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a b s t r a c t

Causality is an important concept throughout the health sciences and is particularly vital for informatics
work such as finding adverse drug events or risk factors for disease using electronic health records. While
philosophers and scientists working for centuries on formalizing what makes something a cause have not
reached a consensus, new methods for inference show that we can make progress in this area in many
practical cases. This article reviews core concepts in understanding and identifying causality and then
reviews current computational methods for inference and explanation, focusing on inference from
large-scale observational data. While the problem is not fully solved, we show that graphical models
and Granger causality provide useful frameworks for inference and that a more recent approach based
on temporal logic addresses some of the limitations of these methods.

! 2011 Elsevier Inc. All rights reserved.

1. Introduction

One of the core concerns of all branches of medicine is causality.
Pharmacovigilance aims to find the adverse effects of drugs [1],
doctors diagnose patients based on their symptoms and history
[2], comparative effectiveness involves determining the relative
risks and benefits of treatments [3], basic medical research
elucidates novel causes of disease, epidemiology seeks causal rela-
tionships between environmental and other factors and disease
[4–6], and health policy uses the information gained from these
areas to determine effective strategies for promoting health and
preventing disease [7]. Biomedical informatics spans many of these
areas, so advances in computational approaches to causal inference
could have a major impact on everything from clinical decision
support to public health.

After hundreds of years of work in philosophy and medicine on
how to address these questions, the prevailing wisdom is that
when it comes to health, highly controlled experiments such as
randomized controlled trials (RCTs) are the only ones that can an-
swer them [8]. While an ideal RCT can eliminate confounding [9],
allowing reliable inference of causal relationships, this ideal is
not always achieved in practice [10] and the internal validity that
this ensures (that the study can answer the questions being asked)
often comes at the expense of external validity (generalizability to
other populations and situations) [11,12]. Even determining how
to use the results of RCTs to treat patients is a difficult problem,
leading to the development of checklists for assessing external
validity [13] and the proposal to combine RCTs with observational

studies [14]. As a result, it has been argued that RCTs should not be
considered the ‘‘gold standard’’ for causal inference and that there
is in fact no such standard [15–17]. On the other hand, the increas-
ing prevalence of electronic health records has allowed us to con-
duct studies on large heterogenous populations, addressing some
of the external validity problems of RCTs. However, relying on
observational data for causal inference requires a reassessment of
inference methods in order to ensure we maintain internal validity
and understand the types of questions these data can answer.

While there has been some recent work discussing how we can
draw causal conclusions from observational data in the context of
biomedical inference [18], there is also a significant and under-
utilized body of work from artificial intelligence and statistics
[19–22] on causal inference from primarily observational data.
This article aims to bridge this gap by introducing biomedical
researchers to current methods for causal inference, and discussing
how these relate to informatics problems, focusing in particular on
the inference of causal relationships from observational data such
as from EHRs. In this work, when we refer to causal inference we
mean the process of uncovering causal relationships from data
(while causal explanation refers to reasoning about why particular
events occurred) and our discussion will focus on algorithms for
doing this in an automated way. We will introduce a number of
concepts related to causality throughout the paper, and in Fig. 2
show how these processes are generally assumed to be connected
in the methods described. Note that this depiction is not necessar-
ily complete and the processes can be connected in other ways. For
example, there may be no connection between inference and
explanation, or additional steps requiring experimentation on sys-
tems rather than only observational data.

While many informatics problems implicitly involve determin-
ing causality, there has been less of a focus on discussing how we
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can do this than there has been in epidemiology. We will begin by
reviewing some basic concepts in causality, covering a few of the
ways both philosophers and epidemiologists have suggested that
we can identify causes. We then turn our attention to the primary
focus of this article: a survey of methods for automated inference
of causal relationships from data and discussion of their relation
and applicability to biomedical problems. For the sake of space
we will not provide an exhaustive account of all inference meth-
ods, but aim to cover the primary approaches to inference and
those most applicable to large scale inference from observational
data. As a result, we focus on Bayesian and dynamic Bayesian net-
works, Granger causality, and temporal-logic based inference.
Some primary omissions are structural equation models (SEM)
[23] (which can be related to Bayesian networks) and potential
outcomes approaches such as the Rubin Causal Model [21].1 We
begin by discussing the problem of finding general (type-level) rela-
tionships, which relates to finding causes of effects, and then discuss
the problem of explanation (finding token-level relationships),
which aims to find the causes of effects. This is the difference be-
tween asking whether smoking will cause a person to develop lung
cancer (what effect will result from the cause) versus asking whether
an individual’s lung cancer was caused by her years of smoking (the
cause of an observed effect).

2. Why causality?

Before delving into the question of how to go about finding
them, we may first wonder whether we need causes at all, or if

associations could be used instead. Let us look at the three primary
uses of causal relationships – prediction, explanation, and policy –
and the degree to which each depends on the relationships used
being causal.2

Predictions, such as determining how likely it is that someone
will develop lung cancer after exposure to secondhand smoke,
can frequently be made on the basis of associations alone (and
there is much work in informatics on doing this [25,26]), but this
can be problematic as we do not know why the predictions work
and thus cannot tell when they will stop working. For example,
we may be able to predict the rate of lung cancer in a region based
on the amount of matches sold, but the correspondence between
matches and smoking may be unstable. As shown in Fig. 1, where
arrows denote causal influence, many variables may affect match
sales while lung cancer only depends on smoking. Thus match
sales may initially seem to be a good predictor of lung cancer if that
dependency is stronger than the others, but when there are anom-
alous events such as blackouts, there will be no corresponding
change in lung cancer rates. Once we have data on smoking, infor-
mation about match sales becomes redundant. Similarly, black box
models based on associations may also have redundant variables,
leading to unnecessary medical tests if these are then applied for
diagnostic purposes.

There are two types of explanations that we seek: explanations
for the relationship between two phenomena (why they are asso-
ciated) and explanations for particular events (why they occurred
at all, or why they occurred in the manner they did). In the first
case, we generally want explanations for inferences and predictive
rules, particularly if these are to be used for tasks such as clinical
decision support [27], but explaining the relationship between,
say, matches and lung cancer means identifying the causal rela-
tionships between smoking and match sales and smoking and lung
cancer. In general, explaining associations means describing how
the elements either cause one another or have a common cause
[28]. For example, a seeming adverse drug event may in fact be a
symptom of the disease being treated, making it associated with
the drug prescribed even though both are caused by the underlying
disease. In the case of explaining a particular event, we want to de-
scribe why a patient fell ill or diagnose her based on her symptoms
and history (finding the cause of her illness). Associations are of no
use in this case, as this type of explanation means providing infor-
mation about the causal history of the event [29].

