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Abstract—Active and passive mobile sensing has garnered much 

attention in recent years. In this paper we focus on chronic pain 
measurement and management as a case application to exemplify 
the state of the art. We present a consolidated discussion on the 
leveraging of various sensing modalities along with modular 
server-side and on-device architectures required for this task. 
Modalities included are: activity monitoring from accelerometry 
and location sensing, audio analysis of speech, image processing 
for facial expressions as well as modern methods for effective 
patient self-reporting. We review examples that deliver actionable 
information to clinicians and patients while addressing privacy, 
usability and computational constraints. We also discuss open 
challenges in the higher level inferencing of patient state and 
effective feedback with potential directions to address them. The 
methods and challenges presented here are also generalizable and 
relevant to a broad range of other applications in mobile sensing.  
 

Index Terms— Survey, mobile sensing, mobile health, 
smartphones, wearable technology, audio sensing, activity 
monitoring, face expression, self-reporting, modular architecture, 
behavioral signal processing, affective computing, chronic pain.  

I. INTRODUCTION 
He unprecedented spread of smartphone use across the 
world has led the development of new mobile systems for 

health measurement, analysis and intervention or mHealth [1], 
[2]. In this context, the smartphone can be viewed as a multi-
sensor device which serves as a continuous monitor capable of 
informing both clinically-relevant inferences with efficacious 
and timely patient-feedback. Given the enormity of the number 
of potential applications within mHealth, in this paper we focus 
on the area of pain management. This choice of pain as a case 
study will help to demonstrate open but surmountable 
challenges when aiming to implement effective mHealth 
systems; we expect that many of the implications for system 
design are transferrable to other patient-centric health 
applications.  

Pain is a complex experiential phenomenon; it has a range of 
root causes and can impact and manifest in many domains such 
as emotion, cognition, socialization, function as well as 
behaviour [3]. Intensity is subjective and as such it is difficult 
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to tangibly detect in any direct sense. The broadly accepted 
definition by the International Association for the Study of Pain 
is principally a generalized catchall and does little to clarify it 
as an objective signal: “an unpleasant sensory and emotional 
experience associated with actual or potential tissue damage, 
or described in terms of such damage” [4]. Moreover, recent 
commentaries state that clinical taxonomies for pain are overall 
not well ordered and some even illogical [5]. Having said this, 
two known components of pain: negative psychological states 
(e.g. anxiety and fear) and resultant pain behavior (e.g. limping, 
grimacing, avoidance) [6],[7] have been widely researched in 
observation-based behavior studies. The form and 
characteristics of different pain behavior have more explicit 
definitions often containing specific physical terminology 
[7],[8],[9]. A particular type of pain behavior that is regularly 
assessed in clinical practice is pain interference, in which 
activities are disrupted or avoided due to pain. From a signal 
processing perspective it is these outward manifestations of 
pain behavior, including interference, which are more tangible 
and convey the expressions of pain experience and serve as 
meaningful target for mHealth systems. 

The emergent fields of Behavioral Signal Processing (BSP) 
and Affective Computing (AC) [10],[11] have demonstrated 
that complex human behavior and psychological states can be 
inferred from multi-modal data, principally from audiovisual 
[12] and physiological sensing [13]. Such studies have made 
valuable contributions in the understanding of signal processing 
and recognition methodologies for inference of human behavior 
(for an overview of multimodal pain behavior recognition see 
[14]). However, there remains systemic challenges when using 
mobile systems, challenges that are not apparent in typical 
laboratory settings with specialized apparatus and control. In 
terms of modalities, highly informative internal bio-signals 
such as galvanic skin response, electroencephalography, 
electromyography and heart rate are not directly measured from 
broadly-adopted smartphones; and are still relatively poorly 
measured on wearables. Also for audiovisual data, artefacts 
relating to noise, motion, occlusion or crosstalk cannot easily 
be controlled and minimized in unconstrained real word 
situations. Furthermore, the reliability and completeness of data 
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streams may also be less than ideal when using a mobile device, 
depending on the condition and habits of the user. On the other 
hand, these shortcomings only have critical implications for 
spatiotemporally small scale behaviors (e.g. a facial grimace or 
changes in vocal pitch or heart rate due to pain conditions); 
typically the performance of such systems have a high 
dependency on granularity and data quality. In contrast, for 
spatiotemporally large scale behaviors (e.g. the amount and 
pace of walking, or hours spent out of the house, on a daily or 
weekly basis) the aforementioned shortcomings are of far less 
concern due to data being drawn over greater space and 
timescales.  

As mentioned, we focus on pain as a case study. The 
justification for this is in part that spatiotemporally large scale 
behaviors are especially relevant to chronic pain. For example, 
the tracking of adherence to daily exercise regimes over the 
span of weeks or months is valuable information for chronic 
back pain rehabilitation [15]. Typically such management 
regimes are on-going and self-led with many of the required 
tasks done outside of clinical settings and away from health 
experts. For such situations, mHealth systems and/or 
smartphones are a natural solution as they are habitually carried 
in close proximity and are in constant use.  This allows for 
measurements, inferences and feedback to be processed locally, 
continuously, and over long periods of time.  

However, chronic pain management is multifaceted; it’s 
success is dependent on a multitude of physical, cognitive as 
well as socio-economic factors [16][17]. Therefore, if one aims 
to develop a mHealth system for chronic pain management, 
there is a particular need to accommodate a range of patient 
generated data. In measurement terms, this means a 
combination of both active sensing which requires proactive 
action from the user (e.g. self-reporting, diary logging, 
interactive assessments) and passive sensing (e.g. geo-locating, 
activity recognition, audio). Following this, the correct and 
efficient parsing of informative descriptors from low level 
measurements is required. These descriptors serve as input to 
models designed to infer high-level behavioral patterns. Finally, 
these inferences can be used for the correct and timely issuance 
of feedback and/or interventions that are clear, persuasive and 
actionable by the patient or clinician; the effects of which can 
then be further measured and the process repeated. We outline 
this with a tripartite functional loop: measurement - inference - 
management as a basis for system design. 

