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ABSTRACT
....................................................................................................................................................
Mobile sensor data-to-knowledge (MD2K) was chosen as one of 11 Big Data Centers of Excellence by the National Institutes of
Health, as part of its Big Data-to-Knowledge initiative. MD2K is developing innovative tools to streamline the collection, integration,
management, visualization, analysis, and interpretation of health data generated by mobile and wearable sensors. The goal of the
big data solutions being developed by MD2K is to reliably quantify physical, biological, behavioral, social, and environmental factors
that contribute to health and disease risk. The research conducted by MD2K is targeted at improving health through early detection
of adverse health events and by facilitating prevention. MD2K will make its tools, software, and training materials widely available
and will also organize workshops and seminars to encourage their use by researchers and clinicians.
....................................................................................................................................................
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INTRODUCTION
Complex and common disorders such as cancer, cardiovascular dis-
eases, obesity, diabetes, depression, asthma, and addiction represent
the major burden of disease in the United States and globally.1 These
disorders are caused by the interactions of multiple risk factors, rather
than any single genetic, behavioral, social, or environmental source.2,3

To reach the next level of biomedical understanding, it is critical for re-
searchers to be able to monitor the health states of patients in their
natural environments and to quantify the complex temporal dynamics
of key physical, biological, behavioral, psychological, social, and envi-
ronmental factors that contribute to health and disease risks. Such
activities will substantially improve physicians’ ability to predict per-
son-specific disease risk and treatment response and will enable
researchers to develop more efficacious prevention and treatment
strategies, thus moving the field closer to a fully realized vision of the
Precision Medicine initiative.3,4

Rapid advances in technology are leading to mobile sensing de-
vices that now make collecting “natural environment” data feasible.5

While ongoing efforts focused on the analysis of “big data” in the
areas of genomics, imaging, and electronic health records are making
significant strides, data analytics tools specific to the unique features
of mobile sensor data need to be developed and disseminated, so that
this wealth of mobile sensor data (characterized by high volume, ve-
locity, variety, variability, versatility, and semantic gap) can be con-
verted into information, knowledge, and, ultimately, action. Investing
in a strong, open, scientific, and computational infrastructure for mo-
bile sensor big data at this early stage promises outsized returns that
will advance science and improve health.

Given the diversity of the challenges of addressing mobile sensor
big data, developing a comprehensive solution requires a truly trans-
disciplinary approach in which end-to-end solutions are developed

jointly by experts in sensor design, mobile systems, machine learning,
pattern mining, big data computing, health informatics, experiment
design, clinical research, and health research. Because mobile health
(mHealth) is a young discipline, the necessary expertise is not readily
available at a single institution. Therefore, the Center of Excellence for
Mobile Sensor Data-to-Knowledge (MD2K) brings together experts in
computer science, engineering, medicine, behavioral science, and sta-
tistics from 11 universities (Cornell Tech; Georgia Tech; Northwestern
University; Ohio State University; Rice University; University of
California, Los Angeles; University of California, San Diego; University
of California, San Francisco; University of Massachusetts Amherst;
University of Memphis; University of Michigan) and Open mHealth (a
nonprofit organization). The MD2K investigators not only cover all the
necessary areas of expertise, but they are also national leaders in their
fields, with proven track records in mHealth research. We describe
herein the driving biomedical applications of MD2K, the mobile sen-
sors being used, the data science research and training activities be-
ing pursued, and MD2K’s anticipated scientific and societal impacts.

DRIVING BIOMEDICAL APPLICATIONS OF MD2K
To guide the development and evaluation of our data analytics meth-
ods and tools and to demonstrate the broad utility of MD2K, we se-
lected two driving biomedical applications: 1) improving smoking
cessation (including reducing lapses in smoking cessation) among
smokers and 2) reducing hospital readmissions among congestive
heart failure (CHF) patients.

Cigarette Smoking
Cigarette smoking is the leading preventable cause of death in the
United States, responsible for 1 in 5 deaths annually.6 Recent research
regarding mobile sensing technology that can infer whether or not an
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individual is smoking by monitoring their respiration7 and arm move-
ments8 demonstrates the feasibility of automatically and unobtrusively
detecting patients’ lapses in smoking cessation. Combined with other
research on detecting high-risk triggers for smoking (eg, stress9),
these works open up the possibility of using mobile devices for sen-
sor-triggered just-in-time adaptive interventions.10 For example, upon
detecting a rapid rise in an individual’s stress level, via data collected
from wearable sensors, an intervention can be triggered to provide an
abstinent smoker with mobile-based social support on their smart
phone, to prevent a lapse in their smoking cessation. This approach
can potentially address other behavioral risk factors, such as impulsive
eating, alcoholism, and illicit drug use.