Finally, in order to create effective policies or strategies, like
population-level campaigns to discourage smoking or individual-
level plans such as giving a patient quinine to treat her malaria,
we need to know that smoking causes cancer (or some other neg-
ative outcome) and that the quinine has the ability to cure the pa-
tient. That is, if there were instead a gene that caused people to
both enjoy smoking and to have a higher risk of cancer (with no
other relationship between smoking and cancer), then suggesting
that people not smoke would not be an effective way of lowering
their cancer risk. We need to know that our interventions are tar-
geting something that can alter either the level or probability of
the cause, and that we are not instead manipulating something
merely associated with the effect.

3. A brief history of causality

Causality is something we must reason with constantly in life
for everything from deciding whether to take an aspirin to get
rid of a headache, to choosing whether to buy or sell a stock after

Fig. 1. Example illustrating why a strong predictive relationship can fail when it is
not based on causality.
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Fig. 2. This is one way causal inference, modeling, and explanation can be
connected. Here inference takes a set of observational data and produces a set of
causal relationships, which can form a causal model. Explanation (also referred to
as causal reasoning) takes one observation of an event (which may have a duration)
and combines this with previously inferred causal relationships to produce either a
single relationship that explains the event or a set of relationships with some
numerical score for how likely they are to have caused the actual event. Causal
modeling here can combine prior knowledge of an area along with observational
data to produce a causal model.

1 For more information on both approaches and discussion of their equivalence, see
[24].

2 A fourth category may be advancing the state of knowledge and learning more
about how things work, but it is clear that this pursuit requires finding mechanistic or
causal explanations.
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hearing the company’s earnings report, to voting for a particular
candidate who we think will further the legislation we want. While
it touches on many fields, the primary advances in understanding
what causes are and how we can learn about them has come from
philosophy. After Aristotle [30], the main advance toward our cur-
rent understanding of causality came from Hume in the 17th cen-
tury. Rather than searching for some elusive special quality that
makes a relationship causal as had been done before him, Hume in-
stead suggested that causality is essentially regular occurrence of
an effect following its cause [31]. This is known as the regularity
theory of causality. There are many common counterexamples to
it such as spurious regularities (e.g. day always follows, but does
not cause, night) and probabilistic relationships, but the notion of
regularities forms the basis for many more recent advances such
as Mill’s methods [32]. While philosophers provided much of the
basis for these methods, medicine and in particular epidemiology
has also had a long history of trying to establish whether there is
a causal link between a pathogen and disease (leading to the Koch
postulates [33]), between the environment and disease (leading to
the so-called Hill Criteria [34] and Rothman’s sufficient component
cause model [35]), or between an adverse event and a drug (lead-
ing to the Naranjo Scale [36]). In this section we will review some
of the core philosophical theories on which computational ap-
proaches are based, and examine the relationship of these to some
of the most common approaches in epidemiology and informatics.

3.1. INUS conditions and sufficient component causes

While Hume’s work was a major advance in the concept of cau-
sality, it was not immediately applicable to many cases (such as
those in medicine), where multiple factors must be present to pro-
duce an effect and a disease may have multiple possible causes.
More importantly, we want to ensure that each component is in-
deed needed, and not simply associated with the others. For exam-
ple, two effects of a single cause may seem correlated, but neither
is required for the occurrence of the other. Mackie formalized these
ideas of necessity and sufficiency, creating an updated regularity
theory of causality where a cause is some condition that is perhaps
insufficient by itself for producing its effect, but is a non-redundant
part of some set of conditions that, while unnecessary for producing
the effect, is sufficient for it. These are termed ‘‘INUS conditions’’
using the first letter from each of the italicized criteria. If we rep-
resent the causes of an effect as the disjunction (CX _ Y), then there
are two sets of conditions that result in the effect, and C is a neces-
sary part of one of those sets, though the set CX is unnecessary
since Y may also cause the effect. As the relationships are assumed
to be deterministic, CX is sufficient to cause the effect when both of
these components are present. For example, lit matches (C) are an
INUS condition for house fires. The matches alone cannot cause a
house fire, but there is some set of conditions (X), where the
matches would be needed and while there are other ways of caus-
ing a house fire such as faulty electric (Y), the idea is that once CX is
present, it is enough to cause the fire. In general, these are mini-
mum conditions for causality.

Mackie’s approach to causes as INUS conditions was not devel-
oped specifically for epidemiological purposes, but it has many
similarities to the methods of this area. The closest is Rothman’s
sufficient component cause (or causal pie) model [35], where in-
stead of the disjunction of a set of a conjuncts, each set of compo-
nents that comprise a sufficient cause is represented as a circle,
divided into wedges showing the approximate contribution of each
individual component. The case above, with CX _ Y causing an ef-
fect, could be represented as shown in Fig. 3. There are some philo-
sophical differences between the two methods, particularly when
it comes to explaining individual cases of why things happened,
but they share the idea of there being sets of factors that are

sufficient to produce the effect. Both methods face difficulties
when systems are overdetermined – when multiple sufficient
causes are present in individual cases. This is a difficulty not only
for diagnosis (as either set could have caused the disease), but also
for epidemiological work on estimating the effect of each individ-
ual component on the population [37].

3.2. Probabilistic causality

One of the main problems with regularity theories is that,
whether this is due to our lack of knowledge about the full set of
conditions required for a cause to produce its effect or is an under-
lying feature of the relationship itself, many relationships are prob-
abilistic. While the regularity models introduced above allow us to
attribute some fraction of the set to ‘‘other causes,’’ they do not al-
low us to reason quantitatively about how much of a difference
each of those components makes to the probability of the effect gi-
ven other potential explanations for it.

