J-STSP-PCSPHT-00370-2015.R1

Leveraging Multi-Modal Sensing for Mobile
Health: a Case Review in Chronic Pain

Min S. H. Aung, Faisal Alquaddoomi, Andy Hsieh, Mashfiqui Rabbi, Longqi Yang, J.P. Pollak,
Tanzeem Choudhury, and Deborah Estrin

Abstract—Active and passive mobile sensing has garnered much
attention in recent years. In this paper we focus on chronic pain
measurement and management as a case application to exemplify
the state of the art. We present a consolidated discussion on the
leveraging of various sensing modalities along with modular
server-side and on-device architectures required for this task.
Modalities included are: activity monitoring from accelerometry
and location sensing, audio analysis of speech, image processing
for facial expressions as well as modern methods for effective
patient self-reporting. We review examples that deliver actionable
information to clinicians and patients while addressing privacy,
usability and computational constraints. We also discuss open
challenges in the higher level inferencing of patient state and
effective feedback with potential directions to address them. The
methods and challenges presented here are also generalizable and
relevant to a broad range of other applications in mobile sensing.

Index Terms— Survey, mobile sensing, mobile health,
smartphones, wearable technology, audio sensing, activity
monitoring, face expression, self-reporting, modular architecture,
behavioral signal processing, affective computing, chronic pain.

I. INTRODUCTION

He unprecedented spread of smartphone use across the

world has led the development of new mobile systems for
health measurement, analysis and intervention or mHealth [1],
[2]. In this context, the smartphone can be viewed as a multi-
sensor device which serves as a continuous monitor capable of
informing both clinically-relevant inferences with efficacious
and timely patient-feedback. Given the enormity of the number
of potential applications within mHealth, in this paper we focus
on the area of pain management. This choice of pain as a case
study will help to demonstrate open but surmountable
challenges when aiming to implement effective mHealth
systems; we expect that many of the implications for system
design are transferrable to other patient-centric health
applications.

Pain is a complex experiential phenomenon; it has a range of
root causes and can impact and manifest in many domains such
as emotion, cognition, socialization, function as well as
behaviour [3]. Intensity is subjective and as such it is difficult

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

M. S. H. Aung, M. Rabbi and T. Choudhury are with the Department of
Information Science, Cornell University, NY 14853, USA, (e-mail: msa242@
cornell.edu).

to tangibly detect in any direct sense. The broadly accepted
definition by the International Association for the Study of Pain
is principally a generalized catchall and does little to clarify it
as an objective signal: “an unpleasant sensory and emotional
experience associated with actual or potential tissue damage,
or described in terms of such damage” [4]. Moreover, recent
commentaries state that clinical taxonomies for pain are overall
not well ordered and some even illogical [5]. Having said this,
two known components of pain: negative psychological states
(e.g. anxiety and fear) and resultant pain behavior (e.g. limping,
grimacing, avoidance) [6],[7] have been widely researched in
observation-based  behavior studies. The form and
characteristics of different pain behavior have more explicit
definitions often containing specific physical terminology
[71,[81,[9]. A particular type of pain behavior that is regularly
assessed in clinical practice is pain interference, in which
activities are disrupted or avoided due to pain. From a signal
processing perspective it is these outward manifestations of
pain behavior, including interference, which are more tangible
and convey the expressions of pain experience and serve as
meaningful target for mHealth systems.

The emergent fields of Behavioral Signal Processing (BSP)
and Affective Computing (AC) [10],[11] have demonstrated
that complex human behavior and psychological states can be
inferred from multi-modal data, principally from audiovisual
[12] and physiological sensing [13]. Such studies have made
valuable contributions in the understanding of signal processing
and recognition methodologies for inference of human behavior
(for an overview of multimodal pain behavior recognition see
[14]). However, there remains systemic challenges when using
mobile systems, challenges that are not apparent in typical
laboratory settings with specialized apparatus and control. In
terms of modalities, highly informative internal bio-signals
such as galvanic skin response, electroencephalography,
electromyography and heart rate are not directly measured from
broadly-adopted smartphones; and are still relatively poorly
measured on wearables. Also for audiovisual data, artefacts
relating to noise, motion, occlusion or crosstalk cannot easily
be controlled and minimized in unconstrained real word
situations. Furthermore, the reliability and completeness of data
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streams may also be less than ideal when using a mobile device,
depending on the condition and habits of the user. On the other
hand, these shortcomings only have critical implications for
spatiotemporally small scale behaviors (e.g. a facial grimace or
changes in vocal pitch or heart rate due to pain conditions);
typically the performance of such systems have a high
dependency on granularity and data quality. In contrast, for
spatiotemporally large scale behaviors (e.g. the amount and
pace of walking, or hours spent out of the house, on a daily or
weekly basis) the aforementioned shortcomings are of far less
concern due to data being drawn over greater space and
timescales.

As mentioned, we focus on pain as a case study. The
justification for this is in part that spatiotemporally large scale
behaviors are especially relevant to chronic pain. For example,
the tracking of adherence to daily exercise regimes over the
span of weeks or months is valuable information for chronic
back pain rehabilitation [15]. Typically such management
regimes are on-going and self-led with many of the required
tasks done outside of clinical settings and away from health
experts. For such situations, mHealth systems and/or
smartphones are a natural solution as they are habitually carried
in close proximity and are in constant use. This allows for
measurements, inferences and feedback to be processed locally,
continuously, and over long periods of time.