Although we address pain as an over-arching application 
domain, there still remains a wide range of sub-domains even 
within chronic pain conditions. Each sub-domain has specific 
clinical and technical requirements and therefore a 
comprehensive discussion of all potential systems for every 
pain condition would be cumbersome, repetitive and out of the 
scope of this discussion. Therefore to efficiently illustrate 
requirements and challenges from a systems perspective, we 
highlight within the following (Section II) example cases of 
different sensing modalities, with inference to a relevant 
behavioral outcome and how this inference can be used for 
management; each following the measurement - inference - 
management process. Section II ends with examples of modular 

software platforms that are critical to take multiple sensing 
streams from measurement to meaning in a reusable and 
evolvable manner. Section III discusses open challenges for 
higher level inferencing, including temporal considerations, 
and an overview of potentially useful advances in pattern 
recognition. Also discussed are factors in improving the 
usability and persuasiveness from a user’s perspective. Finally, 
we conclude in Section IV.  

II. SIGNALS AND SIGNAL SPECIFIC PROCESSING 
We focus on physical activity, acoustics, image capture, and 
self-reporting as four foundational data streams. While it is 
known that other signals are also indicative of pain and pain 
related emotions such as physiological data [18] and that other 
mobile devices are gaining in both penetration and range of 
sensing modalities (e.g. the Empatica E4 Wristband  which 
measures blood volume pulse, heart rate variability, galvanic 
skin response and peripheral skin temperature); the 
methodologies and approaches we review should provide a 
template for their handling and the integration of future data 
streams from mobile apps and wearable devices.  

A. Physical Activity 
The continued monitoring of physical activities away from 
clinical settings is essential for understanding progress in pain 
reduction, management, and healing, whether it be in the 
context of post-treatment follow up, or long term physiotherapy 
[19],[20],[21]. Such monitoring was traditionally achieved 
through specialized wearable devices [22],[23], or special-
purpose instruments deployed in clinical environments [24]. 
However, activity tracking on broadly deployed smartphones 
has become a popular and affordable alternative. The broad 
adoption and inherent utility of smartphones for end-users 
means that for many day to day measurements, no additional 
devices need to be purchased, carried, or forgotten by the user 
[25],[26],[27]. Consumer wearables in the form of fitness 
trackers and smart watches have similar advantages and 
typically transmit data via the smartphone. The activity sensors 
embedded in wristbands and phones are largely identical, and 
so much of this section’s discussion is applicable to both.  

Smartphone-based activity tracking typically uses the 
continuous data collected by the phone's accelerometer to 
determine mobility states. The standard set of states are: 
sedentary (or stationary), walking, running, or in vehicle. In 
addition, the location information captured by the phone's GPS 
or derived from WiFi signals is often used to infer the locational 
context in which the activities were taking place. There is also 
the potential for further contextualization to the standard states 
from low level sensor data that has implications for pain 
management. The degree of incline of a particular route taken 
can be determined using either topographical information from 
maps or from accelerometer and barometer values. This informs 
the understanding of difficulty level and energy expenditure of 
a route; the type of surface on a high incline path whether it is 
stepped or a smooth slope will also have a bearing on difficulty 
and could potentially be inferred from the inertial and 
barometric readings. This further contextual information is 
important for musculoskeletal conditions where posture and 
speed are relevant factors. Also for speed and step count 
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inference GSM traces can also be utilized [28]. However, such 
detections are currently not done with standard commercial 
systems. 
 Case example: an activity based app for rheumatoid arthritis 
(RA) - RA is characterized by episodes of flaring of joint 
inflammation. Identifying flares early and minimizing their 
intensity and duration is important for long term management 
because each episode of flare contributes to further joint 
damage. In day to day management patients struggle to 
understand what environmental and behavioral factors 
contribute to the triggering and duration of flares. While 
directly and continuously measuring pain is not currently 
possible, proxies for pain can be found in their physical function 
and daily activities [29]. In the following, we describe a four-
stage inference algorithm from which raw sensor data generates 
high-level behavioral information that is useful in RA 
management. This algorithm has been deployed in an open-
sourced activity tracking app, called Mobility [30]. The clinical 
validity of the derived measures is currently being evaluated 
within RA, as well as in other orthopedic contexts such as 
surgical recovery. As the validation proceeds and is refined 
over time for various populations and disease states, there will 
be a need to modify and tune the specific derived measures, 
further motivating the need for modular architectures such as 
those described later. 
 Stage 1 - Instantaneous mobility state inference: a decision 
tree generated using the C4.5 algorithm was developed to 
classify tri-axial accelerometer data collected over a short 
period of time into a set number of mobility states. For example, 
it is common to extract descriptive features from accelerometer 
data from a 1 second window sampled every minute to 
determine the mobility state for that minute. Commonly used 
features include variance of the acceleration magnitudes and the 
Fourier coefficients of the acceleration magnitudes [31]. The 
classifier is typically pre-trained with a large number of labeled 
training data collected from multiple users. More recent 
smartphone operating systems, however, have made the instant-
based mobility state inference function available as a system 
API, and the use of these APIs are usually recommended as they 
are able to leverage special built-in hardware for more efficient 
continuous sensing (e.g. iPhone's M7 Motion Sensing Chip) 
than an app running in the application-level can achieve. 
 Stage 2 - Activity segmentation: the instantaneous mobility 
states inferred by Stage 1 are, however, not particularly useful 
in themselves. Durational context needs to be added, for 
example, compared to the information: John was walking at 
6:01 AM, the information: John walked for 15 minutes from 
home to subway station from 6:00 AM to 6:15 AM is more 
meaningful in understanding the user's behavior. At this stage, 
a segmentation algorithm is developed to segment a series of 
mobility states into activity segments, each of which represents 
a period of time in which the user maintains a mobility state. 
However, one important requirement is to take into account the 
potential errors and uncertainty contained in Stage 1's output. 
For example, signals of being in a vehicle that slows down 
momentarily for a stop sign could be mistakenly classified as 
sedentary rather than its true state, in vehicle. The segmentation 
algorithm needs to take the uncertainty into account and infer 
the activities that are consistent with the user's real behavior.  