The basic idea of probabilistic theories of causality [38–40] is
that a cause raises the probability of, and occurs prior to, its effect.
The condition that a cause, C, raises the probability of its effect, E, is
described using conditional probabilities as:

PðEjCÞ > PðEÞ: ð1Þ

Note that P(E) is sometimes replaced with P(Ej:C), which is equiv-
alent in all non-deterministic cases [41]. However, these conditions
of temporal priority and probability raising are neither necessary
nor sufficient for a causal relationship. One of the classic examples
illustrating this is that of a falling barometer and rain. The barome-
ter falling occurs before and may seem to raise the probability of
rain, but decreasing air pressure is causing both. In biomedical
cases, a scenario with a similar structure may be a disease causing
two symptoms where one regularly precedes the other. The primary
difference between the various probabilistic theories of causality is
in how they distinguish between genuine and spurious causes.
Suppes’ approach [40] is to look for earlier events that account at
least as well for the effect, so that the later cause only increases
the probability of the effect by some small epsilon. In the case of
rain given above, including information about the barometer will
not affect the probability of the effect once we know about the ear-
lier event of decreasing air pressure. Another method, that of Eells
[38] is to take sets of background contexts (comprised of all vari-
ables held fixed in all possible ways) and then test how much a po-
tential cause raises the probability of its effect with respect to each
of these, leading to a measure of the average degree of significance
of a cause for its effect. It should be noted though that in both cases
we must decide at what level of epsilon, or what average signifi-
cance value, something should be considered causal. Similarly, the
background context approach is difficult to implement in practice
due to both computational complexity (N variables lead to 2N back-
ground contexts) as well as the availability of data (each context
will not be seen often enough to be statistically significant).

3.3. Hill criteria

Likely the most influential and widely applied work on identify-
ing causality in the health sciences is that of Hill, an epidemiologist

Fig. 3. Rothman’s sufficient component cause model depicting two sufficient
causes of an effect.
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and statistician. While Hill’s approach was intended to help epi-
demiologists determine the relationship between environmental
conditions and a particular disease (where it is rarely possible to
create randomized experiments or trials to test specific hypothe-
ses) the recent use of observational data such as EHRs for inference
has brought some of the goals of biomedical inference closer to
those of epidemiology, while at the same time epidemiological
studies on larger and larger cohorts now require the application
of inference methods for analyzing these data [42].

Hill [34] described nine features that may be used to evaluate
whether an association is causal. Note that these are not features
of causes themselves, but rather ways we can recognize them. They
are: (1) strength: how strong is the association between cause and
effect; (2) consistency: the relationship is present in multiple
places, and the results are replicable; (3) specificity: whether the
cause leads to a particular effect or group of effects (e.g. smoking
causing illness versus smoking causing lung cancer); (4) temporal-
ity: the cause precedes the effect; (5) biological gradient: does the
level of the effect or risk of it occurring increase with an increase in
the level of the cause (e.g. a dose-response curve); (6) plausibility:
is there some mechanism that could potentially connect cause and
effect, given current biological knowledge; (7) coherence: the rela-
tionships should not conflict with what we know of the disease; (8)
experiment: experimental results are useful evidence toward a
causal relationship; and (9) analogy: after finding the relationship
between, say, HPV and cervical cancer we may more readily accept
that a virus could cause another type of cancer.

Another epidemiologist, Susser, independently described a sim-
ilar set of criteria [43], taking association, temporal priority, and
what he calls direction as essential properties of causal relation-
ships, and distinguishing between these properties and the criteria
– such as Hill’s – used to find them. That is, Susser’s three criteria
are what he believes makes something a cause, and points such as
Hill’s are essentially heuristics that help us find these features.
Susser’s first two points are shared by the probabilistic view and
Hill’s viewpoints, while direction – which stipulates that a change
in the cause leads to a change in the effect and change in the effect
is a result of change in the cause [44] – is most similar to counter-
factual [45] and manipulability theories of causality [46].3

There are also many similarities between these suggestions and
both the probabilistic and regularity views of causality.4 It is critical
to note that, like the philosophical theories which all face counterex-
amples, Hill’s list of viewpoints is not a checklist for causality, and
none of these (aside from temporality5) are required for something
to be a cause. Rather, this is a list of points to help evaluate evidence
toward causality. Despite this, and Hill’s statement that he does not
believe there are hard and fast rules for evidence toward causality
[34], the list has long been mislabeled as the ‘‘Hill criteria.’’ There
has been recent work clarifying this point, with (among many others
[50–52]) Rothman and Greenland addressing why each viewpoint is
neither necessary nor sufficient [53], and Phillips and Goodman [54]
discussing the broader picture of what we are missing by treating
Hill’s work as a causality checklist.

3.4. Singular causality and personalized medicine

Since the first human genome was sequenced, there has been a
surge of interest in ‘‘personalized medicine’’ – understanding each

patient’s diagnosis, prognosis, treatment, and general health in an
individualized way. However, our knowledge of what treatments
work, how often patients die from a particular condition and what
can lead to a certain set of symptoms generally comes from
observing sets of patients, and combining multiple sources of
information. This general (type) level information, though, is not
immediately applicable at the singular (token) level. Making use
of causal inferences for personalized reasoning requires under-
standing how to relate the type-level relationships to token-level
cases, a task that has been addressed primarily in philosophy. This
is the difference between, say, finding that smoking causes lung
cancer and determining that smoking caused a particular patient’s
lung cancer at age 42. While token causal explanation (or reason-
ing) is essential to medicine, and something humans have to do
constantly in our everyday lives, it has been difficult to create algo-
rithms to do this without human input since it has required much
background knowledge and commonsense reasoning. For example,
while smoking could be the likeliest cause of lung cancer, a partic-
ular patient may have smoked for only a week but had a significant
amount of radon exposure, which caused her to develop lung can-
cer. A doctor looking at the data could make sense of it, but it is dif-
ficult for machines since both prior knowledge and information
about the patient will always be incomplete, and may deviate from
the likeliest scenarios. That is, even without having detailed infor-
mation about the timing of smoking and development of lung can-
cer, a doctor could rule out that hypothesis and ask further
questions of the patient while an automated method cannot repli-
cate this type of commonsense reasoning. Even doing this manu-
ally is difficult. As mentioned in the introduction, RCTs are one of
the primary sources of information used when determining the
best course of action for individual patients, but to know that a
therapy will work as it did in a trial in an individual case, we need
to know not just that it worked but why it worked to ensure that
the same necessary conditions for effectiveness are present and
no conditions that prevent efficacy are present.

