Privacy in a Data-Driven World

Roxana Geambasu
Assistant Professor of Computer Science
Columbia University

https://roxanageambasu.github.io/

email subject & text

E1	Vacation I'm going on vacation to travel.
E2	Homosexual Gay, lesbian, homosexual.
E3	Pregnant I'm pregnant. I'm having a baby.
E4	Unemployed I'm unemployed.
E5	Ford I want to buy a car, maybe a Ford.

ad title, url & text

Ralph Lauren Online Shop www.ralphlauren.com The official Site for Ralph Lau

The official Site for Ralph Lauren Apparel, Accessories & More

Cedars Hotel Loughborough

www.thecedarshotel.com
36 Bedrooms, Restaurant, Bar
Free WiFi, Parking, Best Rates

Ad1

Ad2

email subject & text

E1	Vacation I'm going on vacation to travel.
E2	Homosexual Gay, lesbian, homosexual.
E3	Pregnant I'm pregnant. I'm having a baby.
E4	Unemployed I'm unemployed.
E5	Ford I want to buy a car, maybe a Ford.

ad title, url & text

?

Ralph Lauren Online Shop
www.ralphlauren.com
The official Site for Ralph Lauren
Apparel, Acccessories & More

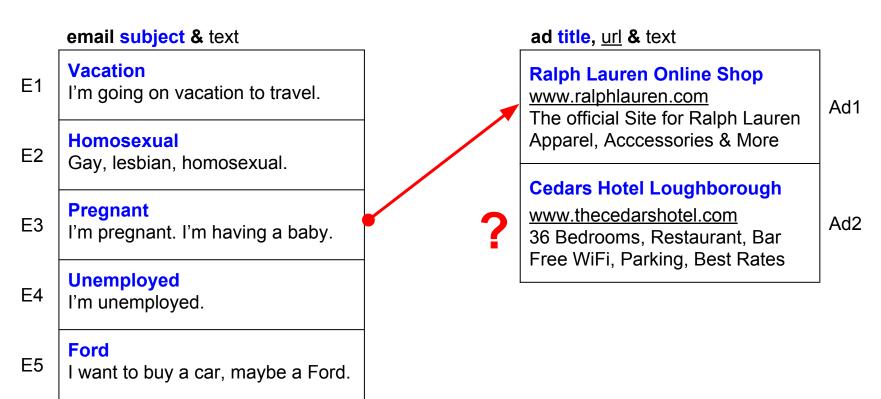
Ad1

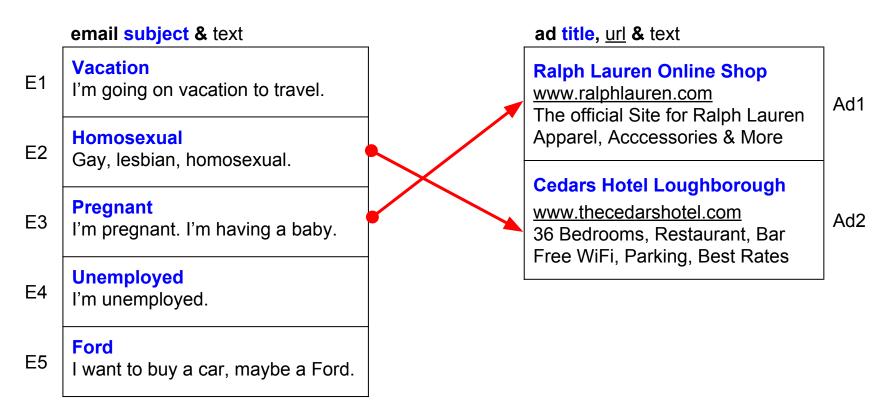
Cedars Hotel Loughborough

Ad2

www.thecedarshotel.com
36 Bedrooms, Restaurant, Bar
Free WiFi, Parking, Best Rates

email subject & text ad title, url & text **Vacation** Ralph Lauren Online Shop E1 I'm going on vacation to travel. www.ralphlauren.com Ad1 The official Site for Ralph Lauren Homosexual Apparel, Accessories & More E2 Gay, lesbian, homosexual. **Cedars Hotel Loughborough Pregnant** www.thecedarshotel.com Ad2 E3 I'm pregnant. I'm having a baby. 36 Bedrooms, Restaurant, Bar Free WiFi, Parking, Best Rates **Unemployed** E4 I'm unemployed. **Ford** E5 I want to buy a car, maybe a Ford.





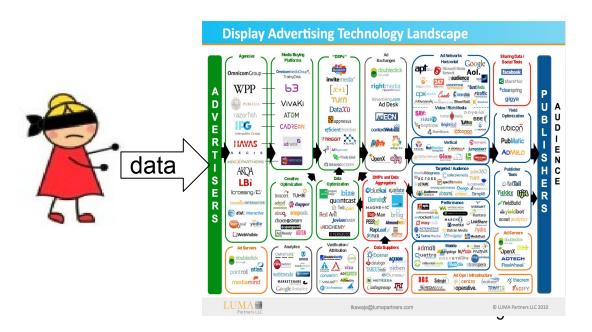
It's not just Gmail...

Did you know?