A well-known technique that can incorporate this uncertainty 
is Hidden Markov Models (HMM) [32]. HMM is a generative 
probabilistic model in which a sequence of observable variables 
X is generated by a sequence of internal hidden states Z using 
an emission probability function. In this case, mobility states 
inferred in Stage 1 are taken as the observable variables X and 
assume they were generated by the user's true but unobservable 
activity states Z. Uncertainty in Stage 1's inference results is 
encoded in the emitting probability function P(x|z), and the 
Baum–Welch algorithm is used to infer the maximum 
likelihood of activity states Z. Then, a sequence of consecutive 
activity states Z that have the same maximum likelihood state 
will form an activity segment. 

Stage 3 - Location association and correction: at this stage 
each activity segment is associated with the location data based 
on the collection time and conduct error correction. A location 
data point is composed of longitude, latitude, and sometimes 
includes accuracy. Both GPS-captured and WiFi-enabled 
location data are known to have ~ 10 to 40 meters of error [33], 
[34]. For different activities, different approaches are used to 
improve the location accuracy. For non-stationary activities, 
such as walking or in vehicle, a Kalman filter is used along with 
a map-matching technique to snap location points to the streets 
that the user was most likely on [35]. For stationary activities, 
the mostly likely location at which the user stayed can be 
inferred by taking the median values of the latitude and 
longitude among all the location samples [36].  

Stage 4 - Summarization: finally, statistics for a users' 
activities that are known to be relevant to the well-being or to a 
certain disease are computed. Say et al. [29] shows that for RA 
management, the majority of rheumatologists they interviewed 
identified 1) time spent walking, 2) time away from the house, 
and 3) gait speed as most useful in defining the level of RA 
disease activity. Rheumatologists preferred a simple, visual 
format that demonstrates trends over days, weeks, or months, 
which can help them make better management decisions and 
ultimately result in decreasing permanent joint damage. 

  

 
 

Fig. 1. Calendar view with the daily color coded mobility index for RA 
management. As described above the clinical validity of this measures is 
undergoing evaluation within RA and other orthopedic contexts. 

 
Based on these insights, the above-mentioned statistics are 

computed in daily, weekly, and monthly bases and are 
presented as a calendar with a color coded index per day derived 
from a weighted sum of the above three factors using 
weightings suggested by rheumatologists to indicate the 
importance each factor. 
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B. Acoustics 
Nonverbal characteristics from speech can strongly convey a 
speaker’s psychological and emotional state [37] as well as 
other more nuanced social expressions (e.g. sarcasm [38]). 
There has been extensive work in the understanding of 
descriptors that can be derived from modulation, spectral 
characteristics and also energy based measures that can be 
indicative of stress [39],[40], emotion [41] or even depression 
[42]. In the context of pain such indicators are valuable. Clearly, 
stressful utterances, interjections and exclamations can be 
indicators of acute pain episodes.  
However, a more interesting contribution from leveraging 
audio data is in monitoring at a larger temporal scale which has 
implications for long term chronic pain management. 
Underlying negative psychological states such as stress, anxiety 
or depression [43] are well understood to have negative 
consequences in chronic pain management [44]; such is the case 
that psychosocial treatments such as cognitive behavioral 
therapy (CBT) are a prevalent course of action [45]. Particular 
manifest behaviors such as rumination and catastrophization 
[46] are of interest in this context and are often vocally 
expressed. In the following example we demonstrate how 
passively acquired audio streams from smartphone 
microphones can deliver such high level inferences, in this 
example by the logging of stressful situations. We must note 
here that since acoustic processing methods within smart-phone 
deployed systems are particularly prone to privacy breaches, 
this leads to the preference to locally process signals that 
contain intelligible data. This in turn then necessitates methods 
with low demand on the battery which would require the use of 
the least computationally expensive methods. This method in 
the following is designed to take into account of this trade-off. 
However, there remains a research opportunity in the utilization 
of more sophisticated detection techniques [47],[48] into a 
mobile application. 
 Case example: detection of stressful situations from voice 
for chronic pain (CP) management. 
 Stage 1 - Noise detection: the first stage is the detection of 
noise in the sense of any significant level of sound. This is an 
essential first stage in the passive monitoring to retain only non-
silent segments of the data. Simple thresholding on the root-
mean-square values over a window of raw audio data are 
applied to differentiate the segments of noise versus silence 
[49].  
 Stage 2 - Human speech detection: following this a further 
classification between as human voice or noise caused by 
another source is required. To this end, three simple features: 
(1) number of auto-correlation peaks, (2) non-initial auto-
correlation peak, and (3) relative spectral entropy to robustly 
detect presence of human voice in audio streams [50] are used. 
Moreover, the same three features can be retained to compute 
important prosody information regarding pitch and speaking 
rate [51]. This is important to note in terms of privacy. Previous 
research shows that the reconstruction of verbal information 
requires at least pitch and 2 harmonics, thus in using the above 
three features verbal content remains anonymous but prosody 
can be inferred [51]. In addition to being privacy sensitive, these 
features are computationally efficient and can work robustly to 
recognize voice in acoustically noisy environments [50]. This 

method has been used in several embedded and mobile phone 
systems [30][52] and deployed in systems across several real 
world studies. These studies have demonstrated the inference of 
face-to-face conversation quality [53], social networks [51][54] 
as well as social isolation and depressive symptoms [43] which 
all have implications for long term pain management. 

 
Fig 2. (a) amplitude values for 5 second recording of audio (b) spectrogram 
of the recording with blue lines showing inferred segments of human voice. 
 
Stage 3 - Speaker identifier: once human voice is detected, it 
must be determined whether the voice came from the phone 
user. In Lu et al. [55], a Gaussian Mixture Model (GMM) based 
universal background model of all speakers is pre-computed, 
the voice of the phone carrier is opportunistically sensed from 
phone conversations, and a model for the phone carrier’s voice 
is learnt that is different from the universal background model. 
Subsequently, the learnt model is used to detect the phone 
carrier’s voice. At this stage features such as Mel-frequency 
cepstral coefficients (MFCC) where the verbal content can 
potentially be reconstructed are needed. Therefore all 
processing is done locally and all privacy-violating features are 
discarded save for the output. 

