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1 Single Keyword, Multiple Slots

There are m positions to be allocated among n bidders, where n > m. We assume that the
(expected) click-through rate of bidder i in position j is of the form αiγj , i.e. separable into an
advertiser effect αi ∈ [0, 1] and position effect γj ∈ [0, 1]. We assume that γ1 > γ2 > . . . > γk > 0
and let γj = 0 for j > k. We will sometimes refer to αi as the relevance of bidder i. It is useful to
interpret γj as the probability that an ad in position j will be noticed, and αi as the probability
that it will be clicked on if noticed.

Bidder i has value vi for each click. Bidders have quasi-linear utility, so that the utility to
bidder i of obtaining position j at a price of p per click is

αiγj(vi − p).

The auctioneer observes the advertiser effects, but the bidders’ values remain private.
A weight wi is associated with agent i, and agents bid for position. If agent i bids bi, his

corresponding reported score, or simply his score, is si = wibi. His true score is ri = wivi. Agents
are ranked by score, so that the agent with highest score is ranked first, and so on. Note that
the weights may depend on the advertiser effects, but not on the bidder values, because the latter
remain unobservable. We also disallow weights that depend on the agent bids.

Throughout, agents are numbered such that agent i obtains position i, unless mentioned oth-
erwise. An agent pays per click the lowest bid necessary to retain his position, so that the agent in
position j pays wj+1

wj
bj+1. We refer to this payment rule as “second pricing.”

2 Incentives

2.1 Dominant Strategies

The second-price payment rule is reminiscent of the second-price (Vickrey) auction used for selling
a single item. Recall that in a Vickrey auction it is a dominant strategy for a bidder to reveal his
true value for the item [18]. However, using a second-price rule in a position auction does not yield
an incentive-compatible mechanism, either in dominant strategies or ex post Nash equilibrium.1

1Unless of course there is only a single position available, since this is the single-item case. With a single position
and a second-price payment rule, a position auction is dominant-strategy incentive-compatible for any weighting
scheme.
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With a second-price rule there is no incentive for a bidder to bid higher than his true value per
click: this either leads to no change in the outcome, or a situation in which he will have to pay
more than his value per click for each click received, resulting in a negative payoff. However, there
may be an incentive to shade true values with second pricing.

Claim 1 With second pricing and m ≥ 2, truthful bidding is not a dominant strategy nor an ex
post Nash equilibrium in a position auction.

Example. There are two agents and two positions. The advertiser effects are α1 = α2 = 1 whereas
the position effects are γ1 = 1 and γ2 = 1/2. Agent 1 has a value of v1 = 6/w1 per click, and agent
2 has a value of v2 = 4/w2 per click (recall that weights cannot depend on bidder values). Suppose
agent 2 bids truthfully. If agent 1 also bids truthfully, he wins the first position and obtains a
payoff of 6/w1 − 4/w1 = 2/w1. However, if he shades his bid below 4/w1, he obtains the second
position at a cost of 0 per click yielding a payoff of 1

2(6/w1 − 0) = 3/w1. Hence truthful bidding is
not a dominant strategy, and neither is it an ex post Nash equilibrium.

Given that second pricing is not strategy-proof, we may ask whether there exists a payment
rule that, together with a given weighting scheme, makes it a dominant strategy for the agents to
bid their true values. To answer this question, we need to temporarily augment the notation just
introduced to cast the problem in the framework of mechanism design. Agent i’s value is his type,
and we denote it by ti rather than vi. Each agent has a value function parametrized by its type,
which gives the utility derived from a position before any payments are issued:

vi(j; ti) = αiγjti.

Agent i’s utility for position j at a total price of q (price per click times clickthrough rate), now
parametrized by type, is again quasi-linear:

ui(j, p; tj) = vi(j; ti)− q.

Let zi(b) be the position allocated to i when the vector of bids is b = (bi)i∈N , and similarly let pi(b)
be agent i’s total payment.