- Data brokers can tell when you're sick, tired and depressed -- and sell this information. [CNN '14]
- Google Apps for Ed used institutional emails to target ads in personal accounts. [SafeGov'14]
- Credit companies are looking into using Facebook data to decide loans. [CNN'13]

The data-driven web

 The web is a complex and opaque ecosystem driven by massive collection and monetization of personal data.



- Who has what data?
- What's it used for?
- Are the uses good or bad for us?
- End-users, privacy watchdogs (eg, FTC) are equally blind.

My research

- Build transparency tools that increase users' awareness and society's oversight over how apps use personal data:
 - **Sunlight**: reveals the causes of targeting [CCS'15].
 - XRay: reveals targeting through correlation [USENIX Sec'14].
 - Pebbles: reveals how mobile apps manage persistent data [OSDI'14].

My research

- Build transparency tools that increase users' awareness and society's oversight over how apps use personal data:
 - **Sunlight**: reveals the causes of targeting [CCS'15].
 - **XRay**: reveals targeting through correlation [USENIX Sec'14].
 - **Pebbles**: reveals how mobile apps manage persistent data [OSDI'14].
- 2. Build development abstractions and tools that facilitate construction of privacy-preserving apps:
 - FairTest: unit tests for fairness [under review].
 - CleanOS: privacy-mindful mobile operating system [OSDI'12].
 - Pyramid: minimizing data exposure in data-driven apps [ramping up].

My research

- Build transparency tools that increase users' awareness and society's oversight over how apps use personal data:
 - Sunlight: reveals the causes of targeting [CCS'15].
 - XRay: reveals targeting through correlation [USENIX Sec'14].
 - **Pebbles**: reveals how mobile apps manage persistent data [OSDI'14].
- Build development abstractions and tools that facilitate construction of privacy-preserving apps:
 - FairTest: unit tests for fairness [under review].
 - CleanOS: privacy-mindful mobile operating system [OSDI'12].
 - Pyramid: minimizing data exposure in data-driven apps [ramping up].

my students:

Vaggelis Atlidakis Mathias Lecuyer

Riley Spahn

Yannis Spiliopoulos

some of my collaborators:

Augustin Chaintreau (Columbia)

Daniel Hsu (Columbia)

Jean-Pierre Hubaux (EPFL)

Ari Juels (Cornell Tech)

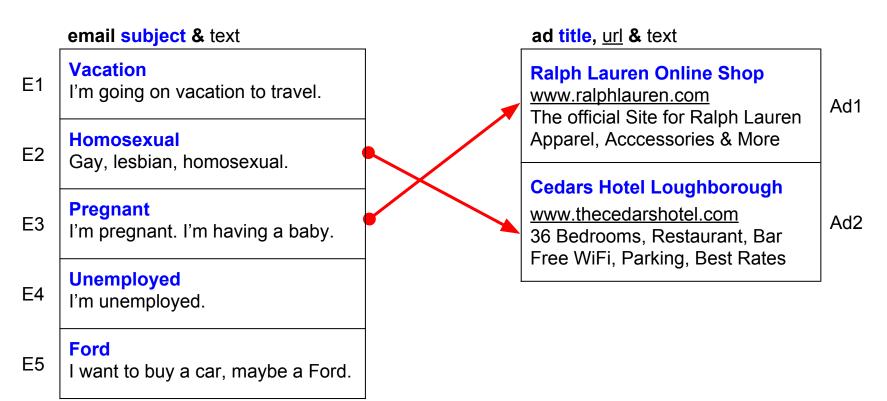
Sunlight:

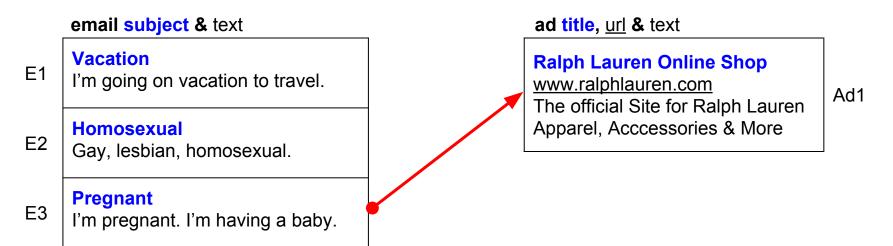
transparency for the data-driven web.

[CCS'15]

Sunlight

- Generic and broadly applicable system that detects personal data use for targeting and personalization.
 - Reveals which data (e.g., emails) triggers which outputs (e.g., ads).
- Key idea: correlate inputs with outputs based on observations from profiles with differentiated inputs.
- Sunlight is precise, scalable, and works with many services.
 - We tested it for Gmail ads, ads on arbitrary websites,
 recommendations on Amazon & YouTube, prices in travel websites.





