METHODS FOR IDENTIFYING PUBLIC HEALTH TRENDS

Mark Dredze

Department of Computer Science Johns Hopkins University

disease surveillance

self medicating

vaccination

PUBLIC HEALTH

The prevention of disease, prolonging of life and promotion of health

education

tobacco use

drug use

PUBLIC HEALTH CYCLE

Surveillance

REQUIRES: DATA ON THE POPULATION

Population

Intervention

Doctors

WEB DATA

PUBLIC HEALTH CYCLE

Surveillance

Population

Intervention

Doctors

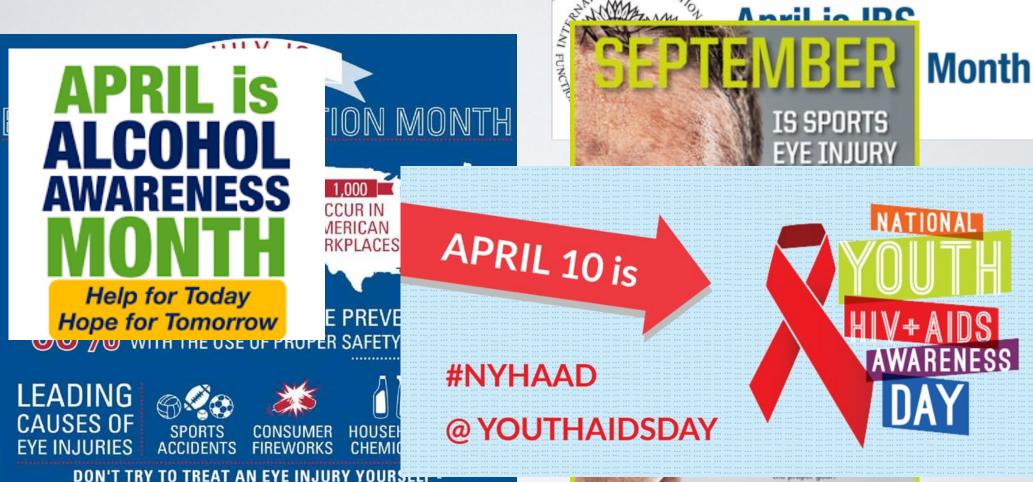
PUBLIC HEALTH CYCLE

Surveillance

Find health trends

- Examples from public health
- Methods from computer science

PUBLIC AWARENESS



DUN I INT IU INEAI AN ETE INJUNT TUUNSE

contact your eye doctor or emergency room immediately for help.

Image Credit: slideshare.net

DO AWARENESS CAMPAIGNS WORK?

HOW MANY PEOPLE QUIT SMOKING?

