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Idea Generation, Creativity, and Prototypicality

We explore the use of Big Data tools to shed new light on the idea generation process, automatically
“read” ideas in order to identify promising ones, and help people be more creative. The literature suggests
that creativity results from the optimal balance between novelty and familiarity, which should be
measured based on the combinations of words in an idea. We build semantic networks where nodes
represent word stems relevant to a particular idea generation topic, and edge weights capture the novelty
vs. familiarity of word stem combinations (i.e., the weight of an edge that connects two word stems
measures their scaled co-occurrence). Each idea contains a set of word stems, which form a semantic
subnetwork. The edge weight distribution in that subnetwork reflects how the idea balances novelty with
familiarity. Based on the “beauty in averageness” effect, we hypothesize that ideas with semantic
subnetworks that have a more prototypical edge weight distribution are judged as more creative. We show
this effect in eight studies involving over 4,000 ideas across multiple domains. Practically, we
demonstrate how our research can be used to automatically identify promising ideas, and recommend

words to users on the fly to help them improve their ideas.



1. Introduction

“Big Data” tools and methods have heavily focused on improving the effectiveness of advertising or
other marketing vehicles. In this paper we explore whether and how Big Data tools may be leveraged in
other marketing-related domains. In particular, we focus on idea generation, which is a critical aspect of
product development, innovation, and advertising. We explore whether, and how Big Data tools may be
leveraged to shed new light on the idea generation process, automatically “read” ideas in order to identify
promising ones, and help people be more creative in practice.

We adopt a cognitive view of idea generation according to which generating ideas involves
retrieving knowledge from long-term memory (Finke, Ward and Smith 1992). This memory retrieval
stage of the idea generation process, in which people select the “ingredients” that will be combined to
form a new idea, lends itself well to systematic, computer-based analysis. This raises the question of
whether and how the judged creativity of an idea may be linked to its “ingredients,” i.e., to the set of
words present in the idea. To answer this question, we rely on the creativity literature that suggests that
creativity lies in the optimal balance between novelty and familiarity. This raises three new questions: (i)
How exactly should novelty and familiarity be defined in the context of idea generation? (ii) How may
novelty and familiarity be measured? (iii) What constitutes an optimal balance between novelty and
familiarity? To answer the first question, we rely on a literature that has established the associative nature
of creativity, i.e., creativity relies on associations. Therefore, it is appropriate to relate novelty to
uncommon associations of words and familiarity to common associations. For example, consider a recipe
for a new dish. Novelty does not necessarily come from choosing novel ingredients for the recipe but
rather from choosing ingredients that do not often appear together — both chicken and chocolate are very
common and familiar ingredients in recipes but the combination of these two ingredients is novel.
Because we focus on the association between words to represent novelty and familiarity, we turn to the
rich literature in knowledge discovery and co-word analysis to answer the second question (e.g., Callon et

al. 1986). Using standard text mining tools, we organize the word stems related to a given idea generation



topic into a semantic network. Nodes in this network represent word stems, and the weight of an edge that
connects two word stems measures their scaled co-occurrence. A high edge weight means that the two
corresponding word stems appear frequently with one another, i.e., their combination is familiar.
Conversely, a low edge weight means that the two corresponding word stems appear infrequently with
one another, i.e. their combination is novel. The subset of word stems involved in an idea form a semantic
subnetwork. The edge weights in this subnetwork reflect a distribution between familiar (i.e., strongly
connected) and novel (i.e., weakly connected) combinations of word stems. That is, the balance between
novelty and familiarity is captured by the distribution of edge weights in the subnetwork. Finally, we
answer the third question based on the “beauty in averageness” effect, which postulates that prototypes
have inherent qualities and properties that robustly make them more appealing. This leads us to our
hypothesis that ideas with semantic subnetworks that have a more prototypical edge weight distribution
tend to be judged as more creative.

It is important to note that prototypicality of the edge weight distribution does not mean that word
stems used in the idea are prototypical or common, but rather that the structure of the semantic
relationships among these word stems is prototypical. Note that we define an “idea” as a document made
of words that attempts to add value given a particular idea generation topic. Each word is associated with

a unique word stem, and each stem may be associated with one or many words (e.g., the words
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“adventure,” “adventures,” “adventurous” all belong to the word stem “adventur”).

We test and validate our hypothesis across eight studies, involving over 4,000 ideas generated by
over 2,000 people. While we focus on judged creativity as our primary measure of quality, we show that
the effect also holds with alternative measures of idea quality, coming from consumers or industry
experts. Five of our studies were run in collaboration with companies that were interested in ideas for new
products or services, or that host idea generation communities. Participants in our studies varied from
Amazon Mechanical Turk to commercial online panels to members of an idea generation community. The

idea generation topics varied from smartphone apps to oral care to insurance products. Our last study

provides a proof of concept that our findings may be used to construct automatic tools to assist people in



the memory retrieval step of the idea generation process. In particular, we show that it is possible to build
tools that text mine ideas in real time, and automatically recommend words or “ingredients” to help
people improve their ideas.

The rest of the paper is organized as follows. In Section 2, we review some relevant literature and
justify our main hypothesis. In Section 3 we introduce the various steps of our empirical approach,
including constructing semantic networks, quantifying the prototypicality of edge weight distributions, as
well as generating and evaluating ideas. In Section 4 we report the results of our studies. Section 5

concludes and offers suggestions for future research.

2. Theoretical Development

2.1. Idea Generation
Our research is based on a cognitive view of idea generation, which is based on the premise that one must
rely on some type of stored information when developing new ideas (e.g., Goldenberg and Mazursky
2002; Simonton 2003). Indeed, it is well established that generating ideas involves retrieving knowledge
from long-term memory (e.g., Nijstad and Stroebe 2006; Nijstad Stroebe and Lodewijkx 2003).

In particular, the Geneplore model of Finke, Ward and Smith (1992) suggests that the generation of
creative ideas involves two phases that are performed iteratively: a generative phase in which mental
representations called preinventive structures are constructed, and an exploratory phase in which these
structures are interpreted, modified and combined in meaningful ways. Put simply, the Geneplore model
realizes that new ideas are not constructed in a vacuum, but rather that some basic ingredients or starting
points (preinventive structures) are necessary. Burroughs, Moreau and Mick (2008) define preinventive
structures as “symbolic patterns, exemplars, mental models, or unique verbal combinations that are
precursors to the creative process.” Preinventive structures are typically constructed by retrieving relevant
concepts from long-term memory (Finke, Ward and Smith 1992; Perkins 1981). Moreau and Dahl (2005)

provide the vivid illustration of a consumer needing to cook dinner. In that case a set of ingredients (e.g.,



peanut butter, spaghetti noodles, carrots, etc.) will form a preinventive structure that will form the basis
for a solution.

The type of preinventive structures retrieved during the generative phase of the idea generation
process will obviously have an effect on the quality of the ideas developed. As Ward (1995) notes, “Any
time a person develops a new idea, it will be based to some extent on recalled information; however, the
exact manner or form in which information is recalled may affect the likelihood of a creative outcome.”
However, very little is known regarding the relation between the characteristics of the pre-inventive
structures retrieved during the generative phase of the idea generation process and the quality of the ideas
developed, i.e., between the set of words that form the “ingredients” of an idea and the quality of that
idea. In this paper we explore this relationship, by drawing on research from various fields including
psychology, text mining, and network analysis. Studying this relationship is not only interesting
theoretically, it also has practical implications. Indeed, the generative phase of the idea generation process
relies on retrieval from long-term memory, which can be at least partially automated or assisted by
computers. Therefore, understanding the relationship between the set of words in an idea and its judged
creativity opens the door for automated tools that not only identify promising ideas, but also help people

find the right “ingredients” to include or add into their ideas.

2.2. Balancing Novelty with Familiarity

The study of creativity in various domains, from scientific discovery (e.g., Uzzi et al. 2013) to linguistics
(e.g. Giora, 2003), has pointed to the robust conclusion that creativity results from the optimal balance
between novelty and familiarity. For example, Uzzi et al. (2013) link the impact of scientific papers (as
measured by the number of citations) to the network of journals cited in these papers (i.e., how frequently
the journals cited in a paper tend to be cited together). They find that papers are more likely to have high
impact if they combine novelty and conventionality, i.e., if they cite papers from journals that are

commonly cited together on average, with some very unusual combinations. In a context even closer to



ours, Ward (1995) notes that “truly useful creativity may reflect a balance between novelty and a
connection to previous ideas.”

Therefore, based on the creativity literature we can argue that an optimal set of “ingredients” in an
idea is one that balances novelty with familiarity. This raises three questions: (i) How exactly should
novelty and familiarity be defined in the context of idea generation? (ii) How may novelty and familiarity
be measured? (iii) What constitutes an optimal balance between novelty and familiarity? The following

three subsections address each of these questions in turn.