Stage 4: Stress detection: if a detected human voice is that of 
the phone carrier the detection of stress is invoked. The 
following characteristics typify stress: the distribution of 
spectral energy switches to higher frequencies. Also, speaking 
rate and variability in pitch increases whereas pitch jitter 
decreases. A recent study showed a non-linear speech 
production model, based on a Teager Energy profile, can 
capture stressfulness in noisy outdoors situations. A GMM 
based classifier utilized these changes as features for both 
indoor and outdoor application [56]. Also, to account for 
idiosyncrasies during stressful conditions. A small amount of 
individual data can be used to calibrate personalized models. It 
was found that classifier accuracy improved by 8% if 2 minutes 
of labeled data is provided by the individual. Similar to stage 3, 
privacy violating features are discarded once the classification 
output has been obtained. 

Stage 5: Logging: the number of stress occurrences can be 
logged giving a passive indicator of stress frequency with 
respect to time and location. Such continuous psychological 
monitoring gives a rich source of information for CBT 
suggested for chronic pain management. Since the log is 
updated only when the prior 4 stages are invoked on demand, 
the computational overhead is minimized. 

In other health related applications, the use of acoustic data 
in this way to infer higher level information about a user is not 
without precedent. Using similar privacy sensitive acoustic 
features there have been attempts to infer mental state or well-
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being with acoustics. These systems use acoustic data within 
multimodal frameworks using synchronous data from other 
smartphone sensors [43],[57],[58],[59]. Going forward, this 
suggests that the use of acoustic data for complex applications 
such as pain management would be one component within a 
multimodal frameworks.  

C. Facial Expressions 
An important and observable modality that can reflect internal 
state is facial expression. The prevalence of imagers from our 
laptops to our lampposts has greatly increased the availability 
of facial imagery as a source of data about an individual’s state. 
Studies show that facial expressions during acute pain had a 
high level of consistency and repetition even when elicited by 
different stimulating modalities [60]. Moreover, a finding by 
Kappesser & de C. Williams [61] showed that a specific pain 
face can be distinguishable from faces expressing other 
negative emotions.  

There have been numerous works in the automation of pain 
face recognition by way of analyzing video imagery from 
BSP/AC studies. An early example is [62], where face shape 
features were used with artificial neural networks to classify 
images of subjects’ faces in a normal mood versus images taken 
from a pain inducing task. Lucey et al. [63] publically released 
the widely used UNBC-McMaster shoulder pain dataset which 
contains videos of patients with shoulder pain and a temporally 
concurrent pain score based on the Prkachin and Solomon Pain 
Intensity score (PSPI) [64]. Several subsequent studies in 
automated recognition followed [65], [66], [67], which utilize a 
range of image features from Active Appearance Models 
(AAM) based features, tracked anatomical points [68], discrete 
cosine transforms and local binary pattern [69] features with 
Support Vector Machines (SVM) to classify pain faces. Sikka 
et al. [70] addressed the drawback labelling pain expressions at 
a sequence level leading to temporal uncertainties in terms of 
onset and end. The authors proposed a multi-segment multi-
instance learning (MS-MIL) framework to determine 
expressive subsequences within super-sequences that contain 
pain expression. The same authors extend the machine vision 
capability beyond adults by demonstrating successful 
recognition of pain expression in postoperative children [71]. 
Finally, interesting findings by Bartlett et al. showed machine 
vision methods outperforming human observers in 
distinguishing real versus fake expression of pain [72][73], this 
has important implications in the reliability of future ubiquitous 
pain monitoring systems.  

Although much work has been done in the wider machine 
vision communities, to our knowledge there are no smartphone 
based systems designed to detect facial expressions of pain and 
only a few smartphone based systems for face expressions in 
general. This is primarily due to the difficulties acquiring usable 
imagery from mobile devices from real world situations. 
Motion artifacts, out of plane head rotations, various lighting 
conditions and occlusions add to the difficulty with 
smartphones. In addition, power and computational constraints 
add to the challenge of locally processing if needed and the 
temporal concurrence of when images are captured with the 
onset of pain experiences cannot be guaranteed. Additionally, 
the effect of acting for the camera also generates a further 

confound, though as mentioned above acted and natural pain 
expressions can be automatically differentiable. 

 However, all of the aforementioned difficulties are only 
problematic if we consider single images or videos in isolation. 
If multiple instances taken over a long periods are analyzed 
collectively a broader perspective can be gained and could lend 
support to the inference of spatiotemporally large scale 
behaviors. For example, studies have shown that factors such 
as social isolation [74] are linked to physical pain and can be 
detrimental to chronic pain management [75] and factors into 
CBT [45]. A number of relevant quantities can be extracted 
from images that are descriptive of social isolation. Emotional 
expressions from the user’s face [12] can be detected can 
augmented to further contextual factors such as scene type 
detection [76], the number of people in the image and even the 
overall mood of the group of people in the image [77]. These 
measures can be further augmented to other relevant data such 
as usage of social networking apps, number of calls or instant 
messages made or received to construct an index for social 
isolation. Also, the use of further data modalities such as audio 
which could aid in reducing ambiguities in situational context 
and could also aid in identifying the true number of people 
present. In principle, a longitudinal analysis of trends in the 
index of social isolation can be used to feedback into CBT. The 
staged processing described in earlier sections could also be 
applied to expression extraction from images. The onset of 
more widespread implementation is bolstered by emerging 
systems such as in Suk et al. who proposed an initial framework 
for real time locally processed mobile use demonstrated the 
successful classification of seven affective states [78]. The 
recently released Affdex software development kit could 
facilitate the implementation of such analyses along with new 
datasets that contain real world ecologically valid datasets such 
as the AM-FED dataset [79]. 