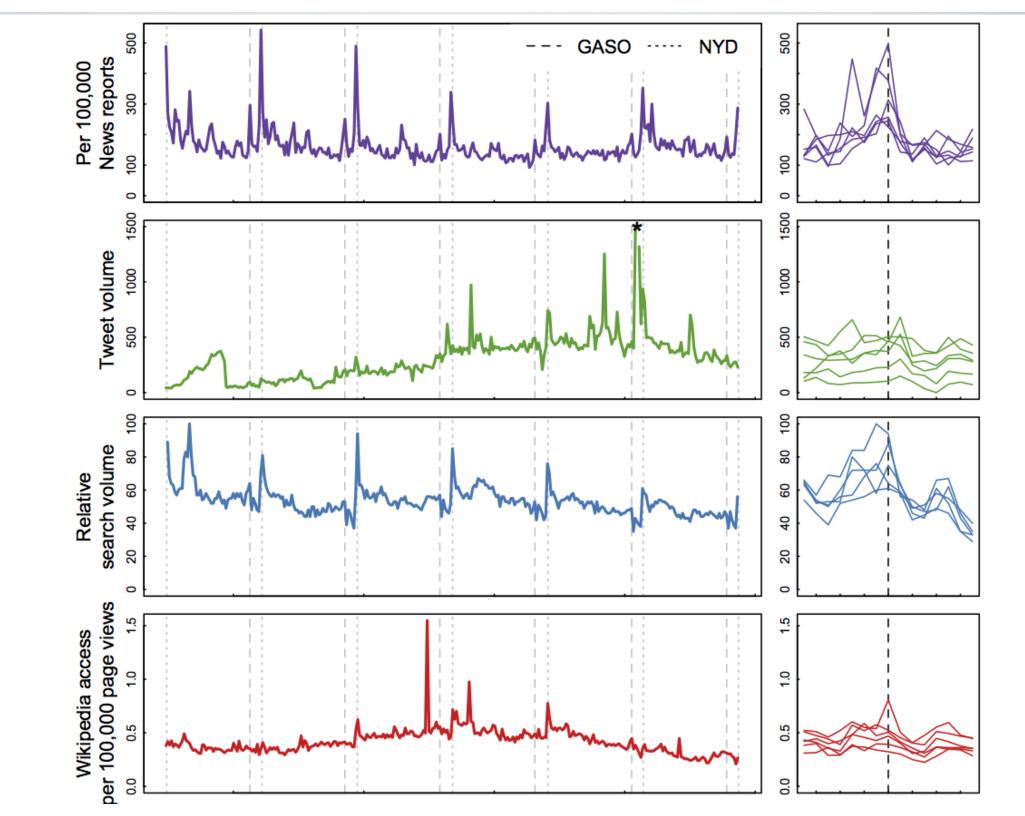
MEASURE ONLINE BEHAVIOR

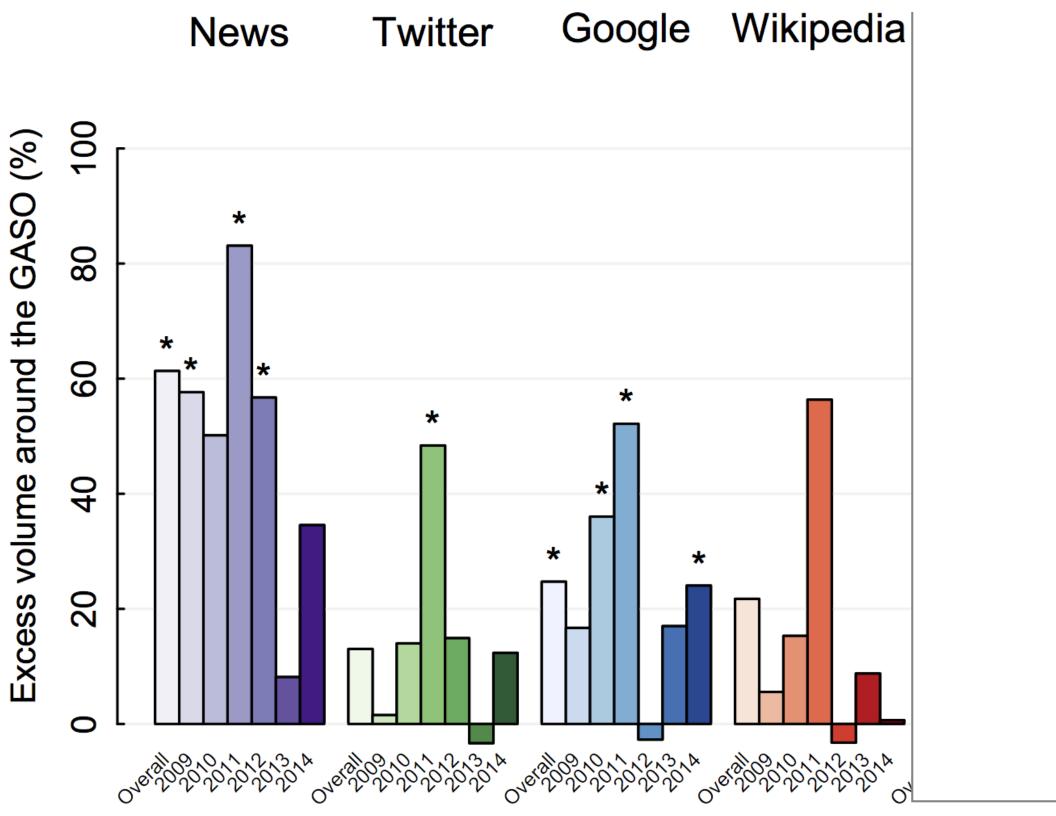
- Media covers awareness event
- People go online to find information about tobacco cessation
- Use these digital signals to quantify impact of GASO