2.3 The Associative Nature of Creativity

One might be tempted to define novelty and familiarity in our context based on whether the word stems
present in the idea are inherently common or novel themselves. In that case, the novelty or familiarity of a
particular word stem would be measured based how frequently it appears in language related to the idea
generation topic under consideration. However, the literature suggests that it is preferable to define and
measure novelty and familiarity based on the combinations of word stems in the idea, rather than the
individual word stems themselves. As we discussed previously, an idea for a new recipe that combines
chicken with chocolate would be uncommon because these two ingredients are rarely found together,
even though both ingredients are common in recipes.

Indeed, the creativity literature has suggested that associations between concepts are the basis of
creativity. Dahl and Moreau (2002) argue that “researchers in cognitive psychology generally agree that
creativity consists of reassembling elements from existing knowledge bases in a novel fashion” (page 48,
emphasis added). Finke, Ward and Smith (1992) argue that “the merging of concepts is an inherently
creative process” (page 108, emphasis added), and that a moderate level of incongruity among the
concepts in an idea is useful in creative discovery. Mednick (1962) defines the creative thinking process
as “the forming of associative elements into new combinations which either meet specified requirements
or are in some way useful” (page 221). As background to this definition, Mednick relays introspective

statements by several well-known scientists and artists including Albert Einstein (who wrote that



“combinatory play seems to be the essential feature in productive thought”), André Breton (according to
whom artistic creativity comes the “‘juxtaposition of distant realities””) and Henri Poincaré (who wrote that
“to create consists of making new combinations of associative elements which are useful””). More
recently, Rothenberg (2015) interviewed 34 Nobel laureates in various domains and concluded that
integration, where “multiple separate elements retain their discreteness and identity while connected and
operating together in a whole” (page 9), is the characteristic result of the cognitive creative process.
Although Rothenberg (2015)’s study focuses on creativity in the scientific domain, he notes that:
“applications of all of the cognitive creative processes, in whole or in selective part, certainly must play a
role in other types of everyday and work-day creativity, such as in business and advertising” (page 190).
Based on this perspective, it seems reasonable to define novelty in our context as the association of
word stems that do not appear frequently together in text related to the topic under consideration; and
familiarity as the association of word stems that appear frequently together. In other words, our initial
statement may be refined as follows: an optimal set of “ingredients” in an idea is one that balances novel
combinations of word stems with familiar combinations of word stems. Therefore, throughout the
remainder of the paper, unless otherwise specified, “familiarity” and “novelty” refer to combinations of

word stems.

2.4. Semantic Networks

We have argued that novelty and familiarity may be measured by the strength of association between
word stems. The next step is to measure these associations. For this, we turn to the literature on semantic
networks and co-word analysis (Anderson 1983; Collins and Loftus 1975). A semantic network is a
network that represents associations among a set of words or word stems (we focus on word stems).
Today, semantic networks may be constructed relatively easily from primary or secondary data using
text mining analysis. (See Feldman et al., 1998 for a general introduction to text mining.) In a semantic
network the nodes are word stems and the edges are based on some measure of co-occurrence among

word stems. Word stems that appear together more frequently in textual data are connected by edges that



have higher weights, and are therefore closer to each other in the semantic network (Netzer et al. 2012).
Thus, the measure of edge weights in a semantic network is directly related to our proposed definition of
familiarity and novelty as the scaled co-occurrence of combinations of word stems. Because words can
have different meanings and associations in different contexts (Anderson 1983), we build context-specific

semantic networks for each idea generation topic.' More details are provided in Section 3.1.

Figure 1 provides an illustration of a semantic network from one of our studies in which consumers
generated ideas for new insurance products designed to improve financial stability. Note that such a figure
was created only to illustrate the concept of a semantic network in the present paper, but that it was not
shown to any participant in any of our studies. Each idea on the topic involves a subset of the nodes (word
stems) in the general network, which form a semantic subnetwork. If the semantic subnetwork
corresponding to a given idea has N nodes, there are N(N-1)/2 edges in the subnetwork, where the weight
of each edge captures the strength of association between two nodes in the network. Familiar
combinations of word stems have higher edge weights, i.e., they are commonly found together in natural
text related to the topic. In contrast, novel combinations of word stems have lower edge weights, i.e., their

combinations are more unusual.

We could describe a given semantic network based for example on the average weight of its edges,
or based on other statistics such as the variance, median, minimum, maximum, etc. However, in order to
capture the balance between novel and familiar combinations of words, we need to consider the entire

distribution of edge weights in an idea’s semantic subnetwork.
[INSERT FIGURE 1 ABOUT HERE]

2.5. “Beauty in Averageness” Effect
We have argued that the creativity of an idea should be linked to the edge weight distribution of the

semantic subnetwork associated with that idea, and that the optimal distribution is one that balances

! Text mining has been proposed previously as a method for generating new ideas by automatically linking streams
of literature. For example, Swanson (1988) found relationships between magnesium and migraine and between
biological viruses and weapons by mining disjoint literatures. Similarly, Kostoff (2006) proposed literature-based
discovery of ideas via text mining of the academic literature about a topic. In this paper we use text mining to better
understand which type of semantic structures make for a good idea, focusing on the context of innovation.



novelty and familiarity. This leaves us with our last question of what constitutes an optimal balance, i.e.,
an optimal distribution of edge weights in a semantic subnetwork. For this, we turn to a large literature
spanning Psychology, Biology, Art and Business, that has shown that prototypes have inherent qualities
and properties that robustly make them more appealing. This effect is sometimes labeled the “beauty in
averageness effect.”

The most well-known demonstration of the beauty-in-averageness effect is probably in the domain of
human faces. A large number of studies have shown that humans find faces with average features more
beautiful and attractive (e.g., Langlois and Roggman 1990; Strzalko and Kaszycka 1991). This effect has
also been demonstrated for music performances (Repp 1997), polygons, drawings and paintings
(Martindale, Moore and Borkum 1990), and words / exemplars (Martindale, Moore and West 1988).
Demonstrations of this effect in business applications include Landwehr, Labroo and Herrmann (2011)
and Veryzer and Hutchinson (1998).

Several explanations have been proposed for this effect, often relying on biology and evolution
(Grammer and Thornhill 1994; Langlois and Roggman 1990; Thornhill and Gangestad 1993), or fluency
(Landwehr, Labroo and Herrmann 2011; Reber, Schwarz and Winkielman 2004; Winkielman et al. 2006).
A more straightforward explanation, which is also more relevant in our context, relies on the “wisdom of
the crowds” phenomenon (Surowiecki 2005). Domains in which the beauty-in-averageness effect holds
tend to be ones in which quality relies on the optimal balance between various features or the optimal
distribution of resources across various dimensions. For example, a beautiful face is one in which the nose
is neither too narrow nor too wide, a beautiful piano performance is one in which the key strokes are
neither too heavy nor too light, etc. Each stimulus may be viewed as one attempt to find an optimal
distribution or allocation. Taking the average of a set of stimuli cancels out the small errors made by each
stimulus and gives rise to a distribution that is closer to optimal (Halberstadt and Rhodes 2003; Repp
1997). Using the same reasoning, we should expect that taking the average distribution of edge weights

across documents gives rise to a prototypical distribution that optimally balances novelty and familiarity.
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Therefore, our main hypothesis is that ideas with semantic subnetworks that have a more prototypical

edge weight distribution tend to be judged as more creative.

3. Empirical Approach

We test our hypothesis and study its managerial implications across eight studies, which we describe in
the next section. In this section we describe our overall empirical approach, which requires the following
steps. We start by building a baseline semantic network related to each idea generation topic. We
construct a prototypical distribution of edge weights. We collect ideas and idea evaluations and measure
the prototypicality of each idea’s edge weight distribution. Finally, we explore the link between

prototypicality and judged creativity statistically.

3.1. Construction of the Baseline Semantic Network

Extracting Textual Data for the Baseline Semantic Network

We need to identify a text corpus that will allow us to construct a baseline semantic network capturing the
set of word stems commonly related to the idea generation topic at hand. This baseline semantic network
should be exogenous to the ideas being tested, i.e., the semantic network should not be constructed based
on the ideas themselves. Indeed, if the baseline semantic network is derived from the ideas themselves,
our measure of the prototypicality of each idea’s edge weight distribution would become a function of
which other ideas are included in the analysis.

Across our eight studies, we use two different approaches for constructing this baseline semantic
network. In Study 1 the baseline semantic network comes from a set of pretest ideas in which we ask
consumers (different from those involved in the main study) to generate an initial set of ideas on the topic.
Unfortunately, this approach is costly (both in time and money) and it cannot be fully automated.

Therefore, in Studies 2 to 6, we test an alternative approach that leverages Google, and that can be
fully automated. We simply perform a search query on Google using the exact wording of the idea

generation topic as the text of the query. For example, if a study asks consumers to generate ideas on the

11



following topic: “How could smartphones help their users be healthier?” we copy and paste this exact
sentence into Google as a search query. We then download the html page source code of the top 50 search
results provided by Google. Throughout the paper we refer to these documents as a “Google results” or
“pages retrieved from Google.” The advantage of using top search results from Google is that this
information is readily available and can be scraped automatically with no human effort. However, this
approach is not without its limitations. For example, the pages retrieved from Google might be biased
towards certain types of content. In addition, while some portions of the pages may be relevant to the idea
generation topic, others may not. Therefore, it is an empirical question whether Google may be used as a

reliable source of text to create the baseline semantic network and prototypical edge weight distribution.