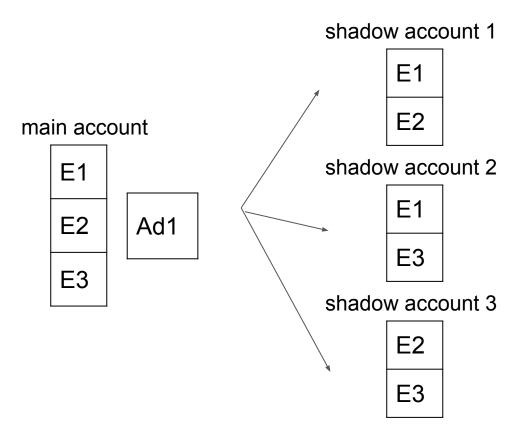
main account

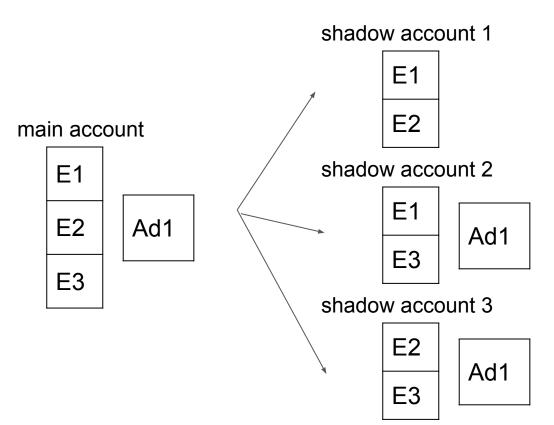
E1

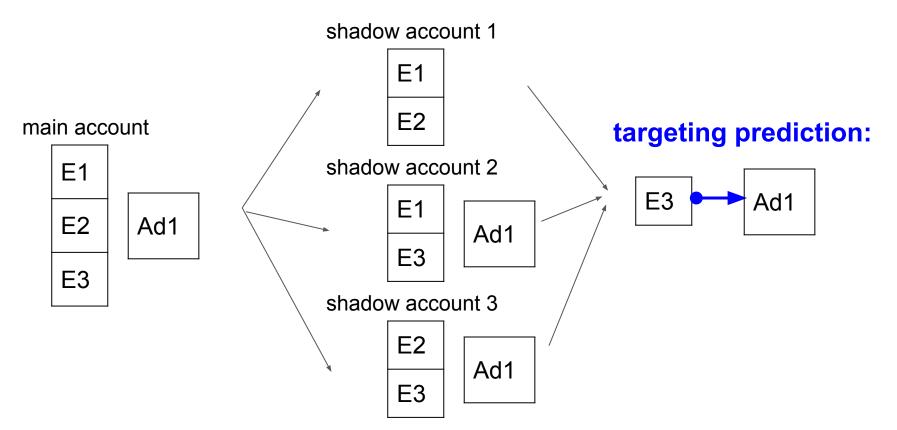
E2

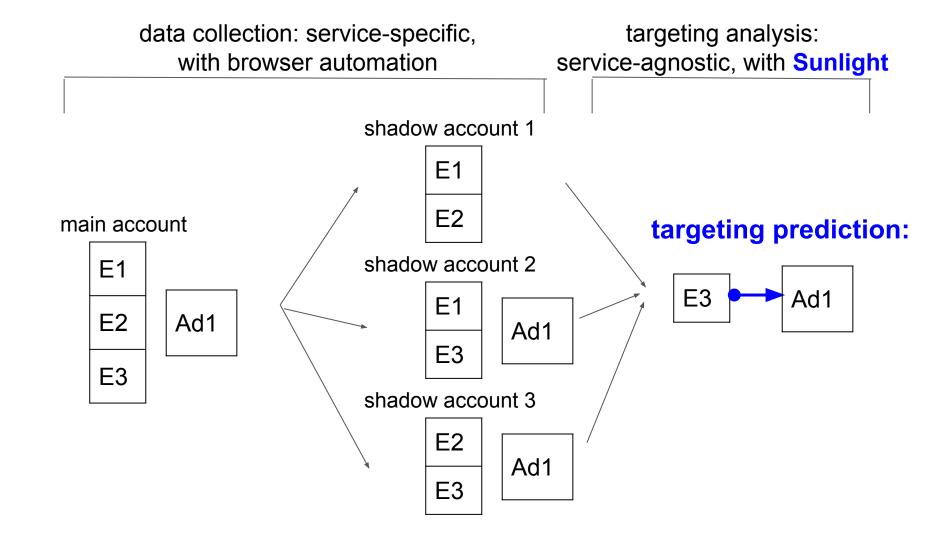
E3

Ad1

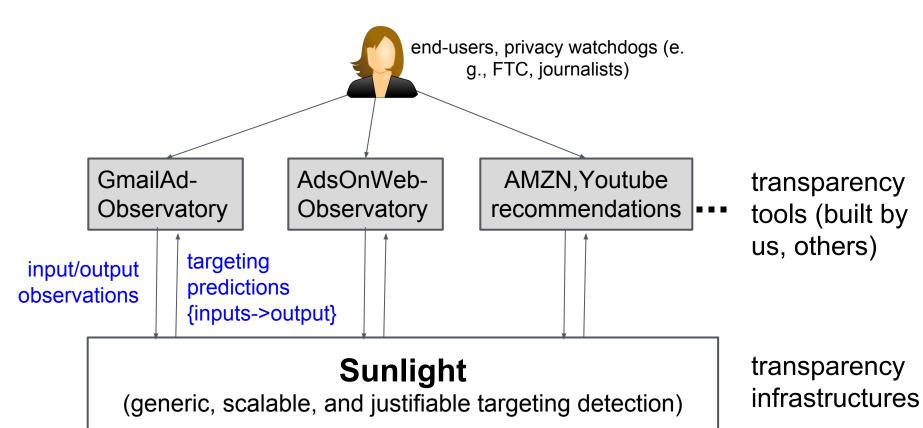








Transparency solutions



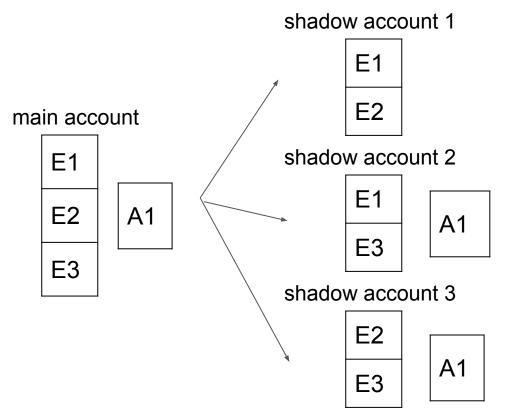
Sunlight talk

- Overview
- Design
- Evaluation
- Use cases

Design goals

- Generic and broadly applicable targeting detection
 - We assume that a small set of inputs is used to produce each output. Our goal is to discover the *correct* input combination.
- Precise and justifiable targeting predictions
 - Targeting predictions must be statistically justified. Our goal is to detect as many *true* predictions as possible.
- Scalable in number of inputs and outputs