ONLINE DATA SOURCES

- News articles
- Social media: Twitter
- Google searches
- Wikipedia page views

Google Trends





AWARENESS EVENTS

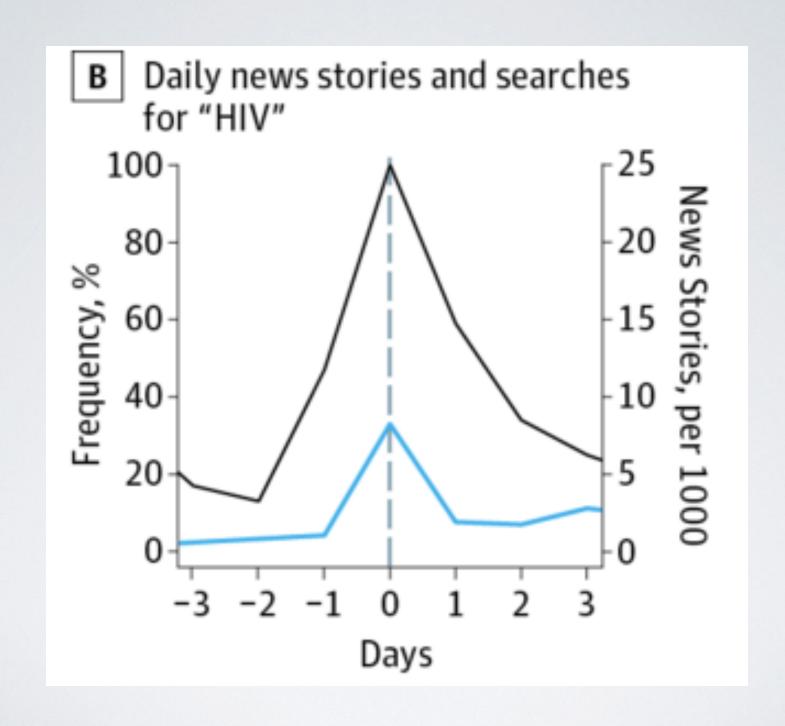
Not all awareness events are planned

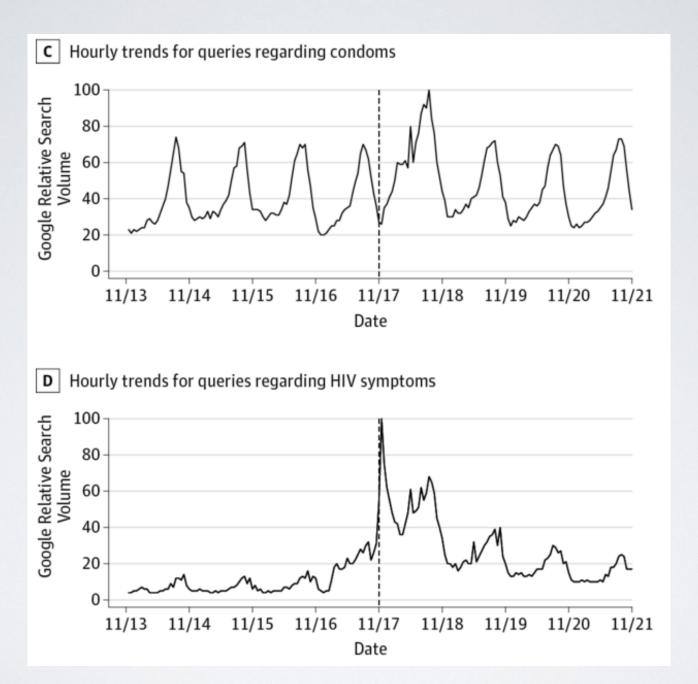
HIV PUBLIC HEALTH STRATEGY

GET TESTED!