D. Self-Reports as Signals 
Self-report data are somewhat different from the signals 
previously discussed not only because intentional action is 
required from the individual to contribute data, but also because 
the data generated exists at a higher semantic level from 
inception. As such, rather than discussing stages of processing 
of self-report data, we share insight on modern self-report 
techniques and considerations. 

The goal of much work in sensing is to reduce or remove the 
need for user input in data collection systems. While great 
strides have been made in sensing and detecting patient state, 
we are not yet in a position to collect all of the data relevant to 
the pain patient and clinician using passive techniques. Some 
aspects of behavior, such as detecting whether a patient 
struggles to button their shirt in the morning, is technically 
possible but not broadly and affordably deployable given 
current technology, though we can imagine it becoming so in 
the future. Then there are cases where we are able to sense the 
behavior but not fully understand the context without input, 
such as a case where a patient walks more slowly to work. In  
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this case, it is not known whether this is because of pain, another 
ailment, or simply commuting with a friend or colleague who 
walks more slowly.  

The current standards for reporting the level of pain one is 
experiencing are pain scales and maps. Pain thermometers and 
pain faces (e.g. Iowa Faces of Pain) remain the most widely 
used and do translate well to digital experiences [80]. There 
have been several adaptations and improvements on user input 
for these assessments [81]. Pain maps are basic digital maps of 
the human body that allow patients to document/describe the 
location and nature of pain. It should also be pointed out that 
the assessment of pain is quite complex (due to variability in 
individual pain thresholds, diagnosis, chronic vs acute, and so 
on), and the community is not fully in agreement on how best 
to do so [82]. 

Like other data streams discussed in this paper, we consider 
self-report to be largely if not exclusively temporal. Data are 
collected at a specific time and those data represent a certain 
time span. Unlike most sensed data, however, the time data is 
collected and the time span the data ‘cover’ are often 
substantially different in two important dimensions: 

Timeliness of data. Self-report data are out of necessity a 
form of recall, with the patient recounting experiences that have 
occurred in the past. While a goal of self-report is often to 
reduce the amount of time between data collection and the 
recalled experience, practically there is a great deal of 
variability in these time lags. For example, data may be 
requested from a patient about an event as it is detected, but the 
patient may not respond for several hours or even days.  

Time span of the data. A single self-report data point maybe 
reflect a narrow point in time, such as an emotional response to 
a stimulus or level of pain experienced. Such measurements are 
often referred to as measures of state. On the other hand, the 
patient may be asked to report data in such a manner that a 
longer time span is recalled, such as emotional state over the 
past year, or even irrespective of time span, such as a patient’s 
personality type. Such measurements are referred to as trait. 
[83]. 

Self-report originated as one of the main forms of data 
transfer between patient and clinician, but the advent of modern 
medicine relegated it to completing forms and sharing 

symptoms as precursors to testing. More recently, mobile 
devices have led to a resurgence of self-reported data through a 
class of techniques labeled Ecological Momentary Assessment 
(EMA) in which patients are polled for information, typically 
using abbreviated versions of gold standard clinical and 
behavioral assessment forms, frequently and in situ [84]. The 
central argument for the use of EMA is that while the data may 
yet be subject to interpretation and distortion, the effects of 
recall bias and error can be mitigated by timeliness of 
surveillance [85]. To further address recall bias a method was 
proposed by Rahman et al. [86] where EMA queries are 
presented with the addition of contextual information about the 
time, location activity and acoustic state of the user during the 
time in question: contextual recall. This allows for the EMA 
activation time to be more flexible, the results the study showed 
improved recollection of stress levels compared to when no 
context was given. 

Self-report and EMA have continued to evolve beyond 
simply asking patients standardized questions. The large touch 
screens on current generation mobile devices have afforded 
more interactive, visual methods for assessing patients. These 
methods are often employed to mirror and simplify ‘pen and 
paper’ assessments rather than simply translate them to digital. 
The Photographic Affect Meter (PAM), for example, asks 
patients to reflect on their emotional state by choosing from a 
series of emotionally representative images. Responses take a 
few seconds to complete and are calibrated to and correlate with 
the 20-item PANAS, widely considered the gold standard for 
measurement of emotional state [87].  

Another approach to self-report has been to find more 
straightforward and answerable representations of complex or 
difficult behaviors or experiences. Pain level, for example, is 
notoriously difficult to measure reliably, so many clinicians 
focus on pain interference or Activities of Daily Living (ADLs) 
to assess what patients are or are not able to do as a result of the 
pain they experience. This can serve as both an adequate proxy 
for pain levels and a more direct approach to treating the patient 
to return to normal and desired activities. In a variant of ADLs, 
a system called YADL (Your Activities of Daily Living) [88] 
was designed to allow patients to rapidly and intuitively sort 
through photos of common activities to document which are 
easy or difficult for them as a result of their pain.  A daily 
version of YADL presents patients with only those images they 
have selected as difficult, prompting them to choose which have 
been hard for them on that particular day, or which they avoided 
because of anticipated pain. Such an approach allows for an 
improvement on the traditional means of assessing ADLs along 
with more fine-grained, frequent data on patient experience. 
YADL is currently undergoing validation, as with the mobility 
index mentioned above, the modular design of YADL will 
allow it to be tuned and adapted to particular populations and 
disease states. 
 An alternative modality for self-reporting which does not 
rely on visual prompts or stimuli are tangible interfaces. Such 
methods may for some be a more intuitive way to convey an 
internalized level of pain. By leveraging the gripping action as 
is a natural gestural response when pain is experienced, Adams 
et al. [89] developed Keppi a small lightweight squeezable stick 
designed to be continuously carried by the user. The device 
consists of a conductive foam based, force-sensitive resistor 

                 
 
Fig. 3. Example screenshots from PAM (left) prompting the self-report of 
emotional state using representative images and YADL (right) prompting 
selection of difficult daily activities as a proxy to pain level. 
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(FSR) covered in soft rubber with embedded signal 
conditioning, an ARM Cortex-M0 microprocessor, and 
BlueTooth Low Energy (BLE). Although still in a 
developmental phase an in-lab feasibility study showed 
participants were able to consistently map pressure to four 
stratified levels of potential pain as well was match a dynamic 
visual cue when given visual feedback of the pressure value. 
Further real world evaluation and miniaturization of this device 
with pain participants is in process. 
 