 - Detect targeting of many outputs on many inputs w/ limited resources.

The scalability challenge



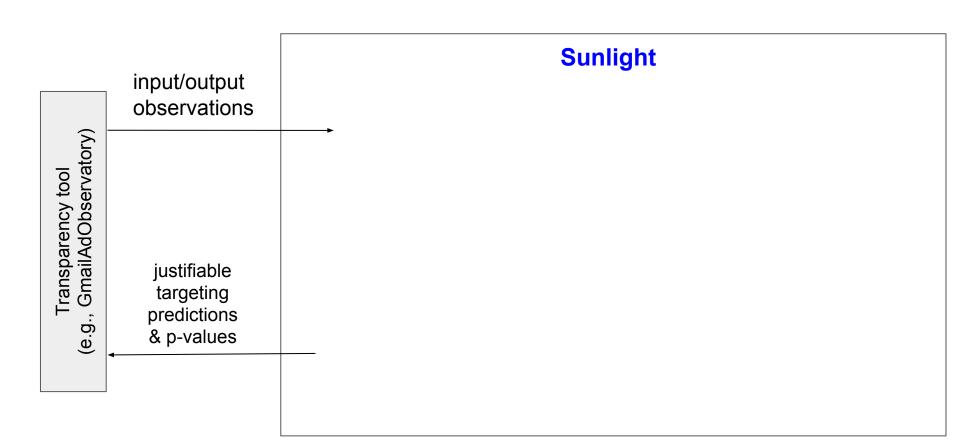
 To detect targeting on combinations of the inputs, will we need shadow profiles for all combinations???

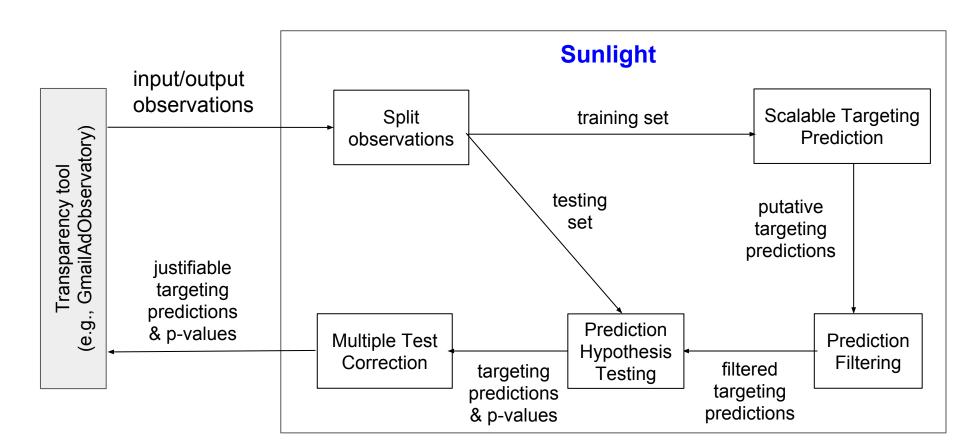
Scalable targeting detection

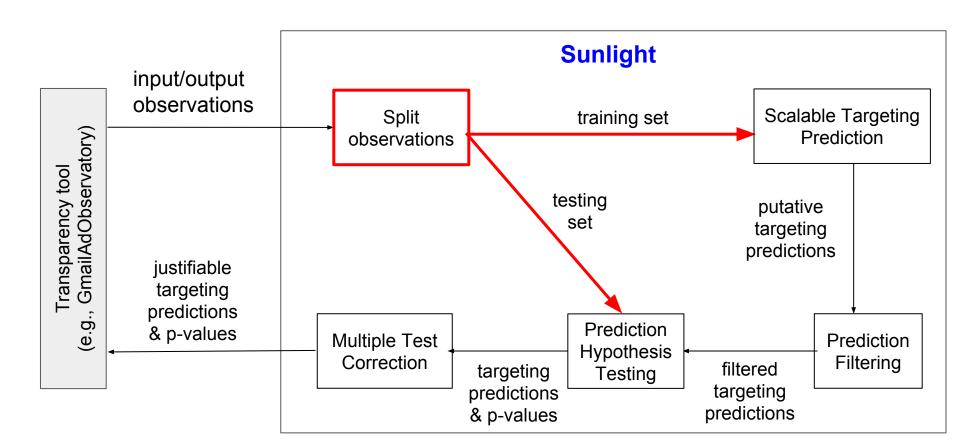
- **Theorem:** Under sparsity assumptions, for any $\varepsilon > 0$ there exists an algorithm that requires $C \times log(N)$ accounts to correctly identify the inputs of a targeted output with probability (1ε) . N is the number of inputs.
- Key insight: rely on sparsity properties (like compressed sensing).
- We incorporate several sparse detection algorithms:
 - Set intersection -- simple, not robust
 - Sparse regressions (Lasso) -- well established, robust