ONLINE DATA SOURCES

- News articles (Bloomberg Terminal)
 - Sheen and HIV
- Google searches
 - Searches for HIV, condom, symptom, testing





Brazilians not buying Zika excuse for babies with shrunken brains

January 25, 2016

theunhivedmind

Leave a comment

Jan 25 2016

http://82.221.129.208/ifyouareinamericayouprobablycantseethisj9.html Jim Stone

Brazilians not buying Zika excuse for babies with shrunken brains

Over 4,000 babies have now been born in Brazil with shrunken brains since November 1 2015. Brazil normally gets approximately 150 cases of this type of birth defect per year, which means that if this all happened in less than a three month time window, abnormal births of this type have increased by approximately 13,000 percent. HERE IS A KEY REPORT

Se

and the same

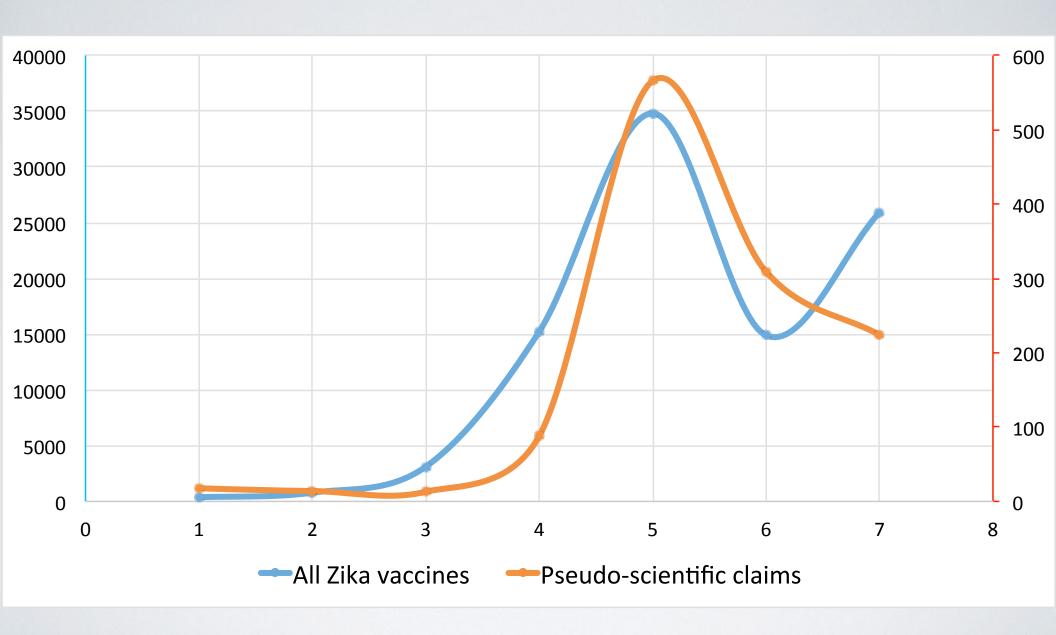
M

4

11

PSEUDO SCIENTIFIC BELIEFS

- "GMO Mosquitos are the cause of the zika virus."
- "#Zika may help accelerate Sterilization in the US, and with the use of GMO Mosquitoes sterility will be delivered to you, #Depopulation#NATO"
- 0.1 babies had zika, 100% had DTAP given to mother during pregancy? Wonder which caused this?
- Factors:Those pregnant women were #Vaxxed=dtap,GMO mozzies released,pesticides put in drinking water so blame #Zika



- Examples from public health
- Methods from computer science

TREND IDENTIFICATION

- · Identify health trends in social media
 - Organize data into themes or topics
 - Identify patterns in topics over time, location, subpopulation

