
CS6998-3: Solutions to Problem Set # 1

Etienne Vouga

Problem 1 (10 points)

(a) We know from the theorem stated (but not proven) in class that it suffices to restrict our attention
to two-link, two-node graphs, with edge latency functions l1(x) = axi and l2(x) = 1. In other words,
letting Pd(N) denote the price of anarchy of a graph N with edge latencies in Md, and [f(x); g(x)] a
two-link, two-node graph with latency functions f(x) and g(x), we have

Pd(N) ≤ max
a,0≤i≤d

Pd([axi; 1]).

We now compute the right-hand side in five steps.

Lemma 0.1. If both latency functions are constant, Nash and optimal flows have equal cost:

max
a

Pd([ax0; 1]) = 1.

Proof. If both latency functions are constant, obviously the flow routing all supply through the edge
with least latency is both optimal and Nash.

Lemma 0.2. If i 6= 0 and a ≤ (1 + i)−1, Nash and optimal flows have equal cost:

max
a≤(1+i)−1,1≤i≤d

Pd([axi; 1]) = 1.

Proof. We check that the flow S routing all supply through the first edge is both optimal and Nash.
Since S sends no supply through the second edge, S is optimal if the marginal cost of the first edge is
at most that of the second:

a ≤ (i+ 1)−1

a(i+ 1) ≤ 1[
a(i+ 1)xi

]
(1) ≤ 1

d

dx

(
xaxi

)
(1) ≤ d

dx
(x) (0)

c′1(1) ≤ c′2(0),

as required. Thus S is optimal.

To check S is Nash, we check that the latency of the first edge is at most the latency of the second:

a ≤ 1

[axi](1) ≤ [1](0)
l1(1) ≤ l2(0),

so S is also Nash.

1

Lemma 0.3. If i 6= 0 and a > 1,

max
a>1,1≤i≤d

Pd([axi; 1]) =
1

1− d(d+ 1)−(d+1)/d
.

Proof. Since every step of the inequality manipulation in Lemma 0.2 is reversible, and a > 1 (and thus
a > (1 + i)−1), we know the flow routing all supply through the first edge is neither Nash nor optimal.
We also check briefly that the flow routing all supply through the second edge is neither optimal nor
Nash:

The marginal costs for such a flow are

c′1(0) = [(i+ 1)axi](0) = 0

since i 6= 0, and
c′2(1) = 1,

so c′2(1) 6≤ c′1(0) and such flow is not optimal. The latencies are

l1(0) = [axi](0) = 0

l2(1) = 1

so similarly l2(1) 6≤ l1(0) and such flow is not Nash.

We conclude that both the Nash and optimal flow sends a little bit of supply through the first edge,
and a little bit through the second. Thus, writing S∗ for the Nash flow, C(S∗) for the cost of the Nash
flow, and y as the amount of supply sent through the first edge, we have equality of latencies:

l1(y) = l2(1− y)

ayi = 1. (1)

The formula for the C(S∗) is
C(S∗) = yayi + (1− y). (2)

Plugging (1) into (2) gives
C(S∗) = y + (1− y) = 1.

What about the cost of the optimal solution? Let S be the optimal solution, which sends z supply
through the first edge. We have equality of marginal costs:

c′1(z) = c′2(z)

(i+ 1)azi = 1, (3)

and a formula for C(S),
C(S) = zazi + (1− z). (4)

Solving for z in (3) yields
z = [a(i+ 1)]−1/i.

Substituting (3) into (4) gives

C(S) =
z

i+ 1
+ (1− z)

= 1− i

i+ 1
z

= 1− i

i+ 1
[a(i+ 1)]−1/i.

2

Thus we have the price of anarchy,

C(S∗)
C(S)

=
1

1− i
i+1 [a(i+ 1)]−1/i

.

