
Causal Inference from 
Complex Observational 

Data
Samantha Kleinberg 

Stevens Institute of Technology 
samantha.kleinberg@stevens.edu

mailto:samantha.kleinberg@stevens.edu


Three key points

• We need causal knowledge 

• Causes are hard to find and we need domain 
expertise 

• It’s not hopeless!



“Most striking, society will need to shed some of its 
obsession for causality in exchange for simple 
correlations: not knowing why but only what.” 

Mayer-Schonberger, V. and K. Cukier. (2013) Big Data: A Revolution That Will Transform How 
We Live, Work, and Think. Earnon Dolan/Houghton Mifflin Harcourt, (page 7).



Causal claims abound
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Redelmeier DA, Tversky A (1996) On the belief that arthritis pain is 
related to the weather. Proceedings of the National Academy of 

Sciences 93(7):2895-2896.



Correlation = 0!

Redelmeier DA, Tversky A (1996) On the belief that arthritis pain is 
related to the weather. Proceedings of the National Academy of 

Sciences 93(7):2895-2896.



Why do we need causes?

• Prediction 

• Explanation 

• Intervention



Google flu





Prediction
Blackouts Season Smoking rate

match sales
lung cancer rate



Prediction, continued
Gene mutation

lower exercise 
tolerance Disease A



Explanation (1)

• Why are two variables related? Diabetes

Blurred 
vision Weight lossCKD

Renal 
failure medication



Explanation (2)
• General causes of illness vs. cause of a specific patient’s 

illness 

• Why did an event happen? 

• Why did a particular person develop lung cancer at age 
42? 

• What led to the U.S. recession in 2007? 

• Is a stroke patient’s secondary brain injury due to seizures?



Automating explanation
• Methods for finding causes from data, but what 

about explaining events? 

• Practical problem, but challenging 

• Information incomplete 

• Where do explanations come from? 

• General and singular can differ



Intervention
• Why do we need causes to take action? 

• Buying stocks 

• Taking vitamins 

• Decreasing sodium to prevent hypertension 

• What happens if we intervene on a correlated factor?



Using causes to guide 
intervention

Blackouts Season Smoking rate

match sales
lung cancer rate



Using interventions to find 
causes

• Does playing violent video games make children 
violent? 

• Does too little sleep increase mortality rate? 

• Does medication cause side effects?



http://xkcd.com/552/



Nonstationary time series

http://bama.ua.edu/~sprentic



Nonstationary time series

S. Kleinberg. (2015) Why: A Guide to Finding and Using Causes. O’Reilly Media. 



Restricted range

S. Kleinberg. (2015) Why: A Guide to Finding and Using Causes. O’Reilly Media. 



Canceling out

S. Kleinberg. (2015) Why: A Guide to Finding and Using Causes. O’Reilly Media. 



Multiple testing

Bennett, C. M., Miller, M. B., & Wolford, G. L. (2009). Neural correlates of interspecies perspective 
taking in the post-mortem atlantic salmon: An argument for multiple comparisons correction. 

NeuroImage, 47(1), 125. 



Multiple comparisons

http://xkcd.com/882/



Causation without correlation: 
Simpson’s paradox

Treatment
Dead Alive

A 85 215 (72%)
B 59 241 (80%)

Total 144 456



Causation without correlation: 
Simpson’s paradox

Treatment Men Women Combined
Dead Alive Dead Alive Dead Alive

A 80 120 (60%) 5 95 (95%) 85 215 (72%)
B 20 20 (50%) 39 221 (85%) 59 241 (80%)

Total 100 140 44 316 144 456

Baker SG, Kramer BS (2001) Good for women, good for men, bad for people: Simpson's 
paradox and the importance of sex-specific analysis in observational studies. Journal of 

women's health & gender-based medicine 10: 867-872



Why is causal inference 
hard?

• No single definition 

• No fail-proof method for finding it 

• Observational data



Hume

Regularity Counterfactual

Probabilistic causality

Bayesian nets

Granger causality

Mill Mackie (INUS)

Logic-based

Lewis
SuppesEells Reichenbach



Psychology: 
How do we gain and 

use causal 
knowledge? 

Economics: 
Do policies achieve 

goals? 

Philosophy: 
What is a cause? Computer Science: 

How can we automate 
inference/explanation?

What’s the 
relationship between 

moral and causal 
judgment?