Congestive Heart Failure
CHF affects nearly 6 million people in the United States, with 670 000
new cases diagnosed annually. It is a leading cause of preventable
hospitalization and, thus, unnecessary healthcare expenditure. Current
technological approaches have failed to reduce the rate of readmission
after hospitalization for CHF,11–13 in part due to their low sensitivity or
poor positive predictive value.14 Implanted device-based diagnostics15

and an implanted hemodynamic monitor16,17 are promising solutions,
but their applicability may be limited to all but the most advanced CHF
patients. Our recent work on the EasySense sensor,18 which uses a
wideband radio frequency to measure the accumulation of lung fluid,
provides the first-ever opportunity to monitor the worsening of lung
congestion in a non-invasive manner. In addition, sensor-based detec-
tion and prediction of potentially risky behaviors that could lead to an
episode of heart failure, such as eating sodium-rich meals (eg, fast
food) or medication nonadherence, creates opportunities for mobile
technologies to identify when the patient is at risk and deliver just-in-
time adaptive interventions to clinicians and patients to avert an exac-
erbation of CHF. This approach can potentially address other chronic
conditions, such as hypertension, diabetes, chronic obstructive pulmo-
nary disease, and asthma.

MOBILE SENSORS IN MD2K
The data science research being conducted by MD2K is intended to be
generalizable to a variety of sensors and for a wide range of biomedi-
cal applications. To demonstrate the feasibility of these approaches,
MD2K is using five sources of mobile sensor data that are directly ap-
plicable to the two biomedical applications described in the preceding.
Data from each sensor suite are collected by the smart phone in real-
time (via wireless communication if the sensor is not embedded in the
smart phone) (see Figure 1):

1. The AutoSense chestband,19 which collects electrocardiogram
(ECG), respiration, and accelerometry data, can be used to infer
stress9 (from the ECG and/or respiration data), whether or not a
patient is smoking7 (from the respiration data), and patient drug
use20 (from the ECG data).

2. A smart watch with inertial sensors (3-axis accelerometers and 3-
axis gyroscopes) that can infer when a patient is smoking and eat-
ing8 (by tracking arm movements).

3. A radio-frequency-based micro-radar sensor (called EasySense18)
that can non-invasively measure heart activity and lung fluid vol-
ume in CHF patients (by analyzing the echo and absorption from
ultra-wideband radio frequency probes).

4. Smart eyeglasses,21 for capturing video in the direction of the
wearer’s gaze and inferring, from that data, exposure to smoking
cues, such as seeing a cigarette advertisement, while

simultaneously assessing the state of the eye (eg, fatigue) by
monitoring the eye itself.

5. Global Positioning System data from the smart phone that can be
used to infer geoexposure, for factors such as proximity to a
point-of-sale for tobacco or to fast food (ie, sodium-rich)
restaurants.

DATA SCIENCE RESEARCH IN MD2K
While mobile sensors offer tremendous opportunities for accelerating
biomedical discoveries and optimizing care delivery, they also present
substantial transdisciplinary data analytics challenges. Although sev-
eral ongoing initiatives focus on extracting actionable biomedical
knowledge from very large amounts of data in a variety of applications,
mobile sensor data presents a different and higher-level challenge,
due to its unique qualities, ie, its high volume, velocity, variety, varia-
tion, versatility, and semantic gap (see Table 1). Consequently, the
MD2K Center brings together world-class mHealth experts from the
data science research and biomedical research fields to address these
major barriers to processing complex mobile sensor data.

The data science research of MD2K is organized in four thrusts.
Thrust 1 (Mobile Sensor Data-to-Information or MD2I) is developing
general principles and computational methods for inferring markers
(ie, measures) of patient health as well as markers of behavioral,
physical, social, and environmental risk factors that are robust to wide
variability in subjects’ behaviors, an array of known and unknown con-
founders, errors in self-report data, and the variable quality and avail-
ability of sensor data. MD2I is developing a mobile sensor data
processing toolkit as open-source software that implements the data
analytic steps required for computing robust markers. Data science re-
searchers can use this toolkit to develop new markers. For the two
driving biomedical applications, MD2I is producing a variety of
markers that can be used directly by biomedical researchers. They in-
clude detecting a lapse in smoking cessation, detecting the onset of
congestion in CHF patients (eg, lung water volume), risk factors for
lapses in smoking cessation (eg, stress), and risk factors for the devel-
opment of CHF (eg, eating fast food), all from sensor data. Applying
the computational methods developed by Thrust 1 to the data col-
lected by mobile sensors converts this time series of sensor data to a
time series of robust markers.

