speech

• Smallest contrastive 
linguistic unit that can 
change the meaning 

• /b/ in /bad/              
/d/ in /dad/ 

• Limited inventory in 
each language



Phonetic categories

Distinctive features, Chomsky, Halle, Stevens
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Examples of average phoneme responses in STG

Diversity of responses: Strong preference at various STG sites to 
specific phoneme groups with shared attributes

Plosives Fricatives Low vowels High vowels Nasals Phoneme 
selectivity 
index

Mesgarani et. al, 2014, Science



Selectivity pattern across all STG sites

What ‘types’ of selectivity patterns at local and population level?

Electrode

Phoneme



Clustering the PSI vectors

Local structures (single electrode) 
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Prediction accuracies of acoustic 
parameters of phones from population
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Representation of speech in STG

• Single electrode selectivity to phonetic feature 
categories (e.g. place and manner)

• Accurate encoding of natural variabilities of phones

• Evidence for nonlinear encoding of Voice-Onset-
Time, and joint encoding of formant frequencies



Inverse model: From neural response to sound

Spectrogram S(t,f)
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Reconstruction from 200 single units 
in Ferret A1

G(t,f)

Mesgarani et.al J. Neurophysiology 2009



Reconstruction from 
human brain

Pasley et. al. PLoS Biology, 2012



Improving reconstruction accuracy|FFT|2
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instances of a certain phoneme by the onset time and taking 
the mean over a fixed duration. 

2.2. Signal processing 

Cortical local field potentials (LFP) were recorded with multi-
electrode arrays and connected to a digital signal processor 
(Natus Medical Incorporated, Pleasanton, CA, USA). The 
neural signals were acquired at 500 Hz.  

We visually and quantitatively inspected the time series 
recorded from each channel for artifacts and excluded 
channels with excessive noise. To reduce the effect of the 
reference, the average of channels was subtracted from all 
signals (Common Reference Average). The time-varying 
analytic amplitude was extracted from eight band-pass filters 
(Gaussian filters, centered logarithmically between 70 and 
150Hz (high-gamma band) and semi-logarithmically 
increasing band-widths) with the Hilbert transform.  The high-
gamma power was taken as the averaged amplitude across 
these eight bands. The neural signals were then down-sampled 
to 100 Hz and normalized to have zero mean and unit standard 
deviation for each channel. We identified speech responsive 
channels by comparing responses during speech and silence (t-
test), and channels with t-value over 30 were included for 
subsequent analysis.  

2.3. Methods 

We performed stimulus reconstruction using both LR [2] and 
DNNs to map the population neural activity to the spectrogram 
of the speech stimulus. We used optimal prior reconstruction 
as a linear model to reconstruct the original stimulus from 
population neural responses [14], [15]. The response at 
electrode !  at time ! = 1⋯ !  is denoted as !(!,!) . The 
spectrogram !(!, !) is a function of the time ! and frequency !. 
As neural responses in human auditory cortex are not phase-
locked to the modulations in the original sound pressure 
waveform, the inverse filter !(!, !,!) is defined as a linear 
function that maps !(!,!)  to the time-frequency 
representation of speech !(!, !) as follow   
 

                          (1) 

The inverse filter ! is estimated by minimizing the mean 
squared error between actual and reconstructed stimulus 
                       min e1 = [S(t, f )− Ŝ1(t, f )]

2

f
∑

t
∑           (2) 

Resulting in normalized reverse correlation solution [14], 
[15]: 

                                       (3) 
Where !!!  and !!"  are the auto-correlation of neural 

responses and cross-correlation of stimulus and neural 
responses at different lags, respectively. We also applied 
regularization when calculating the inverse filter !  by 
truncating the eigen vectors of !!!  to optimize the 
reconstruction accuracy for the validation set [16], [17], which 
also improved the average correlation for the test data. 

The DNN on the other hand was used as a nonlinear 
regression model to reconstruct the speech spectrogram from 
the time-shifted neural responses. Unlike the neural networks 
used in classification problems, here we replaced the softmax 
output layer with sigmoid. The activation !!! of !!! unit in the 
!!! layer (the output layer) is related to the activations in the 
(! − 1)!! layer by the equation 

               
                                (4) 

Where !!"!  is the weight connecting !!!  unit in the 
(! − 1)!! layer and !!! unit in the !!! layer and !!! is the bias 
for !!! unit in the !!! layer. The sigmoid function is denoted 
by !. The training of the DNN model consists of unsupervised 
pre-training with Restricted Boltzmann Machines (RBM) [6] 
followed by supervised fine-tuning using backpropagation 
algorithm [18]. The parameters of RBM are trained on 
consecutive layers with the approximate contrastive 
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Figure 2: Comparison of two models. A. Scatter plot for comparison of correlation values from the LR and the DNN model. B. 
Three representative examples (I, II, III) with original and reconstructed spectrograms. C. Time and frequency average for the 
first two examples. 
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Reconstructing noisy speech from 
auditory cortex

Mesgarani et. al. PNAS 2014



A	dynamic	model	of	auditory	cor1cal	neurons
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• What is the representation of attended speaker?