Holmstrom’s Lemma [7] gives a necessary condition on the structure of the payment rule p if
we wish to implement allocation rule z in dominant strategies. Under the restriction that a bidder
with value 0 per click does not pay anything, the lemma states that there is a unique candidate
payment rule that achieves dominant-strategy incentive compatibility for a given allocation rule.
Let Vi(ti, b−i) be agent i’s full information maximum value when the others are bidding b−i and his
own value per click is ti:

Vi(ti, b−i) = max
bi≥0

ui(zi(b), pi(b); ti).

The following version of Holmstrom’s lemma is provided in Milgrom [13], who shows that it is a
consequence of a variant of the envelope theorem [14].

Lemma 1 Suppose vi is continuously differentiable in type. If truthful reporting is a dominant
strategy for agent i, his payment must satisfy

pi(bi, b−i) = −Vi(0, b−i) + vi(z(bi, b−i); bi)−
∫ bi

0

∂vi
∂ti

(z(τ, b−i), τ) dτ. (1)
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To apply this lemma, we split the interval of integration into Ij =
[
wj+1bj+1

wi
,
wjbj
wi

]
for i ≤ j ≤ N .

For τ ∈ Ij , we have
∂vi
∂ti

(z(τ, b−i), τ) = αiγj ,

and hence ∫
Ij

∂vi
∂ti

(z(τ, b−i), τ) dτ = αiγj

(
wjbj
wi
− wj+1bj+1

wi

)
Noting that Vi(0, b−i) = 0 and vi(z(bi, b−i), bi) = αiγibi, equation (1) then evaluates to

pi(bi, b−i) = αiγibi −
n−1∑
j=i

αiγj

(
wjbj
wi
− wj+1bj+1

wi

)
− αiγn

(
wnbn
wi

)

=
n∑

j=i+1

(αiγj−1 − αiγj)
wjbj
wi

(2)

This is the total payment that should be charged. To reduce this to a payment per click, simply
divide by αiγi. When the allocation rule z and the utility Vi(0, b−i) to the lowest possible type
are fixed as in our scenario, Lemma 1 uniquely determines the payment rule that could yield
truthfulness. In this case, the payment rule does indeed align each agent’s incentives with the
auctioneer’s objective, which gives us strategyproofness; see Aggarwal et al. [1].

Lahaie [10] applied Holmstrom’s lemma to derive the strategyproof payment rules for models
of Yahoo and Google’s position auctions, which coincide with the special cases where wi = 1 and
wi = αi, respectively. Iyengar and Kumar [8] independently derived these rules using similar
techniques. Aggarwal et al. [1] derived payment rule (2) and confirmed uniqueness from first
principles, which gives some economic insight into why the rule works.

Using payment rule (2), the auctioneer is aware of the true scores of the bidders (since they
reveal their values truthfully), and hence ranks them according to their true scores. We show
in Section 3 that ranking bidders in decreasing order of αivi is in fact efficient. Since the VCG
mechanism is the unique mechanism that is efficient, truthful, and ensures bidders with value 0 pay
nothing (by the Green-Laffont theorem [5]), the weighting scheme wi = αi and payment scheme (2)
constitute exactly the VCG mechanism.

In the VCG mechanism an agent pays the externality he imposes on others. To understand
payment (2) in this sense, note that when wi = αi, agent j’s payment is the added utility (due to
an increased clickthrough rate) that agents in positions j + 1 and lower would receive if they were
all to move up a position.

2.2 Nash Equilibrium

In typical position auctions such as those run by Yahoo and Google, bidders can adjust their bids
up or down at any time. As Börgers et al. [2], Edelman et al. [3], and Varian [17] have noted,
this can be viewed as a continuous-time process in which bidders constantly readjust their bids
to obtain the position that gives them the highest surplus. If the process stabilizes the result can
then be modeled as a Nash equilibrium in pure strategies of the static one-shot game of complete
information, since each bidder will be playing a best-response to the others’ bids.2

2We do not claim that bidders will actually learn each others’ private information, i.e. their true values and
clickthrough rates, just that for a stable set of bids there is a corresponding equilibrium of the complete information
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For the remainder of this section, we assume that there are as many positions as bidders.3 In a
Nash equilibrium, each agent prefers his own position to the others given the bids, so the following
inequalities must be satisfied:

