Summarizing the Patient Record & Modeling Diseases from EHR Observations

Noémie Elhadad noemie.elhadad@columbia.edu

HEALTH

Factors Affecting Physician Professional Satisfaction and Their Implications for Patient Care, Health Systems, and Health Policy

•	CHAPTERSEVEN	
	Electronic Health Records	33
(Overview of Findings	33
(Qualitative Findings	33
	Improved Professional Satisfaction: EHRs Facilitate Better Access to Patient Data	34
	Improved Professional Satisfaction: EHRs Improve Some Aspects of Quality of Care	34
	Improved Professional Satisfaction: Better Communication with Patients and Between	
	Providers	35
	Worsened Professional Satisfaction: Time-Consuming Data Entry	35
	Worsened Professional Satisfaction: User Interfaces That Do Not Match Clinical Workflow	37
	Worsened Professional Satisfaction: Interference with Face-to-Face Care	38
	Worsened Professional Satisfaction: Insufficient Health Information Exchange	39
	Worsened Professional Satisfaction: Information Overload	40
	Worsened Professional Satisfaction: Mismatch Between Meaningful-Use Criteria and	
	Clinical Practice.	40
	Worsened Professional Satisfaction: EHRs Threaten Practice Finances	41
	Worsened Professional Satisfaction: EHRs Require Physicians to Perform Lower-Skilled	
	Work	42

HEALTH CARE

Doctors, hospitals rethinking electronic medical records mandated by 2009 law

BY RICHARD POLLOCK | OCTOBER 10, 2014 | 5:00 AM

(iStock image)

A revolt is brewing among doctors and hospital administrators over electronic medical records systems mandated by one of President Obama's early health care reforms.

The American Medical Association called for a "design overhaul" of the entire electronic health records system in September because, said

AMA president-elect Steven Stack, electronic records "fail to support efficient and effective clinical work."

That has "resulted in physicians feeling increasingly <u>demoralized by technology that interferes</u> with their ability to provide first-rate medical care to their patients," Stack said.

Why are doctors frustr

Electronic Health Records - Expensive, Disruptive And Here To Stay

Why electronic medical records are a disaster for some

docs

Electronic health records: A 'clunky'

Whytransition

Doctors Say Electronic Records Waste cords mess

Time

Why EMR is a dirty word to many doctors

Nurses growing more discostic field with EUD AMA pleads for more user-friendly systems

http://www.informationweek.com/healthcare/electronic-health-records/why-doctors-hate-ehrsoftware/d/d-id/1112001?

http://www.kevinmd.com/blog/2012/02/emr-dirty-word-doctors.html

http://www.washingtonpost.com/opinions/americas-electronic-medical-records-mess/ 2013/09/27/651a81f0-2716-11e3-b75d-5b7f66349852 story.html

http://www.reportingonhealth.org/2014/08/14/why-some-docs-say-electronic-medical-records-are- dissatisfied-ehr-systems

http://www.forbes.com/sites/nicolefisher/2014/03/18/electronic-health-records-expensive-

disruptive-and-here-to-stay/

http://www.usnews.com/news/articles/2014/09/08/doctors-complain-of-time-wasted-on-electronichealth-records

http://www.politico.com/story/2014/06/health-care-electronic-records-107881.html

http://healthcaretraveler.modernmedicine.com/healthcare-traveler/news/nurses-growing-more-

http://www.modernhealthcare.com/article/20140916/NEWS/309169936?utm name=top

http://medcitynews.com/2013/11/doctors-frustrated-using-ehr/

Today we'll be talking about

- What's the story of the patient I am taking care of?
 What is my patient at risk for?
- Information overload
- (Disease Progression Prediction)
- Summarization of patient record
- Modeling diseases from EHR observations

Information overload

- Present at all levels of care
 - Primary / inpatient / emergency care
 - Health information exchange
- EHR data is cognitively taxing to navigate
 - Lots of it
 - Heterogeneous data
 - Primarily organized chronologically
- -McDonald (1976) Protocol-based computer reminders, the quality of care and the non-perfectability of man. N Engl J Med.
- Christensen & Grimsmo (2008) Instant availability of patient records, but diminished availability of patient information: a multimethod study of GP's use of electronic patient records. BMC Med Inform Decis Mak.
- -Chase et al (2009). Voice capture of medical residents' clinical information needs during an inpatient rotation. J Am Med Inform Assoc.
- -Schapiro et al (2006) Approaches to patient health information exchange and their impact on emergency medicine. Ann Emerg Med.
- Adler-Milstein et al (2011) A survey of health information exchange organizations in the United States: implications for meaningful use. Ann of Intern Med.
- Stead & Lin (2009) Computational technology for effective health care: immediate steps and strategic directions. National Research Council of the National Academies.
- -Singh et al (2013) Information overload and missed test results in electronic health record-based settings. JAMA Intern Med.

What's my patient at risk for?