Thrust 2 (Mobile Sensor Information-to-Knowledge or MI2K) is de-
veloping discriminative latent variable models to discover patterns in
multivariate time series of markers to detect intermediate health out-
comes (eg, a lapse in smoking cessation) and generate alerts for pa-
tients and care providers about the surrounding context in ways that
can inform care decisions. MI2K is developing frequent pattern mining
and Granger causality models, to discover predictors of adverse health
events from the time series of markers, as well as a discovery dash-
board, to engage biomedical researchers in the discovery process.
Thrust 2 is also developing learning algorithms for the online adapta-
tion of rules for deciding the content and timing of sensor-triggered,
just-in-time adaptive interventions. The computational methods for ro-
bust marker development (by MD2I) and the computational methods
for time series pattern mining (by MI2K) are being incorporated in a
new big data computing platform so that these methods can be ap-
plied to large, population-scale mobile sensor data.

The big data computing platform created by Thrust 3 (MD2K-
Computation) is supporting data science and biomedical researchers
to efficiently process vast amounts of dense mobile sensor data for
data science research and biomedical discovery. It also enables the
application of these models to individual-scale data for just-in-time
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intervention delivery on mobile devices. To provide a responsive user
experience to researchers, care providers, and individuals, Thrust 3
builds on our ongoing research on big data computational methods,
such as Iterative Map-Reduce.22 We are also developing computa-
tional mechanisms and software for managing participants’ privacy
and identity by leveraging our ongoing work on sensor data vaults23

and recent developments in fully homomorphic encryption.
To make MD2K extensible to new mobile data sources and appli-

cable to other biomedical applications, Thrust 3 is building on the
Open mHealth initiative to standardize all the data types, analytic mod-
ules, visualization modules, and storage modules, developed in MD2K,
so that they are interoperable, extensible, and generalizable.24–26

Development of Open mHealth-compliant modules will facilitate both
integration of new device data streams into MD2K systems and the
adoption of MD2K-developed techniques by the broader research and
clinical community. Many mHealth research tools do not get reused
and repurposed, because the data they produce have inconsistent for-
mats, making it very hard to effectively use them beyond initial experi-
mentation. Such challenges are even greater in the clinical realm, in
which understanding the true meaning of data can be critical. Open
mHealth is collaborating with clinical experts, to define and publish a
standard language for mHealth data, and with technical experts and
consumer-app designers, to design and build out an open developer
platform. Open mHealth has developed a set of open data schemas
that provide guidelines for optimally structuring different types of digi-
tal health data for clinical use. Using a common set of data schemas
is critical for the seamless exchange of different types of data among

different platforms and systems, and will ultimately enable personally
generated data to be integrated and used alongside clinically gener-
ated data from electronic health records and other health information
technology.

Each year (for 3 years), Thrust 4 (MD2K-Application) will be con-
ducting user studies that support our use cases, involving, respec-
tively, a new pool of 75 smokers before and immediately after an
attempt to quit and 75 CHF patients in the hospital and 30 days post-
discharge. These studies will evaluate the accuracy of markers and
the feasibility of sensor-triggered, just-in-time interventions. Newly
discovered markers and intervention triggers will be incorporated into
the studies in succeeding years. Our goal for the MD2K Center is to
help realize the Precision Medicine initiative by creating a bidirectional
rapid feedback loop among Thrusts 1-4 of data science research, so
that biomedical applications will inform the development of the tech-
nology, and vice versa, by using design thinking expertise27 and par-
ticipatory design. Figure 2 summarizes the key data science research
and knowledge discovery outcomes targeted by MD2K.

TRAINING ACTIVITIES IN MD2K
MD2K also supports multidisciplinary training activities to enable the
broader biomedical and data science research communities to use
MD2K data analytic tools for biomedical discovery in biomedical appli-
cations. Its aim is also to stimulate the data science research commu-
nity to build upon and advance the science of MD2K by equipping data
science researchers with datasets; open-source software;

Figure 1: Five sources of mobile sensor data in mobile sensor data-to-knowledge applications. Each sensor (not embedded
in the phone) transmits the data it collects over a wireless channel to the smart phone.
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documentation; as well as online forums, online tutorials, training vid-
eos, virtual seminars, and a comprehensive web-based resource li-
brary called mHealthHUB (see http://mhealth.md2k.org/). Finally, a
yearly, week-long boot camp will be organized in order to train new
and young investigators for transdisciplinary collaborations (see
https://md2k.org/events/traininginstitute/).