πi = αiγi(ri − si+1) (i ∈ N) (3)
πi ≥ αiγj(ri − sj+1) (i ∈ N, j > i) (4)
πi ≥ αiγj(ri − sj) (i ∈ N, j < i) (5)

Here πi can be interpreted as the agent in position i’s weighted utility. Agent i’s weighted utility
for position j at price b per click is defined simply as wiui(j, b). Given the rules of the auction, for
the allocation where agent i gets position i to actually arise, we also need the following conditions:

si ≥ si+1 (1 ≤ i ≤ N − 1) (6)
si ≥ 0 (i ∈ N) (7)

We should also require πi ≥ 0 for individual rationality, because a bidder always has the option of
not participating in the auction, but this is in fact implied. For each bidder i we have

πi ≥ αiγn(ri − sn+1) = αiγnri ≥ 0

and so ri ≥ si+1, i.e. the price paid by an agent in equilibrium is never greater than his value.
We ask the following question: given an allocation of positions to bidders together with bidder

values, does there exist a vector of scores s such that inequalities (3)–(7) are satisfied? This gives
us an idea of the allocations that can arise in equilibrium. Indeed, Börgers et al. [2] show that there
can be a multitude of pure-strategy Nash equilibria in a position auction. The question can be
answered using linear programming methods to test for the feasibility of the inequalities (3)–(7).
Here we give some simple necessary conditions for the answer to be affirmative.

The following lemma shows that inequality (6) is not too restrictive.

Lemma 2 If (π, s) satisfy inequalities (3)–(5), there exists (π′, s′) that satisfy inequalities (3)–(6)
such that s′ ≤ s. Furthermore if (π, s) satisfy (7), then (π′, s′) satisfy (7).

Proof. Assume we have a vector (π, s) which satisfies inequalities (3)–(5) but not (6). Then there
is some i for which si < si+1. Construct a new vector (π, s′) identical to the original except with
s′i+1 = si. We now have s′i = s′i+1. An agent in position j > i sees the price of position i decrease
from si+1/wj to s′i+1/wj = si/wj , but this does not make i more preferred than j to this agent
because we have

πj ≥ γi−1(rj − si) ≥ γi(rj − si) = γi(rj − s′i+1)

(i.e. because the agent in position j did not originally prefer position i − 1 at price si/wj , he will
not prefer position i at price si/wj). A similar argument applies for agents in positions j < i.
Meanwhile, the agent in position i sees the price of its position go down, which only makes the
position more preferred. Hence, if we set π′i = αiγi(ri − s′i+1) and leave the remaining components
of π unchanged, inequalities (3)–(5) remain valid for (π′, s′). Repeating this process, we eventually

game.
3If there are more bidders than positions, we can add dummy positions with effects 0. If there are more positions

than bidders, we can add dummy bidders each with weight 1 and value 0 per click. The analyses then proceed
correctly.
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obtain a vector that satisfies inequalities (3)–(6). It is clear by construction that if the initial vector
is non-negative, the final vector is as well. �

We can now derive necessary conditions for equilibrium allocations.

Proposition 1 Taking π and s as the variables, inequalities (3)–(7) can be satisfied only if(
1− γi

γj+1

)
ri ≤ rj

for 1 ≤ j ≤ N − 2 and i ≥ j + 2.