- Disease progression prediction
 - Chronic kidney disease (CKD)
 - Difficult for clinicians, because of uncertainty, but also information overload
- State of the art for risk prediction models for CKD
 - Varying model type (Logistic, Cox)
 - Varying features (demographics, eGFR, diagnoses, laboratory tests)
 - Varying outcomes (creatinine, eGFR, complications, kidney failure)

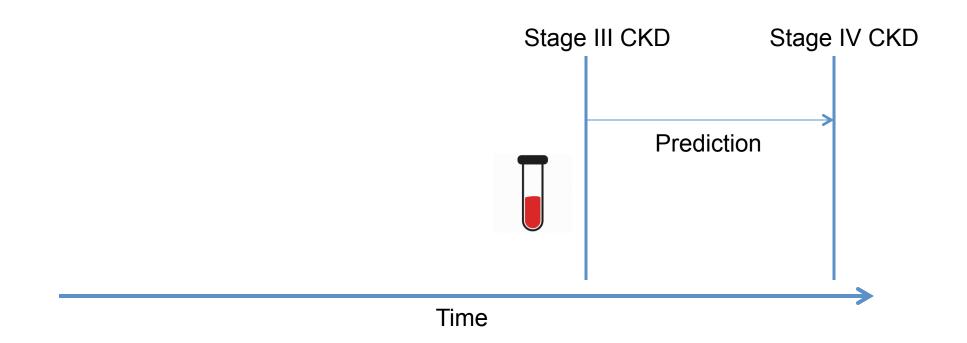
Our goal

- Use longitudinal, heterogeneous data sources to predict risk of a near-term CKD outcome that should be sensitive to short-term medical decisions.
- In contrast to previous studies, we:
 - Use EHR data
 - Use longitudinal data (up to 20 years back)
 - Use heterogeneous data (demographics, labs, notes)
 - Use stage III CKD as a trigger for prediction and stage IV as the outcome.

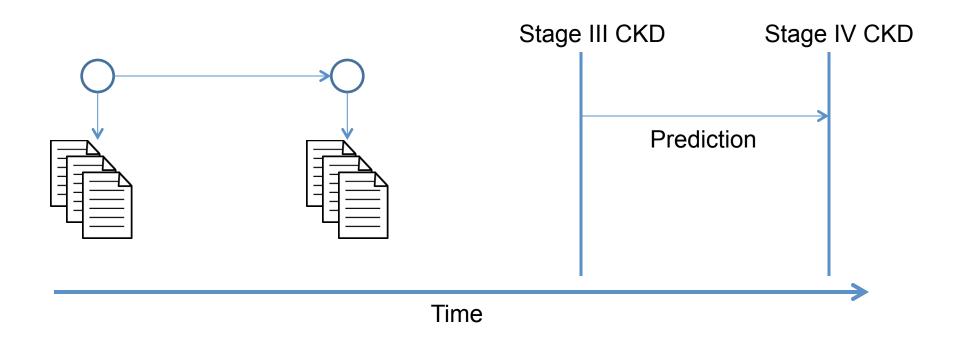
Data + Models

- Data
 - ~20k patients visiting primary care clinic
 - ~3k with stage III CKD and ~3o7 with stage IV CKD
- 5 predictive models compared all incorporated into a basic cox
 - eGFR Estimated glomerular filtration rate
 - RLT Recent Laboratory tests
 - TKF Text Kalman filter
 - LKF Laboratory test Kalman filter
 - LTKF Laboratory test and Text Kalman filter

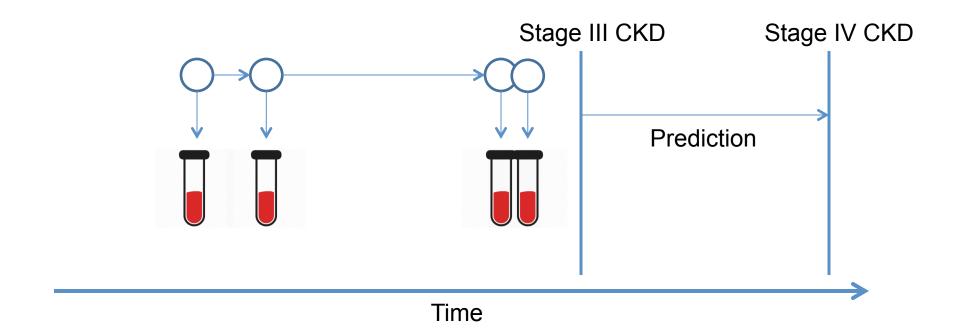
eGFR and RLT (recent lab tests) models



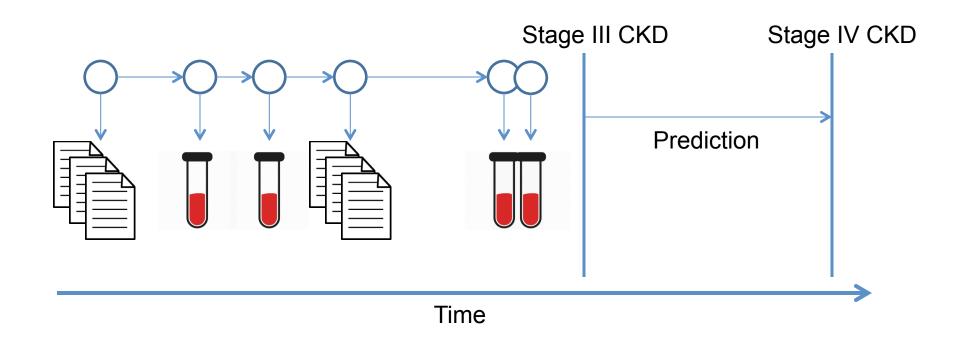
TKF (Text Kalman Filter)



LKF (Lab Kalman Filter)



LTKF (Lab & Test Kalman Filter)



Methods

- Component models
 - Model of text (latent Dirichlet allocation (LDA))
 - K=50
 - Model of the past (Kalman Filter)
 - Discrete time, binned by month, observations included 19 laboratory values and notes represented as log transformation of topic proportions
 - Model of the future (Cox proportional hazards)
 - Covariates include Kalman filter latent values at stage III onset,
 - Kalman filter offsets, and demographics.
 - Dependent variable is time to stage IV