Text Mining
Once the text corpus has been collected, we need to mine the text to extract relevant word stems. We use
the text-mining infrastructure in R (Feinerer, Hornik and Meyer 2008). Our text mining process includes
the following steps. First we clean the text from irrelevant information such as pictures and HTML signs.
Next, we tokenize the text into words. In the next step we use the Porter stemming algorithm
implemented in R (Porter 1980) to automatically stem words into their stems or roots (e.g., “adventur” is

99 ¢

a stem for the words “adventure,” “adventures,” and “adventurous”). Human experts checked the list of
stems and associated words manually, to remove stems that are too generic (e.g, “five”) or manually
split/combine stems that were not appropriately allocated by the stemmer. This step requires
approximately one hour of human labor per ideation topic. In Study 5, we omit the manual cleaning of the
stemmed words to explore how our approach may be applied to field data in a fully automated way. Once
a final list of word stems and associated words was obtained, we retained only those word stems that
appeared frequently enough (in at least 5 of the ideas generated in the pretest in Study 1, and at least 10 of
the 50 pages retrieved from Google in Studies 2-6).

We used similar text mining extraction and stemming processes to extract words from the ideas

generated in our studies.
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Edge Weights

Several measures are available to quantify the edge weights in our semantic network, i.e., the scaled co-
occurrence of pairs of word stems. We use a common measure, the Jaccard index (see e.g., Netzer et al.,
2012). Consider two word stems A and B. Let S4 (respectively, Sz) be the set of training documents
(pretest ideas or web pages) that contain stem A (respectively, B). The Jaccard index between word stems
A and B is defined as:

_ |Sa N Sg|
AB TS, U S|

Where IS| denotes the size of set S. The Jaccard index is the ratio between the number of documents that
contain both A and B and the number of documents that contain A or B. It is the probability that A and B
appear in a randomly selected document, given that A or B appears in that document. (The intuition
behind the Jaccard index may be visualized easily with a Venn diagram: it is the area of the intersection
of Sa and S divided by their union.) A high value means that the two word stems appear frequently with
one another, over and beyond chance based on their separate occurrences. Thus, seeing these two word
stems in an idea is not surprising. On the other hand, a low Jaccard index means that these two word
stems do not appear commonly in the textual corpus, thus seeing them together in an idea could be
considered novel or surprising. Each node in our baseline semantic network corresponds to one word
stem, and the weights of the edges among all possible pairs of nodes are captured by an incidence matrix

of Jaccard indexes.

3.2. Network Features

Several features have been proposed in the literature to describe and characterize the structure of
networks. As reviewed in the previous section, our key descriptor of a network is the distribution of edge
weights in the network, where the weight of an edge that connects nodes i and j measures the scaled co-
occurrence of these two nodes using the Jaccard index.

We consider control variables derived from two additional standard network features. The first is the

set of frequencies of the nodes in the network, where the frequency of a node is the frequency of
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occurrence of the corresponding word stem in the training text (i.e., proportion of pretest ideas or results
from Google in which the word stem appears). Note that node frequency describes the properties of the
nodes present in the network, rather than their relationships to one another. The second feature is the set
of clustering coefficients of the nodes in the network, where the clustering coefficient of node i measures
how interconnected the nodes that connect to i are to each other. Readers are referred to Barrat et al.

(2004) for more details on these standard network features.?

3.3. Constructing the Prototypical Distribution of Edge Weights

We construct a different prototypical distribution of edge weights for each domain-specific baseline
semantic network. We first compute the distribution of edge weights in the subnetwork corresponding to

each of the pretest ideas/Google results used to construct the baseline network. For example, a

subnetwork with 5 nodes may be described by a set of (5) = 10 weights (one per edge), which are

2

distributed between 0 and 1 according to some cumulative distribution function (cdf). For instance, if 2 of
the 10 edge weights are smaller than or equal to 0.3, the cdf would have value 0.2 at x=0.3. We then
construct a prototypical distribution by taking the average of the distributions across pretest ideas/Google
results. That is, the value of the prototypical cdf at any value x is the average of the values of the cdf at x
across all pretest ideas/Google results. For example, if 5% of the edge weights are smaller than or equal to
0.1 in one pretest idea and 10% are smaller than or equal to 0.1 in another, the average cdf across these
two ideas would have value 0.075 for x=0.1. Future research may explore alternative ways to construct
the prototypical distribution, e.g., by computing the median instead of the average distribution, although
the literature reviewed in Section 2.5. suggests that the average is more appropriate. Building the
prototypical distribution using the pretest ideas or the Google results ensures that our prototypical

distribution is not a function of the particular set of ideas being tested. This prototypical distribution

2 Unlike many networks found in marketing, our semantic networks are weighted networks, i.e., the relationship
between two nodes (word stems) is captured by a continuous variable (the Jaccard index, which varies between 0
and 1) rather than a binary one. We use a set of features that generalize standard features developed for binary
networks, to weighted networks (Barrat et al. 2004).
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serves as our benchmark for the optimal balance between novelty and familiarity. Web Appendix A
shows the prototypical cdf from each study.

Although using pages retrieved from Google rather than pretest ideas to build the prototypical
distribution allows for faster, more convenient and automatic processes, it does not come without
limitations. In particular, pages are selected by Google to be maximally relevant to the query, i.e., they are
likely to be of “high quality.” This introduces a risk that ideas with prototypical edge weight distributions
are judged as more creative not because of how they balance novelty with familiarity, but because they
are “similar” to “high quality” pages retrieved from Google. We address this concern in several ways.
First, our first three studies do not rely on Google at all but rather on pretest ideas. Second, in Web
Appendix C (subsection “Using the Ideas Themselves to Create the Prototypical Distribution”), we show
that our results still hold when the prototypical edge weight distribution is based on the ideas themselves,
rather than the Google results used to construct the baseline semantic network. Third, in Section 4.9.
(subsection “Vector Space Representation vs. Edge Weight Distributions”), we explore directly whether
ideas that are more “similar” to an average Google result in a traditional sense (i.e., they use similar word

stems or topics) are indeed judged as more creative. We find that this is not the case.

3.4. Measuring the “Prototypicality” of an Idea’s Edge Weight Distribution

The previous subsection described the construction of the prototypical distribution of edge weights. Each
idea has its own semantic subnetwork (comprised of a subset of the nodes in the baseline network). This
semantic subnetwork results in a distribution of edge weights, where the weight of an edge between two
nodes (word stems) in the subnetwork is the same as the weight of the edge between these two nodes in
the baseline network. We measure the “prototypicality” of that idea’s edge weight distribution by
comparing it to the prototypical distribution of edge weights described in the previous section. We use a
simple and common measure of the distance between two distributions, the Kolmogorov-Smirnov
statistic. The Kolmogorov-Smirnov statistic between two cumulative distributions is defined as the

maximum absolute difference between the two distributions. One advantage of this measure, compared to
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alternative measures such as the Kullback-Leibler divergence, is that it may be computed for any pair of
distributions regardless of their support (we test the robustness of our results to the use of the Kullback-
Leibler divergence measure in Web Appendix C). Ideas with semantic subnetworks that have a smaller
Kolmogorov-Smirnov statistic have a “more prototypical” edge weight distribution. Conversely, ideas
with semantic subnetworks that have a larger Kolmogorov-Smirnov statistic have a “less prototypical”
edge weight distribution. It is important to keep in mind that a “prototypical” idea according to this
measure does not have prototypical or “average” edge weights, but that the distribution of edge weights in
the semantic subnetwork corresponding to that idea is similar to the prototypical distribution of edge
weights. As can be seen in Web Appendix A, the prototypical distribution contains a whole range of edge
weights and “prototypical” ideas have a balance between novelty (coming from the presence of smaller

edge weights) and familiarity (coming from the presence of larger edge weights).

3.5.1dea Generation

We collected ideas in various ways across the eight studies, but here we provide an overview of our main
approach. In all studies except Study 5, we collect ideas from a panel of consumers using a simple online
interface developed by the authors using php (see Figure 2 for an example). The basic interface asks
consumers to generate ideas on a specific topic by entering ideas one after the other until they do not wish
to contribute more ideas. Ideas were screened manually by the authors in order to remove “junk” ideas
that were clearly off-topic or nonsensical. In all studies we remove participants who only submitted
“junk” ideas from the analysis.

In Studies 1, 2, 4 and 6, we allow respondents to enter as many ideas as they wish, as long as they
enter at least one. In Study 3 we ask consumers to submit exactly three ideas, to reduce variations in the
number of ideas across consumers. Study 5 uses secondary data from an online idea generation
community and Study 6 uses an interactive aimed at improving the idea generation process on the fly. We
describe these approaches in the corresponding sections.

