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Lecturer: Sébastien Lahaie Scribe: Sébastien Lahaie

In this lecture we examine two different generalizations of the Vickrey auction to a setting
where there are multiple distinct items to be allocated, and the agents’ values are define
over bundles rather than just individual items. Auctions that allocate multiple distinct
items are commonly called “combinatorial” or “package” auctions. The properties of the
Vickrey auction we would like to generalize are:

1. The items are allocated to those who value them the most (in some formal sense).

2. The agents are incentivized to truthfully report their values.

3. The agents have no reason not to participate in the auction (they will derive non-
negative utility).

4. The revenue to the seller is non-negative.

We will examine a classic sealed-bid auction from the economics literature that successfully
generalizes all these properties, the VCG mechanism. However, the auction implicitly re-
quires the solution of computationally difficult (NP-hard) problems, so we will then look
at an auction, the LOS mechanism, that tries to achieve all the properties above using
polynomial-time computation. First we provide the standard model used to study combi-
natorial auctions.

1 The Combinatorial Allocation Problem

There is a set of agents N and a set of items M , held by a single seller. Let n = |N | and
m = |M | be the numbers of agents and items. The items are distinct and indivisible. A
bundle is simply a subset of items. An allocation is a vector of bundles R = (Ri)i∈N , where
Ri is the bundle allocated to agent i, and similarly Rj is the bundle allocate to agent j, etc.
An allocation is feasible if Ri ∩ Rj = ∅ for i 6= j. We denote the set of feasible allocations
among agents N by Γ(N), and similarly for subsets of N . When we speak of an allocation
R among agents N−i (the set of agents without i), we mean an allocation such that Ri = ∅.

Each agent i has a valuation function over bundles vi : 2M → R+. (The notation 2M

denotes the set of all subsets of M—the set of all bundles including the empty bundle.)
Valuations are defined over bundles rather than just items because we want to allow for the
possibility of complements and substitutes. Informally, items are complements when their
value together is more than the sum of their individual values, and they are substitutes
when the reverse holds.

An outcome is a pair (R, q) consisting of a feasible allocation R and a vector of payments
q = (qi)i∈N from the agents to the seller. The utility to agent j when the outcome is (R, q)
is defined as

uj(R, q; v) = vj(Rj)− qj .
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A utility function is parametrized by the valuation profile v = (vi)i∈N , but this is usually
suppressed when clear from context. There are several things to note about the form of the
utility function:

Private values. Each agent i knows its own valuation vi, and its utility does not change if
it learns of any other agent’s values.

No externalities. An agent only cares about the bundle it acquires and payment it makes,
not the bundles and payments of other agents.

Quasi-linearity. Utilities are denoted in a common currency, and utility can be transferred
to and from agents in the form of payments.

In particular, agents are not constrained by any budget. For this to hold, it is sufficient
to assume that the budget of each agent is at least maxi∈N vi(M), so quasi-linearity is a
reasonable assumption when agents have ample liquidity or credit. Meanwhile, the seller,
indexed by 0, only derives utility from payments received:

u0(R, q) =
∑
i∈N

qi.

The problem at hand is to find a feasible allocation R together with payments q that
maximizes the total utility to the agents and seller:∑

i∈N
ui(R, q) + u0(R, q) (1)

=
∑
i∈N

[vi(Ri)− qi] +
∑
i∈N

qi

=
∑
i∈N

vi(Ri).

We see that payments cancel out, and the problem of finding an allocation and payments
that maximize total utility is equivalent to the problem of finding an allocation that max-
imizes the total value to the agents—namely, an efficient allocation. We will refer to the
problem of efficiently allocating the items as the combinatorial allocation problem (CAP).

2 The VCG Mechanism

Ignoring for the moment issues of communication and computation, we first ask how to
motivate the agents to truthfully reveal their valuation functions given that we want to
implement an efficient allocation. If we can make this happen, we can be sure the resulting
allocation is efficient with respect to the agents’ true valuations. The Vickrey-Clarke-Groves
(VCG) mechanism, a natural generalization of the Vickrey auction, is a solution to this
problem [1, 2, 5].

Throughout we will consider the class of general valuations and its subclasses. It is
denoted V.

Definition 1 A valuation vi : 2M → R+ is general if it is
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1. Each agent i ∈ N reports a valuation ṽi ∈ V.

2. Select an allocation R that is efficient with respect to reported values,

R ∈ arg max
R′∈Γ

∑
i∈N

ṽi(R′i) (2)

3. Charge each agent i a payment of

q̂i =
∑
j 6=i

ṽj(R−ij )−
∑
j 6=i

ṽj(Rj) (3)

where R−i is an efficient allocation among agent N − i (i.e., we remove
agent i from the set of agents).