Results

	ΔLTKF	ΔLKF	ΔTKF	ΔRLT	ΔeGFR	Concordance
LTKF			***	*	***	0.849
LKF			***		**	0.836
TKF				***		0.733
RLT					**	0.819
eGFR						0.779

Results – risk factors

Topic 3 (heart failure)	Topic 32 (diabetes)	Topic 29 (dialysis)	
lasix	units	q15	
volume	insulin	Dialysis	
edema	subcutaneous	Fistula	
heart	lantus	Volume	
failure	glucose	Bid	
worsening	diabetes	Lasix	
diuresis	times	Placement	
severe	70/30	Improved	
diastolic	diabetic	Heparin	
overload	days	Examined	

Results – protective factors

Topic 33 (family	Topic 35 (health	Topic 41 (non-	Topic 43	Topic 45 (asthma)
history)	maintenance)	specific)	(gynecological)	
died	died	history	breast	Albuterol
age	flu	pressure	vaginal	Asthma
years	visit	rate	mammo	Inhaled
mother	fasting	count	cancer	Lung
father	colonoscopy	three	hx	obstructive
brother	year	revealed	рар	Wheezing
sister	shot	times	nl	Advair
worked	vaccine	shortness	age	Pulm
children	wnl	discharged	will	restrictive
deceased	check	creatinine	endometrial	Puffs

What about many diseases at once?

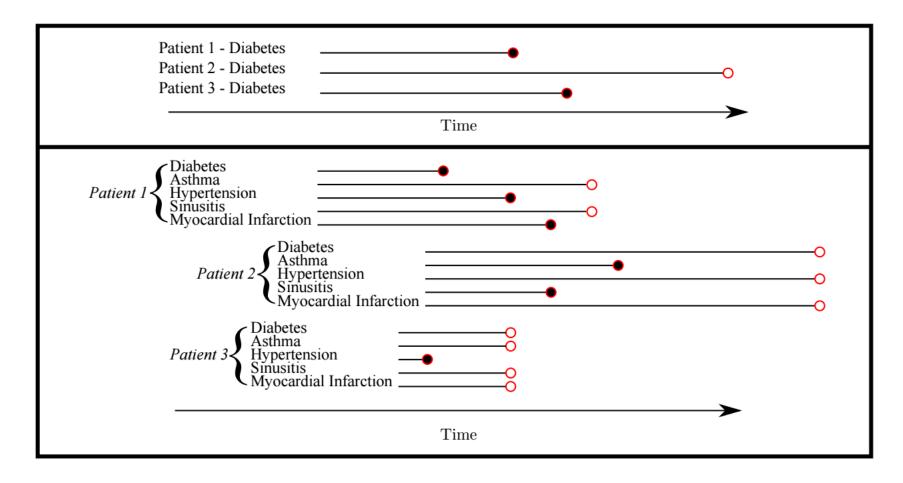


Figure 1: A comparison of standard survival analysis (top frame) and the survival filter (bottom frame). A filled circle represents an observed event, while an empty circle represents a censored one. In the case of standard survival analysis, patients in a cohort are aligned by an event. In the survival filter, patients are not aligned and unlike standard survival analysis, many conditions are considered simultaneously.

Predictive modeling on EHR data

- Incorporating longitudinal information helps
- Incorporating types of evidence (text, labs) helps

- Meaningful data science + EHR:
 - How to make this type of predictions useful for clinicians?
 - How to make them useful within their workflow?

Back to information overload

- Present at all levels of care
 - Primary / inpatient / emergency care
 - Health information exchange
- EHR data is cognitively taxing to navigate
 - Lots of it
 - Heterogeneous data
 - Primarily organized chronologically
- -McDonald (1976) Protocol-based computer reminders, the quality of care and the non-perfectability of man. N Engl J Med.
- Christensen & Grimsmo (2008) Instant availability of patient records, but diminished availability of patient information: a multimethod study of GP's use of electronic patient records. BMC Med Inform Decis Mak.
- -Chase et al (2009). Voice capture of medical residents' clinical information needs during an inpatient rotation. J Am Med Inform Assoc.
- -Schapiro et al (2006) Approaches to patient health information exchange and their impact on emergency medicine. Ann Emerg Med.
- Adler-Milstein et al (2011) A survey of health information exchange organizations in the United States: implications for meaningful use. Ann of Intern Med.
- -Stead & Lin (2009) Computational technology for effective health care: immediate steps and strategic directions. National Research Council of the National Academies.
- -Singh et al (2013) Information overload and missed test results in electronic health record-based settings. JAMA Intern Med.

Patient record summarization

"The act of collecting, distilling, and synthesizing patient information for the purpose of facilitating any of a wide range of clinical tasks"

Previous approaches

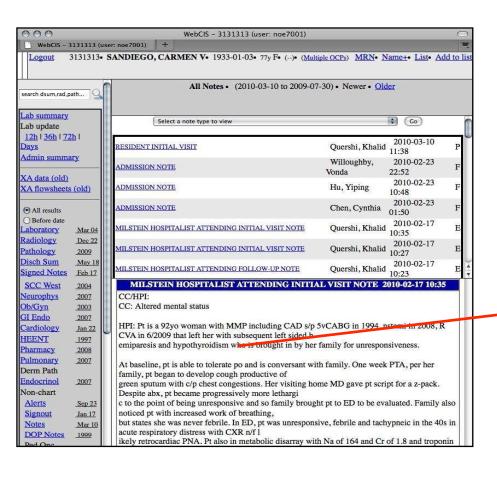
focus on specific disease

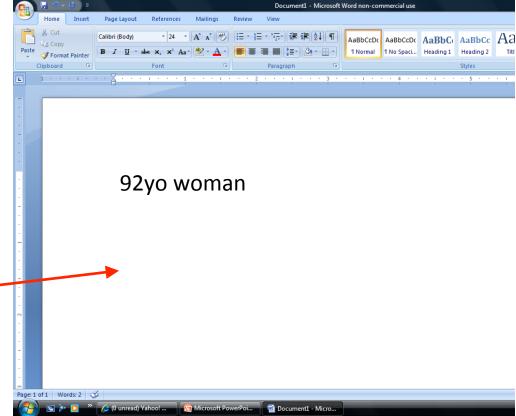
focus on specific care setting (ICU)