However, chronic pain management is multifaceted; it’s
success is dependent on a multitude of physical, cognitive as
well as socio-economic factors [16][17]. Therefore, if one aims
to develop a mHealth system for chronic pain management,
there is a particular need to accommodate a range of patient
generated data. In measurement terms, this means a
combination of both active sensing which requires proactive
action from the user (e.g. self-reporting, diary logging,
interactive assessments) and passive sensing (e.g. geo-locating,
activity recognition, audio). Following this, the correct and
efficient parsing of informative descriptors from low level
measurements is required. These descriptors serve as input to
models designed to infer high-level behavioral patterns. Finally,
these inferences can be used for the correct and timely issuance
of feedback and/or interventions that are clear, persuasive and
actionable by the patient or clinician; the effects of which can
then be further measured and the process repeated. We outline
this with a tripartite functional loop: measurement - inference -
management as a basis for system design.

Although we address pain as an over-arching application
domain, there still remains a wide range of sub-domains even
within chronic pain conditions. Each sub-domain has specific
clinical and technical requirements and therefore a
comprehensive discussion of all potential systems for every
pain condition would be cumbersome, repetitive and out of the
scope of this discussion. Therefore to efficiently illustrate
requirements and challenges from a systems perspective, we
highlight within the following (Section II) example cases of
different sensing modalities, with inference to a relevant
behavioral outcome and how this inference can be used for
management; each following the measurement - inference -
management process. Section II ends with examples of modular

software platforms that are critical to take multiple sensing
streams from measurement to meaning in a reusable and
evolvable manner. Section III discusses open challenges for
higher level inferencing, including temporal considerations,
and an overview of potentially useful advances in pattern
recognition. Also discussed are factors in improving the
usability and persuasiveness from a user’s perspective. Finally,
we conclude in Section IV.

II. SIGNALS AND SIGNAL SPECIFIC PROCESSING

We focus on physical activity, acoustics, image capture, and
self-reporting as four foundational data streams. While it is
known that other signals are also indicative of pain and pain
related emotions such as physiological data [18] and that other
mobile devices are gaining in both penetration and range of
sensing modalities (e.g. the Empatica E4 Wristband which
measures blood volume pulse, heart rate variability, galvanic
skin response and peripheral skin temperature); the
methodologies and approaches we review should provide a
template for their handling and the integration of future data
streams from mobile apps and wearable devices.

A. Physical Activity

The continued monitoring of physical activities away from
clinical settings is essential for understanding progress in pain
reduction, management, and healing, whether it be in the
context of post-treatment follow up, or long term physiotherapy
[19],[20],[21]. Such monitoring was traditionally achieved
through specialized wearable devices [22],[23], or special-
purpose instruments deployed in clinical environments [24].
However, activity tracking on broadly deployed smartphones
has become a popular and affordable alternative. The broad
adoption and inherent utility of smartphones for end-users
means that for many day to day measurements, no additional
devices need to be purchased, carried, or forgotten by the user
[25],[26],[27]. Consumer wearables in the form of fitness
trackers and smart watches have similar advantages and
typically transmit data via the smartphone. The activity sensors
embedded in wristbands and phones are largely identical, and
so much of this section’s discussion is applicable to both.
Smartphone-based activity tracking typically uses the
continuous data collected by the phone's accelerometer to
determine mobility states. The standard set of states are:
sedentary (or stationary), walking, running, or in vehicle. In
addition, the location information captured by the phone's GPS
or derived from WiFi signals is often used to infer the locational
context in which the activities were taking place. There is also
the potential for further contextualization to the standard states
from low level sensor data that has implications for pain
management. The degree of incline of a particular route taken
can be determined using either topographical information from
maps or from accelerometer and barometer values. This informs
the understanding of difficulty level and energy expenditure of
a route; the type of surface on a high incline path whether it is
stepped or a smooth slope will also have a bearing on difficulty
and could potentially be inferred from the inertial and
barometric readings. This further contextual information is
important for musculoskeletal conditions where posture and
speed are relevant factors. Also for speed and step count
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inference GSM traces can also be utilized [28]. However, such
detections are currently not done with standard commercial
systems.

Case example: an activity based app for rheumatoid arthritis
(RA) - RA is characterized by episodes of flaring of joint
inflammation. Identifying flares early and minimizing their
intensity and duration is important for long term management
because each episode of flare contributes to further joint
damage. In day to day management patients struggle to
understand what environmental and behavioral factors
contribute to the triggering and duration of flares. While
directly and continuously measuring pain is not currently
possible, proxies for pain can be found in their physical function
and daily activities [29]. In the following, we describe a four-
stage inference algorithm from which raw sensor data generates
high-level behavioral information that is useful in RA
management. This algorithm has been deployed in an open-
sourced activity tracking app, called Mobility [30]. The clinical
validity of the derived measures is currently being evaluated
within RA, as well as in other orthopedic contexts such as
surgical recovery. As the validation proceeds and is refined
over time for various populations and disease states, there will
be a need to modify and tune the specific derived measures,
further motivating the need for modular architectures such as
those described later.

Stage 1 - Instantaneous mobility state inference: a decision
tree generated using the C4.5 algorithm was developed to
classify tri-axial accelerometer data collected over a short
period of time into a set number of mobility states. For example,
it is common to extract descriptive features from accelerometer
data from a 1 second window sampled every minute to
determine the mobility state for that minute. Commonly used
features include variance of the acceleration magnitudes and the
Fourier coefficients of the acceleration magnitudes [31]. The
classifier is typically pre-trained with a large number of labeled
training data collected from multiple users. More recent
smartphone operating systems, however, have made the instant-
based mobility state inference function available as a system
API, and the use of these APIs are usually recommended as they
are able to leverage special built-in hardware for more efficient
continuous sensing (e.g. iPhone's M7 Motion Sensing Chip)
than an app running in the application-level can achieve.