[INSERT FIGURE 2 ABOUT HERE]
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3.6. Idea Evaluation

The source of idea evaluations also varied slightly across our eight studies, and we describe here our main
approach. In all studies except Study 5, we collected idea evaluations from a set of individuals who were
different from those who generated the ideas, but who came from the same panel. This idea evaluation
step was performed after all ideas had been collected, using an online interface developed by the authors
using php. We follow standard practice (e.g., Kornish and Ulrich 2011; Luo and Toubia 2015; Toubia and
Flores 2007) and ask each individual in the idea evaluation sample to evaluate a set of ideas one after the
other on several dimensions. The set of ideas rated by each individual were randomly selected among the
ideas that had received the fewest number of evaluations up to that point, in order to reduce the variance
in the number of evaluations per idea. The average number of raters per idea varied between 18.05 and
26.22 across studies. Each idea was rated by each rater on four dimensions: creativity (e.g., “How creative
is this app idea?”), purchase interest (e.g., “How likely would you be to download this app if it were
available for $0.99?”), predicted popularity (e.g., “How popular do you think this app would be if it were
available for $0.99?7”), and writing quality (e.g., “Is the description of this app well written?”). Each item
had a 5-point Likert scale.

In Study 4, we also collected idea evaluations from experts in our partner company. In Study 5 the

evaluations of the ideas came from an online idea generation community.

3.7. Statistical Analysis

In all our studies, we test our hypothesis by regressing the average creativity rating of each idea (or its
proportion of positive votes in Study 5) on the prototypicality of its edge weight distribution, controlling
for a host of other factors. In all regressions, each observation corresponds to one idea. In Studies 1-4 and
6, we use a linear regression where the dependent variable is the average creativity rating.* In Study 5, we

run a binomial regression where the dependent variable is the proportion of positive votes. Because ideas

3 The average creativity rating for each idea is the average of approximately 20 independent evaluations, each of
which is on a 5-point Likert scale. We approximate this average as a continuous variable and do not explicitly model
the fact that it is truncated.
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contributed by the same participant may be more likely to be of similar quality, we control for contributor
heterogeneity by including random effects intercepts in all our regressions.

In our regressions, in addition to our primary independent variable (the Kolmogorov-Smirnov
statistic between the edge weight distribution of the idea and the prototypical edge weight distribution),
we control for the following characteristics of the idea’s semantic subnetwork: average edge weight,
coefficient of variation of edge weights, minimum edge weight, maximum edge weight, average node
frequency, coefficient of variation of node frequencies, minimum node frequency, maximum node
frequency, and the number of nodes in the subnetwork. In addition, we control for the length of the idea
using its number of characters. It is important to control for the number of nodes and number of
characters in the idea as larger semantic subnetworks tend to have smoother distributions of edge weights,
which tend to be more prototypical.

In Studies 1a-1c, we also control for variables related to the clustering coefficient: average node
clustering coefficient, coefficient of variation of node clustering coefficients, minimum node clustering
coefficient, maximum node clustering coefficient. We were not able to control for these variables in the
other studies in which the prototypical network was extracted from Google, due to a lack of variation in
the clustering coefficients. Indeed, in these studies the network was very dense and almost all clustering
coefficients were equal to 1, leading to poorly conditioned regressions.

In our robustness checks, we run additional specifications, accounting for other controls including
word stem fixed effects. Finally, ideas with fewer than two nodes (i.e., no edge) in their semantic

subnetwork were removed from the analysis.*

*In Studies la-1c where we also control for the clustering coefficient, ideas with fewer than three nodes in their
semantic subnetwork were removed from the analysis, because at least three nodes are needed to compute the
clustering coefficient.
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4. Studies

We test our hypothesis and study its managerial implications across eight studies, five of which were run
in collaboration with three different companies. Across studies we had over 4,000 ideas generated on 6
different topics by over 2,000 idea contributors. In Studies 1a-1c we test our hypothesis using a baseline
semantic network and prototypical distribution obtained from a pretest. Study 2 replicates our finding
using Google instead of a pretest. We adopt Google in all subsequent studies for its convenience. In Study
3 we ask each respondent to generate exactly three ideas, in order to reduce the variance in the number of
ideas across contributors. In Study 4 we complement our consumer evaluations with company
evaluations. In Study 5 we test our hypothesis in a typical managerial context, by using a secondary data
set coming from an online idea generation community. In Study 6, we show how our findings may be
used to help people generate better ideas. We develop and test a tool that leverages our findings to
recommend words to consumers on the fly in order to help them improve their ideas. See Table 1 for an
overview of our studies.

[INSERT TABLE 1 ABOUT HERE]

4.1.Studies la-1c

Method
Studies 1a-1c were conducted in collaboration with a large US-based insurance company that was looking
for innovative ideas for new insurance products. The three studies were similar to each other in design
and only differed in their idea generation topics. Participants in these three studies were recruited from
Amazon Mechanical Turk. Participants were asked to generate ideas for new insurance products related to

aging and being a senior (Study 1a), financial security (Study 1b), or unemployment (Study 1¢).’

3 In order to help participants structure their ideas and increase their relevance to the company, participants were
asked to list three components in each insurance product idea: what may be lost by the customer, what the customer
would get if the loss occurred, and what the customer had to give in exchange for this protection.
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Before running these studies, we conducted a pretest for each study in which participants were asked
to generate initial ideas on the topic. The number of participants in the pretest was 149, 101 and 98 for
Studies 1a, 1b and 1c, respectively, and the number of initial ideas obtained was 447, 303, and 294,
respectively. The baseline semantic network for each study was constructed as described in Section 3.1.
The ideas from the pretest were not used in any other part of the analysis. The baseline semantic networks
contained 314, 175, and 184 nodes in Studies 1a, 1b, and 1c, respectively.

After removing “junk” ideas and ideas with semantic subnetworks that had fewer than three nodes
(in order to calculate clustering coefficient metrics), we were left with 276, 271 and 251 ideas from 178,
177 and 167 participants, respectively. The idea evaluation stage resulted in an average number of
evaluators per idea equal to 18.05, 21.62 and 20.91 across studies (standard deviations of 0.59, 0.64 and

0.46, respectively).

Results and discussion

Descriptive statistics may be found in Web Appendix A, which shows the distribution of the size of the
ideas’ semantic subnetworks (i.e., number of nodes) as well as the distribution of prototypicality across
ideas (i.e., the Kolmogorov-Smirnov statistic between the idea’s edge weight distribution and the
prototypical distribution). The statistical analysis of the link between prototypicality and judged creativity
is reported in the 1*' to 3™ columns of Table 2. The coefficient for prototypicality is negative and
statistically significant in all three studies (p<0.05). That is, ideas with semantic subnetworks that have an
edge weight distribution closer to the prototypical distribution, are judged as significantly more creative.
Therefore, the results of these first studies are consistent with our hypothesis.

[INSERT TABLE 2 ABOUT HERE]

4.2. Study 2
Method
Study 2 replicates Study 1, using Google instead of a pretest to construct the baseline semantic network

and the prototypical edge weight distribution. The baseline semantic network contained 485 nodes.
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Participants in the idea generation and idea evaluation tasks were again recruited from the Amazon
Mechanical Turk panel. Participants in our idea generation task were asked to generate ideas for new
smartphone apps that will help their users keep a healthier lifestyle. Each participant received $1 as
compensation. After removing “junk” ideas and ideas with semantic network that had fewer than two
nodes (i.e, no edge), we were left with 555 ideas generated by 300 participants. A different group of 1,209
Amazon Mechanical Turk participants evaluated these ideas as described above, and were paid $0.50
each for their participation. Each participant evaluated 10 ideas, giving rise to an average of 20.31

evaluators per idea (standard deviation = 1.34).

Results and Discussion

As can be seen in Table 2, the coefficient for the prototypicality of the edge weight distribution is
negative and statistically significant. Hence the results of Study 2 replicated those of Study la-1c in a
different ideation domain. Moreover, this study suggests that the results are robust to the way the baseline
semantic network is constructed, such that this network may be constructed based on an initial set of ideas
coming from a pretest, or publicly available text such as webpages identified by Google. We adopt the
latter approach throughout the rest of the paper, for its convenience.

Although we control for heterogeneity across participants in their ability to generate creative ideas
using random effects, there is also heterogeneity in the number of ideas generated by participants and
therefore some participants contribute more than others to the results. We address this concern in the next

study.

4.3.Study 3

Method
The design of Study 3 was identical to that of Study 2, except that participants were forced to generate
three ideas each. The idea generation topic and the baseline semantic network were identical to Study 2.
Amazon Mechanical Turk panel members completed the idea generation task for $1 each. After removing

“junk” ideas and ideas with semantic subnetworks that had fewer than two nodes, we were left with 173
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ideas from 61 participants. A different group of Amazon Mechanical Turk participants evaluated these

ideas, giving rise to an average of 20.53 evaluators per idea (standard deviation = 0.78).