How do we learn of 
causes?

Medicine/biology: 
Applications to 
neuroscience, 

genomics 

Granger causality

BNs

Epidemiology: 
What affects human 

health?

RCTs

Large-scale 
analysis of 

EHRs

Why do people 
behave as they do? 



Three main questions
• What is a cause? 

• Theories of what distinguishes them from correlations and how we can 
identify them 

• How can we find causes? 

• Features of causes that allow us to learn about them 

• When can we infer causes?  

• Methods for inference from data 

• Study design 

• Applications to challenging cases



Data to causes: a few 
overlooked assumptions

• No hidden common causes 

• Data represents true distributions 

• Right variables



Representative data 
(faithfulness)

• If no alarm system -> robberies, data should reflect 
dependence 

• May not if… 

• Canceling out (doesn’t have to be exact) 

• Selection bias



Right variables

• What are we finding causes between? 

• Measure weight.. 

• Use continuous value? BMI? group obesity/
morbid obesity together? 

• Or should we use weight change+other features?



Why observational data? 
• Routinely collected in many situations 

• Electronic health records in hospitals 
• ICU data streams 
• Body-worn sensors and mobile devices 

• Experiments often infeasible, unethical, or too 
expensive



Some recent work
• We can make some progress in getting causes 

from medical data 

• Explanation can be automated (sometimes) 

• Understanding chronic disease requires data from 
daily life 

• Automated dietary monitoring (a fitbit for 
nutrition)



Logic-based causal 
inference

• Complex, temporal relationships 

• Assess average difference cause makes to 
probability of effect

Kleinberg, S. (2012) Causality, Probability, and Time. Cambridge University Press.
Kleinberg, S. (2015) Why: A Guide to Finding and Using Causes. O’Reilly Media



• Main idea: looking for better explanations for the 
effect 

• Inferring timing 

• Instead of accepting/rejecting hypotheses, refine 
them from data 

• Can start by testing relationships between all 
variables and CHF in 1-2 weeks, and ultimately 
infer "high AST leads to CHF in 4-10 days”



Finding	timings:	greedy	search

1) Too wide

2) Shifted

3) Too narrow

actual

s

c

x

r' s'

r



• Key assumptions 

• Stationarity, no latent confounders 

• Main advantages 

• Exact inference, time window (vs. lag), complex 
relationships



Application: finding risk 
factors for heart failure

• Which patients have heart failure? 

• When does the heart failure start?



CHF - Geisinger

Months before CHF diagnosis

Kleinberg S, Elhadad N (2013) Lessons Learned in Replicating Data-Driven Experiments in 
Multiple Medical Systems and Patient Populations. In: AMIA Annual Symposium.



CHF – Geisinger and CUMC



“Same” study, multiple populations 

 -Different data 

 -Different types of error 

 -Many decisions, replicating method vs  testing same 
hypothesis 

What do differing results mean? 

 



Application: stroke

Massive amounts of data collected in ICU (>100,000 
measurements per person) and by body-worn 
sensors 

How do patients change over time in ICU?



NICU dataset
• 98 patients with subarachnoid hemorrhage 

• Monitoring included 
• Depth and surface EEG 
• Microdialysis  
• Physiologic measurements 

(no data on procedures)



Lots of data, but lots of missing 
data

• Device malfunctions 

• Device connected to perform a procedure 

• Different monitors started at different times 

• Different recording frequencies



Lots of data, but lots of missing 
data

• Device malfunctions 

• Device connected to perform a procedure 

• Different monitors started at different times 

• Different recording frequencies

TW% BrT CI CO2EX CPP CVP ELWI GEDI GLU GLU2panel HR ICP
0296 0.56001433 0.55845172 0.45439822 0.77027571 0.89076666 0.80927443 0.47893916 0.47893916 0.07274971 0.07943021 0.98646971 0.92582606
962168 0.69029286 0.71585128 0.67012404 0.80326783 0.91217418 0.84294797 0.56494303 0.56494303 0.13405794 0.03836355 0.98382787 0.94543471

56.0014325 55.845172 45.4398223 77.0275708 89.0766656 80.9274429 47.893916 47.893916 7.27497093 7.94302149 98.6469713 92.5826062
69.0292858 71.5851282 67.0124038 80.3267833 91.2174176 84.294797 56.4943028 56.4943028 13.4057939 3.83635458 98.3827871 94.5434715
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And…
• All variables may be missing at once (if measured 

by single device) 
• Can’t use imputation methods that assume 

some present values 

• Missing values depend on variable + other 
variables 
• e.g. BG depends on itself, as well as insulin 

