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Lecture 6: Communication Complexity of Auctions
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In this lecture we examine the amount of communication performed in sealed-bid and
iterative combinatorial auctions. A sealed-bid auction is clearly expensive in terms of
communication—each agent must transmit a nonlinear valuation to the auctioneer. In
general, an iterative auction need not have the agents completely reveal their valuations
before an efficient allocation is reached. We would like to lower bound the communication
needed by iterative auctions in the worst-case, to compare it to that of sealed-bid auctions.
In this lecture, we do not consider incentives at all; we assess the communication needed
by combinatorial auctions even if agents bid truthfully.

1 Sealed-Bid Auctions

As usual let V denote the set of general valuations, namely monotone and normalized
valuations. The following outlines the steps in a generic sealed-bid auction.

Generic Sealed-Bid Auction

1. Collect a valuation ṽi ∈ V from each bidder.

2. Select an efficient allocation R ∈ Γ∗.

3. Charge each agent i ∈ N a payment qi.

Step 1 dominates the communication and it is common to all sealed bid auctions. To
characterize the amount of communication required, we consider finite sets of valuations;
so consider the set of bounded, integer-valued general valuations, vi : 2M → Z+ such that
vi(M) ≤ C for some constant C. To transmit such a valuation, we can simply transmit the
value of every non-empty bundle. There are 2m−1 such bundles, and communicating a value
is on the order of logC bits, so the communication uses O(2m logC) bits. (Throughout, log
is always understood base 2.)

This counting argument is somewhat unrefined, because with so many bits we can
transmit any valuation over bundles, not necessarily just monotone valuations. Thus we
may need less bits than this to communicate a general valuation. In general, to encode the
elements of a finite set of size k, we need on the order of log k bits (to be precise, dlog2 ke
bits). Thus we would like to lower bound the size of the set of general valuations.

Consider the set of {0-1}-valued general valuations, denoted V01. Assume for the mo-
ment that m is even. Included in V01 is the set of all valuations of the form

vi(S) =


1 if |S| > m/2

0 or 1 if |S| = m/2
0 if |S| < m/2
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Such valuations are clearly monotone and normalized. There are
(

m
m/2

)
sets of size m/2, and

each can have take on one of two values (0 or 1), so there are 2( m
m/2) valuations of this form.

Therefore, the number of bits needed to communicate a {0-1}-valued general valuation is
at least

log 2( m
m/2) =

(
m

m/2

)
≈
√

2
πm

2m

where the approximation holds for large m (Stirling’s approximation).
To summarize, step 1 in the generic sealed-bid auction takes Ω(n

(
m

m/2

)
) bits, step 2 takes

n logm bits to communicate the allocation (you can check this by counting the number
of possible feasible allocations), and step 3 takes Ω(n logC) bits in general. This is all
dominated by step 1, whose communication is exponential in m. Let us see how iterative
auctions compare.

2 Iterative Auctions

The following outlines the steps in a generic iterative auction for several items. Recall that
the iterative auctions we have covered all converge to a competitive equilibrium: an efficient
allocation together with prices such that demand balances supply.

Generic Iterative Auction

1. Quote prices pt in round t.

2. Collect the demand of each bidder.

3. Select an allocation Rt that satisfies as much demand as possible while maximizing
revenue.

3a. If each bidder is allocated a demanded bundle, the auction terminates: we have
a competitive equilibrium 〈Rt, pt〉.

3b. Otherwise, update the prices and go to step 1 to start another round.

The prices in step 1 are nonlinear and non-anonymous in general. In step 2, the “demand”
of a bidder is either a bundle that maximizes the bidder’s utility at the given prices, or a set
of such bundles (perhaps all of them). Different iterative combinatorial auctions are usually
distinguished by their price update rule in step 3b. What virtually all iterative auctions
share is that they converge to a competitive equilibrium.

In light of this, to lower bound the communication performed in an iterative auction, we
will lower bound the communication needed to transmit a competitive equilibrium. This
may seem like a very weak bound: we are only considering the communication of the very
last round! However, the bound will turn out to be surprisingly strong, and there are
currently no good techniques to lower bound communication across all rounds.