 
 

Fig 4. Prototype of Keppi, - tangible and portable self-reporting device for pain. 

E. Modular System Architecture 
In the previous sub-sections the contribution of individual 
signals and modalities were discussed. However, mHealth 
systems will be most effective in specific disease contexts and 
across contexts if they incorporate multiple active and passive 
data streams. Adopting a modular system architecture is critical 
in order to address the system complexity associated with 
heterogeneous and variable data-stream inputs. A modular 
architecture will allow these systems to be adapted as new apps 
and device capabilities appear, to be tailored to particular needs 
and populations, and to serve as a building block for other 
health related applications. Moreover, as particular signal 
processing methods improve, they can more readily be 
evaluated and integrated into modular systems. We provide two 
examples of modular system architectures in this section, one 
optimized for mobile device processing, and the second for 
server side processing. It is worth noting here that though we 
focus here on modular systems, another interesting yet under-
investigated line of research in mHealth is the use of advances 
in data compression. Since power consumption is a limiting 
factor where local processing is often required, efficiency is 
desirable both in terms of transmission energy conservation 
[90] and the codification of the various aforementioned signals 
to reduce data size.  
1) SAINT: Scalable Sensing and Inference Toolkit 
Each passive sensor data type generates a large volume of raw 
data whose transmission can tax bandwidth and battery 
resources. Moreover, these data may require local processing to 
address privacy concerns, e.g., detecting the presence of a 
human voice [91]. However, it is challenging to run the sensing 
and signal processing in real-time on resource constrained 
mobile phones. A poorly written signal processing algorithm 
may consume large amounts of CPU cycles and be a significant 
drain on the battery. Similarly if intermediate storages during 
raw sensor recording or signal processing are not cleaned then 
the system can be out of memory easily for high data rate sensor 
streams (e.g., audio or video). 

To this end, the open-source sensing and inference toolkit 
SAINT was developed [92] that can assist sensor data collection 

and signal processing inside the phone. In SAINT APIs to 
collect 30 different raw sensor traces and processed data-
streams are provided. SAINT tackles these challenges with 
time- and memory-efficient implementations of its sensing and 
processing libraries. Fast signal processing algorithms were 
implemented in native layers (i.e., not on a virtual machine) 
with low time-complexity [93]. The implementations are also 
tested over multiple deployments and were found to be stable 
and battery efficient. In addition to fast and memory efficient 
implementations, SAINT also provides admission control and 
duty-cycling for demanding signal processing tasks to further 
reduce battery usage. Admission control allows for on-demand 
triggering of signal processing, e.g. speaker or stress 
recognitions are only triggered when there is human voice in 
audio data. Duty-cycling on the other hand saves battery by 
periodically sampling data streams to approximate a human 
behavior signal. For example, running activity recognition at 10 
second intervals can approximate the subject’s total level of 
physical activity fairly accurately. 

The modular design enables reuse and extension of SAINT’s 
built-in sensing and inference capabilities. At its core, SAINT 
uses a publish-subscribe [94] or pub-sub pattern. In a pub-sub 
pattern, publishers produce data for which subscribers listen. 
An intermediate event bus or broker manages subscription and 
data transfer among publisher and subscribers. Subscribers 
register for specific publisher data to the broker; publishers then 
send data directly to the broker, and the broker relays the 
information to registered subscribers. Inside SAINT, any 
existing raw sensor or derived stream is a publisher. A new 
derived stream can be created in three steps: (1) registering as 
subscribers to necessary publishers, (2) performing necessary 
computation on the publisher data to create the new derived 
stream, and (3) making the derived stream available as a 
publisher for later reuse. For instance, a new sleep detector 
could use the presence of movement, location, human voice, 
and phone charging status from SAINT to detect if a person is 
sleeping, then make the output of this detector available for 
other components to use. Furthermore, registering to existing 
publishers and making the new derived stream data available 
can be easily implemented. 
 

 
 
Fig. 5 The architecture of SAINT sensing and inference framework. SAINT 
provides a unified bus interface to share data across sensing and inference 
modules. Client applications can connect with SAINT to receive sensed and 
inferred data. 
 
Another benefit of the pub-sub structure is the centralization of 
sensing and processing that reduces redundancy in 
computation. In SAINT, if multiple subscribers want the same 
publisher’s data, then the publisher just produces the data once 
and the broker relays the information to each subscriber, 
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reducing redundancy. For example, if a sleep and stress detector 
both run on the phone and want to know if human voice is 
detected, SAINT detects human voice from audio data once and 
relays the information to the sleep and stress detectors.   
2) Lifestreams 

The ultimate goal of many novel data collection techniques 
described previously is to enable robust and actionable 
behavioral indicators that can be used to characterize a patient's 
baseline, and then to identify significant variations, trends and 
shifts in specific behaviors or symptoms that are relevant to an 
individual’s health. However, making sense and acting on these 
multi-dimensional, heterogeneous data streams requires 
iterative and intensive exploration of the data sets, and 
development of customized analysis techniques that are 
appropriate to the health domain of interest. Lifestreams is a 
modular and extensible open-source data analysis stack that 
runs on the server and is designed to accelerate the development 
and refinement of sense making techniques [34]. 