• Neural correlate of perceptual failures

Cocktail party problem, Cherry, (1953)

Attentional modulation of the cortical representation



Speaker 1

Speaker 2

Mixture

Experiment design
“Ready [Call Sign] go to [Color] [Number] now”
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Ringo
Target :       “Ready Ringo go to  [Red]   [Two] now”

Distractor:  “Ready Tiger go to [Green] [Five] now”

ResponseVisual: 
Target Call Sign

Listen: Two simultaneous speakers

Blue
Red
Green

Two
Five
Seven

Experimental setup

• Target speaker changes randomly from trial to trial

• Target call sign changes after each trial block



Acoustic Spectrogram: Single Speaker 

Attentional modulation of cortical representation

Mesgarani & Chang, (2012), Nature
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Correlation with single speaker spectrograms
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Time-course of attentional modulation
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Decoding words and identity of attended 
speaker using single speaker models
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• Train linear, frame-based, classifier (RLS) on examples of single speakers 
responses and then decode the mixture speech 



Online decoding of attention using single-trial EEG 

Sulivan et. al., Cerebral Cortex, 2014

Similarity to attended speakerEEG recording setup



Cortical representation of speech

Selectivity to phonetic feature categories 
(e.g. place and manner)

Reduced variability due to adaptive 
mechanisms (e.g. synaptic depression)

Top-down (e.g. attention) dynamically 
modulate the representation

Cochlear

Mid brain

Inferior 
Colliculus

Cortex



Creating a model of speech communication

Cochlear

Mid brain

Inferior 
Colliculus

Cortex

Computation 

Representation 

Implementation

Closing the gap between artificial 
and biological computing

Understanding the brain, 
speech disorders, prosthesis



Neuro-inspired models for acoustic modeling
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Node activations to speech

. .
 .

. .
 .

. .
 .

. .
 .

Input

t uw

Actual Label
ey sil ao

Hidden 4 Layer Activation

s zihah dh er k

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

HL 1-3
Output
(label)HL 5

Response to 
/t/

Response to 
/z/

Input layer, 11 frames 
of log-mel filterbank, 
and deltas, trained on 

WSJ clean

5 sigmoid, hidden layers, 
256 nodes each, fully 

connected, feed-forward

Softmax output
41 nodes

context independent



What do the nodes respond to?

Manner of 
articulation

(closure)

ch, jh
g, k
b, p
d, t

Manner of 
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k
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Individual nodes become responsive to various phonetic features



What features organize the hidden representations?

Progressive representation of phonetic features learned by the 
network that was trained to extract Phonemes from speech

Nagamine et. al. Interspeech 2015
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Figure 2: Hierarchical clustering of node responses for hidden layer 1 (A-D) and hidden layer 5 (E-F). (A) Clustering across nodes
(columns). (B) Clustering across population PSI vectors (rows). (C) Phoneme selectivity index (PSI) vectors of all nodes in hidden
layer 1, ordered by clustering. (D) Alternative PSI vectors with rows corresponding to phonetic features instead of phonemes. (E)
Clustering across nodes (columns) in hidden layer 5. (F) Alternative PSI vectors in hidden layer 5.

are confounding factors such as prosody, speaker identity, co-
articulation, and other context-dependent phenomena that will
create a high degree of variability in the acoustic manifesta-
tion of a phonetic feature [13, 19, 20]. To address the ques-
tion of how a DNN maps natural speech into distinct phone-
mic categories, we investigated whether nodes with similar fea-
ture selectivity responded uniformly to different instances of
phonemes containing these features. Within a hidden layer, for
each instance of a given phoneme, we found the mean value of
the response (using the same window as the clustering analysis)
for all nodes selective to that phoneme. A node was considered
selective if it had a PSI value of at least 25 for that phoneme. We
then performed another clustering analysis to group phoneme
instances based on the similarity of z-scored activation magni-
tude in nodes selective to that phoneme (Figure 4B).