So the questions is: how much communication is needed to transmit a competitive
equilibrium? This is a subtle question because for any profile of valuations, there may
not necessarily be a unique competitive equilibrium—any will do. All we need is a set of
allocation-price pairs (of the form 〈R, p〉) such that for each v ∈ Vn, there is a competitive
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Figure 1: Mapping of valuation profiles to competitive equilibria.

equilibrium with respect to v in the set. Consider Figure 1, which shows how different
profiles of valuations map to corresponding competitive equilibria. There may be multiple
equilibria associated with a single profile, as with profiles v1, v2, and v3. If we just consider
the set of equilibria consisting of 1 and 4, then we are assured to have a competitive
equilibrium in the set no matter what the profile of valuations turns out to be. So the
communication needed to transmit an equilibrium is log 2 = 1 bit in this example. To check
whether you understand this clearly, you should ask yourself: is it always the case that at
least 1 bit of communication is needed? (The answer is no—why?)

To lower bound the size of any set of competitive equilibria that is guaranteed to include
a competitive equilibrium for each possible valuation profile, we use the concept of a “fooling
set”, fundamental in communication complexity.

Definition 1 A fooling set is a subset of valuation profiles V ⊆ Vn such that no two distinct
v, v′ ∈ V share a common competitive equilibrium.

The size of a fooling set lower bounds the size of any complete set of competitive equilibria,
because we need a distinct competitive equilibrium for each profile in the set. Therefore,
we would like to find a large fooling set. We will use graphical intuition to do this. First,
let us recall the formal definitions of an efficient allocation and competitive equilibrium.

Definition 2 A feasible allocation R ∈ Γ is efficient if it maximizes the sum of the agent’s
values,

R ∈ arg max
R′∈Γ

∑
i∈N

vi(R′i).
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Recall that valuations are normalized : vi(∅) = 0. With respect to the efficient allocation
problem, this assumption is without loss of generality, because note that we can add a
constant ci to each value vi(S), and the set of efficient allocations remains unchanged.
Specifically, let v′i(S) = vi(S) + ci for all S ⊆ M (including the empty bundle) and i ∈ N ,
where ci is a constant. Then observe that

arg max
R′∈Γ

∑
i∈N

v′i(R
′
i) = arg max

R′∈Γ

∑
i∈N

vi(R′i) +
∑
i∈N

ci = arg max
R′∈Γ

∑
i∈N

vi(R′i).

Therefore we can “renormalize” any valuation by translating it by a constant, without
changing the set of efficient allocations. Recall now the definition of competitive equilibrium.

Definition 3 A pair 〈R, p〉 consisting of a feasible allocation R and (nonlinear, non-anonymous)
prices p is a competitive equilibrium if for any feasible allocation R′ we have

vi(Ri)− pi(Ri) ≥ vi(R′i)− pi(R′i) (1)

for all i ∈ N , as well as ∑
i∈N

pi(Ri) ≥
∑
i∈N

pi(R′i). (2)

According to (1), the set of competitive equilibria does not change if we translate valuations
by a constant. The same holds for prices: translating competitive equilibrium prices by a
constant still results in prices that satisfy (1) and (2). We these facts in mind we can draw
insightful depictions of competitive equilibrium situations.

From now on we restrict our attention to 2-agent profile (v1, v2); we assume that
v3, . . . , vn are identically zero on all bundles. Let R be an efficient allocation for this
profile. Consider Figure 2, which depicts profiles v1 and v2 normalized so that v1(R1) = 0
and v2(R2) = 0. In this drawing, the horizontal axis corresponds to the set of feasible
allocations. (This is stylized, because the set of allocations is actually discrete rather than
continuous; even if it were continuous, it would not necessarily be the case that valuations
would be continuous.) Because the total value of R is 0 after normalization, and R is effi-
cient, we must necessarily have v1 lie entirely above v2; this ensures that the total value of
any other allocation is non-positive.