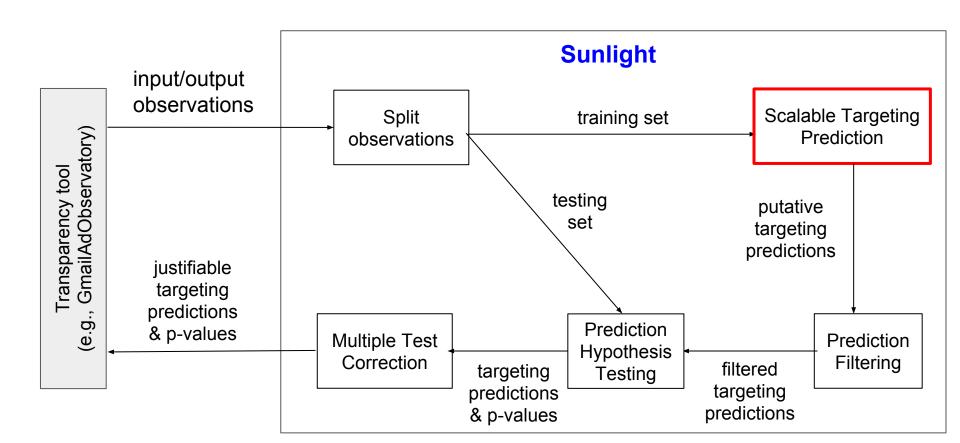
Justifiable targeting predictions

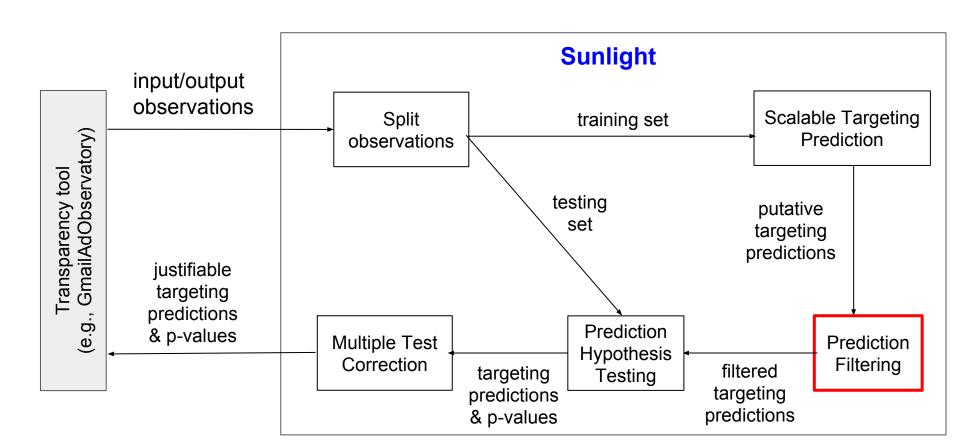
- Sparse algorithms only guarantee asymptotic correctness of the targeting predictions.
- We need correctness assessment for each targeting prediction.
- Solution: hypothesis testing.
 - Provides quantification of statistical significance of each targeting association (a p-value).
 - p-value gives knob for precision/recall tradeoff.