Figure 1: The VCG Mechanism

Monotone: For bundles S, T such that S ⊆ T , we have vi(S) ≤ vi(T ).

Normalized: The value for the empty set is vi(∅) = 0.

The VCG mechanism is given in Figure 1. The seller is just a passive participant that
receives payments, because it has only one possible utility function, which it therefore cannot
misrepresent. A “bid” is another term for a reported value. The VCG mechanism can thus
be interpreted as a sealed-bid auction that allocates the items efficiently according to bids.

Before turning to the formal properties of the VCG mechanism, let’s consider how (3)
comes about. The VCG payments are defined so that the report of an agent i does not
affect the total utility of the others (including the seller). Without agent i, the payoff to
the others is ∑

j 6=i
ṽj(R−ij ). (4)

With i present, the payoff to the others then becomes

q̂i +
∑
j 6=i

ṽj(Rj). (5)

Equating (4) with (5) and solving for the payment yields (3). Thus whatever impact
agent i’s report might have on the others is reflected in the payment; economists call this
“internalizing the externality”. This feature makes truthful reporting—setting ṽi = vi—an
optimal strategy for each bidder,

Proposition 1 In the VCG mechanism, truthful reporting is always an optimal strategy
for each bidder, no matter what the reports of the other agents.

Proof. Consider an arbitrary bidder i, and fix the reports of the other bidders to v−i.
Let R−i be an efficient allocation among bidders N − i with respect to v−i. Let R be the
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allocation dictated by the VCG mechanism if i reports vi, his true valuation. Its utility
from this report is

vi(Ri)−

∑
j 6=i

vj(R−ij )−
∑
j 6=i

vj(Rj)


=

∑
j∈N

vj(Rj)−
∑
j 6=i

vj(R−ij ). (6)

Let R′ be the allocation that results if i reports ṽi 6= vi. The utility to i is then∑
j∈N

vj(R′j)−
∑
j 6=i

vj(R−ij ). (7)

Subtracting (7) from (6) we obtain∑
j∈N

vj(Rj)−
∑
j∈i

vj(R′j) ≥ 0. (8)

The inequality here follows because R is an efficient allocation with respect to the true
profile of valuations (vi)i∈N . This completes the proof, because the choice of the other
agents’ reports was arbitrary. 2

In words, here is the intuition behind why the VCG mechanism induces truthful report-
ing. If an agent i reports truthfully, the VCG mechanism maximizes the total value to the
agents. If i makes a false report, the total value will be weakly less. But the VCG payments
ensure that i’s report cannot affect the payoff to the remaining agents and seller. Thus the
overall decrease in total value due to a false report must be borne entirely by agent i. It
follows that truthful reporting is an optimal strategy.

Although truthful reporting is an optimal strategy, we have not ruled out the possibility
that other reports might also be optimal. This is a concern, because we would like to be able
to exactly predict the agent’s behavior to confirm other properties of the VCG mechanism.
If truthful reporting is the only strategy that is always optimal (i.e., for any vector of the
other agents’ valuations), we say that it is a dominant strategy.

Is is standard in game theory to use the notation v−i to denote the vector v with its ith
component removed. Thus v = (vi, v−i) and (ṽi, v−i) is the vector v with its ith component
replaced with ṽi. We say that a false report ṽi is potentially pivotal if there is a vector v−i
of the other agents’ reports such that there is an efficient allocation with respect to (ṽi, v−i)
that is not efficient with respect to (v, v−i). Recall that vi is i’s true valuation.

Proposition 2 If every report of agent i is potentially pivotal, then truthful reporting is a
dominant strategy for agent i.

Proof. If every report is potentially pivotal, then for every misreport ṽi, there is a vector
of the other agents’ valuations v−i such that inequality (8) is strict. Thus ṽi cannot be an
always optimal strategy. Hence vi is the only always optimal strategy: it is a dominant
strategy. 2

It is not hard to check that if we consider general valuations, every report is potentially
pivotal. Thus we expect the agents to truthfully report their values in the VCG mechanism.
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Proposition 3 The VCG mechanism is efficient.

Proof. Immediate from the fact that agents report their values truthfully in the VCG
mechanism, and that it implements an efficient outcome with respect to these reports. 2

If an agent chooses not to participate in the mechanism, it derives utility 0: the empty bun-
dle ∅ and no payment. The following thus shows that the VCG mechanism is individually-
rational : agents have no incentive not to participate in the mechanism.