Stage 2 - Activity segmentation: the instantaneous mobility
states inferred by Stage 1 are, however, not particularly useful
in themselves. Durational context needs to be added, for
example, compared to the information: John was walking at
6:01 AM, the information: John walked for 15 minutes from
home to subway station from 6:00 AM to 6:15 AM is more
meaningful in understanding the user's behavior. At this stage,
a segmentation algorithm is developed to segment a series of
mobility states into activity segments, each of which represents
a period of time in which the user maintains a mobility state.
However, one important requirement is to take into account the
potential errors and uncertainty contained in Stage 1's output.
For example, signals of being in a vehicle that slows down
momentarily for a stop sign could be mistakenly classified as
sedentary rather than its true state, in vehicle. The segmentation
algorithm needs to take the uncertainty into account and infer
the activities that are consistent with the user's real behavior.

A well-known technique that can incorporate this uncertainty
is Hidden Markov Models (HMM) [32]. HMM is a generative
probabilistic model in which a sequence of observable variables
X is generated by a sequence of internal hidden states Z using
an emission probability function. In this case, mobility states
inferred in Stage 1 are taken as the observable variables X and
assume they were generated by the user's true but unobservable
activity states Z. Uncertainty in Stage 1's inference results is
encoded in the emitting probability function P(x/z), and the
Baum—Welch algorithm is used to infer the maximum
likelihood of activity states Z. Then, a sequence of consecutive
activity states Z that have the same maximum likelihood state
will form an activity segment.

Stage 3 - Location association and correction: at this stage
each activity segment is associated with the location data based
on the collection time and conduct error correction. A location
data point is composed of longitude, latitude, and sometimes
includes accuracy. Both GPS-captured and WiFi-enabled
location data are known to have ~ 10 to 40 meters of error [33],
[34]. For different activities, different approaches are used to
improve the location accuracy. For non-stationary activities,
such as walking or in vehicle, a Kalman filter is used along with
a map-matching technique to snap location points to the streets
that the user was most likely on [35]. For stationary activities,
the mostly likely location at which the user stayed can be
inferred by taking the median values of the latitude and
longitude among all the location samples [36].

Stage 4 - Summarization: finally, statistics for a users'
activities that are known to be relevant to the well-being or to a
certain disease are computed. Say et al. [29] shows that for RA
management, the majority of rheumatologists they interviewed
identified 1) time spent walking, 2) time away from the house,
and 3) gait speed as most useful in defining the level of RA
disease activity. Rheumatologists preferred a simple, visual
format that demonstrates trends over days, weeks, or months,
which can help them make better management decisions and
ultimately result in decreasing permanent joint damage.

Mobility
Index

Fig. 1. Calendar view with the daily color coded mobility index for RA
management. As described above the clinical validity of this measures is
undergoing evaluation within RA and other orthopedic contexts.

Based on these insights, the above-mentioned statistics are
computed in daily, weekly, and monthly bases and are
presented as a calendar with a color coded index per day derived
from a weighted sum of the above three factors using
weightings suggested by rheumatologists to indicate the
importance each factor.
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B. Acoustics

Nonverbal characteristics from speech can strongly convey a
speaker’s psychological and emotional state [37] as well as
other more nuanced social expressions (e.g. sarcasm [38]).
There has been extensive work in the understanding of
descriptors that can be derived from modulation, spectral
characteristics and also energy based measures that can be
indicative of stress [39],[40], emotion [41] or even depression
[42]. In the context of pain such indicators are valuable. Clearly,
stressful utterances, interjections and exclamations can be
indicators of acute pain episodes.

However, a more interesting contribution from leveraging
audio data is in monitoring at a larger temporal scale which has
implications for long term chronic pain management.
Underlying negative psychological states such as stress, anxiety
or depression [43] are well understood to have negative
consequences in chronic pain management [44]; such is the case
that psychosocial treatments such as cognitive behavioral
therapy (CBT) are a prevalent course of action [45]. Particular
manifest behaviors such as rumination and catastrophization
[46] are of interest in this context and are often vocally
expressed. In the following example we demonstrate how
passively acquired audio streams from smartphone
microphones can deliver such high level inferences, in this
example by the logging of stressful situations. We must note
here that since acoustic processing methods within smart-phone
deployed systems are particularly prone to privacy breaches,
this leads to the preference to locally process signals that
contain intelligible data. This in turn then necessitates methods
with low demand on the battery which would require the use of
the least computationally expensive methods. This method in
the following is designed to take into account of this trade-off.
However, there remains a research opportunity in the utilization
of more sophisticated detection techniques [47],[48] into a
mobile application.

Case example: detection of stressful situations from voice
for chronic pain (CP) management.

Stage 1 - Noise detection: the first stage is the detection of
noise in the sense of any significant level of sound. This is an
essential first stage in the passive monitoring to retain only non-
silent segments of the data. Simple thresholding on the root-
mean-square values over a window of raw audio data are
applied to differentiate the segments of noise versus silence
[49].

Stage 2 - Human speech detection: following this a further
classification between as human voice or noise caused by
another source is required. To this end, three simple features:
(1) number of auto-correlation peaks, (2) non-initial auto-
correlation peak, and (3) relative spectral entropy to robustly
detect presence of human voice in audio streams [50] are used.
Moreover, the same three features can be retained to compute
important prosody information regarding pitch and speaking
rate [51]. This is important to note in terms of privacy. Previous
research shows that the reconstruction of verbal information
requires at least pitch and 2 harmonics, thus in using the above
three features verbal content remains anonymous but prosody
can be inferred [51]. In addition to being privacy sensitive, these
features are computationally efficient and can work robustly to
recognize voice in acoustically noisy environments [50]. This

method has been used in several embedded and mobile phone
systems [30][52] and deployed in systems across several real
world studies. These studies have demonstrated the inference of
face-to-face conversation quality [53], social networks [51][54]
as well as social isolation and depressive symptoms [43] which
all have implications for long term pain management.

x10"

Amplitude

Frequency

Fig 2. (a) amplitude values for 5 second recording of audio (b) spectrogram
of the recording with blue lines showing inferred segments of human voice.