Lifestreams runs on top of mobile data collection systems, 
such as Ohmage or SAINT [92],[30]. It processes the raw or 
intermediate data provided by these tools with a multi-layer 
analysis stack, depicted in Figure 6, consisting of the following: 
1) feature extraction, 2) feature selection, 3) inference, and 4) 
visualization. Each layer consists of modules that process the 
data provided by the lower layer, and then send the result to the 
next layer up. From the input data streams, the feature 
extraction layer computes various statistics, such as daily 
min/max, average, or the weights of the principal components 
derived from a set of measurements. The feature compression 
and selection layer leverages techniques, such as cross-entropy 
or correlation analysis, and the domain experts’ input to select 
or compose the features that are most relevant to the analysis 
goal. Then, the inference layer uses the selected features to 
detect patterns and trends with correlation estimation, and 
change detection algorithms [95]. Finally, the visualization 
layer uses different visualization methods to make the inferred 
patterns or trends actionable for the end user. Lifestreams was 
found to be useful as a tool for the research coordinators to 
quickly navigate through the data and provide visual aids to 
guide the discussion with participants during interview 
sessions. Its extensible design allows it to be easily extended to 
support different studies exploring various new data streams 
and transfer to other domains 

 
Fig. 6 Lifestreams stack, data enters from the lowest level and is 
successfully filtered, aggregated and analyzed to produce actionable 
visualizations for patients and clinician. 

III. OPEN CHALLENGES IN INFERENCING AND FEEDBACK 
So far we have highlighted, through examples, state of the art 
methods and tools to achieve the measurement-inference-
management loop. However, in this section we discuss further 
factors that are important but either underutilized or remain 
unresolved. These challenges are most conspicuous when 
considering inference and management. In this section we 
discuss these factors, as well as advances from related studies 
that have a bearing on future directions. 

A. Accounting for Temporal Patterns. 
The presence of a circadian rhythm in the experience and 
perception of pain is well understood. This relates to a variety 
of chronobiological factors such as daily variations in 
endorphin and encephalin concentrations in the pain processing 
parts of the brain. The review by Junker & Wirz summarizes 
[96] several studies that include both naturally occurring as well 
as experimenter induced pain. The studies within showed 
specific and consistent times of the day when pain perception 
tended to peak depending on the cause. Investigations in using 
smartphone technology as a way to monitor daily rhythms have 
been recently investigated for sleep applications. Most studies 
have focused on sleep pattern inference by utilizing app usage, 
charging, screen unlocking, along with an ambient light 
detector and audio streams to detect sleep durations and quality 
[97][98][99]. Recently, Abdullah et al. [100] demonstrated that 
by using periods of smartphone non-use, sleep patterns can be 
inferred using a rule-based algorithm which accurately matched 
with ground truth from a sleep journal. With the combination of 
such sleep measures, along with the domain knowledge of the 
effects of circadian rhythm on specific types of pain, there is 
great potential for more closely personalized and more timely 
issuances of interventions for pain management in a daily cycle.  
 As we have discussed pain conditions with high levels of 
chronicity require long term management and therapy. Also 
over enough time, persistent negative psychological states can 
emerge. It has been shown that, given enough data from long 
periods, such mental states can be detected. With data spanning 
2 weeks Saeb et al. [101] demonstrated the use of movement, 
activity and phone use derived descriptors to infer depression 
severity levels by way of supervised learning, resulting in an 
accuracy 86.5%. Over a 10 week period, Wang et al. [57] 
investigated correlations between mental well-being measures: 
depression, stress, flourishing and loneliness scores with 
tracked information relating to conversation, activity and sleep. 
Such results demonstrate progress toward inferences on low 
frequency changes in mental state or even traits which are 
ultimately necessary for CBT related management. Longer 
period factors such as climate and seasonality have yet to be 
leveraged in this regard but are readily measurable if studies of 
this time length are done. 

B.  Advances in Pattern Recognition 
In mobile sensing, a common paradigm to generate predictive 
models is supervised learning [27]. Although a widely used and 
powerful approach, there remains two critical dependencies. 
The first is the generation of good features from raw sensor data 
and the second is the truthfulness of labelled states or 
behavioral categorizations. Given that there is no standard 
method to optimally engineer features, a handcrafting approach 
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is often done using expert domain knowledge, intuition, or other 
prior experimentation. For lower level inferences good 
descriptors can be readily determined. However, it is often the 
case that abstract higher level inferences (such as ‘anxiety’) are 
desirable, but such tasks would require complex feature 
engineering and are difficult to map, often leading to poorly 
performing models. Moreover, such abstract labels have loose 
definitions or are ambiguous to people and thus difficult to 
assign correctly when creating a training set.  

In light of this, we point to the increasingly popular paradigm 
of deep learning [102][103], which has the capacity to learn 
feature representations and map low level data to highly 
abstract categories in a less handcrafted way. However, to date, 
this has mostly been demonstrated with large unimodal datasets 
in other application domains. That said, Martinez & 
Yannakakis [104] proposed a Convolutional Neural Network 
framework designed to fuse combinations of continuous and 
discrete 1 dimensional physiological signals with differing 
sample rates to successfully infer 6 abstract affective states 
(anxiety, frustration, fun, relaxation, challenge and excitement). 
Such a method naturally lends itself to the high level behavioral 
inferences needed for pain management and from the 
assortment of 1 dimensional signals acquired from mobile 
sensing. Notably, in this case from the use of wearable devices 
that can extract such physiological signals.  The drawback is the 
high computational expense in the training and use of highly 
parametric models, which may not be able to deliver timely 
output for intervention. 

A further significant challenge when dealing with human 
mobile sensing is the high degree of idiosyncrasy within the 
data streams. In recent years generalizable methods to capture 
latent structures in behavioral routine from mobile data have 
been proposed; such structures could be used as personal 
baselines from which anomalous behavior could be inferred. 
Early work by Eagle & Pentland [105] proposed a method to 
establish eigen-representations of behavior from mobile data to 
model structures in day to day routine. This method was 
effective in modelling the idiosyncratic patterns in a personal 
routine as well as generating a way to find similarities between 
groups of people. However, this approach relies on rich, 
densely-sampled high quality data which cannot be realistically 
acquired in real world sensing. To this end, Zheng et al. [106] 
proposed a collaborative filtering model to overcome sparsity 
in a single user’s data based on the intuition that many users 
follow similar behavior patterns; of course this is dependent on 
the availability of multiple users’ data.  
 Another paradigm which can address the problem of gaps in 
data and/or idiosyncratic variability is multi task learning 
(MTL) [107]. Simultaneous supervised learning is applied to a 
set of different but related classification or regression tasks. For 
example, data from a user from two different weeks can be used 
to infer a behavior for each week where some data maybe 
missing one of the weeks. Learned parameters common to both 
tasks (weeks) can be leveraged to bolster the accuracy of the 
partial week when compared to training two models separately. 
Similarly this can be done in terms of different people as tasks 
thus accounting for commonalties or differences between 
people. Romera-Paredes et al. [108] recently showed this 
capability with facial expressions of pain as well as with 
electromyographic signals by exploiting the transfer learning 