Proof. We safely ignore inequalities (6) in light of Lemma 2. For simplicity, we can also redefine
πi as πi/αi and the αi drop out of the system of inequalities. By the Farkas lemma, the remaining
inequalities can be satisfied if and only if there is no vector x such that∑

i,j

(γjri)xij > 0

∑
i>j

γjxij +
∑
i<j

γj−1xij−1 ≤ 0 (j ∈ N) (8)

∑
j

xij ≤ 0 (i ∈ N) (9)

xij ≥ 0 (j 6= i)
xii free

Now consider the following inequality, where i > j.
γjri
γj
≤ γj−1rj−1

γj−1
+
γiri
γj

(10)

If the inequality does not hold, then setting xij = 1/γj , xj−1j−1 = −1/γj−1, xii = −1/γj , and
all other components of x to 0, we obtain a feasible solution with positive objective value. Hence
inequality (10) must hold for inequalities (3)–(7) to be satisfied. By a slight reindexing, inequali-
ties (10) for all i > j yield the statement of the theorem. �

Proposition 1 only gives necessary conditions for equilibrium allocations, not sufficient condi-
tions, so it cannot be used to prove the existence of a Nash equilibrium. A pure-strategy Nash
equilibrium exists in a position auction for any weighting scheme, but the proof of this fact is
deferred to the next section. The import of Proposition 1 is the restriction it gives on possible
equilibrium allocations; we apply the proposition in Section 3 to give a lower bound on equilibrium
efficiency.

2.3 Symmetric Equilibrium

Varian [17] introduced a refinement of the Nash equilibrium concept for position auctions which he
called “symmetric equilibrium.” Edelman et al. [3] independently introduced this refinement and
called it “locally envy-free equilibrium.” With a slight modification we can make the Nash equi-
librium inequalities above resemble those that arise in the assignment problem. In inequalities (5),
we replace sj by sj+1. For clarity of notation we let pi = si+1. A symmetric NE then satisfies

πi = αiγi(ri − pi) (i ∈ N) (11)
πi ≥ αiγj(ri − pj) (i ∈ N, j 6= i) (12)

5



Varian [17] shows that symmetric equilibrium is indeed a refinement of Nash equilibrium. To
confirm the existence of a symmetric (and hence Nash) equilibrium, we consider the following
linear program

min
π,p

∑
i πi/αi +

∑
j γjpj

s.t. πi ≥ αiγj(ri − pj) ∀i, j
πi ≥ 0 ∀i
pj ≥ 0 ∀j

The latter is the dual of the following program.

max
x

∑
i,j(γjri)xij

s.t.
∑

j xij ≤ 1 ∀i∑
i xij ≤ 1 ∀j
xij ≥ 0 ∀i, j

This is the linear programming formulation of a simple assignment problem which attempts to
maximize the sum of the agents’ scores, weighted by the position effects. It is well known that
such programs have an integer optimal solution [16], which in this case explicitly describes the
assignment of agents to positions. If x∗ is an optimal assigment, and (π∗, x∗) is an optimal dual
solution, then by complementary slackness we have

x∗ij = 1⇒ πi/αi = γjri − γjpj

In words, assignment x∗ and prices p∗ constitute a symmetric equilibrium. Since the primal is
obviously always feasible and bounded, the dual is as well, and there always exists a symmetric
equilibrium.

It is not hard to characterize the assignment that maximizes
∑

i,j(γjri)xij . Because γ1 > γ2 >
. . . > γk, it is optimal to rank agents in decreasing order of true scores, by standard results on
rearrangements (see Hardy et al. [6] and also Lahaie [10]).

Because the agents have unit-demand valuations, the set of dual solutions to the assignment
problem forms a convex lattice [16]. The maximal and minimal elements of this lattice are the
solutions that maximize and minimize the component

∑
j γjpj of the objective, respectively. The

maximal and minimal elements have simple closed-form expressions, namely the upper- and lower-
recursive solutions for symmetric equilibria given by Varian [17] and Edelman et al. [3]. The form
of the minimal element is particularly interesting:

n∑
j=i+1

αi(γj−1 − γj)
wjvj
wi

. (13)

(See Varian [17] or Lahaie and Pennock [11].) Note that payment (13) agrees exactly with (2). This
is, of course, not an accident: Leonard [12] has shown that the minimal CE prices in the assignment
problem coincide with Vickrey payments. The symmetric equilibrium concept states that agent
bids should constitute CE prices. Hence minimal symmetric equilibrium bids should coincide
with Vickrey payments, or, in the case of a position auction, the weighted equivalents of Vickrey
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payments, which are given by Holmstrom’s lemma. As a result, minimal symmetric equilibria
and strategy-proof position auctions are revenue-equivalent, a point first made by Aggarwal et
al. [1]. This observation will allow us to formulate the optimal position auction problem—where
the objective is to maximize revenue, as opposed to efficiency—as a mathematical program in
Section 4.