Stage 3 - Speaker identifier: once human voice is detected, it
must be determined whether the voice came from the phone
user. In Lu et al. [55], a Gaussian Mixture Model (GMM) based
universal background model of all speakers is pre-computed,
the voice of the phone carrier is opportunistically sensed from
phone conversations, and a model for the phone carrier’s voice
is learnt that is different from the universal background model.
Subsequently, the learnt model is used to detect the phone
carrier’s voice. At this stage features such as Mel-frequency
cepstral coefficients (MFCC) where the verbal content can
potentially be reconstructed are needed. Therefore all
processing is done locally and all privacy-violating features are
discarded save for the output.

Stage 4: Stress detection: if a detected human voice is that of
the phone carrier the detection of stress is invoked. The
following characteristics typify stress: the distribution of
spectral energy switches to higher frequencies. Also, speaking
rate and variability in pitch increases whereas pitch jitter
decreases. A recent study showed a non-linear speech
production model, based on a Teager Energy profile, can
capture stressfulness in noisy outdoors situations. A GMM
based classifier utilized these changes as features for both
indoor and outdoor application [56]. Also, to account for
idiosyncrasies during stressful conditions. A small amount of
individual data can be used to calibrate personalized models. It
was found that classifier accuracy improved by 8% if 2 minutes
of labeled data is provided by the individual. Similar to stage 3,
privacy violating features are discarded once the classification
output has been obtained.

Stage 5: Logging: the number of stress occurrences can be
logged giving a passive indicator of stress frequency with
respect to time and location. Such continuous psychological
monitoring gives a rich source of information for CBT
suggested for chronic pain management. Since the log is
updated only when the prior 4 stages are invoked on demand,
the computational overhead is minimized.

In other health related applications, the use of acoustic data
in this way to infer higher level information about a user is not
without precedent. Using similar privacy sensitive acoustic
features there have been attempts to infer mental state or well-
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being with acoustics. These systems use acoustic data within
multimodal frameworks using synchronous data from other
smartphone sensors [43],[57],[58],[59]. Going forward, this
suggests that the use of acoustic data for complex applications
such as pain management would be one component within a
multimodal frameworks.

C. Facial Expressions

An important and observable modality that can reflect internal
state is facial expression. The prevalence of imagers from our
laptops to our lampposts has greatly increased the availability
of facial imagery as a source of data about an individual’s state.
Studies show that facial expressions during acute pain had a
high level of consistency and repetition even when elicited by
different stimulating modalities [60]. Moreover, a finding by
Kappesser & de C. Williams [61] showed that a specific pain
face can be distinguishable from faces expressing other
negative emotions.

There have been numerous works in the automation of pain
face recognition by way of analyzing video imagery from
BSP/AC studies. An early example is [62], where face shape
features were used with artificial neural networks to classify
images of subjects’ faces in a normal mood versus images taken
from a pain inducing task. Lucey et al. [63] publically released
the widely used UNBC-McMaster shoulder pain dataset which
contains videos of patients with shoulder pain and a temporally
concurrent pain score based on the Prkachin and Solomon Pain
Intensity score (PSPI) [64]. Several subsequent studies in
automated recognition followed [65], [66], [67], which utilize a
range of image features from Active Appearance Models
(AAM) based features, tracked anatomical points [68], discrete
cosine transforms and local binary pattern [69] features with
Support Vector Machines (SVM) to classify pain faces. Sikka
et al. [70] addressed the drawback labelling pain expressions at
a sequence level leading to temporal uncertainties in terms of
onset and end. The authors proposed a multi-segment multi-
instance learning (MS-MIL) framework to determine
expressive subsequences within super-sequences that contain
pain expression. The same authors extend the machine vision
capability beyond adults by demonstrating successful
recognition of pain expression in postoperative children [71].
Finally, interesting findings by Bartlett et al. showed machine
vision methods outperforming human observers in
distinguishing real versus fake expression of pain [72][73], this
has important implications in the reliability of future ubiquitous
pain monitoring systems.

Although much work has been done in the wider machine
vision communities, to our knowledge there are no smartphone
based systems designed to detect facial expressions of pain and
only a few smartphone based systems for face expressions in
general. This is primarily due to the difficulties acquiring usable
imagery from mobile devices from real world situations.
Motion artifacts, out of plane head rotations, various lighting
conditions and occlusions add to the difficulty with
smartphones. In addition, power and computational constraints
add to the challenge of locally processing if needed and the
temporal concurrence of when images are captured with the
onset of pain experiences cannot be guaranteed. Additionally,
the effect of acting for the camera also generates a further

confound, though as mentioned above acted and natural pain
expressions can be automatically differentiable.

However, all of the aforementioned difficulties are only
problematic if we consider single images or videos in isolation.
If multiple instances taken over a long periods are analyzed
collectively a broader perspective can be gained and could lend
support to the inference of spatiotemporally large scale
behaviors. For example, studies have shown that factors such
as social isolation [74] are linked to physical pain and can be
detrimental to chronic pain management [75] and factors into
CBT [45]. A number of relevant quantities can be extracted
from images that are descriptive of social isolation. Emotional
expressions from the user’s face [12] can be detected can
augmented to further contextual factors such as scene type
detection [76], the number of people in the image and even the
overall mood of the group of people in the image [77]. These
measures can be further augmented to other relevant data such
as usage of social networking apps, number of calls or instant
messages made or received to construct an index for social
isolation. Also, the use of further data modalities such as audio
which could aid in reducing ambiguities in situational context
and could also aid in identifying the true number of people
present. In principle, a longitudinal analysis of trends in the
index of social isolation can be used to feedback into CBT. The
staged processing described in earlier sections could also be
applied to expression extraction from images. The onset of
more widespread implementation is bolstered by emerging
systems such as in Suk et al. who proposed an initial framework
for real time locally processed mobile use demonstrated the
successful classification of seven affective states [78]. The
recently released Affdex software development kit could
facilitate the implementation of such analyses along with new
datasets that contain real world ecologically valid datasets such
as the AM-FED dataset [79].