• Variables are correlated across time



Imputation w/lagged 
correlations 

S. A. Rahman, Y. Huang, J. Claassen, N. Heintzman, and S. Kleinberg. Combining Fourier and 
Lagged k-Nearest Neighbor Imputation for Biomedical Time Series Data. Journal of Biomedical 

Informatics (2015)

https://github.com/kleinberg-lab/FLK-NN



Imputation w/lagged 
correlations 

S. A. Rahman, Y. Huang, J. Claassen, N. Heintzman, and S. Kleinberg. Combining Fourier and 
Lagged k-Nearest Neighbor Imputation for Biomedical Time Series Data. Journal of Biomedical 

Informatics (2015)

https://github.com/kleinberg-lab/FLK-NN



Evaluation



Evaluation



Evaluation



Different data, different 
physiology

Claassen J, Rahman SA, Huang Y, Frey H, Schmidt M, Albers D, Falo CM, Park S, Agarwal S, Connolly ES, 
Kleinberg S (2016) Causal structure of brain physiology after brain injury. PLoS ONE (in press).



Regulation changes over 
time

0-96hrs

96-168 hrs



Explanation and Inference
• Causal inference operates on the type-level  
 
 
 

• Causal explanation explains particular events  
 
 
 

KHDUW�IDLOXUH

XQFRQWUROOHG�
GLDEHWHV

WK\URLG�
GLVIXQFWLRQ

KHDUW�IDLOXUH

XQFRQWUROOHG�
GLDEHWHV

WK\URLG�
GLVIXQFWLRQ



Example
• Frank uses a CGM to help 

manage type 1 diabetes 

• He goes for a run first thing in 
the morning 

• He has lunch at 12pm, with a 
normal insulin bolus 

• Several hours later, he has 
unexpected low blood sugar 

• Did the morning run cause 
the low blood sugar?



• Goals for explanation  

• Find causes of specific events automatically (no 
human in the loop) 

• Find causes of when, whether and how events 
occur  

• Approach: simulation to answer counterfactual 
queries

C. Merck and S. Kleinberg. Causal explanation under indeterminism: 
A sampling approach. AAAI, 2016.



Events and  
Probability Trajectories

• events = sets of possible worlds  
 

• Pt(A) is a probability trajectory

A occurs B occurs



Counterfactual vs. Actual 
Distributions

• P(•|¬A) is the counterfactual 
distribution of A  
 

• P(•|A) is the actual distribution 
of A 



Three Types of Explanation

B because of A iff 
 P (B|A) >> P (B|¬A)  

B hastened by A iff  
E[tB |A] << E[tB |¬A]  

B intensified by A iff 
E[mB |A] >> E[mB |¬A]  

B despite A iff 
 P (B|A) << P (B|¬A)  

B delayed by A iff 
E[tB |A] >> E[tB |¬A] 

B attenuated by A iff 
E[mB |A] << E[mB |¬A]  

tB  = time of B occurring
mB  = intensity (manner) of B occurring

probability: 

timing: 

intensity: 



Causal Chain 
with Billiard Balls



Causal Chain 
with Billiard Balls



Hastening

• 6->8, then 8->P 

• but 7->8 is a more reliable backup 

• probability raising finds 
 “8->P despite 6->8” 

• but by analyzing timing we find  
 “6->8 hastened 8->P”



Diabetes Simulation
• Run or Lunch alone would not 

have caused Hypoglycemia  
(see counterfactual dists) 

• Yet together they explain the 
Hypoglycemia 
(see actual distribution) 

• We see beyond the most 
recent event (Lunch) 

• We can measure quantitative 
strength of effect in mg/dL:  
      E[ glu | R] - E[ glu | ¬R]



Results



Results



Mo data mo problems 
• Big ≠ good 

• Uncertainty 

• Selection bias 

• Signal:noise 

• Interpretation 

• Time 

• Ground truth



Open problems
• Finding the “right”  variables 

• Causality beyond variables 

• Nonstationarity at multiple scales 

• Combining results + datasets 

• Uncertainty in data and timing 

• Uncovering hidden assumptions