3 Efficiency

To maximize total value, we need to order the agents according to some permutation σ such that
the inner product of the vectors (ασ(j)vσ(j))j∈K and (γj)j∈K is maximized. As explained in the
previous section, standard results on rearrangements then state that it is efficient to order the
agents so that ασ(1)γ1vσ(1) ≥ . . . ≥ ασ(n)γnvσ(n).

When using the strategy-proof payment rule 2, agents reveal their true values and therefore are
ranked by true score. Hence, if we take wi = αi, the resulting equilibrium allocation is efficient.
This fact applies to the symmetric equilibrium concept as well, because we saw in the previous
section that in symmetric equilibirum, agents are ranked by true score.

According to Lemma 1, a ranking that results from a Nash equilibrium profile can only deviate
from the allocation where agents are ranked by true score by having agents with relatively similar
scores switch places. That is, if ri > rj , then agent j can be ranked higher than i only if the ratio
rj/ri is sufficiently large. This suggests that the value of an equilibrium allocation cannot differ
too much from the value obtained when agents are ranked by true score. The next result confirms
this.

We denote the total value of an allocation σ of positions to agents by f(σ) =
∑k

j=1 γjrσ(j). Let

L = min
j=1,...,k−1

min
{
γj+1

γj
, 1− γj+2

γj+1

}
(where by default γk+1 = 0). Let η be the permutation such that rη(1) ≥ . . . ≥ rη(k). Lahaie [10]
gives the following bound.

Proposition 2 For an allocation σ that results from a pure-strategy Nash equilibrium of a position
auction, we have f(σ) ≥ Lf(η).

Proof. We number the agents so that agent i has the ith highest revenue, so r1 ≥ r2 ≥ . . . ≥ rN .
Hence the standard allocation has value f(ηr) =

∑N
i=1 γiri. To prove the theorem, we will make

repeated use of the fact that
P

t atP
t bt
≥ mint at

bt
when the at and bt are positive. Note that according

to Proposition 1, if agent i lies at least two positions below position j, then rσ(j) ≥ ri
(

1− γj+2

γj+1

)
.

It may be the case that for some position i, we have σ(i) > i and for positions j > i + 1 we
have σ(j) > i. We then say that position i is inverted. Let S be the set of agents with indices at
least i + 1; there are n− i of these. If position i is inverted, it is occupied by some agent from S.
Also all positions strictly lower than i+ 1 must be occupied by the remaining agents from S, since
σ(j) > i for j ≥ i + 2. The agent in position i + 1 must then have an index σ(i + 1) ≤ i (note
this means position i + 1 cannot be inverted). Now there are two cases. In the first case we have
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σ(i) = i+ 1. Then

γirσ(i) + γi+1rσ(i+1)

γiri + γi+1ri+1
≥ γi+1ri + γiri+1

γiri + γi+1ri+1

≥ min
{
γi+1

γi
,
γi
γi+1

}
=

γi+1

γi

In the second case we have σ(i) > i+ 1. Then since all agents in S except the one in position i lie
strictly below position i+1, and the agent in position i is not agent i+1, it must be that agent i+1
is in a position strictly below position i+ 1. This means that it is at least two positions below the
agent that actually occupies position i, and by Proposition 1 we then have rσ(i) ≥ ri+1

(
1− γi+2

γi+1

)
.

Thus,

γirσ(i) + γi+1rσ(i+1)

γiri + γi+1ri+1
≥

γi+1ri + γirσ(i)

γiri + γi+1ri+1

≥ min
{
γi+1

γi
, 1− γi+2

γi+1

}
If position i is not inverted, then on one hand we may have σ(i) ≤ i, in which case rσ(i)/ri ≥ 1.