D. Self-Reports as Signals

Self-report data are somewhat different from the signals
previously discussed not only because intentional action is
required from the individual to contribute data, but also because
the data generated exists at a higher semantic level from
inception. As such, rather than discussing stages of processing
of self-report data, we share insight on modern self-report
techniques and considerations.

The goal of much work in sensing is to reduce or remove the
need for user input in data collection systems. While great
strides have been made in sensing and detecting patient state,
we are not yet in a position to collect all of the data relevant to
the pain patient and clinician using passive techniques. Some
aspects of behavior, such as detecting whether a patient
struggles to button their shirt in the morning, is technically
possible but not broadly and affordably deployable given
current technology, though we can imagine it becoming so in
the future. Then there are cases where we are able to sense the
behavior but not fully understand the context without input,
such as a case where a patient walks more slowly to work. In
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Touch the image that best captures -
how you feel right now:

Fig. 3. Example screenshots from PAM (left) prompting the self-report of
emotional state using representative images and YADL (right) prompting
selection of difficult daily activities as a proxy to pain level.

this case, it is not known whether this is because of pain, another
ailment, or simply commuting with a friend or colleague who
walks more slowly.

The current standards for reporting the level of pain one is
experiencing are pain scales and maps. Pain thermometers and
pain faces (e.g. lowa Faces of Pain) remain the most widely
used and do translate well to digital experiences [80]. There
have been several adaptations and improvements on user input
for these assessments [81]. Pain maps are basic digital maps of
the human body that allow patients to document/describe the
location and nature of pain. It should also be pointed out that
the assessment of pain is quite complex (due to variability in
individual pain thresholds, diagnosis, chronic vs acute, and so
on), and the community is not fully in agreement on how best
to do so [82].

Like other data streams discussed in this paper, we consider
self-report to be largely if not exclusively temporal. Data are
collected at a specific time and those data represent a certain
time span. Unlike most sensed data, however, the time data is
collected and the time span the data ‘cover’ are often
substantially different in two important dimensions:

Timeliness of data. Self-report data are out of necessity a
form of recall, with the patient recounting experiences that have
occurred in the past. While a goal of self-report is often to
reduce the amount of time between data collection and the
recalled experience, practically there is a great deal of
variability in these time lags. For example, data may be
requested from a patient about an event as it is detected, but the
patient may not respond for several hours or even days.

Time span of the data. A single self-report data point maybe
reflect a narrow point in time, such as an emotional response to
a stimulus or level of pain experienced. Such measurements are
often referred to as measures of state. On the other hand, the
patient may be asked to report data in such a manner that a
longer time span is recalled, such as emotional state over the
past year, or even irrespective of time span, such as a patient’s
personality type. Such measurements are referred to as trair.
[83].

Self-report originated as one of the main forms of data
transfer between patient and clinician, but the advent of modern
medicine relegated it to completing forms and sharing

symptoms as precursors to testing. More recently, mobile
devices have led to a resurgence of self-reported data through a
class of techniques labeled Ecological Momentary Assessment
(EMA) in which patients are polled for information, typically
using abbreviated versions of gold standard clinical and
behavioral assessment forms, frequently and in sifu [84]. The
central argument for the use of EMA is that while the data may
yet be subject to interpretation and distortion, the effects of
recall bias and error can be mitigated by timeliness of
surveillance [85]. To further address recall bias a method was
proposed by Rahman et al. [86] where EMA queries are
presented with the addition of contextual information about the
time, location activity and acoustic state of the user during the
time in question: contextual recall. This allows for the EMA
activation time to be more flexible, the results the study showed
improved recollection of stress levels compared to when no
context was given.

Self-report and EMA have continued to evolve beyond
simply asking patients standardized questions. The large touch
screens on current generation mobile devices have afforded
more interactive, visual methods for assessing patients. These
methods are often employed to mirror and simplify ‘pen and
paper’ assessments rather than simply translate them to digital.
The Photographic Affect Meter (PAM), for example, asks
patients to reflect on their emotional state by choosing from a
series of emotionally representative images. Responses take a
few seconds to complete and are calibrated to and correlate with
the 20-item PANAS, widely considered the gold standard for
measurement of emotional state [87].

Another approach to self-report has been to find more
straightforward and answerable representations of complex or
difficult behaviors or experiences. Pain level, for example, is
notoriously difficult to measure reliably, so many clinicians
focus on pain interference or Activities of Daily Living (ADLs)
to assess what patients are or are not able to do as a result of the
pain they experience. This can serve as both an adequate proxy
for pain levels and a more direct approach to treating the patient
to return to normal and desired activities. In a variant of ADLs,
a system called YADL (Your Activities of Daily Living) [88]
was designed to allow patients to rapidly and intuitively sort
through photos of common activities to document which are
easy or difficult for them as a result of their pain. A daily
version of YADL presents patients with only those images they
have selected as difficult, prompting them to choose which have
been hard for them on that particular day, or which they avoided
because of anticipated pain. Such an approach allows for an
improvement on the traditional means of assessing ADLs along
with more fine-grained, frequent data on patient experience.
YADL is currently undergoing validation, as with the mobility
index mentioned above, the modular design of YADL will
allow it to be tuned and adapted to particular populations and
disease states.