Results and discussion

The results of our main regression are reported in the fifth column of Table 2. We see that the coefficient
corresponding to prototypicality remains negative and statistically significant. Therefore Study 3 provides

further replication of our main finding, keeping constant the number of ideas per participant.

4.4.Study 4

Method
Study 4 was conducted in collaboration with an international health and beauty company that was looking
for ideas for new oral care solutions targeted to women over 40 years old. The idea generation topic was:
“What new product could help women maintain healthy and beautiful oral features?” The baseline
semantic network was constructed again by copying and pasting this idea generation topic into Google
and mining the page source code of the top 50 search results. The resulting baseline semantic network
contained 280 nodes.

This study differed from the previous ones in two major ways. First, ideas were evaluated by
company experts, in addition to consumers. Second, participants were recruited from a commercial
consumer panel maintained by Research Now, instead of Amazon Mechanical Turk.® Interestingly,
compared to the Amazon Mechanical Turk participants in Studies 1, 2, and 3, the commercial panel
participants generated fewer and shorter ideas (1.350 ideas vs. 1.646 in Amazon Mechanical Turk with an
average of 85.7 characters vs. 300.0 characters on average in Amazon Mechanical Turk). After removing
“junk” ideas, we were left with 220 ideas from 163 participants. The idea evaluation stage resulted in an

average of 26.22 evaluators per idea (standard deviation = 1.13).

% Both for idea generation and for idea evaluation, respondents were screened to only include women over 40 years
old who brushed their teeth at least once a day, had visited a dental professional at least once in the last two years,
and suffered from at least one aging-related oral symptom from a list specified by the company.
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In addition, the ideas were carefully evaluated by a group of experts from the company. These judges
applied a screening process developed internally and reached a consensus on each idea through
deliberation. The experts selected ideas that were on topic, addressed unsatisfied needs, and that were
consistent with the company’s strategy. The expert selection of the ideas was independent of our text

mining analysis of the ideas.

Results and discussion

We first analyze the ideas based on the consumer evaluations. The results are reported in the 6 column
of Table 2. Consistent with our hypothesis, the coefficient corresponding to prototypicality is marginally
significant (p<0.08).

We now turn to the analysis of the company’s evaluation of the ideas. Eighty nine out of all 220
ideas for which a prototypicality measure was available passed the company screening as being on topic,
addressing an unsatisfied need and being consistent with the company’s strategy. We find that the
prototypicality of these 89 ideas was significantly higher compared to the ideas that were not selected by
the firm’s experts. Specifically, the distance to the prototypical distribution of edge weights (measured by
the Kolmogorov-Smirnov statistic) was significantly lower for the ideas selected relative to the ideas not
selected (means of 0.459 vs. 0.545, p<0.01).”

Therefore, Study 4 suggests that our results extend to evaluations that are not specifically limited to
consumers evaluating the creativity of ideas, and that come from practitioners who are experts in product
innovation. In addition, it shows that our results still hold when both idea generators and evaluators are

selected from a commercial panel rather than Amazon Mechanical Turk.

"In Web Appendix B we distinguish between precision and recall using a Receiver Operating Characteristic (ROC)
curve analysis. This analysis further confirms that our classification of ideas based on prototypicality (Kolmogorov-
Smirnov statistic) is adequate.
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4.5. Study 5

Method
Study 5 complements the previous studies by testing whether our findings apply in a typical online idea
generation context. In practice, idea generation is often performed through online idea generation
communities, such as the well-known My Starbucks Idea or Dell’s Idea Storm. Instead of collecting new
ideas experimentally like in the other studies, in this study we received secondary field data from an
actual online idea generation community focused around Pro Tools, a digital audio workstation. Members
of the online idea generation community submit new ideas that would improve the product, and evaluate
ideas submitted to the community. Idea evaluation takes the form of binary votes (“thumbs up — I agree”
vs. “thumbs down — I disagree”). Users may generate as many ideas as they wish and vote on as many
ideas as they wish (although each user cannot evaluate the same idea multiple times and cannot vote on
their own ideas). The company that manages and hosts this community made the data related to the ideas
and their evaluations available to us. Our analysis focuses on the 1,735 ideas submitted by users in 2010,
2011 and 2012 that received at least one vote and that have semantic subnetworks with at least two nodes.
The average number of votes per idea is 28.34. Because ideas that have received the most votes tend to be
featured more prominently in the community (a common practice in online ideation communities), the
standard deviation of the number of votes per idea is large, and equal to 49.11. Overall, 84.25% of the
votes are positive.

Our baseline semantic network for this study was constructed based on Google (the text of the query
was “Pro Tools”), and had 455 nodes. In order to assess whether the company hosting the community
would be able to leverage our findings systematically and automatically, we did not go through the list of
word stems manually when constructing the baseline semantic network (see Section 3.1). Similar results

were obtained when this manual cleaning stage was applied (details available from the authors).
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Results and discussion

Our statistical analysis in this study differs slightly from the other studies, given the nature of the
evaluations. Instead of running a linear regression based on the average ratings across evaluators, we run
a binomial regression based on the number of votes for each idea and the proportion of positive votes. We
assume a logistic link between the proportion of positive votes and the independent variables and allow
the residuals to be correlated between ideas submitted by the same user. The results are presented in the
seventh column of Table 2. We see that the coefficient corresponding to prototypicality is statistically
significant at p<0.05.

Therefore, this study further confirms our results using secondary field data coming from a popular
form of idea generation, online idea generation communities. It also replicates our results with a much
larger set of ideas than the ones used in the previous studies. Moreover, it suggests that our hypothesis
still holds when the text mining process and measurement of prototypicality are completely automated
and do not rely on any human input. Thus, our research provides firms hosting idea generation
communities with a “free” measure of idea quality, which may be combined with other measures based
on human judgment. With the advent of online ideation communities such as the one we studied here, the
challenge of effectively screening a large number of ideas is more relevant today than ever (Simon 2014).
We would not recommend making a final selection of ideas based on prototypicality only. Rather we
envision our research being used in a first round of screening that flags a set of ideas worth considering
carefully.

Our results so far have confirmed our main hypothesis that ideas with semantic subnetworks that
have a more prototypical edge weight distribution tend to be judged as more creative. The results hold
whether the baseline semantic network is constructed based on ideas from a pretest or based on web pages
related to the topic. The results do not seem to be driven by differences in the quantity of ideas across
consumers (Study 3), by whether the evaluations are performed by consumers or company experts (Study
4), and the results hold in field data coming from an online idea generation community (Study 5).
Moreover, the results seem to extend to alternative measures of idea quality (company selection in Study
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4 and votes from the community in Study 5). Our next and final study will further explore the practical
implications of our main hypothesis. Before describing it, we first describe a set of robustness checks,
explore alternative measures of fit, explore the extent to which our hypothesis applies to alternative

dimensions of idea quality, and show various boundary conditions.

4.6. Robustness Checks

Web Appendix C reports a series of robustness checks, which we briefly summarize here.

-To test whether creativity is driven by a set of word stems that are considered creative, we include fixed
effects in the regression for the most commonly used word stems. We find that our results are robust to
the introduction of these fixed effects, despite the reduction in statistical power.

-We find that our results in Studies 2-6 are robust to using the ideas submitted by participants to create the
prototypical edge weight distribution, instead of using pages retrieved from Google. This helps address
the concern that ideas with prototypical edge weight distributions might be judged as more creative only
because they are “similar” to pages selected by Google for their attractive properties, not because of their
edge weight distribution per se. Using the ideas submitted by participants to create the prototypical edge
weight distribution also makes it possible to measure prototypicality using the Kullback-Leibler
divergence instead of the Kolmogorov-Smirnov statistic. We find that our results still hold with this
alternative measure.

-We test for possible asymmetry in the effect of prototypicality, by using a signed measure of the
Kolmogorov-Smirnov statistic that captures whether the edge weight distribution corresponding to each
idea is above (Kolmogorov-Smirnov>0) or below (Kolmogorov-Smirnov<0) the prototypical distribution
at the point at which the two distributions are maximally distant. We find the same effect of
prototypicality on judged creativity for ideas whose distributions are above the prototypical distribution
(i.e., more small weights and therefore more novel combinations) as well as for ideas whose distributions
are below the prototypical distribution (i.e., more large weights and therefore more familiar

combinations), although the effect is stronger for the former type of ideas.
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-We find that our results still hold when edge weights are measured using the Salton Cosine (Salton and
McGill 1983) instead of the Jaccard index.

-We test whether our results in Studies 2-6 are robust to reducing the number of top search results from
Google used to construct the baseline semantic network and prototypical edge weight distribution. While
in some studies the effect of prototypicality is significant with as few as 20 pages, we recommend mining
at least 50 pages to obtain robust and significant effects.

-We find that our results are robust to an alternative regression specification that removes the average of
the edge weight, node frequency, and node clustering coefficient distributions, which is likely to be highly
correlated with the sum of the minimum and the maximum.