largely ignore EHR text

deployment and study of impact is lacking

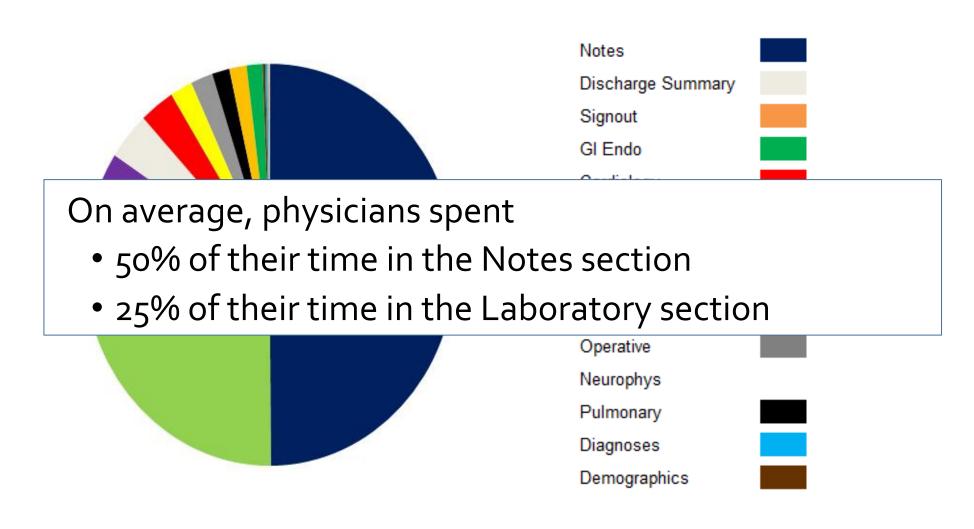
How clinicians summarize patient information