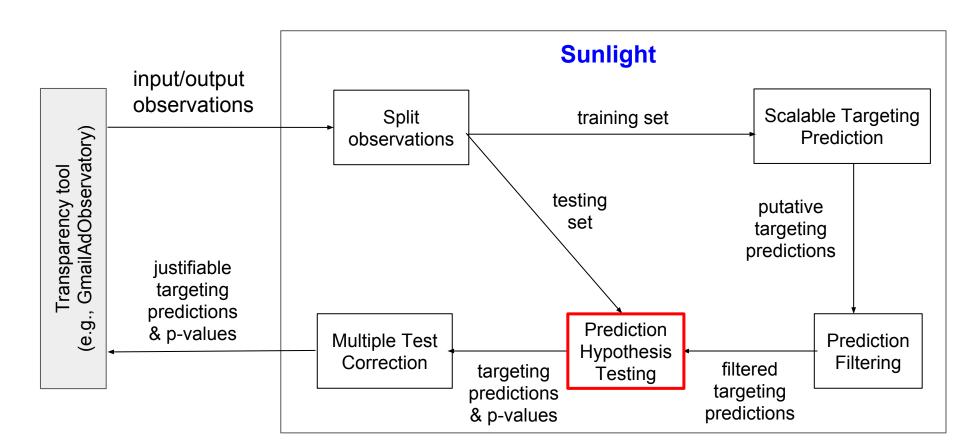


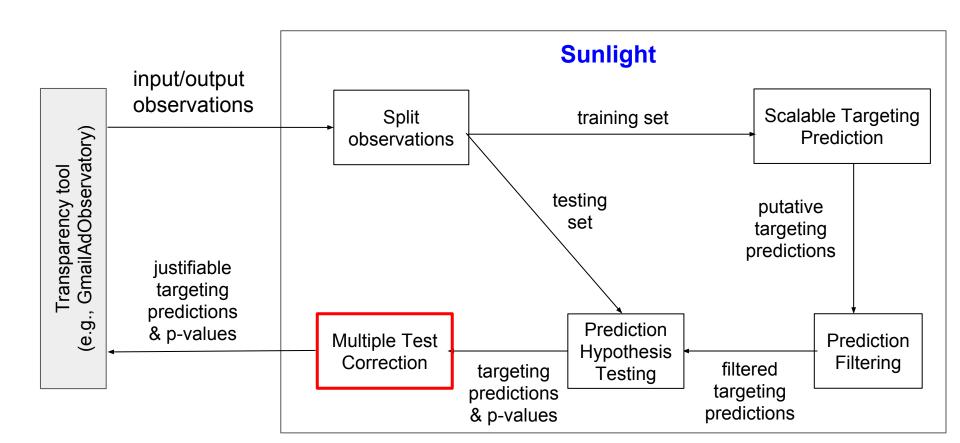


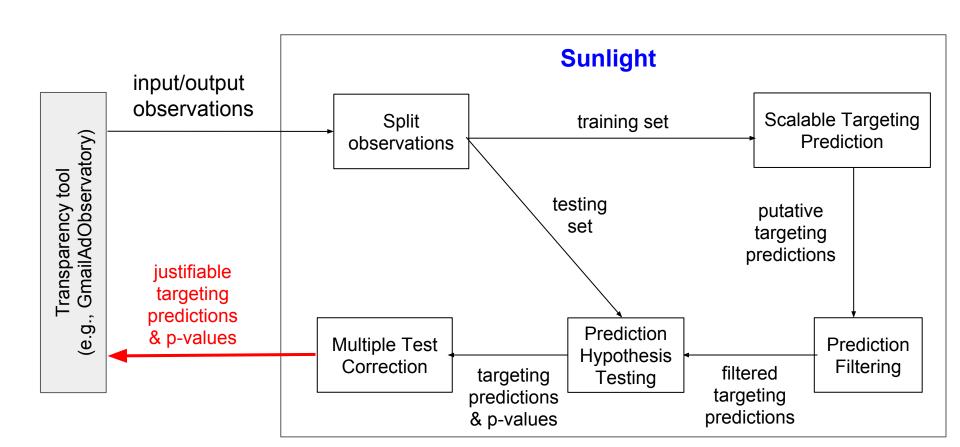












What we get in the end

- If during data collection we randomly assign our inputs independently of any other variable, Sunlight's associations will have a causal interpretation (not just correlation).
- However, Sunlight cannot explain <u>how</u> this targeting happens.
 - E.g.: What player in the ecosystem is responsible? Is it a human intervention or an algorithmic decision?

Sunlight talk

- Overview
- Design
- Evaluation
- Use cases

Datasets

Workload	Profiles	Inputs	Outputs	
Gmail (one day)	119	327	4099	
Website	200	84	4867	
Website-large	798	263	19808	
YouTube	45	64	308	
Amazon	51	61	2593	

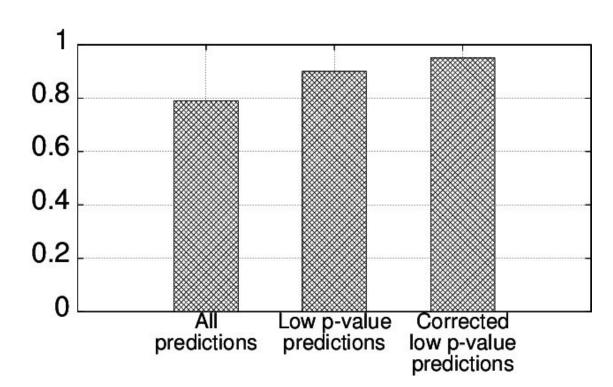
Targeting prediction precision

We developed two methodologies:

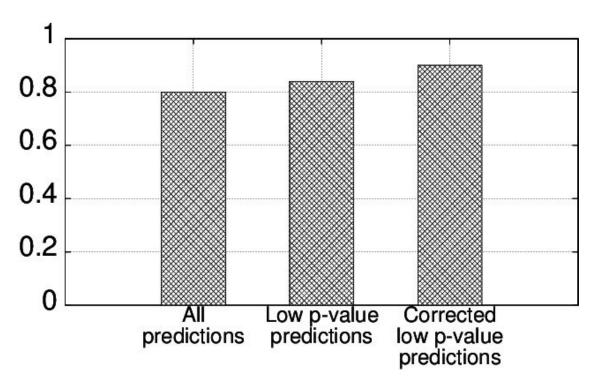
- 1. Manual assessments of how "believable" are our low-p-value predictions (<0.05).
 - We observed 100% precision for smaller experiments and 95%
 -96% precision for larger experiments. Despite potential for confirmation bias, this is in line with expectation at p-value < 0.05.
- 2. Assess the quality of targeting predictions.
 - If we conclude that E3->Ad1, we should be able to use E3's presence in a shadow account to accurately guess whether Ad1 appears in that account.