-We test whether our results are impacted by the use of synonyms, by identifying word stems that are
synonyms and combining them in our analysis. Our conclusions are unchanged.

-We find that our results in Studies 1-4 and 6 still hold when the dependent variable is the proportion of
creativity ratings of 4 or 5 out of 5 received by each idea, rather than the average creativity rating. This
addresses the concern that ideas with an average edge weight distribution might present a “compromise”

that is judged as more creative on average, but that is not necessarily seen as creative by many judges.

4.7.Alternative Measures of the Relationship between Prototypicality and Judged Creativity

One of the practical implications of our research is helping companies identify promising ideas from a
large set of ideas without the need for any human involvement. To shed more light on the ability of our
approach to identify promising ideas, we look at the rank-order correlation between the fitted and the
observed creativity ratings of ideas based on the regressions from Table 2. The average correlation, across
studies, is 7=0.44 (p<0.001). See Web Appendix D for details. This analysis provides additional support

for the use of our research as a tool for flagging ideas that are worth considering carefully.

4.8. Alternative Measures of ldea Quality

Our analysis so far has focused primarily on the judged creativity of ideas, with the exception of the

company expert evaluations in Study 4 and the binary votes from online community members in Study 5.
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In all studies (except Study 5), all ideas were rated on four dimensions: purchase interest, predicted
popularity, writing quality, and creativity. We explore the use of alternative measures of idea quality as
dependent variables, and tests whether the effect found on judged creativity is mediated by any of these
alternative measures. See Web Appendix E for details.

These analyses suggest that while other measures of idea quality are also related to the
prototypicality of the edge weight distribution, the relationship is strongest for judged creativity.
Furthermore, our alternative measures of idea quality do not mediate the relationship between
prototypicality and judged creativity, providing empirical support for the use of creativity as the
dependent variable. This is consistent with our theoretical development from Section 2, which relied
specifically on the link between creativity and the balance of novelty vs. familiarity.

Of particular interest is the use of writing quality as the dependent variable. Our results suggest that
protototypicality has a positive effect on the judged writing quality of an idea (which does not mediate the
effect on judged creativity). This finding may be relevant to the literature on automated essay scoring
(e.g., Attali and Burstein 2006; Landauer, Laham and Foltz 2003), which is very relevant to online
academic testing (e.g., GRE, GMAT). While the algorithms used by companies such as ETS are
proprietary and not fully public, to the best of our knowledge this literature has not considered using the

prototypicality of the structure of an essay’s semantic network as a measure of writing quality.

4.9.Boundary Conditions

Alternative Measures of Prototypicality

We have argued, based on the creativity literature, that an appropriate measure for prototypicality in the
context of idea generation is one that captures the distribution of edge weights, thereby quantifying the
balance between novel and familiar combinations of word stems. Here we test some boundary conditions
of our results by measuring prototypicality based on the distribution of two other popular network
features: node frequency and clustering coefficient. We construct these two alternative prototypicality

measures using the approach described in sections 3.3 and 3.4.
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Results are provided in Web Appendix F. When prototypicality is measured based on the distribution
of node frequency, the coefficient corresponding to prototypicality is directionally consistent with the
hypothesis in 6 out of 8 studies, but significant at p<0.05 in only one of them. When prototypicality is
measured based on the distribution of the clustering coefficient (which we are able to do in Studies la-1c
only), the coefficient is actually in the opposite sign, significantly so in one study. Also, the fit in these
regressions is worse compared to the regressions in Table 2. These analyses confirm our theoretical
argument that prototypicality should be measured in a way that captures the relationships among the word

stems present in the ideas, as well as the tradeoff between familiarity and novelty.

Vector Space Representation vs. Edge Weight Distributions

The previous subsection explored alternative ways to measure prototypicality given a baseline semantic
network and a set of ideas. In this subsection we explore the relevance of using a semantic network in the
first place. The concept of a semantic network is central to our theoretical argument because it captures
the balance between novelty and familiarity. We compare it to a more direct approach inspired by
analogies with the Information Retrieval literature.

Indeed, our approach may be compared and contrasted with a traditional Information Retrieval
model, where our idea generation topic would be equivalent to a query, and our goal would be to assess
which documents (i.e., ideas) are “relevant” to that query. Our approach compares documents to a
prototypical distribution derived from a set of training documents related to the query (pretest ideas or
Google results). A standard approach for making this comparison would be to represent documents as
vectors of word stems and compute the distance between vectors corresponding to various documents,
similar to the standard Rocchio classifier (Feldman and Sanger 2007, page 74).

To test such an alternative approach, we represent each document as a vector with dimensionality
equal to the number of word stems in our dictionary (i.e., number of nodes in our semantic network). We
use a standard term frequency — inverse document frequency (#f-idf) approach (see for example Manning,

Raghavan and Schutze 2008). We measure prototypicality for a given idea using the Euclidean distance
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between the vector representing that idea and the average vector among training documents. See details of
this analysis and the results in Table F3 in Web Appendix F. We find that measuring the prototypicality
of an idea using the distance between this idea and an average document does not give rise to a robust
significant link between prototypicality and judged creativity. In fact, in all studies the coefficient
associated with the distance to the prototypical document is positive (it is statistically significant at
p<0.05 in three studies and at p<0.10 in two). That is, ideas that are further away from a prototypical
document in a vector space representation tend to be judged as more creative.

We also explore representing documents by fopics rather than actual words. We perform Latent
Dirichlet Allocation (LDA) on each set of training documents (pretest ideas or Google results) to identify
a set of topics and associated words (Blei et al., 2003; Tirunillai and Tellis, 2014). Details of the LDA
estimation are provided in Web Appendix F. Each idea is represented as a vector with dimensionality
equal to the number of topics. We compute the Euclidean distance between the vector representing each
idea and the average vector from the training documents. Results of the regressions are presented in Table
F4 in Web Appendix F. Again, we find no significant robust relationship between distance and judged
creativity.

This analysis underscores the importance of defining prototypicality with respect to the balance
between novel and familiar combinations of word stems, which calls for a semantic network. This
analysis also informs the potential concern that ideas with prototypical edge weight distributions are
judged as more creative only because they are “similar” to pages selected by Google for their attractive
properties, not because of their edge weight distribution per se. In particular, the results suggest that ideas
that are more “similar” to an average Google result in a traditional sense (i.e., they use similar word stems

or similar topics) in fact tend to be judged as less creative.

Misspecification of the Baseline Semantic Network

We have argued that the baseline semantic network and the prototypical edge weight distribution should

be specific to each idea generation topic. Here we explore the consequences of using a baseline semantic
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network and prototypical edge weight distribution from a different idea generation topic. Studies la-1c
were all related to insurance, but each study focused on a different insurance domain: aging and being a
senior (Study 1a), financial security (Study 1b), and unemployment (Study 1c). This provides us with an
opportunity to explore situations where the baseline semantic network and its corresponding prototypical
edge weight distribution come from a domain that is related but different from the idea generation topic
being considered. For each of these studies, we replicate our analysis using the baseline semantic network
and prototypical distribution from the two other studies. See details of this analysis and results in Web
Appendix F. We find that the relationship between prototypicality and judged creativity is neither
consistent nor significant when the baseline semantic network (and its corresponding prototypical edge
weight distribution) is taken from a different, albeit related, ideation topic. This underlines the need to
construct baseline semantic networks and prototypical edge weight distributions that are specific to each
idea generation topic. Luckily, this may be done efficiently and with no need for incremental human

labor, using Google.

4.10. Study 6

The previous studies have demonstrated the link between the prototypicality of the edge weight
distribution of an idea’s semantic subnetwork and the judged creativity of the idea. One first practical
implication of this finding is that it provides firms with an automatic measure that may be used to identify
promising ideas, thereby reducing the costs involved in idea screening. In our final study, we explore a
second practical implication. In particular, we explore leveraging our finding to help people improve the
creativity of their ideas. We develop an online idea generation tool in which participants enter their ideas,
and sets of words are suggested to them on the fly to help them improve their ideas. We compare the
judged creativity of ideas when we recommend words to users that would improve the prototypicality of
their ideas’ edge weight distribution vs. words based on other criteria vs. when no recommendations are

made. This study presents a proof of concept of using “Big Data” tools to foster creativity.
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Method
We used the same idea generation topic (smartphone apps that would help their users be healthier),
baseline semantic network, and prototypical edge weight distribution as in Studies 2 and 3. In the idea
generation phase of the study, we assigned participants randomly to one of four conditions. In all
conditions, participants navigated between two types of interfaces, coded in php: an idea collection
interface and an idea modification interface. The idea collection interface looked similar to the interface
used in Studies 1-4. It gave participants the opportunity to submit new ideas that were not related to any
of their previous ideas. This interface was identical across conditions. The idea modification interface
appeared after the submission of each idea, giving participants the opportunity to modify/improve the idea
they had just submitted. On the idea modification interface, a participant could either submit a modified
version of their last idea (based on a set of suggested words when applicable), or indicate that they had no
more modification to make and go back to the idea collection interface. The idea modification interface
always loaded with the response box pre-populated with the last idea submitted by the participant, to
make it easier for participants to modify this idea. This process was repeated until the participant stated
they had no more idea to contribute. Screenshots are provided in Figure 3. In both types of interfaces and
in all conditions, a log of the ideas submitted by that participant up to that point was provided at the
bottom of the screen.