property in MTL. In a similar study, these authors also show an 
improvement in the recognition of pain face expression using 
OrthoMTL [109] which assumes features that describe identity 
are unrelated (orthogonal) to features that describe pain 
expression. In essence this method calibrates to each person by 
simultaneously learning on identity features and pain 
expressive features a separates them. In principle this can 
applied to data from any modality or combination of modalities 
as long as this is consistent between tasks. Moreover, advances 
in MTL show the learning process is equivalent to a single 
convex optimization process [110], as such there is potentially 
fewer process iterations when compared to repeatedly training 
multiple models.  

Finally, it is worth noting here that a major barrier to the 
advancement in predictive modelling is the availability of data 
or lack thereof. However, in terms of spatiotemporally small 
scale behaviors in pain expression a new extensive multimodal 
dataset called EmoPain was recently released [14]. It explicitly 
addresses this requirement gap for chronic back pain. Contained 
within are: high resolution face imagery, surface 
electromyography, acoustics and whole body motion capture 
Two sets of pain labels are included, based on facial expression 
and known body motion based behaviors [7], the authors set 
baseline modelling frameworks for each label set using detected 
facial points with SVM classifiers for pain face recognition and 
speed and posture based features with Random Forest models 
for the body behaviors. Public datasets for large scale behaviors 
are still very rare due to the challenges of de-identification, 
especially for a dataset with patient information.  

C. Feedback to Users  
Interfacing with the user once inputs, measurements, and 
inferences have been made is dependent on the type and nature 
of the required management. Currently, there are numerous 
commercial pain management mobile apps which are 
principally designed for specific functions, including self-
monitoring, pain intensity tracking, information provision, 
medication management, and relaxation training. However, 
there remains a lack of traction with users. Recent reviews 
[111][112] and commentaries [113][114] unanimously suggest 
a lack of clinical engagement and regulation in the development 
of such software, and efficacious claims are underpinned by 
little evidence. Moreover, the apps relating to chronic pain self-
management are still relatively simplistic in how they account 
for cognitive behavioral factors which are essential for 
persuasive and effective interfacing.  

Some commercial products such as Habit Changer is 
described as utilizing cognitive behavioral components within 
the management strategy but details are not provided. Some 
newer products such as the WebMD PainCoach enables the user 
to monitor pain, set and track activity goals and generates 
related messages. These new systems are promising in terms of 
personal monitoring, but future versions call for further 
functionality in using this information to effectively respond to 
episodes of demotivation which are ultimately at the root of 
poor progress [115]. 

In terms of general applications, mobile systems can be 
categorized in three groups in terms of feedback strategy: (1) 
aggregation of data into summary statistics, often augmented 
with attractive visualizations. For instance, Ubifit [116] or 
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BeWell [117] which uses background wallpaper to show 
overall physical activity, social interaction and sleep. This is 
often purposed for goal setting or gentle priming towards the 
goal [118], (2) visualization of data which relies on the users to 
self-explore and reflect on the data [119][120]  and (3) the 
delivery of generic recommendations that are globally 
applicable or are tailored to specific subgroups based on 
demographics, culture or lifestyle [121] [122]. However, these 
strategies do not make use of any in-depth analysis and may not 
only miss potential opportunities to effectively intervene, but 
may also fail to deliver effective feedback that is actionable and 
relevant to the individual. 

That said, increased persuasiveness in a real world 
deployment has been demonstrated. Rabbi et al. [123] proposed 
a context driven food and exercise suggestion engine 
MyBehavior. In this system text based suggestions which are 
perceived to be low effort and familiar to each user are 
generated based on both passive and actively sensed data. Such 
perceptions of familiarity and low effort increases the 
likelihood of actualization according to behavioral theory 
[124]. Results over 10-week user trials show significant 
increases in adoption when compared to randomly issued 
suggestions. Similar persuasive feedback would be of great 
benefit for musculoskeletal pain for example where avoidance 
and demotivation to do regular exercise is a prevalent problem.  

An interesting direction in spatiotemporally small scale 
feedback is the sonification of patient’s movements during 
physiotherapy [115]. Common motion related traits are self-
guarding movement and a reduction in proprioception. Sound 
feedback exploits the tight links between the auditory and motor 
parts the brain. Singh et al. [125] proposes a design framework: 
Go-with-the-flow for sonified wearable systems for chronic 
pain exercising. Initial results indicate an impact on body 
awareness, increased motivation to reach exercise targets, and 
positive gains in compensatory motion and self-efficacy. 

Ultimately, all patient sensing has the purpose of informing 
decisions and actions. The focus of this review is on the capture 
and processing of relevant data sources to inform user feedback 
but in the end effectively closing critical feedback loops of 
health will depend on effective ways of presenting to and 
interacting with the end user/patient. 

IV. CONCLUSION  
Patient centric data streams will increasingly inform disease 

management and diagnosis. They will be used to contextualize 
and personalize patient response to treatment and to build 
applications that support patients in their own self-
management. In this review we focused on the use case of pain 
measurement and management because it has broad 
applicability, significant implications for both clinical 
outcomes and patient quality of life, and because mobile data 
streams can fill a significant gap in current approaches to 
measurement. While today’s technology is ready to be put to 
use to improve pain measurement and management, there 
remain challenges and opportunities for further research. 

The greatest short term challenges are to develop the 
evidence base for these approaches and to address usability and 
relevance for both patient and clinician. In addition, a modular 
data architecture is critical to promote the inclusion of new data 

sources (applications and devices) and the adaptation to new 
and specialized users (conditions and demographics) over time.  
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