APPROACH

- Topic modeling for Twitter
 - · Probabilistic models of text, e.g. latent Dirichlet allocation
 - Identify major themes in corpus
 - Yields human interpretable topics
 - Identify/correlate topics with survey responses
 - Unsupervised: no tweet level supervision

SUPERVISION OF TOPIC MODELS

- Standard topic models: unsupervised
- Supervised LDA: Document labels
- What do we have?
 - Supervision on aggregated documents
 - e.g. 60% of people in this location think X

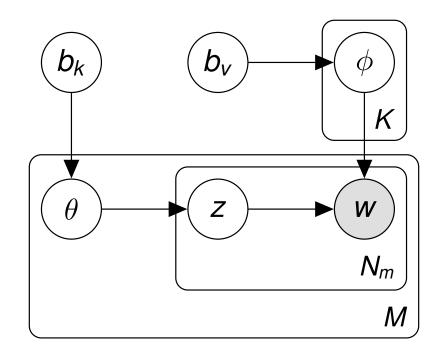
COLLECTIVE SUPERVISION

- · Train models at the document level to make predictions at the population level
- Data
 - Telephone survey results
 - Prediction: estimating survey values for populations from social media features
 - Topic models can learn low-dimensional, generalizable features that can be used in predictive models
 - Analysis: Topic models are interpretable: we can better understand trends by viewing topics

APPROACH

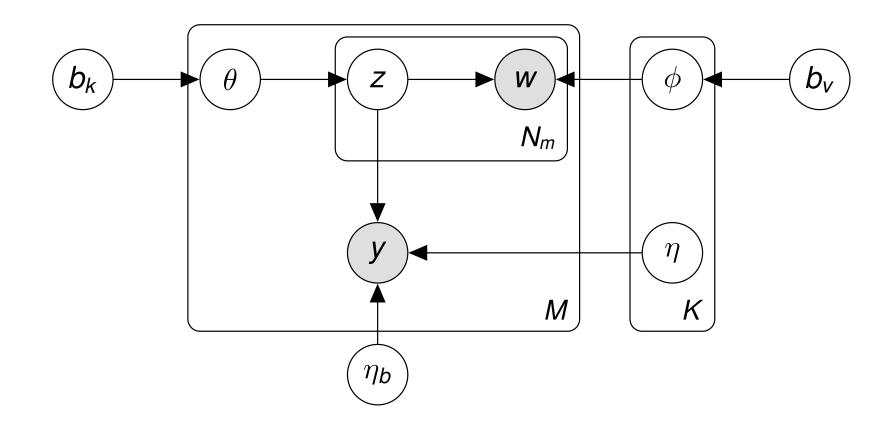
- Modify topic models to incorporate collective supervision
- · Extend different types of topic models in different ways, and compare
- Evaluate effectiveness at predicting public health telephone surveys

Latent Dirichlet Allocation (LDA)



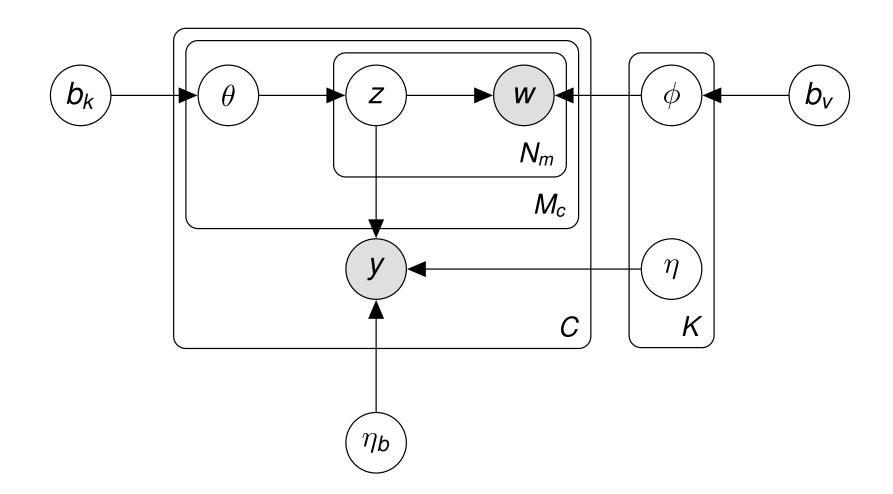
- $\tilde{\theta}_{mk} = \exp(b_k)$; $\theta_m \sim \text{Dirichlet}(\tilde{\theta}_m)$
- $\tilde{\phi}_{kv} = \exp(b_v)$; $\phi_k \sim \text{Dirichlet}(\tilde{\phi}_k)$
- $z_{mn} \sim \theta_m$; $w_{mn} \sim \phi_{z_{mn}}$