In the Control condition, the idea modification interface simply invited participants to
modify/improve their last idea (“Please modify/improve your idea. If you do not wish to improve your
previous idea, please select ‘I am done with this idea.”). See the middle panel of Figure 3.

In the other three conditions (Random Words, Minimum Distance and Maximum Prototypicality), the
idea modification interface showed groups of words selected to help participants improve their last idea.
Each group of words corresponded to one node (word stem) in the baseline semantic network, e.g., the
words corresponding to the stem “electronic” were “electronically, electronic, electronics.” A set of 10
word stems was selected for each new idea. Participants could cycle through the 10 word stems at will,
and modify their ideas with or without using the suggested words. See bottom panel of Figure 3. The
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only difference between the Random Words, Minimum Distance and Maximum Prototypicality conditions
was the way the set of 10 nodes was selected. Each idea was text mined upon being submitted by a
participant and the semantic subnetwork corresponding to that idea was constructed. All computations in
all conditions were completed on the fly with no noticeable delay.

In the Random Words conditions, 10 nodes were randomly selected for each idea among those that
were in the baseline semantic network but not used in the idea. For example, if an idea’s semantic
subnetwork contained 15 nodes and if the baseline semantic network contained 485 nodes (as was the
case in our study), the 10 nodes were randomly selected without replacement from the 470 nodes that
were not already part of the idea’s subnetwork.

In the Minimum Distance condition, the distribution of edge weights in the idea’s semantic
subnetwork was computed, and a score for each potential new node was computed, equal to the average
edge weight that would result from adding this node to the subnetwork. Consider again our example with

15 nodes in the idea’s semantic subnetwork and 485 nodes in the baseline semantic network. For each of

the 470 nodes that are not part of the subnetwork, we would compute the average of the (126) edge

weights in the new subnetwork that would result from adding this new node to the current subnetwork.
The 10 nodes selected using this rule would maximally increase the average edge weight in the idea’s
semantic subnetwork, i.e., decrease the average distance between the nodes. The idea behind this rule is to
suggest word stems that are most closely related to the words already used in the idea. We expected this
selection rule to make it easy for participants to modify their ideas, but that these modifications would not
necessarily improve the idea’s creativity because the relationship may be too obvious or too familiar.

In the Maximum Prototypicality condition, the score for each potential new node was equal to the
prototypicality (1-Kolmogorov-Smirnov statistic) of the edge weight distribution that would result from
adding this node to the idea’s current subnetwork. In our previous example, for each of the 470 nodes that
are not currently in the network, we would compute the Kolmogorov-Smirnov statistic for the distribution

of edge weights that would be obtained by adding this node to the current subnetwork. The 10 nodes
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selected using this rule would maximally increase the prototypicality of the idea’s edge weight
distribution. We expected this selection rule to give rise to sets of words that would best allow
participants to improve their ideas.

Amazon Mechanical Turk Participants completed the idea generation task in exchange for $1. After
removing “junk” ideas as well as participants who only entered “junk” ideas, we were left with
respectively 100, 100, 98 and 95 participants in the Control, Random Words, Minimum Distance, and
Maximum Prototypicality conditions.® Idea evaluation was performed similarly to the other studies. A
different group of 2,000 participants from Amazon Mechanical Turk evaluated (both the original and the
modified) ideas in exchange for $0.50. Each idea received an average of 20.43 evaluations (standard
deviation = 0.53).

[INSERT FIGURE 3 ABOUT HERE]

Results
We classify ideas into two types based on how they were submitted: “original ideas” are those submitted
in the idea collection interface, and “modified ideas” are those submitted in the idea modification
interface, i.e., they are modified versions of a previous idea.

First, for the “original” ideas, pooled across conditions, we replicate our findings from the previous
studies using the same of set of regressions as earlier (see the 8" column in Table 2 and the tables in the
various web appendices). We limit the analysis to original ideas in order to ensure statistical
independence between ideas from the same author. The same conclusions are reached if we include all
ideas in the regressions.

Next, we turn to the comparison between conditions. For each participant, we compute the number
of “original” ideas and the average number of “modified” ideas per “original” idea. For each “original”

idea that was modified at least once, we compute the difference between the judged creativity of its last

8 Note that the four conditions had identical interfaces until after the submission of the participant’s first idea.
Therefore it is unlikely that some conditions made participants more likely to submit only “junk” ideas.
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modification vs. the original idea (i.e., if an idea was modified three times we compare the judged
creativity of the last idea in that stream to that of the original idea). The results are reported in Table 3
(more detailed analyses can be found in Web Appendix G). We find that the Maximum Prototypicality
condition is the only one that gives rise both to a significantly greater propensity to modify ideas
compared to the Control condition, and to modifications that are significant improvements over the
original ideas. The Random Words condition did not significantly increase participants’ propensity to
modify their ideas. The Minimum Distance condition significantly helped participants modify their ideas
(compared to the Control condition), but the modified ideas were not significantly better than the original
ones.

We also explore asymmetries in the results using a signed Kolmogorov-Smirnov statistic. We
separate the original ideas that were modified at least once between those with a positive Kolmogorov-
Smirnov statistic (i.e., more small weights and therefore more novel combinations) vs. negative
Kolmogorov-Smirnov statistic (i.e., more large weights and therefore more familiar combinations). We
find that the Maximum Prototypicality condition worked primarily by helping participants with ideas that
were too familiar increase the novelty of their ideas, but that participants with ideas that were too novel
were not able to increase familiarity in a meaningful way using the suggested words. See detailed results
in Web Appendix G.

[INSERT TABLE 3 ABOUT HERE]

Discussion
Study 6 not only replicated the findings from the other studies, it also demonstrated that the link between
prototypicality and creativity may be leveraged in practice to create tools that help people improve their
ideas. Generating new ideas involves retrieving knowledge from memory. We have shown that it is
possible to use computers to assist people in this memory retrieval process, by developing an online

interface that provides participants on the fly with possible words that may help them improve their ideas.
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The tool we developed here is a proof of concept. We have developed a publicly available version of
this tool, available at newtopic.protoideation.org.” We hope that future research will develop more
sophisticated and powerful tools. For example, with access to individual-level data, it would be possible
to build individual-specific baseline semantic networks based on the documents to which a particular
individual was exposed in the past (such data are available to companies that track user behavior online).
We could envision an online tool similar to Google in which a user would enter a problem they wish to
solve or a topic on which they wish to ideate, and the tool would provide them with a customized set of
possible words that could be basic ingredients to a solution, or a set of documents that are likely to
contain useful information.

The tool we developed in this study may be viewed as an extension of the popular “random
stimulation” technique developed by De Bono (De Bono, 1992). De Bono’s method consists in drawing
random words one at time and attempting to generate new ideas based on these words. Interestingly, De
Bono writes (p. 182): “How do we find the ‘best’ random words? The simple answer is you cannot...
There is no way of finding the ‘best’ random word because it would then no longer be random.” Our
research suggests that the words used as inspiration may in fact be “optimized,” and that selecting words
that will help users improve the prototypicality of their ideas’ semantic subnetworks is more efficient than

showing them random words.

5. Conclusions

In this paper we have uncovered and documented what appears to be a robust, fundamental property of
creative ideas. We have shown ideas that balance well familiarity and novelty, as measured by the
combination of “ingredients” in the idea, are judged as more creative. More specifically, ideas that are
more prototypical in terms of the edge weight distribution of their semantic subnetwork tend to be judged

as more creative. We have demonstrated the link between prototypicality and judged creativity across

° The development of this publicly available version was made possible by a generous grant from the Marketing
Science Institute. Readers should contact the authors directly with questions or requests about this tool.

36



eight studies in which over 2,000 people generated over 4,000 ideas in total. Five of our studies were run
in collaboration with companies. Across studies, we have varied the source of participants, the format of
the idea generation task, the idea generation topic, the type of evaluations and the source of these
evaluations. We have also used both primary and secondary sources of data. Managerially, we have
shown that our findings can be leveraged not only to identify promising ideas automatically, but also to
develop tools that can help people improve their idea generation output by proposing words that may
serve as “ingredients” for their ideas.