What values of i and a maximize the price of anarchy? a is easy: decreasing a increases [a(i+ 1)]−1/i,
which decreases C(S), which increases the price of anarchy, so

max
a>1

Pd([axi; 1]) =
1

1− i
i+1 [(i+ 1)]−1/i

=
1

1− i[(i+ 1)]−(1+i)/i
.1

To find the right value of d, we notice that maximizing Pd is equivalent to maximizing f(i) = i[(i +
1)]−(1+i)/i. We take the derivative f ′(i) :

log f(i) = log(i)− 1 + i

i
log(i+ 1)

1
f(i)

f ′(i) =
1
i

+
1
i2

log(i+ 1)− 1
i

f ′(i) = f(i)
(

1
i2

log(i+ 1)
)

> 0

since i > 0, so we maximize f by maximizing i:

max
a>1,1≤i≤d

Pd([axi; 1]) =
1

1− d(d+ 1)−(d+1)/d
.

We have one case left:

Lemma 0.4. If i 6= 0 and (1 + i)−1 < a ≤ 1,

max
(1+i)−1<a≤1,1≤i≤d

Pd([axi; 1]) =
1

1− d(d+ 1)−(d+1)/d
.

Proof. We know from the previous lemmas that for a > (1 + i)−1, the optimal flow has cost

C(S) = 1− i

i+ 1
[a(i+ 1)]−1/i,

and that for a ≤ 1 the Nash flow C∗ sends all supply through the first edge. The cost of the Nash flow
is then

C(S∗) = [xaxi](1) + [1](0) = a.

The price of anarchy is thus

C(S∗)
C(S)

=
a

1− i
i+1 [a(i+ 1)]−1/i

= f(a).

1I’m being liberal with notation here... technically max should be sup.

3

Unlike in the previous lemma, it is no longer obvious how changing a changes f , so we resort to taking
a derivative using the quotient rule:

f ′(a) =
1− i

i+1 [a(i+ 1)]−1/i − a[a(i+ 1)]−1/i−1(
1− i

i+1 [a(i+ 1)]−1/i
)2

=
1− i

i+1 [a(i+ 1)]−1/i − 1
i+1 [a(i+ 1)]−1/i(

1− i
i+1 [a(i+ 1)]−1/i

)2

=
1− [a(i+ 1)]−1/i(

1− i
i+1 [a(i+ 1)]−1/i

)2

> 0

since a(i+ 1) > 1 and i ≥ 1. So we maximize the price of anarchy by maximizing a, which in this case
means setting a = 1:

max
(1+i)−1<a≤1

Pd([axi; 1]) =
1

1− i(i+ 1)−(i+1)/i
,

the same expression we had in the previous lemma, so as before, to get an upper bound we set i = d,
and

max
(1+i)−1<a≤1,1≤i≤d

Pd([axi; 1]) =
1

1− d(d+ 1)−(d+1)/d
.

Finally, we put all of the above lemmas together to get

max
0≤i≤d

Pd([axi; 1]) = max
(

1,
1

1− d(d+ 1)−(d+1)/d

)
=

1
1− d(d+ 1)−(d+1)/d

.

As a sanity check, we notice that this bound does reduce to 4
3 for the special case d = 1.

(b) Again, we can restrict our attention to two-link, two-node networks [fd(x); 1], where fd(x) =
∑d
i=0 aix

i

is a polynomial of degree at most d. But this network is equivalent to a two-node, d+ 2-link network
consisting of two paths: the first links the source and the sink with latency 1. The second is a chain of
d+1 links, whose ith link (starting at i = 0) has latency aixi. This new network is one whose latencies
are all monomial in Md, so by Part A we conclude

max
0≤i≤d

Pd([fd(x); 1]) ≤ 1
1− d(d+ 1)−(d+1)/d

.

Since Md ⊂ Pd, this bound is still tight, so

max
0≤i≤d

Pd([fd(x); 1]) =
1

1− d(d+ 1)−(d+1)/d
.

Problem 2 (10 points)

(a) Let S be a viable solution, with n paths pi,j routing xi,j units of supply from si to ti, with
∑
j xi,j = 1.