However, if we aim to determine, say, whether a patient’s symp-
toms are an instance of an adverse drug event or are due to the
underlying disease being treated, we need to tackle this problem.
There has been no consensus among philosophers about how to re-
late the type and token levels, leading to a plurality of approaches
such as type-level relationships following as generalizations of to-
ken-level ones [55], learning type-level relationships first and then
applying these to token-level cases [56,57], or treating these as sep-
arate things each requiring their own theory [38]. Computational
techniques in this area come primarily from the knowledge repre-
sentation and reasoning community, which is focused on the
problem of fault diagnosis (finding the cause of malfunctions in
computer systems based on their visible errors) [58]. There are a
number of approaches to this problem [59–61], but in general they
assume there is a model of the system, relative to which its behav-
ior is being explained. The biomedical case is much more difficult,
as we must build this model, and causality here is more complex
than simply changing the truth values of binary variables.

There has been some work on distinguishing between the two
levels of causality in the context of medicine [62], and relating
the idea of token causality to the problem of diagnosis [2], though
the problems of inference and diagnosis based on causal informa-
tion have generally been treated separately. A number of methods
have been proposed for automating explanation for the purpose of
medical diagnosis [63] using techniques such as qualitative simu-
lation [64], and expert systems working from databases of causal
knowledge [65] or probabilistic models [66–68]. However like
the case of fault diagnosis, these approaches generally begin with
a set of knowledge or model, but creating such models is difficult
when we have only observational data and partial knowledge.
Instead it is desirable to connect causal relationships or structures

3 This desire for evidence of both a probabilistic association and of a mechanism
connecting cause and effect was formalized by Russo and Williamson [47], who show
that each of Hill’s viewpoints can be related to either mechanistic or probabilistic
views.

4 See [48,49] for an in depth analysis of Hill’s viewpoints in the context of
philosophical theories of causality.

5 This can be violated with cases of simultaneous causation in physics, but is
generally accepted elsewhere.
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inferred from data to token-level explanation. This is particularly
useful in the case of inference from EHR data, where the population
being studied is the same one being treated.

4. Causal inference and explanation

The philosophical and epidemiological methods described so far
are generally intended to help us judge whether an association
may be causal, but our focus in this review is on doing this from
a set of data in an automated way, where efficiency is critical
due to the size and complexity of the datasets we target. A variety
of approaches from computer science and statistics have been
developed for inferring causal relationships from (usually observa-
tional) data, with a smaller set of approaches connecting these cau-
sal inferences to explanation of singular cases. The approaches can
be roughly categorized into those based on graphical models
(Bayesian networks and their temporal extensions, dynamic Bayes-
ian networks), which infer probabilistic models representing the
set of causal relationships between all variables in a dataset; Gran-
ger causality, which infers relationships between individual time
series; and finally an approach based on temporal logic, that infers
complex relationships from temporal observations. While all deci-
sions about which approach to use in a given case involve tradeoffs
that take into account the available data and researcher’s priorities,
we summarize the main features of the algorithms mentioned in
Table 1, in order to ease this decision making.

4.1. Graphical models

4.1.1. Bayesian networks
One of the first steps toward computational causal inference

was the development of theories connecting graphical models to
causal concepts [20,22]. Graphical model based causal inference
has found applications to areas such as epidemiology [71] and find-
ing causes of infant mortality [72], and there are a number of soft-
ware tools available for doing this inference [73–75]. These
methods take a set of data and produce a directed acyclic graph
(DAG) called a Bayesian network (BN) showing the causal structure
of the system. BNs are used to describe the independence relations
among the set of variables, where variables are represented by
nodes and edges between them represent conditional dependence
(and missing edges denote independence). Fig. 4 shows a simple

BN depicting that smoking causes both lung cancer and stained fin-
gers, but lung cancer and stained fingers are independent condi-
tional on smoking. The basic premise is that using conditional
dependencies and a few assumptions, the edges can be directed
from cause to effect without necessarily relying on temporal data
(though this can be used when available).

In order to infer these graphs from data, three main assump-
tions are required: the causal Markov condition (CMC), faithful-
ness, and causal sufficiency. CMC is that a node in the graph is
independent of all of its non-descendants (its direct and indirect
effects) given its direct causes (parents). This means, for example,
that two effects of a common cause (parent) will be independent
given the state of that cause. For example, take the structure in
Fig. 5. Here C and D are independent given B while E is independent
of all other variables given C. On the other hand, note that every
node is either a parent or descendant of B. This allows the probabil-
ity distributions over a set of variables to be factored and com-
pactly represented in graphical form. If in general we wanted to
calculate the probability of node C conditional on all of the vari-
ables in this dataset we would have we would have P(CjABDE).
However, given this graph and CMC we know that C is independent
of the rest of the variables given A and B and thus this is equivalent
to P(CjAB). This means that we can factor the probability distribu-
tion for a set of variables

Pðx1; x2 . . . xnÞ ¼ Pðx1jx2 . . . xnÞPðx2jx3 . . . xnÞPðxnÞ ð2Þ

into

Pðx1; x2; . . . xnÞ ¼
Yn

i¼1

PðxijpaðxiÞÞ ð3Þ

where pa(xi) is the parents of xi in the graph. Note that this connects
directly to using graphical models for prediction, where we aim to
calculate the probability of a future event given the current state
of variables in the model.

The faithfulness condition stipulates that the dependence rela-
tionships in the underlying structure of the system (the causal
Bayesian network) hold in the data. Note that this holds only in
the large sample limit, as with little data, the observations cannot
be assumed to be indicative of the true probabilities. If there are
cases where a cause can act through two paths: one where it in-
creases the probability of an effect directly, and one where it in-
creases the probability of an intermediate variable that lowers
the probability of the effect, then there could be distributions
where these effects exactly cancel out, so that the cause and effect
will seem independent. This scenario, referred to as Simpson’s par-
adox [76] is illustrated in Fig. 6, where birth control pills can cause
thrombosis, but they also prevent pregnancy, which is a cause of

Table 1
Primary features of the algorithms discussed: (a) how they handle time, (b) whether
they infer structures such as graphs or individual relationships, (c) whether they take
continuous (C), discrete (D) or mixed (M) data, (d) whether they allow cycles
(feedback loops), (e) if they attempt to find latent variables, (f) If they infer only causal
relationships (directed) or also correlations (mixed), (g) whether they can be used
directly calculate the probability of future events, (h) how they are connected to
token causality (explanation).