An alternative modality for self-reporting which does not
rely on visual prompts or stimuli are tangible interfaces. Such
methods may for some be a more intuitive way to convey an
internalized level of pain. By leveraging the gripping action as
is a natural gestural response when pain is experienced, Adams
et al. [89] developed Keppi a small lightweight squeezable stick
designed to be continuously carried by the user. The device
consists of a conductive foam based, force-sensitive resistor
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(FSR) covered in soft rubber with embedded signal
conditioning, an ARM Cortex-M0 microprocessor, and
BlueTooth Low Energy (BLE). Although still in a
developmental phase an in-lab feasibility study showed
participants were able to consistently map pressure to four
stratified levels of potential pain as well was match a dynamic
visual cue when given visual feedback of the pressure value.
Further real world evaluation and miniaturization of this device
with pain participants is in process.

Fig 4. Prototype of Keppi, - tangible and portable self-reporting device for pain.

E. Modular System Architecture

In the previous sub-sections the contribution of individual
signals and modalities were discussed. However, mHealth
systems will be most effective in specific disease contexts and
across contexts if they incorporate multiple active and passive
data streams. Adopting a modular system architecture is critical
in order to address the system complexity associated with
heterogeneous and variable data-stream inputs. A modular
architecture will allow these systems to be adapted as new apps
and device capabilities appear, to be tailored to particular needs
and populations, and to serve as a building block for other
health related applications. Moreover, as particular signal
processing methods improve, they can more readily be
evaluated and integrated into modular systems. We provide two
examples of modular system architectures in this section, one
optimized for mobile device processing, and the second for
server side processing. It is worth noting here that though we
focus here on modular systems, another interesting yet under-
investigated line of research in mHealth is the use of advances
in data compression. Since power consumption is a limiting
factor where local processing is often required, efficiency is
desirable both in terms of transmission energy conservation
[90] and the codification of the various aforementioned signals
to reduce data size.
1) SAINT: Scalable Sensing and Inference Toolkit
Each passive sensor data type generates a large volume of raw
data whose transmission can tax bandwidth and battery
resources. Moreover, these data may require local processing to
address privacy concerns, e.g., detecting the presence of a
human voice [91]. However, it is challenging to run the sensing
and signal processing in real-time on resource constrained
mobile phones. A poorly written signal processing algorithm
may consume large amounts of CPU cycles and be a significant
drain on the battery. Similarly if intermediate storages during
raw sensor recording or signal processing are not cleaned then
the system can be out of memory easily for high data rate sensor
streams (e.g., audio or video).

To this end, the open-source sensing and inference toolkit
SAINT was developed [92] that can assist sensor data collection

and signal processing inside the phone. In SAINT APIs to
collect 30 different raw sensor traces and processed data-
streams are provided. SAINT tackles these challenges with
time- and memory-efficient implementations of its sensing and
processing libraries. Fast signal processing algorithms were
implemented in native layers (i.e., not on a virtual machine)
with low time-complexity [93]. The implementations are also
tested over multiple deployments and were found to be stable
and battery efficient. In addition to fast and memory efficient
implementations, SAINT also provides admission control and
duty-cycling for demanding signal processing tasks to further
reduce battery usage. Admission control allows for on-demand
triggering of signal processing, e.g. speaker or stress
recognitions are only triggered when there is human voice in
audio data. Duty-cycling on the other hand saves battery by
periodically sampling data streams to approximate a human
behavior signal. For example, running activity recognition at 10
second intervals can approximate the subject’s total level of
physical activity fairly accurately.

The modular design enables reuse and extension of SAINT’s
built-in sensing and inference capabilities. At its core, SAINT
uses a publish-subscribe [94] or pub-sub pattern. In a pub-sub
pattern, publishers produce data for which subscribers listen.
An intermediate event bus or broker manages subscription and
data transfer among publisher and subscribers. Subscribers
register for specific publisher data to the broker; publishers then
send data directly to the broker, and the broker relays the
information to registered subscribers. Inside SAINT, any
existing raw sensor or derived stream is a publisher. A new
derived stream can be created in three steps: (1) registering as
subscribers to necessary publishers, (2) performing necessary
computation on the publisher data to create the new derived
stream, and (3) making the derived stream available as a
publisher for later reuse. For instance, a new sleep detector
could use the presence of movement, location, human voice,
and phone charging status from SAINT to detect if a person is
sleeping, then make the output of this detector available for
other components to use. Furthermore, registering to existing
publishers and making the new derived stream data available
can be easily implemented.
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Fig. 5 The architecture of SAINT sensing and inference framework. SAINT
provides a unified bus interface to share data across sensing and inference
modules. Client applications can connect with SAINT to receive sensed and
inferred data.

Another benefit of the pub-sub structure is the centralization of
sensing and processing that reduces redundancy in
computation. In SAINT, if multiple subscribers want the same
publisher’s data, then the publisher just produces the data once
and the broker relays the information to each subscriber,
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reducing redundancy. For example, if a sleep and stress detector
both run on the phone and want to know if human voice is
detected, SAINT detects human voice from audio data once and
relays the information to the sleep and stress detectors.

2) Lifestreams

The ultimate goal of many novel data collection techniques
described previously is to enable robust and actionable
behavioral indicators that can be used to characterize a patient's
baseline, and then to identify significant variations, trends and
shifts in specific behaviors or symptoms that are relevant to an
individual’s health. However, making sense and acting on these
multi-dimensional, heterogeneous data streams requires
iterative and intensive exploration of the data sets, and
development of customized analysis techniques that are
appropriate to the health domain of interest. Lifestreams is a
modular and extensible open-source data analysis stack that
runs on the server and is designed to accelerate the development
and refinement of sense making techniques [34].