Supervised LDA (Downstream-sLDA)



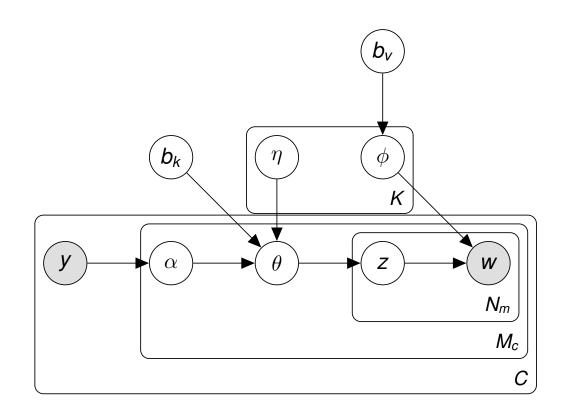
- Supervised LDA (sLDA) [2]
- \overline{z}_{mk} is the average proportion of topic k in document m
- $y_m \sim \mathcal{N}(\eta_b + \eta^T \overline{z}_m, \sigma_y^2)$

Collectively Supervised LDA (Downstream-collective)



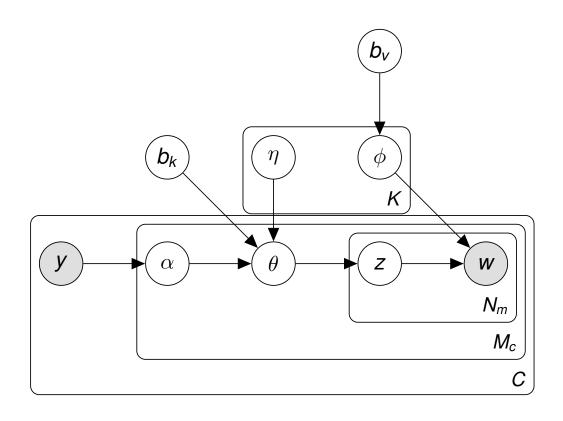
- Let \overline{z}_{jk} be the average proportion of topic k in collection j
- $y_j \sim \mathcal{N}(\eta_b + \eta^T \overline{z}_j, \sigma_y^2)$
- Supervised LDA is a special case of this, where each document has its own unique collection ID

Dirichlet Multinomial Regression (Upstream)



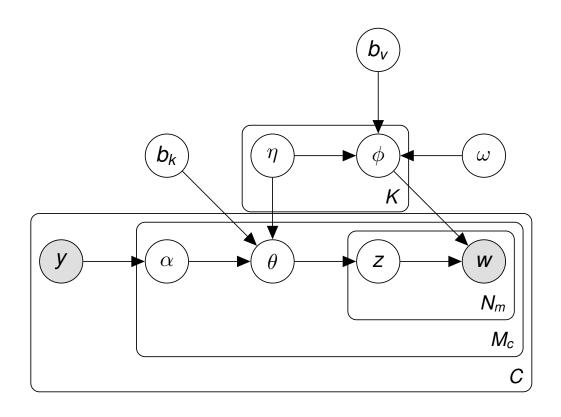
- Dirichlet-multinomial regression (DMR) [3]
- $\alpha_m = y_{c_m}$, feature value associated with document's collection c_m
- $\tilde{\theta}_{mk} = \exp(b_k + \alpha_m \eta_k)$; $\theta_m \sim \text{Dirichlet}(\tilde{\theta}_m)$
- $\tilde{\phi}_{kv} = \exp(b_v)$; $\phi_k \sim \text{Dirichlet}(\tilde{\phi}_k)$