Quality of targeting predictions

Y: Proportion of ad appearances that were correctly guessed to be present in a shadow account.



Quality of targeting predictions

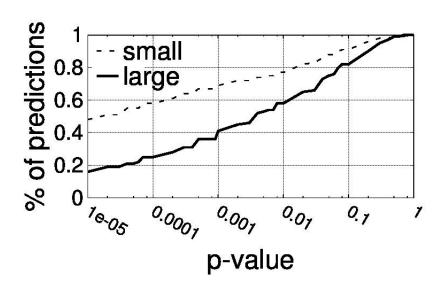


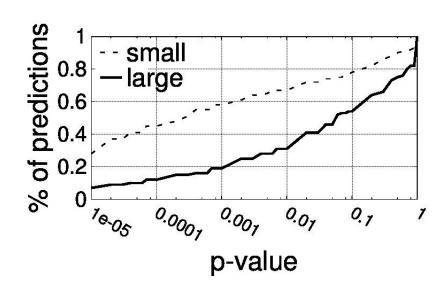
Y: Proportion of success when guessing if an ad will be present in a shadow account.

Targeting prediction recall

- We found recall impossible to quantify manually.
 - Too many outputs, too many input possibilities, too error prone.
- We developed this methodology:
 - Inspected ads for which Sunlight had some evidence they were being targeted, but for which correction spoiled their p-values.
 - This methodology revealed a precision-recall tradeoff at scale due to correction.

Precision/recall tradeoff

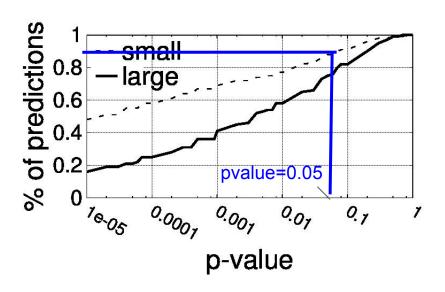


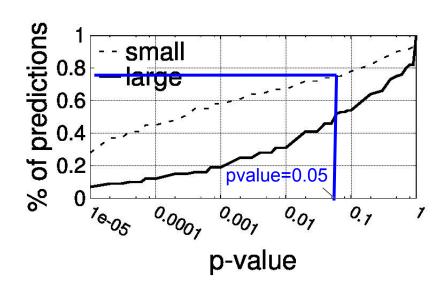


p-value CDF before correction

p-value CDF after correction

Precision/recall tradeoff

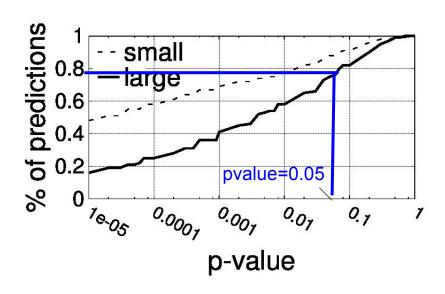


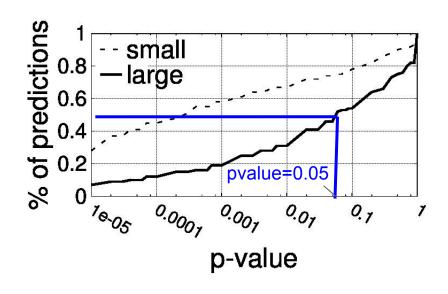


p-value CDF before correction

p-value CDF after correction

Precision/recall tradeoff





p-value CDF before correction

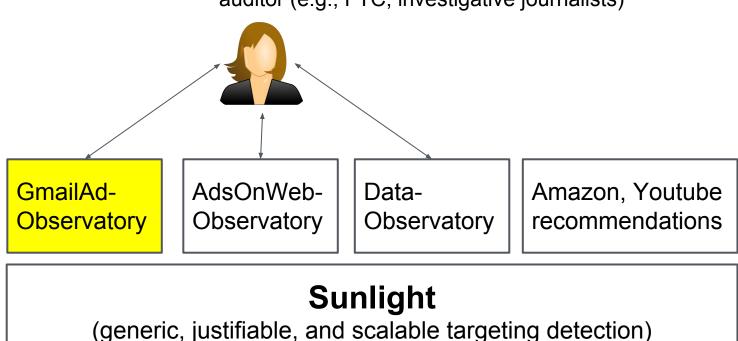
p-value CDF after correction

Sunlight talk

- Overview
- Design
- Evaluation
- Use cases

Sunlight-based tools

auditor (e.g., FTC, investigative journalists)



GmailAdObservatory

- Service to study targeting of Gmail ads on users' emails.
 - Meant for researchers and journalists.
- How it works:
 - Researcher supplies a set of emails.
 - GmailAdObservatory uses a set of Gmail accounts to send emails to a separate set of Gmail accounts (the shadows).
 - It then collects ads periodically.
 - Uses Sunlight to detect targeting for each collected ad.

Gmail Targeting Study

- We studied ad targeting in Gmail at pretty large scale.
 - 20K unique ads collected from an inbox with 300 single-keyword emails on various "sensitive" topics.
- Found contradictions to Google's own privacy statement.