BNs DBNs Granger Temporal
logic

Time No Set of
lags

Single lag Windows

Results Graph Graph Relationships Relationships
Data C/D/M C/D/Ma C D/Mb

Cycles No Yes Yes Yes
Latent

variables
Yes Yes No No

Result type Mixed Directed Directed Directed
Prediction Yes Yes No No
Token

causality
Counterfactuals No No Probability

a DBNs with mixed continuous/discrete variables are called hybrid DBNs [69].
b In [70], the temporal logic based approach described here was extended for use

with continuous-valued effects.

Fig. 4. An example BN showing smoking (S) causing lung cancer (LC) and stained
fingers (SF).

Fig. 5. An example BN showing smoking (S) causing lung cancer (LC) and stained
fingers (SF).
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thrombosis. Thus, depending on the exact distribution in a dataset,
these paths may cancel out so there seems to be no impact (or even
a preventative effect) of birth control pills on thrombosis.

Finally, causal sufficiency means that all common causes of
pairs on the set of variables are included in the analysis. For exam-
ple, using the example of Fig. 4, where smoking causes both lung
cancer and stained fingers, then a dataset that includes data only
on stained fingers and lung cancer without data on smoking would
not be causally sufficient. This assumption is needed since other-
wise two common effects of a cause will seem to be dependent
when their common cause is not included. In cases where these
assumptions do not hold, then a set of graphs representing the
dependencies in the data, along with nodes for possible unmea-
sured common causes, will be inferred. Note that some algorithms
for inferring causal Bayesian networks, such as FCI [22,77] do not
assume sufficiency and can determine whether there are latent
(unmeasured) variables and thus can also determine if there is
an unconfounded relationship between variables. Since a set of
graphs is inferred, then one can determine whether in all graphs
explaining the data two variables have an unconfounded relation-
ship. A similar way that faithfulness can fail is through selection
bias, something that is particularly important when analyzing
the types of observational data found in biomedical sciences.
Importantly, this can occur without any missing causes or common
causes. For example, if we collect data from an emergency depart-
ment (ED), it may seem as though fever and abdominal pain are
statistically dependent, with this being due to the fact that only pa-
tients with those symptoms come to the ED, while patients with
only one of the symptoms stay home [78]. In all cases, the theoret-
ical guarantees on when causal inferences can be made given these
assumptions hold in the large sample limit (as the amount of data
approaches infinity) [22].

The main idea of BN inference from data is finding the graph or
set of graphs that best explain the data, but there are a number of
ways this can be done. The two primary types of methods for this
are: (1) assigning scores to graphs and searching over the set of
possible graphs attempting to maximize the chosen scoring func-
tion, and (2) beginning with an undirected fully connected graph
and using repeated conditional independence tests to remove
and orient edges in the graph. In the first approach, the idea is that
one can begin by generating a possible graph, and then explore the
search space by altering this initial graph. The primary differences
between algorithms of this type are how the space of graphs is ex-
plored (e.g. beginning with a graph and examining adjacent graphs,
periodically restarting to avoid convergence to local minima), and
what scoring function is used to evaluate graphs. Two of the main
methods for scoring graphs are the Bayesian approach of Cooper
and Herskovits [79], which calculates the probability of the graph
given the data and some prior beliefs about the distribution; and
the Bayesian information criterion (BIC), which, being based on
the minimum description length, penalizes larger models and aims
to find the smallest graph accurately representing the data. Note
that this minimality criterion is important since if one simply max-
imizes the likelihood of the model given the data, this will severely
over fit to the particular dataset being observed. The second type of
method, based on conditional independence tests, is exemplified
by the PC algorithm [22]. The general idea of this is to begin with

a graph where all variables are connected in all possible ways with
undirected edges, and during each iteration to test whether for
pairs of variables that are currently connected by an edge, there
are other sets of adjacent variables (increasing the size of this set
iteratively) that render them independent, in which case that edge
is removed. After removing edges from the fully connected graph,
the remaining edges can then be directed from cause to effect.

One of the primary criticisms of BN methods is that the assump-
tions made may not normally hold and may be unrealistic to de-
mand [80]. In practical cases, we may not know if a set of
variables is causally sufficient or if a distribution is faithful. How-
ever as mentioned, there are algorithms such as FCI [22,77] and
others [81] that do not assume causal sufficiency and attempt to
infer latent variables (though more work is still needed to adapt
this for use with time series that have many variables [82]). Simi-
larly, other research has addressed the second primary critique by
developing approaches for determining determining when the
faithfulness condition can be tested [83].

While there has not been nearly as much attention to relating
this framework to token causality, one exception is the work of
Halpern and Pearl [84], which links graphical models to counter-
factual theories of causality [45] using structural equation models
[20].6 Broadly, the counterfactual view of causality says that had the
cause not happened, the effect would not have happened either.
Pearl’s adaption allows one to test these types of statements in
Bayesian networks. For example, one could test whether a patient
would still have developed lung cancer had she not smoked. While
nothing precludes incorporating temporal information, the theory
does not naturally allow for this as the inferred relationships and
structures do not explicitly include time. In many cases, such as
diagnosis, there are complex sets of factors that must act in sequence
in order to produce an effect. The primary difficulty with Pearl’s ap-
proach is that we must know which variables are true and false in
the token case (e.g. a patient smoked, had low cholesterol and was
not exposed to asbestos), but in fact determining these truth values
without temporal information is difficult. We might find that smok-
ing causes lung cancer and then want to determine whether a partic-
ular patient’s smoking caused his lung cancer. It seems unlikely that
his beginning smoking at 9am should cause his lung cancer at 12 pm,
but there is no way to automatically exclude such a case without
incorporating timing information. This is an extreme example that
can be ruled out with common sense, but it becomes more difficult
as we must determine where the threshold is where we will consider
an event to be an instance of the type level variable.

In summary, when their underlying assumptions hold, the BN
framework can provide a complete set of tools for inferring causal
relationships, using these to explain individual cases, and making
predictions based on the inferred causal models.

4.1.2. Dynamic Bayesian networks
While Bayesian networks are a useful method for representing

and inferring causal relationships between variables in the absence
of time, most biomedical cases of interest have strong temporal
components. One method of inferring temporal relationships is
by extending BNs to include timing information. Dynamic Bayesian
networks (DBNs) [85] use a set of BNs to show how variables at one
time may influence those at another. That is, we could have a BN
representing the system at time t and then another at t + 1 (or 2,
3, etc.) with connections between the graphs showing how a

Fig. 6. Illustration of Simpson’s paradox example, where B lowers the probability of
P, while both P and B raise the probability of T.