DMR with adaptive supervision (Upstream-ada)



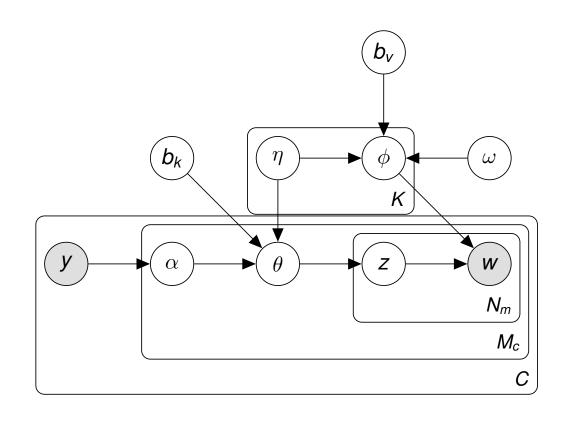
- $\alpha_m \sim \mathcal{N}(y_{c_m}, \sigma_\alpha^2)$ $\tilde{\theta}_{mk} = \exp(b_k + \alpha_m \eta_k)$
- $\tilde{\phi}_{kv} = \exp(b_v)$; $\phi_k \sim \text{Dirichlet}(\tilde{\phi}_k)$
- Document value can deviate from given input can help infer likely values when supervision is noisy or missing.

DMR with word priors (Upstream-words)



- \bullet $\alpha_m = y_{c_m}$
- $\bullet \ \tilde{\theta}_{mk} = \exp(b_k + \alpha_m \eta_k)$
- $\bullet \ \tilde{\phi}_{kv} = \exp(b_v + \omega_v \eta_k)$
- Supervision affects priors over words. Extension to DMR known as Sprite [7].

DMR + adaptive + word prior (Upstream-ada-words)



- Combined upstream model
- $\alpha_{m} \sim \mathcal{N}(\mathbf{y}_{c_{m}}, \sigma_{\alpha})$
- $\tilde{\theta}_{mk} = \exp(b_k + \alpha_m \eta_k)$
- $\bullet \ \tilde{\phi}_{kv} = \exp(b_v + \omega_v \eta_k)$

Surveys

- Behavioral Risk Factor Surveillance System: annual survey by US federal government to learn about health/behavior of population.
- We selected three questions from BRFSS phone surveys:
 - Guns: Do you have a firearm in your house? (2001)
 - Vaccines: Have you had a flu shot in the past year? (2013)
 - Smoking: Are you a current smoker? (2013)
- Survey responses are aggregated at the level of US state.

Twitter Data

Dataset	Vocab	BRFSS
Guns	12,358	Owns firearm
Vaccines	13,451	Had flu shot
Smoking	13,394	Current smoker

- 100,000 tweets per dataset (filtered by relevant keywords)
 - collected between Dec. 2012 Jan. 2015
- Identified as English using langid
 https://github.com/saffsd/langid.py
- Stopwords removed and low-frequency tokens excluded
- Location inferred using Carmen
 https://github.com/mdredze/carmen-python

Supervision

For each dataset:

- Each collection is defined as the set of tweets per US state
 - 50 collections
- Each collection's y_c value is the proportion respondents answering "Yes" to the BRFSS question

Predicting survey values:

- L2-regularized linear regression model
- Features: mean topic distributions θ per collection

Experiment Details

- Lots of hyperparameters selected hyperparameters that maximized perplexity on heldout sample
- Optimized each model using Spearmint:
 https://github.com/JasperSnoek/spearmint
- Fit models using Gibbs sampling with AdaGrad for parameter (η) optimization
- Prediction task tuned with 5-fold cross validation: 80% train, 10% dev, 10% test.