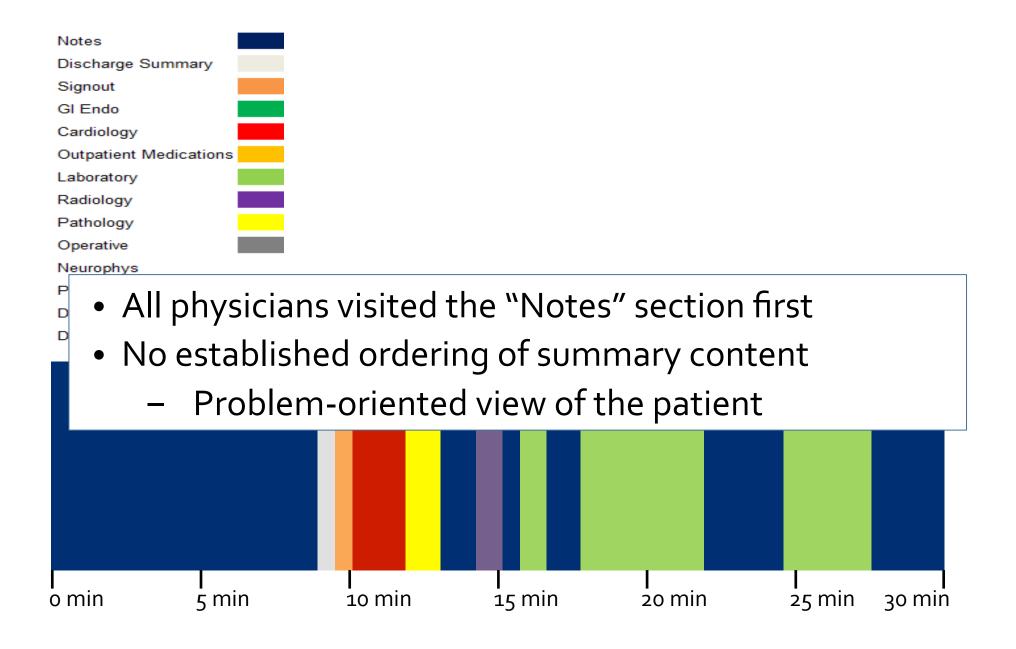


How clinicians summarize patient information

Average time in each section of the EHR



How clinicians summarize patient information



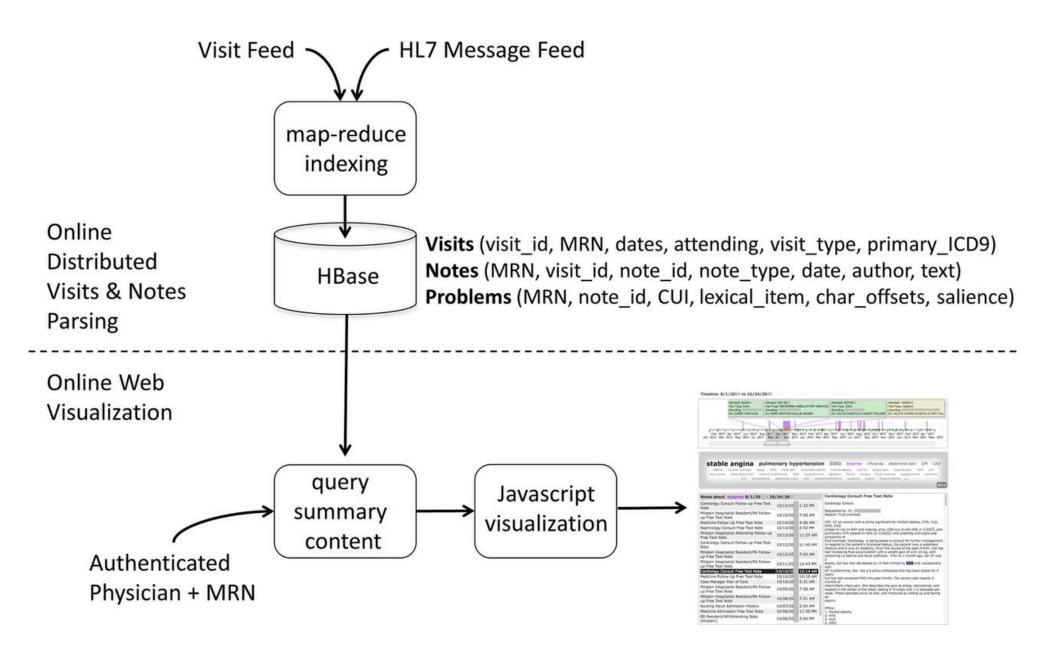
Functionality wish list for an EHR summarizer

- Aggregate information from the whole record
- But allow for zooming in and out of particular parts of the record
- Use notes as primary content selection source
- Facilitate finding supporting evidence in documentation
- Be problem oriented
- Be interactive
- Update in "real time"

HARVEST

- Extracts content from a patient's longitudinal documentation
- Aggregates information from multiple care settings
- Visualizes content through a timeline of a patient's problem documentation and clinical encounters
- Distributed computing infrastructure
- Deployed at NewYork-Presbyterian hospital
- local harvest

HARVEST



Natural language processing of clinical documentation

- Extract problems mentioned in all the notes of a record
 - Conditions, as well as signs and symptoms
- Compute salience of problem documentation for a given time frame in a patient record
- Challenges
 - Robust processing across all note types
 - Identify and merge problems that are semantically similar
 - Handle redundancy within longitudinal record

Pivovarov & Elhadad (2012) A hybrid knowledge-based and data-driven approach to identifying semantically similar concepts. J Biomed Inform.

Cohen et al (2013) Redundancy in electronic health record corpora: analysis, impact on text mining performance, and mitigation strategies. BMC Bioinform.

Cohen et al (2014) Redundancy-Aware Latent Dirichlet Allocation for Patient Record Notes. PloS ONE.

Hirsch et al (2014) HARVEST, a longitudinal patient record summarizer. J Am Med Inform Assoc.

Natural language processing of clinical documentation

- Distributed infrastructure
 - 650,000 notes/month avg. are authored at NYP
 - 20,000 notes/second parsing and indexing (compared to 500 notes/second in a non-distributed infrastructure)

Use cases

- "What's the story?"
 - ED visit
 - Hospital admission
 - Walk-in at clinic
- Quality indicators
 - 2-hour on average per patient
 - HARVEST use shortens chart review by 20 mins on average (log analysis) and increases confidence of abstraction (survey)
- Researchers and trial coordinators
- Education

Next steps

- How to handle
 - Not mentions in documentation, but actual presence of a condition, based on all EHR observations
 - Conditions not diagnosed yet, but documentation supports their presence
- Need a mechanism to describe the presence of a disease for any time slice of a patient record

Disease modeling

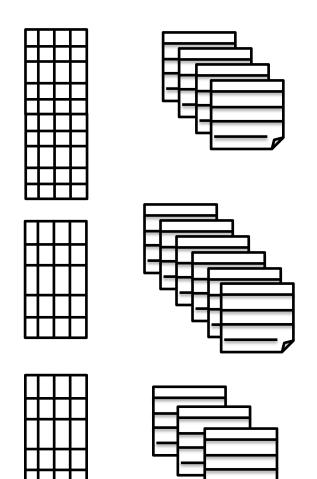
- Isn't there a list of problems somewhere in the EHR we can look up?
 - There are manually curated problem lists, but not guarantee they are filled or maintained by clinicians
 - Doesn't handle yet-to-be diagnosed conditions
- Couldn't we ask clinicians to describe each disease as a set of patient characteristics and go from there?
 - eMERGE PheKB
 - 42 diseases phenotyped so far

Phenotyping wish list

- Portable across institutions
- Data-Driven
- Not expert intensive
- Probabilistic
- Robust to very large datasets
- Robust to many diseases (up to 1000)
- Robust to many patients

Large-scale, probabilistic phenotyping

Patient Records Structured and Unstructured



Learned Probabilistic phenotypes

Diabetes Mellitus
Congestive Heart Failure
Depressive Disorder
Joint Disorder
Lupus