Privacy, Transparency and Choice

[...]

We will also not target ads based on sensitive information, such as <u>race</u>, <u>religion</u>, <u>sexual orientation</u>, <u>health</u>, or <u>sensitive</u> <u>financial categories</u>.

-- http://support.google.com/mail/answer/6603

"We will also not target ads based on sensitive information, such as race, religion, sexual orientation, health, or sensitive financial categories."

	email subject & text	ads Title, url & text	Results	
	Affordable	Illinois Senior Living	p-value = 0.03	
	afforable care [] (OR)	www.cottagesofnewlenox.com	103 impressions	
	Nursing	Assisted Living for Seniors	in 36 profiles	
General Health	nursing home []	in New Lenox []	28% in context	
	Alzheimer	1/3 of Seniors 65+ Fall	p-value = 0.01	
	Alzheimer Alzheimer	jacuzzi-walk-in-tubs.com/Safety	21 impressions	
		Help Eliminate the Fear of Falling	in 8 profiles	
≝		in the Bathroom []	100% in context	
era	Depressed	Is He A Cheater?	p-value = 0.03	
en	depression (OR)	spokeo.com/Cheating-Spouse-Search	1179 impressions	
ا ا	Anxious	Enter His Email Address. Find Pics &	in 52 profiles	
	anxious anxiety	Profiles From 70+ Social Networks.	20% in context	
	Cancer advice	The Business of Wellness	p-value = 0.04	
	How did you cope with	healthmediagroup.blogspot.com	380 impressions	
	cancer in your familly?	What my doctor can learn from	in 28 profiles	
	What an aweful disease!	my Shoe Shine Man []	91% in context	

"We will also not target ads based on sensitive information, such as race, religion, sexual orientation, health, or sensitive financial categories."

	email subject & text	ads Title, url & text	Results
	Unemployed	Easy Auto Financing	p-value = 0.006
ial	lazy unemployed	www.midsouthautoloans.com	161 impressions
Financial		Need a quick car loan?	in 24 profiles
Η̈́		We work with credit issues	8% in context
Sensitive	Payday	Fast Cash Loan Online.	p-value = 0.007
	payday loan	www.checkintocash.com	198 impressions
Ser		Apply Now. Takes Only 5 Minutes.	in 10 profiles
		lt's as Easy as 1,2,3.	6% in context

Notice the extremely low in-context impressions -- the most obscure form of targeting.

FairTest:

fairness testing toolkit for data-driven apps.

[under submission]

Unfair Associations

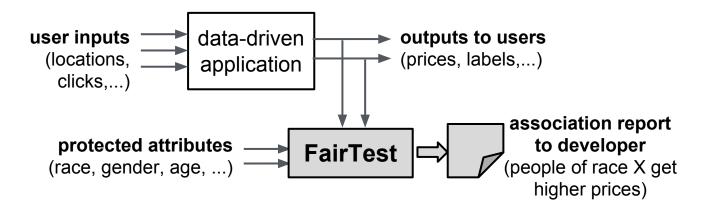
- Personal data + complex algos can lead to unintended and discriminatory consequences.
- Such consequences are bugs, for which developers should actively test and debug as they do for functionality, performance, reliability bugs.

THE WALL STREET JOURNAL. In what appears to be an unintended side effect of Staples' pricing methods—areas that tended to see the discounted prices had a higher average income than areas that tended to

see higher prices.

FairTest

- Testing suite for unintended associations in data-driven apps.
 - Detects associations between user attributes (race, gender, age) and service outputs (prices, labels).
- Offers debugging, not just detection, capabilities.



Results

- We checked five data-driven apps for unexplained associations, including:
 - Movie recommender.
 - Image labeling system (OverFeat).
 - Predictive healthcare application, the winner of a 2012 Heritage Health Competition.

- We found unexpected associations in all apps, some real bugs.
 - Example: the predictive health app provides good error overall (15%) but its error disproportionately affects elderly patients, where it can be as high as 45%.

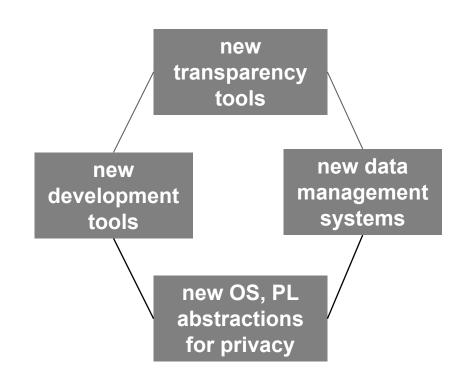
My vision for privacy

Critical problem

Erosion of privacy: users share too much, services collect and use their information with almost no accountability.

My vision

Forge a new world where users are privacy aware and services more accountable and privacy-preserving by design.



Related visions

- Two other groups aim to build transparency infrastructures:
 - CMU's Anupam Datta's group.
 - Princeton's Arvind Narayanan and Ed Felten's group.
 - We uniquely focus on both scalability and broad applicability.

History:

- 2014: We published the first paper on this topic: XRay (USENIX Security). Offers good scalability but no statistical justification.
- 2015: Anupam published AdFisher (PETS). Offers statistical justification but isn't built to scale with more than one input.
- 2015: We published Sunlight (CCS). Builds on XRay and AdFisher but offers both scale and statistical justification.