Suppose S is a Nash solution, with pi,j any path in S with xi,j > 0, and consider a second path p′i
from si to ti. Since the supply travelling through pi,j is acting greedily, the latency of the pi,j must be
at most that of p′i, or some supply would switch to flowing through there instead. Thus∑

e∈pi,j

le(xe) ≤
∑
e∈p′i

le(xe).

4

where le is the latency function of edge e, and xe the total amount of supply (from all sources) flowing
through e. Since le(x) = aex+ be is linear,∑

e∈pi,j

aexe + be ≤
∑
e∈p′i

aexe + be. (5)

Now suppose S is optimal, and again let pi,j be any path with xi,j > 0. Optimality means transferring
any amount δ of supply from pi,j to another path p′i from si to ti cannot improve the total cost of S,
so the change in cost of such a switch must be nonnegative.

Consider the edges e on pi,j . We can partition such edges into two sets: those edges U also on the
path p′i, and those V1 that are not. Let V2 be the set of edges of p′i not on pi,j , that is, those not in U .
Then, writing ce(x) = xle(x), the change in cost of switching δ supply from pi,j to p′i is∑

e∈V1

ce(xe) +
∑
e∈V2

ce(xe)−
∑
e∈V1

ce(xe − δ)−
∑
e∈V2

ce(xe + δ).

Thus ∑
e∈V1

ce(xe) +
∑
e∈V2

ce(xe)−
∑
e∈V1

ce(xe − δ)−
∑
e∈V2

ce(xe + δ) ≤ 0.

We now proceed exactly as in the lecture notes. Manipulating this equation, and applying the definition
of the derivative, yields∑

e∈V1

ce(xe)−
∑
e∈V1

ce(xe − δ) ≤
∑
e∈V2

ce(xe + δ)−
∑
e∈V2

ce(xe)∑
e∈V1

[ce(xe)− ce(xe − δ)] ≤
∑
e∈V2

[ce(xe + δ)− ce(xe)]∑
e∈V1

[ce(xe)− ce(xe − δ)] +
∑
e∈U

[ce(xe + δ)− ce(xe)] ≤
∑
e∈V2

[ce(xe + δ)− ce(xe)] +
∑
e∈U

[ce(xe + δ)− ce(xe)]

∑
e∈V1

ce(xe)− ce(xe − δ)
δ

+
∑
e∈U

ce(xe + δ)− ce(xe)
δ

≤
∑
e∈V2

ce(xe + δ)− ce(xe)
δ

+
∑
e∈U

ce(xe + δ)− ce(xe)
δ∑

e∈V1

c′e(xe) +
∑
e∈U

c′e(xe) ≤
∑
e∈V2

c′e(xe) +
∑
e∈U

c′e(xe)∑
e∈pi,j

c′e(xe) ≤
∑
e∈p′i

c′e(xe).

Since le is linear, ce(xe) = aex
2
e + bexe, and c′e(xe) = 2aexe + be, so∑

e∈pi,j

2aexe + be ≤
∑
e∈p′i

2aexe + be. (6)

(b) Let S be a Nash solution. Then by (5),∑
e∈pi,j

aexe + be ≤
∑
e∈p′i

aexe + be.

Now consider the flow S′ found by halving the amount of supply flowing through each path in S. This
flow routes 1

2 of a unit from each si to each ti, and if xe and x′e are the total supply passing through
an edge for the flow S and S′ respectively, 2x′e = xe. Substituting into the above equation gives∑

e∈pi,j

2aex′e + be ≤
∑
e∈p′i

2aex′e + be,

which is exactly (6). Thus S′ is optimal for routing 1
2 of a unit of supply from the sources to the sinks.

5

Problem 3 (10 points)

Let S∗ be a Nash solution, S an optimal solution, C(T) the cost of a viable solution T , and assume, for
contradiction, that

C(S∗)
C(S)

> k.

Denote by ci(S∗) the cost charged to player i for S∗. Let player j be the player charged the most; that is,

j = arg max
i

ci(S∗).