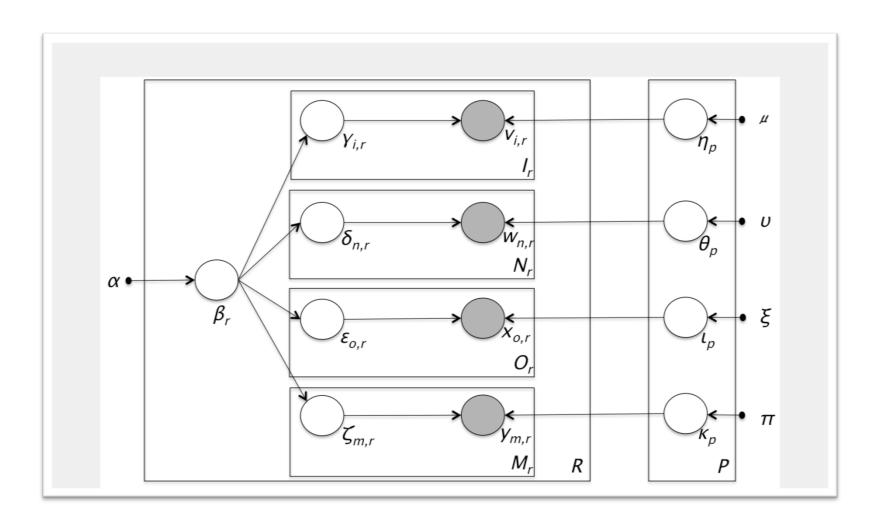
Chronic Kidney Disease

Breast Cancer Colon Cancer Asthma Hyperlipidemia

. . .

Inference mechanism

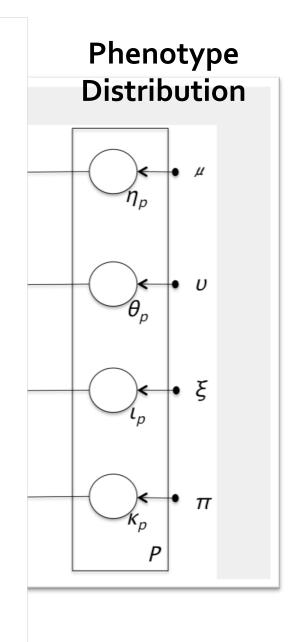
Uphenome (unsupervised)



Uphenome (unsupervised)

Patient phenome

Uphenome (unsupervised)



Experimental Data

Can we learn phenotypes across institutions and care settings?

	MIMIC - ICU Total / Unique	NYPH - Outpatient Total / Unique
Patients	18,697 / 18,697	9,828 / 9,828
Words	13,086,278 /12,919	13,494,149 /13,158
Medications	1,044,541 / 855	9,978 / 273
Lab Tests	7,499,446 / 309	351,992 / 300
Diagnoses	159,740 / 985	177,420 / 931

Experiments

- How good are the learned phenotypes
 - Physician-rated phenotype coherence
 - Physician-rated phenotype granularity
 - Physician-rated phenotype comparison to baseline (LDA-all)
- How ell does the model infer phenotypes for unseen patients
 - Compare learned phenotypes to gold-standard annotations in notes

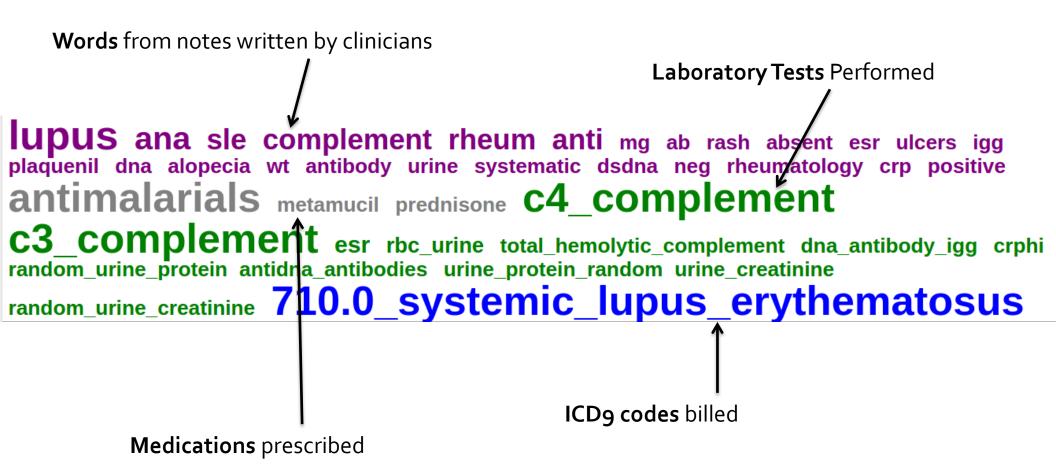
Experimental setup

80% of data used for training set, 20% for test set

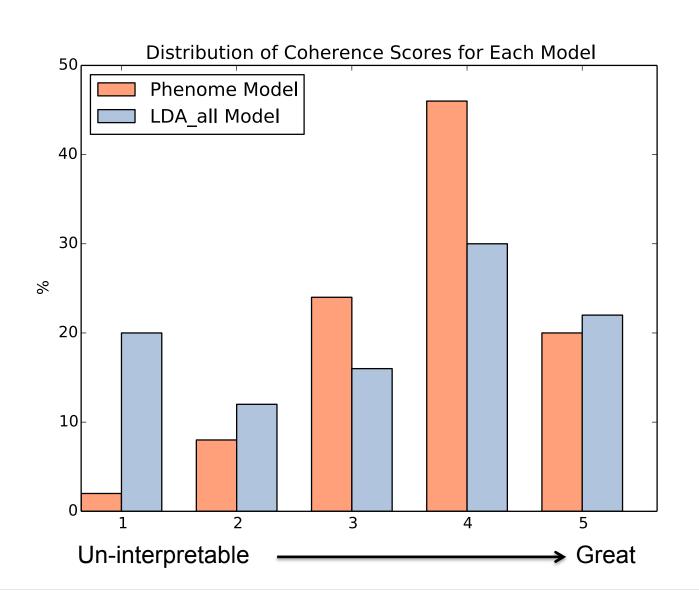
Parameters

- -P=250
- $-\alpha = 0.1$
- $-\mu, \nu, \xi, \pi = 0.1$
- # training Gibbs sampling iterations = 7,000
- # testing Gibbs sampling iterations = 1,000