Figure 3 depicts a competitive equilibrium. Here prices are normalized so that p1(R1) =
0 and p2(R2) = 0. As just discussed, we can renormalize valuations and prices however
we want when depicting a competitive equilibrium. Because R must maximize revenue
at prices p, and R has revenue of 0, prices p1 must lie above prices p2 to ensure that all
other allocations generate non-positive revenue. Also, the utility of R1 to agent 1 is 0:
v1(R1) − p1(R1) = 0 − 0 = 0. Since R1 maximizes agent 1’s utility at prices p, this means
that prices p1 must lie entirely below v1, to ensure that all bundles give non-positive utility.
By the same reasoning, prices p2 must lie entirely above v2.
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Figure 2: Valuations normalized so that efficient allocation R has value 0 to both agents.

Figure 3: A competitive equilibrium, with valuations and prices normalized so that efficient
allocation R has value and price 0 for both agents.
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Figure 4: Competitive equilibrium when all allocations are efficient.

To summarize, in competitive equilibrium we must have that

• v1 lies entirely above v2, and they touch at R.

• p1 lies entirely above p2, and they touch at R.

• p1 lies entirely below v1, and they touch at R.

• p2 lies entirely above v2, and they touch at R.

By the four points just made, competitive equilibrium prices p1 and p2 have to lie between
v1 and v2. Now suppose that every allocation is efficient. In this case v1 and v2 must
touch everywhere, because every allocation must have a total value of 0. It then follows
that competitive equilibrium prices p1 and p2 must be “squashed” between the two, and in
particular, v1 = p1 and v2 = p2. The graphical intuition for this is given in Figure 4. Let’s
formally check that this is indeed the case.

Lemma 1 Let V ⊆ Vn be a subset of valuation profiles such that for each profile v ∈ V ,
all allocations are efficient. Let p be competitive equilibrium prices with respect to v. Then
for each i ∈ N we have

vi(S) = pi(S)

for all S ⊆M .
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Proof. Prices p support allocations where i gets ∅ and where i gets S for any S ⊆ M .
Thus we have

vi(S)− pi(S) = vi(∅)− pi(∅) = 0.

2

A subset V satisfying the conditions of Lemma 1 is clearly a fooling set, because for distinct
v, v′ ∈ V , competitive equilibrium prices must be p = v and p′ = v′, and p and p′ are thus
necessarily distinct. This immediately gives the following corollary.

Corollary 1 Let V ⊆ Vn be a subset of valuation profiles such that for each profile v ∈
V , all allocations are efficient. Then the number of bits needed to transmit a competitive
equilibrium is at least log |V |.

We now proceed to construct 2-agent profiles that satisfy the conditions of the corollary.
We can restrict our attention to allocations of the form (S,M\S); the remaining agents
always implicitly get ∅. We want each such allocation to yield the same total value:

v1(S) + v2(M\S) = c,

where c is a constant. To determine c, note that v1(M) + v2(∅) = c and thus c = v1(M).
Thus,

v2(S) = v1(M)− v1(M\S).

If v1 and v2 are related in this way, then all the relevant allocations (S,M\S) are efficient.

Definition 4 Given valuation v1, its dual valuation v∗1 is defined as

v∗1(S) = v1(M)− v1(M\S).

Since all allocations are efficient for profile (v1, v
∗
1), with appeal to Corollary 1 we get our

main result.

Theorem 1 If for each v1 in domain V there is a dual valuation v∗1 ∈ V, then the communi-
cation needed to transmit a competitive equilibrium is at least log |V| bits in the worst-case.

To apply this theorem to general valuations and complete our analysis, we should check that
v∗1 is a general valuation (i.e., monotone and normalized) for each general valuation v1; this
is straightforward. Hence the communication needed to transmit a competitive equilibrium
is at least the communication needed to fully reveal one valuation. Compare this with
sealed-bid auctions, which require full revelation of all n valuations. Is it important to
stress that these are worst-case results; in practice iterative auctions might do better than
this worst-case bound. Nevertheless, the bound is quite strong, because we saw that full
revelation of one general valuation requires on the order of 2m bits, exponential in the
number of items.
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