Lifestreams runs on top of mobile data collection systems,
such as Ohmage or SAINT [92],[30]. It processes the raw or
intermediate data provided by these tools with a multi-layer
analysis stack, depicted in Figure 6, consisting of the following:
1) feature extraction, 2) feature selection, 3) inference, and 4)
visualization. Each layer consists of modules that process the
data provided by the lower layer, and then send the result to the
next layer up. From the input data streams, the feature
extraction layer computes various statistics, such as daily
min/max, average, or the weights of the principal components
derived from a set of measurements. The feature compression
and selection layer leverages techniques, such as cross-entropy
or correlation analysis, and the domain experts’ input to select
or compose the features that are most relevant to the analysis
goal. Then, the inference layer uses the selected features to
detect patterns and trends with correlation estimation, and
change detection algorithms [95]. Finally, the visualization
layer uses different visualization methods to make the inferred
patterns or trends actionable for the end user. Lifestreams was
found to be useful as a tool for the research coordinators to
quickly navigate through the data and provide visual aids to
guide the discussion with participants during interview
sessions. Its extensible design allows it to be easily extended to
support different studies exploring various new data streams
and transfer to other domains
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Fig. 6 Lifestreams stack, data enters from the lowest level and is
successfully filtered, aggregated and analyzed to produce actionable
visualizations for patients and clinician.

III. OPEN CHALLENGES IN INFERENCING AND FEEDBACK

So far we have highlighted, through examples, state of the art
methods and tools to achieve the measurement-inference-
management loop. However, in this section we discuss further
factors that are important but either underutilized or remain
unresolved. These challenges are most conspicuous when
considering inference and management. In this section we
discuss these factors, as well as advances from related studies
that have a bearing on future directions.

A. Accounting for Temporal Patterns.

The presence of a circadian rhythm in the experience and
perception of pain is well understood. This relates to a variety
of chronobiological factors such as daily variations in
endorphin and encephalin concentrations in the pain processing
parts of the brain. The review by Junker & Wirz summarizes
[96] several studies that include both naturally occurring as well
as experimenter induced pain. The studies within showed
specific and consistent times of the day when pain perception
tended to peak depending on the cause. Investigations in using
smartphone technology as a way to monitor daily rhythms have
been recently investigated for sleep applications. Most studies
have focused on sleep pattern inference by utilizing app usage,
charging, screen unlocking, along with an ambient light
detector and audio streams to detect sleep durations and quality
[971[98][99]. Recently, Abdullah ef al. [100] demonstrated that
by using periods of smartphone non-use, sleep patterns can be
inferred using a rule-based algorithm which accurately matched
with ground truth from a sleep journal. With the combination of
such sleep measures, along with the domain knowledge of the
effects of circadian rhythm on specific types of pain, there is
great potential for more closely personalized and more timely
issuances of interventions for pain management in a daily cycle.

As we have discussed pain conditions with high levels of
chronicity require long term management and therapy. Also
over enough time, persistent negative psychological states can
emerge. It has been shown that, given enough data from long
periods, such mental states can be detected. With data spanning
2 weeks Saeb et al. [101] demonstrated the use of movement,
activity and phone use derived descriptors to infer depression
severity levels by way of supervised learning, resulting in an
accuracy 86.5%. Over a 10 week period, Wang et al. [57]
investigated correlations between mental well-being measures:
depression, stress, flourishing and loneliness scores with
tracked information relating to conversation, activity and sleep.
Such results demonstrate progress toward inferences on low
frequency changes in mental state or even fraits which are
ultimately necessary for CBT related management. Longer
period factors such as climate and seasonality have yet to be
leveraged in this regard but are readily measurable if studies of
this time length are done.

B. Advances in Pattern Recognition

In mobile sensing, a common paradigm to generate predictive
models is supervised learning [27]. Although a widely used and
powerful approach, there remains two critical dependencies.
The first is the generation of good features from raw sensor data
and the second is the truthfulness of labelled states or
behavioral categorizations. Given that there is no standard
method to optimally engineer features, a handcrafting approach
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is often done using expert domain knowledge, intuition, or other
prior experimentation. For lower level inferences good
descriptors can be readily determined. However, it is often the
case that abstract higher level inferences (such as ‘anxiety’) are
desirable, but such tasks would require complex feature
engineering and are difficult to map, often leading to poorly
performing models. Moreover, such abstract labels have loose
definitions or are ambiguous to people and thus difficult to
assign correctly when creating a training set.

In light of this, we point to the increasingly popular paradigm
of deep learning [102][103], which has the capacity to learn
feature representations and map low level data to highly
abstract categories in a less handcrafted way. However, to date,
this has mostly been demonstrated with large unimodal datasets
in other application domains. That said, Martinez &
Yannakakis [104] proposed a Convolutional Neural Network
framework designed to fuse combinations of continuous and
discrete 1 dimensional physiological signals with differing
sample rates to successfully infer 6 abstract affective states
(anxiety, frustration, fun, relaxation, challenge and excitement).
Such a method naturally lends itself to the high level behavioral
inferences needed for pain management and from the
assortment of 1 dimensional signals acquired from mobile
sensing. Notably, in this case from the use of wearable devices
that can extract such physiological signals. The drawback is the
high computational expense in the training and use of highly
parametric models, which may not be able to deliver timely
output for intervention.

A further significant challenge when dealing with human
mobile sensing is the high degree of idiosyncrasy within the
data streams. In recent years generalizable methods to capture
latent structures in behavioral routine from mobile data have
been proposed; such structures could be used as personal
baselines from which anomalous behavior could be inferred.
Early work by Eagle & Pentland [105] proposed a method to
establish eigen-representations of behavior from mobile data to
model structures in day to day routine. This method was
effective in modelling the idiosyncratic patterns in a personal
routine as well as generating a way to find similarities between
groups of people. However, this approach relies on rich,
densely-sampled high quality data which cannot be realistically
acquired in real world sensing. To this end, Zheng et al. [106]
proposed a collaborative filtering model to overcome sparsity
in a single user’s data based on the intuition that many users
follow similar behavior patterns; of course this is dependent on
the availability of multiple users’ data.