We believe that many exciting opportunities for future research may be identified, in addition to
those already mentioned throughout the paper. First, driven by our theoretical development and our need
to capture the co-occurrence of word stems, we mapped ideas onto semantic networks. However, this
approach does not capture how words are combined, and it does not allow interpreting ideas. Future
research might extend the analysis in such directions. Second, future research may explore the extent to
which our findings apply both to incremental and radical innovations. Although ideas in our studies were
evaluated both by consumers and experts, they were all generated by consumers, and therefore may have
been skewed towards incremental innovations. The literatures on which our theoretical argument is built
have heavily focused on creativity in the domains of science and art, which one may argue are the
bedrock of radical innovations. For example, the issue of balancing novelty with familiarity has been
studied in the history of science literature, the literature on the associative nature of creativity was
inspired by prominent scientists and artists, and the beauty-in-averageness effect has been found in
various artistic domains. Therefore we expect our findings to generalize to ideas generated by
professionals searching for radical innovation opportunities. Third, prototypicality may be considered as a
new metric in the automated evaluation of other types of textual data, such as essays (e.g., Attali and
Burstein 2006; Landauer, Laham and Foltz 2003), movie scripts (Eliashberg, Hui and Zhang 2007), or
academic articles (Uzzi et al. 2013). Fourth, the insights and tools from our research can be applied to the
domain of recommendation systems. For example, it might be possible to identify products that best
complement the set of products a consumers already owns, based on the properties of the subnetwork
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formed by these products (e.g., identifying which new book would best complement the user’s personal
library based on the properties of the network of books in her library, Oestreicher-Singer et al. 2013).
Similar recommendations may be made in the domain of scientific citations (e.g., identify a set of papers
that would best complement the set of papers already cited in one’s manuscript). Finally, this paper
provides one example of exploring the use of Big Data tools in new ways that may have a positive impact
on people’s lives and on society. A large proportion of the information to which we are exposed today is
recorded electronically. This information is often used by marketers to target advertising and other
marketing vehicles. We hope that our research will help open the door for new applications of these data

that may offer new benefits to users.
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Figures and Tables
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Note: AMT stands for Amazon Mechanical Turk.

Table 1. Overview of Studies.
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Study la Study Ib  Study ¢ Study2  Study 3 Study4  Study 5 Study 6
g;?&i?gtﬁtpc{;tt?itgﬂg 3.204%%  2410%%  -3.116%*  -0.380%* -0.962%* -0.411% -0.402%*% -0.40]1%*
Average -8.046  -12.924%  -7.644  0.633 0375 -1.080  1.532%%  -0.599
o5 Coef. of var. 0.696 1.043*%  0.560 0.131  -0.221 0.625  -0.655**  0.341
s §’ Min -4.983 0.706 6.361 0499 -0.021 1.858  1.839%% 0374
Max -0.844  -1313  -0.351 0.267 0.127 0364 0.734%F  0.132
N Average -10.781%% 6373 11.729%*  -0.806 0.717 0.975  -4.177%  -0.609
g g Coef. of var. 1.529%%  1.028  1.945%  0.175 0.530 20.092  -0.967%*  -0.171
Z § Min 14117 10.754*% 12400  0.420 0.298 0.678  -1.874*%  0.255
= Max 0397 2685  -5.132%F  (.137 -0.373 0.299  1.215%  0.449
. Average 1530  -1.320  0.539 N/A N/A N/A N/A N/A
3 g . Coef. of var. 0.291  -4.399%%  _3.440 N/A N/A N/A N/A N/A
2% Min 0221 24617 2716%%  N/A N/A N/A N/A N/A
° Max -4271% 5446 3.964 N/A N/A N/A N/A N/A
Size of semantic subnetwork ~ -0.035**  -0.012  0.014 0.007 -0.002 0.034 20.002  -0.022%*
Number of characters/1000  1.321%%  1.158%%  0.914**  -0.032  1.016** 0940  -0.228%* ].299%*
# observations 276 271 251 555 173 220 1735 648
# groups (authors) 178 177 167 300 61 163 703 391
R2/ 2 0.272 0.371 0.246 0.192 0.287 0.072 29378  0.268

#: p<0.1, #*: p<0.05.

Table 2. Judged creativity vs. prototypicality.

Note: Each column corresponds to one random effects regression with one observation per idea. The dependent
variable is the average judged creativity rating of the idea across evaluators (except in Study 5 in which it is the
proportion of positive votes on the idea). We are able to control for measures related to the clustering coefficient
only in Studies la-1c. We capture heterogeneity across participants using random effects.

Average number of
original ideas per

Average number of
modifications per

Average difference in
judged creativity

between last modification

Condition participant original idea and original idea
Control 1.590 0.333 0.236
Random Words 1.600 0.489 0.166
Minimum Distance 1.874 0.838 0.032
Maximum Prototypicality 1.643 0.604 0.220

Table 3. Study 6 results.

Note: The Maximum Prototypicality condition is the only one that gives rise to both a significantly greater
propensity to modify ideas compared to the Control condition (p<0.05), and to modifications that are significant
improvements over the original ideas (p<0.01).
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Figure 1. Example of a baseline semantic network.

Note: each node represents a word stem. Each edge captures the scaled co-occurrence between two word stems.

HOW COULD SMARTPHONES HELP THEIR USERS BE HEALTHIER?

We are interested in new ideas for smartphone (e.g., iPhone, Android) apps that will help theirs users keep a healthier lifestyle. In the space provided below,
please enter a new idea for a smartphone app priced at $0.99 that would help its users keep a heathier lifestyle. Please be as specific as possible and describe the main
features of the app.

You will be asked to enter 3 ideas in total, one after the other.

(Note: Your ideas will be shared with other participants, in an anonymous fashion.)

Please enter exactly one app idea in the box below.

Figure 2. Typical idea generation interface (from Study 1).
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HOW COULD SMARTPHONES HELP THEIR USERS BE HEALTHIER?

We are interested in new ideas for smartphone (e.g., iPhone, Android) apps that will help their users keep a healthier lifestyle. In the space provided below, please enter a new idea for a smartphone app priced at
$0.99 that would help its users keep a heathier lifestyle. Please be as specific as possible and describe the main features of the app. You must submit at least one idea in total in order to be approved.

Please enter one new idea in the box below. Please be as specific as possible. You will be able to enter additional ideas afterwards.
Make a workout app with rewards for completing a run. Like someone goes for a 20 minute run and

geis rewarded wiih an advertisemeni and @ free HP3 download from Amazon or iTunes(paid for by the
advertisement.)

submit new idea

| am done - | have no more ideas - | am done with this HIT

HOW COULD SMARTPHONES HELP THEIR USERS BE HEALTHIER?

We are interested in new ideas for smartphone (e.g., iPhone, Android) apps that will help their users keep a healthier lifestyle. In the space provided below, please enter a new idea for a smartphone app priced at
$0.99 that would help its users keep a heathier lifestyle. Please be as specific as possible and describe the main features of the app. You must submit at least one idea in total in order to be approved.

Please modify/improve your idea. If you do not wish to improve your previous idea, please select 'l am done with this idea.'
Make a workout app with rewards for completing a run. Like someone goes for a 20 minute run and

gets rewarded with an advertisement and a free MP3 download from Amazon or iTunes(paid for by the
advertisement.)

submitimproved idea |
| am done with this idea

Your ideas so far:

Make a workout app with rewards for completing a run. Like someone goes for a 20 minute run and gets rewarded with an advertisement and a free MP3 download from Amazon or iTunes(paid for by the advertisement.)

HOW COULD SMARTPHONES HELP THEIR USERS BE HEALTHIER?

We are interested in new ideas for smartphone (e.g., iPhone, Android) apps that will help their users keep a healthier lifestyle. In the space provided below, please enter a new idea for a smartphone app priced at
$0.99 that would help its users keep a heathier lifestyle. Please be as specific as possible and describe the main features of the app. You must submit at least one idea in total in order to be approved.

To help you improve the idea you have just submitted. below are some words that were automatically selected from web pages about the topic and that are related to the idea you have just submitted. These words are meant to
help you improve/modify your previous idea. You may draw another set of words. If you do not wish to improve your previous idea. please select T am done with this idea.'

draw another word |

Please modify/improve your idea, using the words suggested:

Make a workout app with rewards for completing a run. Like someone goes for a 20 minute run and
gets rewarded with an advertisement and a free MP3 download from Amazon or iTunes(paid for by the
advertisement.)

submit improved idea
1 am done with this idea |

Your ideas so far:

Make a workout app with rewards for completing a run. Like someone goes for a 20 minute run and gets rewarded with an advertisement and a free MP3 download from Amazon or iTunes(paid for by the advertisement.)

Figure 3. Screenshots from Study 6.

Top: idea collection interface (common across all conditions). Clicking “submit new idea” submits the idea and
switches to the idea modification interface. Clicking “I am done” terminates the session. Middle and Bottom: idea
modification interface in the control condition (Middle) and the other three conditions (Bottom). The submission

box comes pre-loaded with the last idea submitted by the participant. Clicking “submit improved idea” submits the
modified idea and re-loads the idea modification interface, allowing the participant to modify their idea further.
Clicking “I am done with this idea” switches to the idea collection interface. In the non-Control conditions, words
were presented to help participants improve their previous ideas. Clicking “draw another word” cycles through the
10 word stems associated with the idea.

44