SCIENTIFIC AND SOCIETAL IMPACT OF MD2K
The ubiquity of mobile phones (90%28 in the United States in 2014)
and the emergence of mass-market mobile devices with embedded
sensors (eg, smart watches) offer great opportunities to both assess
and improve health. Adoption of mobile sensor technology in the next
generation of scientific studies, such as the United States’s Precision
Medicine initiative (which will recruit over a million participants to a
cohort for long-term medical monitoring3), will enable the continuous
collection of individual-level behavioral, social, and environmental
data. With rich monitoring and user engagement capabilities (eg, via

display screens on smart phones and smart watches), mobile technol-
ogy can assess and improve adherence to and outcomes of personal-
ized treatment plans in the delivery of precision medicine. Big data
analytic tools developed by MD2K will be an essential component of
precision medicine, which will enable the collection, integration, man-
agement, visualization, analysis, and interpretation of health data gen-
erated by mobile sensors. In conclusion, MD2K will advance the
science of mHealth and make significant contributions to the societal
goals of reducing healthcare costs and improving individual and popu-
lation health outcomes.

CONTRIBUTORS
All 24 authors of this manuscript have made substantial contributions
to the conception and design of the work being presented, have di-
rectly contributed or critically revised the manuscript, have approved
the final version, and are accountable for the work. The order of the
authors is alphabetical following the lead author. The specific

Table 1: Major data science research challenges in converting mobile sensor data into health information, knowledge, and
action

Issue Challenge

Volume 14.5 GB of data per individual daily, for 10 h of wearing MD2K sensors, presents big data computational
challenges for population-scale processing.

Velocity 30 kB/s of data, generated by the wearable sensors (eg, EasySense), present significant computational
and battery life challenges for real-time processing on the mobile device (eg, for just-in-time intervention).

Variety Data from a wide variety of sensors must be combined (eg, EasySense, accelerometers, eyeglasses,
and global positioning system-derived measures for congestive heart failure monitoring).

Variability Sensor data quality varies dynamically due to attachment degradation, changes in sensor placement,
wireless losses, and battery depletion.

Semantic Gap Sensors produce generic data (eg, 0s and 1s) that require sophisticated processing to obtain interpretable
health-related measures. For example, arm movements produced by the action of smoking should be
distinguished from those produced by the action of eating or talking. Likewise, change in lung fluid due
to a change in posture should not raise alarm.

Versatility Sensor data can reveal private social behaviors. For example, electrocardiogram data can be used to
monitor and manage stress, but can also reveal that a patient is using cocaine.

Figure 2: Major outcomes of mobile sensor data-to-knowledge include both data science research and knowledge discov-
ery, which are tightly coupled. Application of data science research, on the left, to the data collected by mobile sensors re-
sults in knowledge discovery, on the right.
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contributions of each author are described as follows: Santosh Kumar
led all aspects of the work, including conception, design, writing, revi-
sion, and submission; Gregory Abowd contributed to Thrust 1; William
Abraham contributed to the congestive heart failure section and Thrust
4; Mustafa al’Absi contributed to the smoking cessation section and
Thrust 4; J. Gayle Beck contributed to the training activities section;
Duen Horng Chau contributed to Thrust 2; Tyson Condie contributed to
Thrust 3; David Conroy contributed to smoking cessation in Thrust 4;
Emre Ertin contributed to AutoSense, EasySense, and smart watch
sensors, and Thrust 1; Deborah Estrin contributed to Open mHealth in
Thrust 3; Deepak Ganesan contributed to the smart eyeglasses sensor
and Thrust 1; Cho Lam contributed to the smoking cessation section
and Thrust 4; Benjamin Marlin contributed to Thrust 1; Clay Marsh
contributed to the Introduction and Thrust 4; Susan Murphy contrib-
uted to Thrusts 2 and 4; Inbal Nahum-Shani contributed to Thrust 4;
Kevin Patrick contributed to the Introduction and Thrust 4; James
Rehg contributed to all aspects of the data science research section,
as the lead of data science research activities; Moushumi Sharmin
contributed to Thrust 2; Vivek Shetty contributed to the training activi-
ties section; Ida Sim contributed to the Introduction and Open mHealth
in Thrust 3; Bonnie Spring contributed to the smoking cessation sec-
tion and Thrust 4; Mani Srivastava developed Table 1 and lead the de-
scription of Thrust 3; David Wetter contributed to the smoking
cessation section and Thrust 4.
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