Another paradigm which can address the problem of gaps in
data and/or idiosyncratic variability is multi task learning
(MTL) [107]. Simultaneous supervised learning is applied to a
set of different but related classification or regression tasks. For
example, data from a user from two different weeks can be used
to infer a behavior for each week where some data maybe
missing one of the weeks. Learned parameters common to both
tasks (weeks) can be leveraged to bolster the accuracy of the
partial week when compared to training two models separately.
Similarly this can be done in terms of different people as tasks
thus accounting for commonalties or differences between
people. Romera-Paredes et al. [108] recently showed this
capability with facial expressions of pain as well as with
electromyographic signals by exploiting the transfer learning

property in MTL. In a similar study, these authors also show an
improvement in the recognition of pain face expression using
OrthoMTL [109] which assumes features that describe identity
are unrelated (orthogonal) to features that describe pain
expression. In essence this method calibrates to each person by
simultaneously learning on identity features and pain
expressive features a separates them. In principle this can
applied to data from any modality or combination of modalities
as long as this is consistent between tasks. Moreover, advances
in MTL show the learning process is equivalent to a single
convex optimization process [110], as such there is potentially
fewer process iterations when compared to repeatedly training
multiple models.

Finally, it is worth noting here that a major barrier to the
advancement in predictive modelling is the availability of data
or lack thereof. However, in terms of spatiotemporally small
scale behaviors in pain expression a new extensive multimodal
dataset called EmoPain was recently released [14]. It explicitly
addresses this requirement gap for chronic back pain. Contained
within are: high resolution face imagery, surface
electromyography, acoustics and whole body motion capture
Two sets of pain labels are included, based on facial expression
and known body motion based behaviors [7], the authors set
baseline modelling frameworks for each label set using detected
facial points with SVM classifiers for pain face recognition and
speed and posture based features with Random Forest models
for the body behaviors. Public datasets for large scale behaviors
are still very rare due to the challenges of de-identification,
especially for a dataset with patient information.

C. Feedback to Users

Interfacing with the user once inputs, measurements, and
inferences have been made is dependent on the type and nature
of the required management. Currently, there are numerous
commercial pain management mobile apps which are
principally designed for specific functions, including self-
monitoring, pain intensity tracking, information provision,
medication management, and relaxation training. However,
there remains a lack of traction with users. Recent reviews
[111][112] and commentaries [113][114] unanimously suggest
a lack of clinical engagement and regulation in the development
of such software, and efficacious claims are underpinned by
little evidence. Moreover, the apps relating to chronic pain self-
management are still relatively simplistic in how they account
for cognitive behavioral factors which are essential for
persuasive and effective interfacing.

Some commercial products such as Habit Changer is
described as utilizing cognitive behavioral components within
the management strategy but details are not provided. Some
newer products such as the WebMD PainCoach enables the user
to monitor pain, set and track activity goals and generates
related messages. These new systems are promising in terms of
personal monitoring, but future versions call for further
functionality in using this information to effectively respond to
episodes of demotivation which are ultimately at the root of
poor progress [115].

In terms of general applications, mobile systems can be
categorized in three groups in terms of feedback strategy: (1)
aggregation of data into summary statistics, often augmented
with attractive visualizations. For instance, Ubifit [116] or
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BeWell [117] which uses background wallpaper to show
overall physical activity, social interaction and sleep. This is
often purposed for goal setting or gentle priming towards the
goal [118], (2) visualization of data which relies on the users to
self-explore and reflect on the data [119][120] and (3) the
delivery of generic recommendations that are globally
applicable or are tailored to specific subgroups based on
demographics, culture or lifestyle [121] [122]. However, these
strategies do not make use of any in-depth analysis and may not
only miss potential opportunities to effectively intervene, but
may also fail to deliver effective feedback that is actionable and
relevant to the individual.

That said, increased persuasiveness in a real world
deployment has been demonstrated. Rabbi et al. [123] proposed
a context driven food and exercise suggestion engine
MyBehavior. In this system text based suggestions which are
perceived to be low effort and familiar to each user are
generated based on both passive and actively sensed data. Such
perceptions of familiarity and low effort increases the
likelihood of actualization according to behavioral theory
[124]. Results over 10-week user trials show significant
increases in adoption when compared to randomly issued
suggestions. Similar persuasive feedback would be of great
benefit for musculoskeletal pain for example where avoidance
and demotivation to do regular exercise is a prevalent problem.

An interesting direction in spatiotemporally small scale
feedback is the sonification of patient’s movements during
physiotherapy [115]. Common motion related traits are self-
guarding movement and a reduction in proprioception. Sound
feedback exploits the tight links between the auditory and motor
parts the brain. Singh et al. [125] proposes a design framework:
Go-with-the-flow for sonified wearable systems for chronic
pain exercising. Initial results indicate an impact on body
awareness, increased motivation to reach exercise targets, and
positive gains in compensatory motion and self-efficacy.

Ultimately, all patient sensing has the purpose of informing
decisions and actions. The focus of this review is on the capture
and processing of relevant data sources to inform user feedback
but in the end effectively closing critical feedback loops of
health will depend on effective ways of presenting to and
interacting with the end user/patient.

IV. CONCLUSION

Patient centric data streams will increasingly inform disease
management and diagnosis. They will be used to contextualize
and personalize patient response to treatment and to build
applications that support patients in their own self-
management. In this review we focused on the use case of pain
measurement and management because it has broad
applicability, significant implications for both clinical
outcomes and patient quality of life, and because mobile data
streams can fill a significant gap in current approaches to
measurement. While today’s technology is ready to be put to
use to improve pain measurement and management, there
remain challenges and opportunities for further research.

The greatest short term challenges are to develop the
evidence base for these approaches and to address usability and
relevance for both patient and clinician. In addition, a modular
data architecture is critical to promote the inclusion of new data
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sources (applications and devices) and the adaptation to new
and specialized users (conditions and demographics) over time.
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