6 This approach is similar to Rubin’s potential outcomes framework [21], which is
also based on counterfactuals and defines a causal effect as the difference in what
would happen after one treatment versus what would happen after another. For
example, the causal effect of aspirin for a headache versus taking a placebo is the
difference in outcome between taking the aspirin and taking the placebo and the
average causal effect is the average of these differences for a population.
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variable at t + 1 depends on itself or another variable at time t. In
the simplest case, a system may be stationary and Markov and
modeled with a BN of its initial state and a DBN with two time
slices, showing how variables at time ti influence those at ti+1. This
is shown in Fig. 7, where there is one graph showing that at the ini-
tial time (zero) A influences both B and C. Then there are two more
graphs, showing how variables at time i influence those at the sub-
sequent time i + 1.

DBNs have been applied to finding gene regulatory networks
[86], inferring neural connectivity networks from spike train data
[87], and developing prognostic and diagnostic models [88,89];
and there are a number of software packages for inferring them
[90,91]. Recent work has also extended DBNs to the case of non-
stationary time series, where there are so-called changepoints
when the structure of the system (how the variables are con-
nected) changes. Some approaches find such times for the entire
system [92] while others can find these individually for each vari-
able [93].

This approach faces two primary limitations. First, like BNs,
there are no current methods for testing complex relationships.
While variables may be defined arbitrarily, we are not aware of
any structured method for forming and testing hypotheses involv-
ing conjunctions or sequences of variables. For example, there is no
automated way of determining that smoking for a period of 15
years while having a particular genetic mutation leads to lung can-
cer in 5–10 years after that with probability 0.5, while smoking for
a year and then ceasing smoking leads to lung cancer in 30–40
years with probability 0.01.

Second, each connection between each time slice is inferred
separately (e.g. we find c at time t causes e at time t + 2 and
t + 3), leading to both significant computational complexity and re-
duced inference power. Since it is not possible to search exhaus-
tively over all possible graphs, one must employ heuristics, but
these can be sensitive to the parameters chosen. More critically,
few relationships involving health have discrete time lags. When
using observational data such as from EHRs, even if the relation-
ship does have a precise timing it is unlikely that patients will be
measured at exactly the correct time points, since patients are
not measured in a synchronized manner. In order to use DBN
methods for these inference problems, one can choose specific
time points such as ‘‘3 months’’ or ‘‘6 months’’ before diagnosis
and then group all events happening in ranges of times to be at
these specific time points. However, finding these time ranges is
frequently the goal of inference.

4.2. Granger causality

Another approach to inference from time series is that of Gran-
ger [19,94], whose methodology was developed primarily for fi-
nance but has also been applied to other areas such as

microarray analysis [95] and neuronal spike train data [96,97].
Similarly to DBNs, the approach attempts to find whether one var-
iable is informative about another at some specific lagged time.
Unlike DBNs, the approach does not attempt to find the set of rela-
tionships that best explains a particular dataset, but rather evalu-
ates each relationship’s significance individually. One time series
X at time t is said to Granger-cause another time series Y at time
t + 1 if with Wt being all available knowledge up until time t:

PðYtþ1jWtÞ – PðYtþ1jWt % XtÞ: ð4Þ

That is, Xt contains some information about Yt+1 that is not part of
the rest of the set Wt. This is usually tested with regressions to
determine how informative the lagged values of X are about Y
[98]. For example, say we have three time series: match sales, inci-
dence of lung cancer, and rate of smoking for a particular neighbor-
hood (as shown in Fig. 1). Then, to determine whether the rate of
smoking predicts the incidence of lung cancer 10 years later (let
us assume no in- and out-migration), we would compare the prob-
abilities when we have the full history of smoking rate and match
sales up until 10 years before, versus when we remove the informa-
tion about smoking. If the probabilities differ, then smoking would
be said to Granger-cause lung cancer.

Note that while this approach is used for causal inference, the
relationships found do not all have a causal interpretation in the
sense we have described. For example, if the relationship between
smoking, stained fingers and lung cancer is as shown in Fig. 6, but
people’s fingers become stained before they develop lung cancer,
then stained fingers will be found to Granger cause lung cancer
(particularly if stained fingers provide an indication of how much
a person smoked). Recalling the purposes we described earlier,
Granger causes may be suitable for prediction, but cannot be used
for explanation or policy. That is, we could not explain a patient’s
lung cancer as being due to their stained fingers nor can we pre-
vent lung cancer by providing gloves to smokers.

It has been verified experimentally that the primary types of er-
rors Granger causality makes are those mistaking the correlation
between common effects of a cause for a causal relationship. How-
ever, it is less prone to overfitting to the dataset than either DBNs
or BNs, since it assesses the relationships individually rather than
inferring the model that best explains all of the variables [41].
Other comparisons, such as [99] have found less of a difference be-
tween Granger causality and BNs, but that work used a different
methodology. There each algorithm was used to analyze multiple
datasets representing the same underlying structure, where the
consensus of all inferences was taken (i.e. the causal relationships
that were found in every run). When taking the consensus, it is
possible to severely overfit to each individual dataset while still
performing well overall if the true relationships are identified in
each inference. Thus this approach this may overstate the benefit
of DBNs over Granger causality, since Kleinberg [41] found that re-
sults varied considerably between inferences (over 75% intersec-
tion between inferences for Granger causality, over 40% for
DBNs). Further, outside of data sets for comparison, we cannot al-
ways replicate this approach of taking the consensus of multiple
inferences. In some cases there is only one dataset that cannot be
partitioned (e.g. a particular year of the stock market occurs once)
or the partitioning is difficult since it requires more data.

Extensions to Granger causality have attempted to address its
shortcomings, such as extending the framework to allow analysis
of multiple time series generated by nonlinear models [100], as
well as to find the lags between cause and effect as part of the
inference process [101] and reformulating the problem in terms
of graphical models to allow the possibility of handling latent vari-
ables [102]. However, like BNs and DBNs, this approach has no
intrinsic way of specifying and inferring complex relationships.