Results

Features	Model	Guns		Vaccines		Smoking	
		RMSE	Perplexity	RMSE	Perplexity	RMSE	Perplexity
None	LDA	17.44	2313 (±52)	8.67	2524 (±20)	4.50	2118 (±5)
Survey	Upstream	15.37	1529 (±12)	6.54	1552 (±11)	3.41	1375 (±6)
	Upstream-words	11.50	1429 (±22)	6.37	1511 (±57)	3.41	1374 (\pm 2)
	Upstream-ada	11.48	1506 (\pm 67)	5.82	1493 (±49)	3.41	1348 (± 6)
	Upstream-ada-words	11.47	1535 (\pm 28)	7.20	1577 (\pm 15)	3.40	1375 (\pm 3)
	Downstream-sLDA	11.52	1561 (±22)	11.22	1684 (± 7)	3.95	1412 (\pm 3)
	Downstream-collective	12.81	1573 (±20)	9.17	1684 (±6)	4.35	1412 (\pm 4)

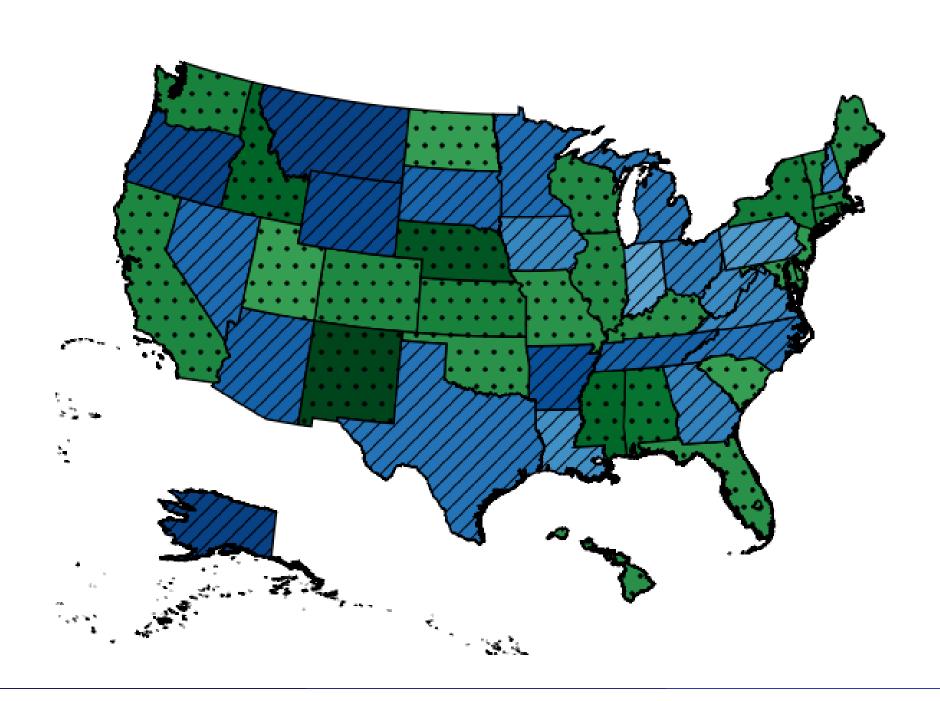
Use Case – Support for Universal Background Checks

- UBCs were a big US political issue in 2013, when national gun control legislation was floated
- We collected surveys on support for UBCs for 22 states from various polls (mostly Public Policy Polling)
- Baseline: use older 2001 survey of proportion households containing a firearm

Use Case - Support for Universal Background Checks

Features	Model	RMSE (2001 Y included)	RMSE (2001 Y omitted)
None	No model	7.26	7.59
	Bag of words	5.16	7.31
	LDA	6.40	7.59
Survey	Upstream-ada-words	5.11	5.48

Use Case - Support for Universal Background Checks



mdredze@cs.jhu.edu

John Ayers
David Broniatowski
Michael Paul
Adrian Benton
Michael Smith
Glen Coppersmith
Craig Harman

www.dredze.com

Ben Althouse Morgan Johnson Jon-Patrick Allem Matt Childers Karen Hilyard Angie Chen