On the other hand we may have σ(i) > i but there is some agent with index j ≤ i that lies at least
two positions below position i. Then by Proposition 1, rσ(i) ≥ rj

(
1− γi+2

γi+1

)
≥ ri

(
1− γi+2

γi+1

)
.

We write i ∈ I if position i is inverted, and i 6∈ I if neither i nor i − 1 are inverted. By our
arguments above two consecutive positions cannot be inverted, so we can write

f(σ)
f(γr)

=

∑
i∈I
(
γirσ(i) + γi+1rσ(i+1)

)
+
∑

i 6∈I γirσ(i)∑
i∈I (γiri + γi+1ri+1) +

∑
i 6∈I γiri

≥ min
{

min
i∈I

{
γirσ(i) + γi+1rσ(i+1)

γiri + γi+1ri+1

}
,min
i 6∈I

{
γirσ(i)

γiri

}}
≥ L

and this completes the proof. �

For the common exponential decay model of γi = δ1−i for δ > 1, the factor becomes L =
min{1

δ , 1 −
1
δ}. Feng et al. [4] report that an exponential decay model with δ = 1.428 fits their

Overture click-through rate data well. In this case, L ≈ 1/3.34. Though being a factor of more
than 3 away from the efficient value may seem unacceptable, we stress that this is a worst-case
bound, and we would expect actual deviations to be much less than this in practice.

4 Revenue

Because multiple different allocations can arise in Nash equilibrium, it is difficult to give any
bounds on equilibrium revenue. With the refinement of symmetric equilibrium, however, much more
can be said. Here we provide a mathematical program whose solution gives the revenue-optimal
ranking rule for a position auction given a distribution over bidder values are relevance, assuming
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the minimal symmetric equilibrium is played. We focus on the minimal symmetric equilibrium,
because optimizing revenue for this selection optimizes a lower bound on revenue in any symmetric
equilibrium. The formulation also applies to dominant-strategy equilibrium revenue, because of the
revenue equivalence between the two solution concepts.

We are interested in setting the weights w to achieve optimal expected revenue. The setup is as
follows. The auctioneer chooses a function g so that the weighting scheme is wi ≡ g(αi). We do not
consider weights that also depend on the agents’ bids, because this would invalidate the equilibrium
analysis of Section 2.3.4 A pool of n bidders is then obtained by i.i.d. draws of value-relevance pairs,
where agent i’s type is drawn from the probability density fi(αi, vi). We assume the densities are
continuous and have full support on [0, 1]× [0,∞), and we denote their marginals by fαi and fvi for
relevance and value, respectively. The revenue to the auctioneer is then the revenue generated in
minimal symmetric equilibrium under weighting scheme w. This assumes the auctioneer is patient
enough not to care about revenue until bids have stabilized.

The problem of finding an optimal weighting scheme can be formulated as an optimization
problem very similar to the one derived by Myerson [15] for the single-item auction case (with
incomplete information). Let Qij(α, v;w) = 1 if agent i obtains position j in equilibrium under
weighting scheme w, where α = (αi)i∈N and v = (vi)i∈N are the realized relevance and value
vectors, and let it be 0 otherwise.

We parallel Krishna’s approach to the single-item optimal auction formulation (see chapter 5 of
Krishna [9]). Let qi(αi, vi;w) be the expected click-through rate that bidder i receives in minimal
symmetric equilibrium when his relevance is αi and his value vi, and the weighting scheme is w:

qi(αi, vi;w) =
∫

[0,1]n−1

∫
[0,∞]n−1

n∑
j=1

αiγjQij(αi, α−i, vi, v−i;w)f−i(α−i, v−i) dv−i dα−i

Recall from the discussion in Section 2.3 that the total payment of an agent in minimal sym-
metric equilibrium is the payment derived by the application of Holmstrom’s lemma in Section 2.1,
which is

n∑
j=1

αiγjviQij(αi, α−i, vi, v−i;w)−
∫ vi

0

n∑
j=1

αiγjQij(αi, α−i, τi, v−i;w) dτi.