Fig. 7. Example DBN with one graph showing the initial state of the system (time
zero), and then a second DBN that shows how variables at any i are connected to
those at the next time i + 1.
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4.3. A temporal and logical approach

While one could use arbitrarily defined variables with both
graphical models and Granger causality, there is no automated
method for testing these unstructured relationships that can in-
clude properties being true for durations of time, sequences of fac-
tors, and conjunctions of variables probabilistically leading to
effects in some time windows. On the other hand, data mining
techniques [103], created for inferring complex patterns and sets
of predictive features do not have the causal interpretations that
we have said are needed for prediction, explanation, and policy
development. Further, we want to not only infer general properties
about populations (such as the relationship between various envi-
ronmental exposures and disease) but want to use this information
to reason about individual patients for disease detection and treat-
ment suggestion. In this section we discuss an approach developed
by Kleinberg and Mishra [104,41] that combines the philosophical
theories of probabilistic causality with temporal logic and statistics
for inference of complex, time-dependent, causal relationships in
time series data (such as EHRs), addressing both type-level causal
inference and token-level explanation.

The approach is based on the core principles of probabilistic
causality: that a cause is earlier than its effect (temporal priority)
and that it raises the probability of its effect, where probabilistic
computation tree logic (PCTL) formulas [105] are used to represent
the causal relationships. In addition to being able to represent
properties such as variables being true for durations of time, this
also allows a direct representation of the time window between
cause and effect. For example, instead of relationships being only
‘‘a causes b’’, this method can reason about and infer relationships
such as ‘‘asbestos exposure and smoking until a particular genetic
mutation occurs causes lung cancer in 1–3 years with probability
0.2’’. The overall method is to generate a set of logical formulas,
test which are satisfied by the data, and then compute a measure
of causal significance that compares possible causes against other
explanations to assess the average difference a cause makes to
the probability of its effect. The testing is relative to a set of time
series data (such as EHRs) and returns a set of significant relation-
ships, rather than a graph structure.7 To do this, a set of logical for-
mulas (representing potential causal relationships) is initially
created using background knowledge or by generating all possible
logical formulas between the variables in the dataset up to some
maximum size. With c and e being PCTL formulas (in the simplest
case, they may be atomic propositions), prima facie (potential)
causes are defined as those where c has nonzero probability, the
unconditional probability of e is less than some value p and:

c,Pr;6s
Pp e ð5Þ

where r and s are times such that 1 6 r 6 s 6 1 and r –1. This for-
mula means that the probability of e happening in between r and s
time units after c is p (the conditional probability of e given c). This
representation is equivalent to that of Suppes (described in Section
3.2).

Then, to determine whether a particular prima facie cause c is a
significant (also called just-so) cause of an effect e, where X is the
set of all prima facie causes of e, we compute:

eavgðc; eÞ ¼
P

x2Xncexðc; eÞ
jX n cj

ð6Þ

where:

exðc; eÞ ¼ Pðejc ^ xÞ % Pðej:c ^ xÞ: ð7Þ

Something with a low value of this measure may be a spurious
cause of the effect (perhaps due to a common cause of it and the ef-
fect) or may be a genuine cause but a weak one. If this value is ex-
actly equal to zero, we cannot conclude that c has no influence on e,
since its positive and negative influence may have canceled out. The
primary strengths of this type of pairwise testing is that, in contrast
to some methods for searching over graphs, the order of testing
does not matter, and the computational complexity is significantly
reduced. Note that this is testing the absolute increase in probabil-
ity. If one instead used a ratio of the two probabilities, then the
cause of a low-probability effect that leads to a 3-fold increase in
probability (e.g. 0.001 to 0.003) would seem as significant as one
that leads to the same order of magnitude change in a higher prob-
ability event (e.g. 0.1 to 0.3). While these may both be causal, for
practical purposes the latter one provides a better opportunity for
potential intervention.

One must then determine which values of eavg are significant.
Note that we are generally testing a large number of causal
hypotheses, where we expect only a small portion of those tested
to be genuinely causal, so the large number of tests conducted
can be used to our advantage, allowing us to treat the problem
as a multiple hypothesis testing and false discovery control one
[107] where we can use an empirical null hypothesis [108,109].
The method cited for fdr control relies on two primary assump-
tions: in the absence of causal relationships the eavg values will
be normally distributed, and there are a small number of true pos-
itives in the set. These also allow us to determine when we do not
have enough data to test our hypotheses, as the results will differ
significantly from a normal distribution.

This approach has been validated on synthetically generated
data sets in multiple areas (neuronal spike train [104] and stock
market data [110]) and compared extensively against BN, Gran-
ger, and DBN methods. It was shown that in cases where tempo-
ral information is important, it leads to significantly lower false
discovery rates than the other approaches [41]. Note that unlike
the BN and DBN methods described, since a model is not in-
ferred, there is no immediate way of calculating the joint prob-
abilities that can be useful for prognosis. While the goal of this
approach is to infer relationships rather than such a model, it is
possible that one can use it to find the relationships and evalu-
ate their timings and then use this prior information when
building a BN or DBN. One would still need to define joint prob-
ability distributions for complex events, however assuming
there are many fewer actual relationships than those initially
tested, this reduces the complexity significantly. Another limita-
tion is that there is no attempt to infer latent variables, and this
becomes more difficult as the relationships tested become more
complex.

It has also been connected to token-level causal inference and
explanation [111], allowing for explanation of complex events in
a way that incorporates temporal information in both the type-le-
vel relationships and token-level observations. The premise of the
approach is that, even though it is unclear philosophically how to
relate type and token level causality, type-level relationships are
good evidence toward token causality. However, since causes can
be logical formulas, such as a ^ b, we may be unable to determine
whether they are true, such as if we only know that a happened
and not whether b did too. Beginning with a set of inferred type-le-
vel causes and a sequence of token-level observations consisting of
truth values of variables and their times (such as a particular pa-
tient’s EHR), one can test which formulas are satisfied by the se-
quence of observations and, in the case where we cannot
determine a formula’s truth value, its probability can be calculated
given the observation sequence. For example, the token-level sce-
nario may be the following sequence, beginning from observation
of a system, to occurrence of the effect, e.

7 Formulas are checked directly in data using techniques for verification of
formulas from observation sequences [106,41] and do not require inference of a
model.
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Thus the observation sequence V is the set of things true at each
timepoint. Here a is true at time zero, both b and c are true at time
1, a is true again at time 2 and then there are no further observa-
tions until the effect e occurs at time 5. Where V is an observation
sequence, the token-level significance of a particular cause c for an
effect e (omitting the temporal subscripts for ease of notation) is:

eavgðc; eÞ & PðcjVÞ: ð8Þ

This weights the type-level significance scores eavg by the probabil-
ity of the cause token-occurring given the sequence of observations,
P(ejV). The result is a ranking of possible causes of an effect that
weight the type-level significance scores by the token-level proba-
bilities. Since it does not take a counterfactual approach to explana-
tion, this method can handle many of the counterexamples found in
the philosophical literature, allowing explanation of overdeter-
mined events [41].