Then

C(S∗) =
∑
i

ci(S∗)

≤ kcj(S∗)

cj(S∗) ≥
C(S∗)
k

.

Now consider player j switching to whatever path he uses in S, yielding a new viable solution S′. cj(S′) is
no more expensive than unilaterally buying all edges in S: cj(S′) ≤ C(S). Then

cj(S′) ≤ C(S)

<
C(S∗)
k

≤ cj(S∗),

so cj(S′) < cj(S∗), a contradiction since S∗ is a Nash solution.

Problem 4 (10 points)

(a) We begin with a technical lemma:

Lemma 0.5. Hk ≤ log k + 1 for k ≥ 2.

Proof. Since d
dx

(
1
x

)
< 0, the sum

k∑
i=2

1
i

= Hk − 1

is a right Riemann sum of f(x) = 1
x from 1 to k, which underestimates

∫ k
1

1
k = log k. Thus

Hk − 1 ≤ log k
Hk ≤ log k + 1.

Now let S be any viable starting solution to the network design game. The greatest possible value of
Φ(S) is C|E|Hk ≤ C|E|(log k + 1). Then if Sj is the solution after j steps of making large changes to
the potential,

Φ(Sj) ≤
(

1− ε

k

)j
C|E|(log k + 1).

6

The least non-zero value of Φ is 1, so if we ever have Φ ≤ 1, we know we will reach Φ = 0, which must
be a Nash equilibrium, in the next step. Thus, to bound the worst-case number of steps s needed to
reach an equilibrium, we solve

1 =
(

1− ε

k

)j
C|E|(log k + 1), (7)

and know s ≤ 1 + j.

Taking the logarithm of both sides of (7) gives

0 = j log
(

1− ε

k

)
+ logC + log |E|+ log(log k + 1)

j =
logC + log |E|+ log(log k + 1)

log
(

k
k−ε

)
s ≤ 1 +

logC + log |E|+ log(log k + 1)
log k − log(k − ε)

.

To show s is polynomial in several variables, it is enough to show that it is polynomial in each individual
variable with the other variables treated as constant.

Lemma 0.6. s ∈ O(log |E|) ⊂ O(|E|).

Proof. Obvious.

Lemma 0.7. s ∈ O(k log log k) ⊂ O(k2).

Proof. Since log is analytic on its domain, by Taylor’s Theorem,

log(x− ε) = log x+
∞∑
i=1

1
i!

(−ε)i d
i

dxi
log x

= log x+
∞∑
i=1

1
i!
εi(−1)i

(−1)i−1(i− 1)!
xi

= log x+
∞∑
i=1

−εi

ixi

≤ log x− ε

x
,

so log k − log(k − ε) ≥ ε
k and

1
log k − log(k − ε)

≤ k

ε

s ≤ 1 +
k(logC + log |E|+ log(log k + 1))

ε
, (8)

so s ∈ O(k log log k).

Lemma 0.8. s ∈ O
(

1
ε

)
.

Proof. Obvious from (8).

7

Figure 1: Under certain conditions described in part B of problem 4, this network design problem allows
player 1 to decrease his cost by an infinite factor from the solution found by the proposed algorithm.

(b) Consider the graph depicted in Figure 1 for a two-player network design problem, where a is arbitrary,
b = max

(
0, 2a−aε

ε

)
. Take as an initial guess S that player 1 takes the top link, and player 2 takes the

bottom link. The potential Φ(S) is

Φ(S) = aH1 + bH1 = (a+ b).

Player 2 clearly cannot improve his cost by choosing a different path. Player 1, on the other hand, can
switch to the middle path. The resulting candidate solution S′ then has potential

Φ(S′) = bH2 = b.

We have

b >
2a− aε

ε
bε > 2a− aε

(a+ b)ε > 2a
1
2

(a+ b)ε > a

(a+ b)
ε

k
> a

ε

k
Φ(S) > a,

so the change in potential a is not large. Thus the proposed algorithm terminates at S.

However by switching to S′ player 1 decreases his cost from a to 0, an infinite factor.

8