Comparing the average auditory spectrogram for phoneme
instances defined by these clusters shows that the network ex-
plicitly learns several representations for the same phoneme.
For example, in the first hidden layer, we compared two clus-
ters of /t/ phonemes and the z-scored responses they elicited
in three /t/-selective nodes (Figure 4C). It is clear from the au-
ditory spectrograms that these /t/ phonemes occur in different
contexts; the group of phonemes in the first cluster are gen-
erally preceded by a sibilant such as /s/, while the phonemes
of the other cluster are not. Node 83 responds to both /t/ and

the sibilant in the first cluster; we can see from Figure 4A that
this node has strong selectivity to alveolar consonants charac-
terized by high frequency components. Conversely, nodes 135
and 65 only respond to the /t/ phoneme itself; node 135 has se-
lectivity to high-frequency stop consonants, while node 65 has
selectivity to postalveolar sibilants and affricates and /t/. We
also performed a similar analysis for /s/, /n/, and /iy/ (Figure

Figure 3: Comparison of F-ratio for phonemes, phonetic fea-
tures, and speaker gender in all hidden layers. Place and man-
ner of articulation are abbreviated as POA and MOA.

Figure 2: Hierarchical clustering of node responses for hidden layer 1 (A-D) and hidden layer 5 (E-F). (A) Clustering across nodes
(columns). (B) Clustering across population PSI vectors (rows). (C) Phoneme selectivity index (PSI) vectors of all nodes in hidden
layer 1, ordered by clustering. (D) Alternative PSI vectors with rows corresponding to phonetic features instead of phonemes. (E)
Clustering across nodes (columns) in hidden layer 5. (F) Alternative PSI vectors in hidden layer 5.

are confounding factors such as prosody, speaker identity, co-
articulation, and other context-dependent phenomena that will
create a high degree of variability in the acoustic manifesta-
tion of a phonetic feature [13, 19, 20]. To address the ques-
tion of how a DNN maps natural speech into distinct phone-
mic categories, we investigated whether nodes with similar fea-
ture selectivity responded uniformly to different instances of
phonemes containing these features. Within a hidden layer, for
each instance of a given phoneme, we found the mean value of
the response (using the same window as the clustering analysis)
for all nodes selective to that phoneme. A node was considered
selective if it had a PSI value of at least 25 for that phoneme. We
then performed another clustering analysis to group phoneme
instances based on the similarity of z-scored activation magni-
tude in nodes selective to that phoneme (Figure 4B).

Comparing the average auditory spectrogram for phoneme
instances defined by these clusters shows that the network ex-
plicitly learns several representations for the same phoneme.
For example, in the first hidden layer, we compared two clus-
ters of /t/ phonemes and the z-scored responses they elicited
in three /t/-selective nodes (Figure 4C). It is clear from the au-
ditory spectrograms that these /t/ phonemes occur in different
contexts; the group of phonemes in the first cluster are gen-
erally preceded by a sibilant such as /s/, while the phonemes
of the other cluster are not. Node 83 responds to both /t/ and

the sibilant in the first cluster; we can see from Figure 4A that
this node has strong selectivity to alveolar consonants charac-
terized by high frequency components. Conversely, nodes 135
and 65 only respond to the /t/ phoneme itself; node 135 has se-
lectivity to high-frequency stop consonants, while node 65 has
selectivity to postalveolar sibilants and affricates and /t/. We
also performed a similar analysis for /s/, /n/, and /iy/ (Figure

Figure 3: Comparison of F-ratio for phonemes, phonetic fea-
tures, and speaker gender in all hidden layers. Place and man-
ner of articulation are abbreviated as POA and MOA.
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Solving the “invariance problem”?

Network learns the variability of the phonemes (phones) 
and models them explicitly with different nodes

Clustering “phones” based on the response of nodes selective to same phoneme

A phoneme instance (phone) is affected by speaker, context, mood, etc., 
but perception is robust
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The representation becomes increasingly 
nonlinear and separable

Regression error
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But What becomes more separable, and How? 
All phoneme/phones or only some?



Decoding phonemes from different layers

~

>

Inseparable phones become more separable due to nonlinear transformations



Nonlinear warping of the feature space in the network
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Representational properties of DNN

• Progressive selectivity to phonetic features in 
DNN layers

• Network solves the “invariance problem” by 
explicitly modeling the sources of variability

• Non-uniform, category-driven nonlinear 
stretching of acoustic space

• Incorporating neuro-inspired mechanisms?



Synaptic depression in biological neural 
networks



Modeling synaptic depression



Adaptive, nonlinear effects of 
synaptic depression

Autoencoder network with/without SD



Bias depression in a DNN for phoneme recognition

Synaptic depression stabilizes the average activation of 
nodes in noise conditions



Synaptic depression in DNN for 
phoneme recognition



Creating a model of speech communication
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Computation 
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Implementation

Closing the gap between artificial 
and biological computing

Understanding the brain, 
speech disorders, prosthesis



Selective Dynamic Adaptive

Temporal integration, 
higher order units

What does the 
feedback change? 

Interaction of top-
down and bottom-up

Properties of the cortical representation

Representation when listener attends to:
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