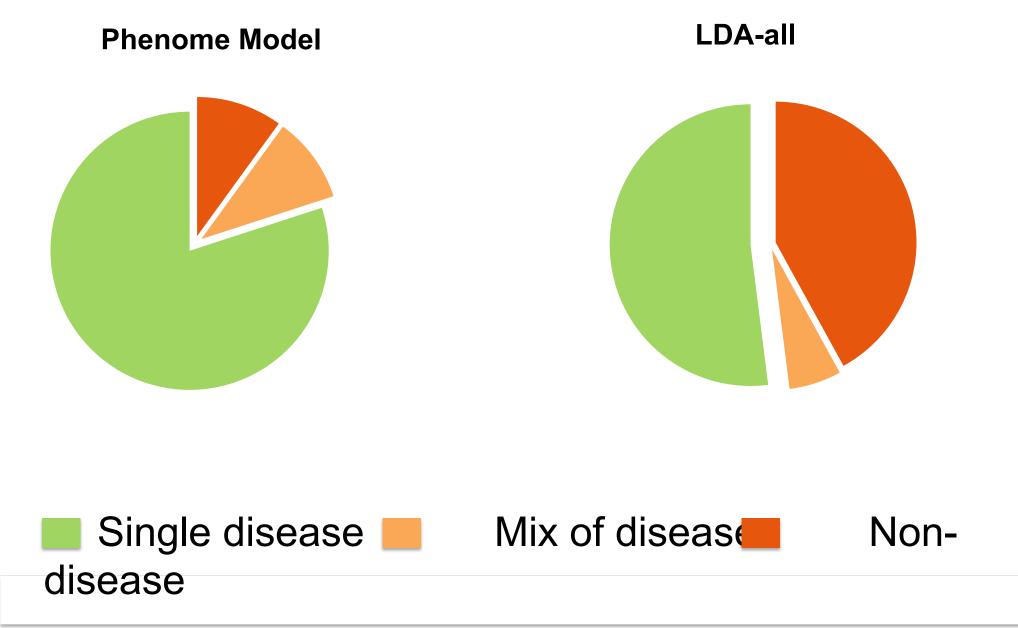
Phenotype example



Results – coherence



Results – granularity



Results – comparison to baseline

anemia iron chronic iron transferrin ctibc ferritin deficiency discharge admission negative outpatient studies low folate likely disease ferrous-sulfate sulfate trf vitamin-b12 caltibc folate ferrous ret-aut vitamin one history ferritin secondary ferritin follow baseline patient guaiac primary due also stable

anemia ferrous-sulfate iron 280.9-iron-deficiency-anemia transferrin ctibc iron ferritin 285.9-

anemia-unspecified 285.29-anemia-of-other-chronic-illness chronic vitamin-b12 heparin-sodium folate cyanocobalamin discharge low trf deficiency outpatient one caltibc ret-aut likely multivitamins studies magnesium-oxide folate pantoprazole admission history follow disease levofloxacin ferritn negative due sulfate secondary hospital

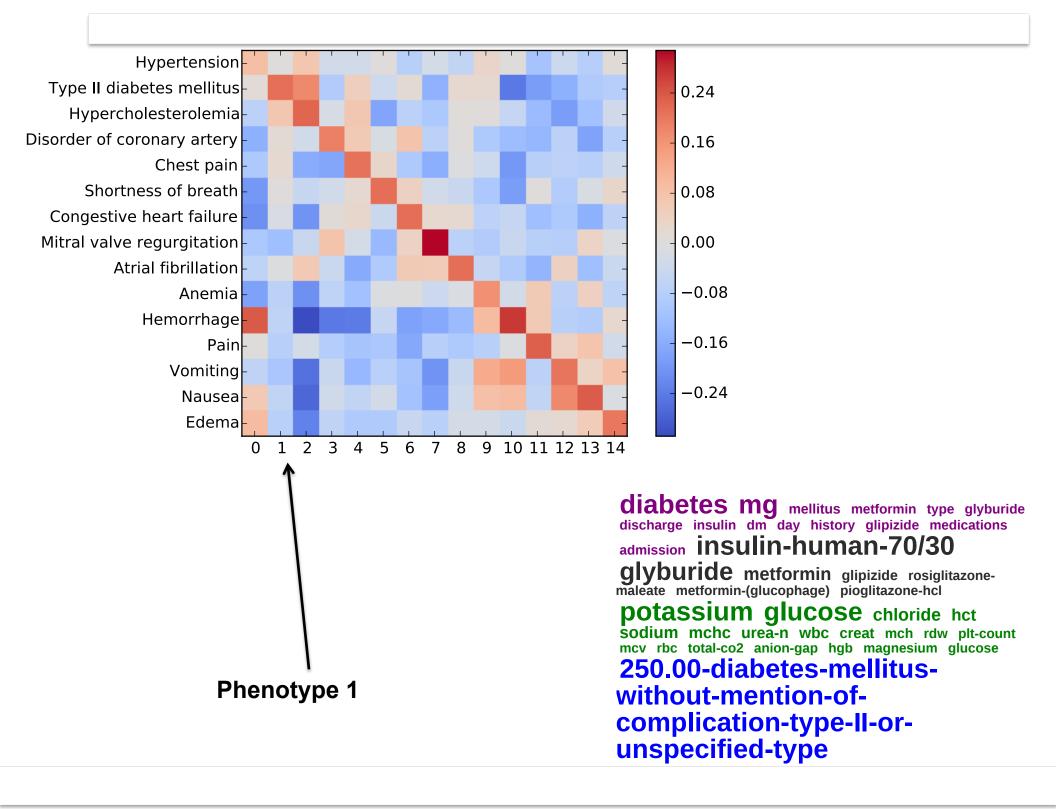
80.4 %
of the time,
the Phenome
model was
preferred