The expected payment of agent i in minimal symmetric equilibrium is therefore

qi(αi, vi;w)vi −
∫ vi

0
qi(αi, τi;w) dτi.

The analysis now proceeds almost identically to the single-item case. The ex ante expected payment
of bidder i is

4The analysis does not generalize to weights that depend on bids. It is unclear whether an equilibrium would exist
at all with such weights.
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∫ 1

0

∫ ∞
0

(
qi(αi, vi;w)vi −

∫ vi

0
qi(αi, τi;w) dτi

)
fi(αi, vi) dvi dαi

=
∫ 1

0

∫ ∞
0

qi(αi, vi;w)vifi(αi, vi) dvi dαi −
∫ 1

0

∫ ∞
0

∫ vi

0
qi(αi, τi;w)fi(αi, vi) dτi dvi dαi

=
∫ 1

0

∫ ∞
0

qi(αi, vi;w)vifi(αi, vi) dvi dαi −
∫ 1

0

∫ ∞
0

∫ ∞
τi

qi(αi, τi;w)fi(αi, vi) dvi dτi dαi

=
∫ 1

0

∫ ∞
0

qi(αi, vi;w)vifi(vi|αi)fαi (αi) dvi dαi

−
∫ 1

0

∫ ∞
0

(1− Fi(τi|αi))qi(αi, τi;w)fαi (αi) dτi dαi

=
∫ 1

0

∫ ∞
0

(
vi −

1− Fi(vi|αi)
fi(vi|αi)

)
qi(αi, vi;w)fi(αi, vi) dvi dαi

=
∫

[0,1]n

∫
[0,∞]n

n∑
j=1

αiγj

(
vi −

1− Fi(vi|αi)
fi(vi|αi)

)
Qij(α, v;w)f(α, v) dv dα

where the second equality follows by interchanging the order of integration in the second term, the
third by the fact that fi(αi, vi) = fi(vi|αi)fαi (αi), and the fifth by the definition of qi(αi, vi;w). We
define agent i’s “virtual valuation” by

ψi(αi, vi) = vi −
1− Fi(vi|αi)
fi(vi|αi)

.

Summing over each agent’s ex ante expected payment, the expected revenue is then∫
[0,1]n

∫
[0,∞]n

n∑
i=1

n∑
j=1

αiγjψi(αi, vi)Qij(α, v;w)f(α, v) dv dα

According to this analysis, we should rank bidders by “virtual score” αiψ(αi, vi) to optimize rev-
enue (and exclude any bidders with negative virtual score). However, unlike in the incomplete
information setting, here we are constrained to ranking rules that correspond to a certain weight-
ing scheme wi ≡ g(αi). Lahaie and Pennock [11] show that there is be no function g such that
αiψ(αi, v) = g(αi)v, for any distribution f ; i.e. the virtual score is never a linear function of value,
for fixed effect αi.

Of course, to rank bidders by virtual score, we only need g(αi)vi = h(αiψ(αi, vi)) for some
monotonically increasing transformation h. (A necessary condition for this is that ψ(αi, vi) be
increasing in vi for all αi.) Still, it is unclear how to do this in general. Lahaie and Pennock [11]
study the restricted family of weights wi = αqi for q ∈ (−∞,+∞) and note that smaller q imply
greater revenue when value and relevance are correlated. This kind of approach, where restricted
families of weights are considered rather than arbitrary functions g, appears to be a fruitful avenue
for progress towards the revenue-optimal mechanism.

Our analysis does allow for an analytical solution in one special case. Suppose that value is
independent of relevance, and that the distribution over value is uniform on [0, 1]. Then the virtual
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score of a bidder is 2αivi − αi. We can recreate this by giving each bidder a weight of 2αi, and
introducing a discount of αi. (The discount can be construed as a kind of reserve score, because
a bidder whose score αivi does not exceed the discount should not be shown.) The symmetric
equilbrium analysis generalizes to the case where additive discounts are included in the score, so
this ranking scheme is indeed revenue-optimal when value is uniformly distributed.
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