5. Conclusions and future directions

Biomedical informatics has many challenging areas of work that
can benefit from both methodological developments in causal
inference as well as more explicit discussion of how causal claims
can be supported. While there are a number of algorithms that can
aid research in this area, one of the main points raised in this arti-
cle is that causal inference from observational (or even RCT) data is
not something that can be fully automated (where we discover all
causal relationships from data and use these to explain events
without any human involvement in the process), or used to infer
or confirm relationships with certainty. Why is this? First, note
that the concept of causality itself has not been defined in a way
that covers all instances and is immune to counterexamples. Sec-
ond, systems (especially outside of physics) can rarely be fully
specified. For example, writing down equations governing the mo-
tion of a thrown ball is fairly straightforward, even if approxima-
tions are made in relation to things like resistance from the air.
In contrast, other fields face moving targets (e.g. a virus mutating
as researchers aim to understand it) and both partial and frag-
mented information (e.g. incomplete knowledge of humans from
the level of cells to individuals to populations). Automating reason-
ing in AI through expert systems and the study of common sense
has shown that even in seemingly straightforward cases, this is
not an easy pursuit, so with partial knowledge of complex systems
it becomes orders of magnitude more difficult. Finally, in biomed-
icine, we cannot usually create the ideal types of RCTs and other
experiments that would be needed due to ethical and financial
constraints. Rather, our understanding of the methods applied

and how to interpret their results is crucial to successful inference.
We must evaluate our findings, determining whether there is other
evidence (such as a biological mechanism) supporting or disprov-
ing them. However, the primary advantage of automated testing
methods for causal inference is not to remove the need for judg-
ment, but rather to find novel hypotheses that can then be vali-
dated. For example, methods allowing for inference of temporal
relationships can enable us to learn about new timings for known
biomarkers (see Table 2).

While there are a number of promising methods available for
causal inference in biomedical informatics, there are still many
open problems. In order to determine whether the assumptions
of the methods used are met in practice and how various compet-
ing algorithms fare in a domain of interest, it is necessary to have
datasets where the ground truth is known. This need not take the
form of challenges such as those on general causal inference [112],
as these can lead to other difficulties (such as feedback loops be-
tween challenge data and methods being developed) but without
test data for inference from structured, longitudinal, electronic
health records it is difficult to determine the relative merits of each
approach, since we cannot truly know how many false discoveries
(and non-discoveries) are being made. As a result, a commonly
used evaluation method is to see how well the relationships in-
ferred predict future cases, but this is not actually assessing the
inferences made. What is needed is a set of simulated longitudinal
electronic health record data (which, containing no actual patient
information, can be made widely available), perhaps created with
varying degrees of missingness (e.g. versions where patients have
gaps in their record versus those where all medical events are cap-
tured) and error in order to determine what causal inferences are
possible, as well as how much and what type of data is required.
Elucidating the gaps in current methods will also allow us to better
focus future developments. Some key omissions in current meth-
odology are the ability to include background knowledge and deal
with the non-stationarity found in records. In order to avoid
repeating inferences, we need approaches that can build on past
results, while still allowing the possibility of refuting prior infer-
ences based on new information. While Bayesian networks can
incorporate prior beliefs (encoded as probability distributions)
and some inference methods allow users to specify edges that
are known to exist or not exist, this does not fully solve the prob-
lem. What we need is a method of taking information from prior
inferences, which will be uncertain, and then using these to par-
tially constrain the search space or assess the significance and nov-
elty of relationships, while still allowing that we could refute an
earlier inference (and that inferences from one dataset may not ap-
ply to another, for all of the reasons described in relation to RCTs).
Further, we need to do this in a structured, user-friendly manner.
An implicit assumption of nearly all causal inference methods is
that the underlying distribution is stationary. However, patients
may exhibit periods of stationarity punctuated by instances of

Table 2
Glossary of technical terms.

Causal
explanation

Giving the reasons why an event occurred by citing the causal relationships related to the situation (e.g. it is known that a patient smoked and then
developed lung cancer. The relationship between smoking and lung cancer explains why he developed lung cancer) or providing information about
an event (e.g. If the relationship between smoking and lung cancer is known, then a particular patient’s lung cancer can be explained by providing
information on his smoking). This can also be called causal reasoning

Causal inference The process of finding causal relationships. Here we mean the process of doing this in an automated way from data. This is sometimes referred to as
causal discovery

Confounding In this context, confounding is when variables may seem causally related, but the relationship is fully explained by another factor such as a common
cause

Necessary cause If a cause is necessary, the effect cannot occur without it
Prediction The process of using a causal model of a system to find the probability of future events and, ideally, what will result from an intervention on the

system. This is sometimes referred to as causal inference or causal reasoning
Sufficient cause A sufficient cause is one such that whenever it is true, it brings about the effect
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regime change, such as a diabetic whose glucose is under control
most of the time, but who has periods of hypoglycemia. During
these times there may be different sets of causal relationships gov-
erning their health. While methods that incorporate time windows
can account for this type of behavior to some extent, it will be
important to take this into account in a more explicit way in order
to allow both accurate prediction as well as better inference (such
as based on a time series that has been segmented into periods of
relative stationarity).

We have endeavored to cover the primary methods for causal
inference, but it is not possible to discuss all approaches in depth.
We now highlight some key omissions and areas for further read-
ing. First, we focused on the inference of causal relationships from
data, and did not discuss the creation of causal models, which may
be done using background knowledge or a combination of prior
knowledge to create the structure of the model and then inference
of the probabilities or numerical relationships in the structure from
data. One of the key approaches in this area is structural equation
modeling (SEM) [23], which relates to the path analysis approach
of Wright [113]. Secondly, in many cases we want to understand
what will happen if we change something in a system – interven-
ing by forcing a variable to take a certain value, and it is also pos-
sible to understand causality in terms of such interventions (where
causes are roughly ways of manipulating effects) [57,114]. One ap-
proach to quantifying the effect of interventions is the Rubin causal
model (RCM), or potential outcomes approach [21].
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