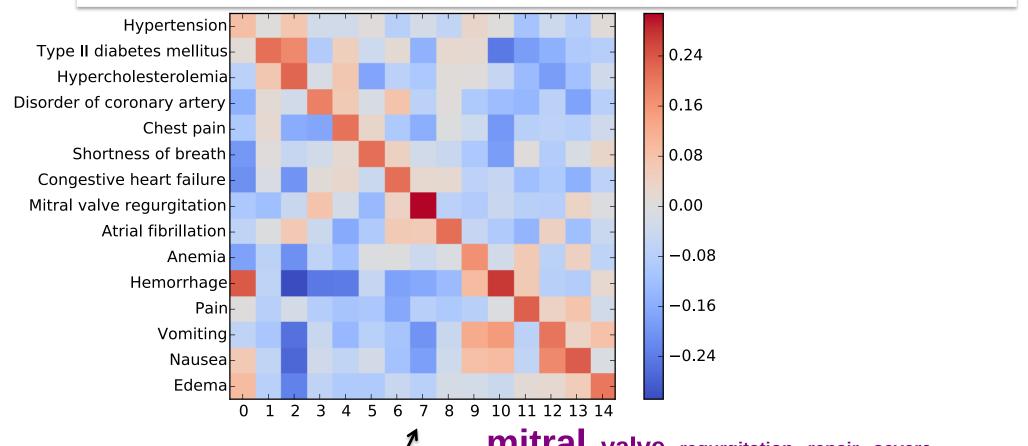
Results – inference on unseen patients

Disorders that appear in a patient record (assigned to patient, not negated, not generic)

VS.

Phenotypes that are inferred for that patient





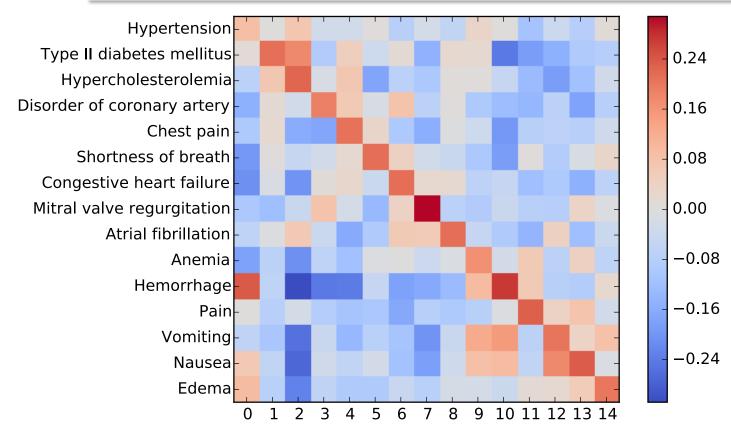
Phenotype 7

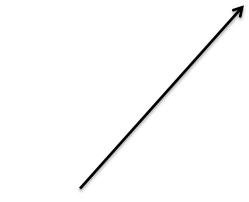
mitral valve regurgitation repair severe

replacement mvr moderate tricuspid furosemide potassium-chloride warfarin heparin-**SOdium** docusate-sodium acetaminophen epinephrine magnesium-sulfate milrinone potassium hct hgb glucose sodium inr-pt plt-count creat mch magnesium ptt rdw mchc pt urea-n mcv rbc total-co2

wbc chloride 424.0-mitral-valve-

disorders 398.91-rheumatic-heart-failure-congestive 397.0-diseases of tricuspid-valve





Phenotype 10

extended phenytoin glucose potassium mchc anion-gap inr-pt total-co2 ptt sodium chloride plt-count pt calcium rbc wbc creat rdw hgb mcv phosphate mch E888.9-unspecified-accidental-fall 852.20-subdural-hemorrhage-following-injury E880.9-accidental-fall-on-or-from-other-stairs-or-steps 852.21-subdural-hemorrhage-following-injury E885.9-accidental-fall-from-other-tripping-or-stumbling 432.1-subdural-hemorrhage 801.26-closed-fracture-of-base-skull-with-subarachnoid-subdural-extradural-hemorrhage 852.00-

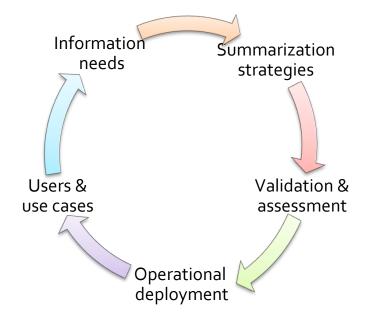
subarachnoid-hemorrhage-following-injury

ct subdural head hematoma right left hemorrhage frontal neurosurgery subarachnoid

phenytoin-sodium phenytoin-sodium-

Conclusions

- Disease modeling
 - Leveraging heterogeneous data helps, but need for appropriate models
- EHR summarization
 - Robust NLP of underlying data
 - Information visualization
 - Computing infrastructure to enable operational summarization
- Virtuous circle



Thank you!

people.dbmi.columbia.edu/noemie/phenosum

National Library of Medicine Ro1 LMo10027 National Science Foundation award #1344668