Proposition 4 In the VCG mechanism, the utility derived by a truthful agent is non-
negative.

Proof. Given that the others’ reports are v−i, the utility to i of reporting its true valuation
vi is ∑

j∈N
vj(Rj)−

∑
j 6=i

vj(R−ij ).

We claim this is non-negative. Recall that R−i is a feasible allocation that gives ∅ to agent i.
By step 2 of the VCG mechanism, R is efficient for the profile of valuations v submitted. By
definition, the total value of R is at least that of any other feasible allocation, in particular
R−i. Thus we have ∑

j∈N
vj(Rj) ≥

∑
j∈N

vj(R−ij ) =
∑
j 6=i

vj(R−ij ),

proving the result. 2

Finally, the VCG mechanism is also individually-rational for the seller.

Proposition 5 In the VCG mechanism, the revenue to the seller is non-negative.

Proof. Observe that the VCG payment (3) of each agent i is non-negative from the fact
that R−i is a efficient allocation with respect to reports ṽ−i. 2

You should check for yourself that if there is a single item, then the VCG mechanism reduces
to the Vickrey auction.

3 The LOS Mechanism

The computational problem of finding an efficient allocation in the second step of the
VCG mechanism is commonly called the “winner determination” (WD) problem. Here
we establish that even for a restricted subset of the general valuations that is concise to
represent (the description length is polynomial in m), we cannot hope for a polynomial-time
algorithm to solve WD.

Definition 2 A valuation vi is single-minded if there is a bundle Si such that

vi(Ti) =
{
vi(Si) if Ti ⊇ Si
0 otherwise

for each bundle Ti.
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1. Each agent i ∈ N reports a single-minded valuation (Ti, bi).

2. Reindex the agents so that

b1√
|T1|
≥ b2√

|T2|
≥ . . . ≥ bn√

|Tn|
. (9)

3. For i = 1, . . . , n in order, check whether no items of Ti have been
allocated to a previous agent. If so, set Ri = Ti; if not, set Ri = ∅.
Allocate Ri to agent i.

4. For each bidder i, if i does not uniquely block any other bid, charge
payment qi = 0. Otherwise, let σ(i) > i be the first bid in the ordering
uniquely blocked by i, and charge

qi =
bσ(i)√
|Tσ(i)|

√
|Ti|. (10)

Figure 2: The LOS Mechanism

A bidder with a single-minded valuation is interested in acquiring all the items in S, and no
more. This is perhaps the simplest kind of valuation that exhibits complementarity between
items. We represent a typical single-minded valuation by a pair (Si, wi), where wi is the
value of Si, the set of relevant items.

Here are some facts about the complexity of WD with single-minded agents [4]:

• The WD problem is NP-hard (by reduction from weighted independent set).

• For every ε > 0, there is no O(m
1
2
−ε)-approximation algorithm for WD, unless

NP=ZPP.

ZPP is the class of decision problems which can be solved by a randomized algorithm with
polynomial expected running time. It is highly unlikely that NP=ZPP; this would imply
a host of other improbable complexity results such as NP = co-NP. Thus, even ignoring
incentive issues, the best we can reasonably hope for is a O(

√
m)-approximation algorithm

for the CAP with single-minded bidders. The Lehmann-O’Callaghan-Shoham (LOS) mech-
anism, given in Figure 2, achieves this ratio and also motivates truthful bidding [3]. Let’s
first prove the ratio, assuming truthful bids (so we write them as (Si, wi) instead of (Ti, bi)).

Theorem 1 The LOS algorithm is a
√
m-approximation algorithm for the CAP.

Proof. Let I ⊆ {1, 2, . . . , n} be the set of indices of the bids granted by the LOS algorithm,
and let I∗ be those of an optimal set of bids. We will show that∑

i∈I∗
wi ≤

√
m
∑
i∈I

wi. (11)
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We say that a bid i ∈ I blocks a bid i′ ∈ I∗ if Si ∩ Si′ 6= ∅. For a bid i ∈ I, let Fi be the
subset of bids of I∗ such that i is the first bid in the greedy ordering to block them:

Fi =
{
i′ ∈ I∗ |Si ∩ Si′ 6= ∅, and there is no j < i with this property

}
.

We may have i ∈ Fi. Now note that if i′ ∈ Fi, then when the greedy algorithm chose bid i,
it could have chosen i′, because no previous bid blocked i′. Thus by (9) we have

wi′√
|Si′ |

≤ wi√
|Si|

. (12)

Note also that each i′ ∈ I∗ must lie in exactly one of the Fi’s, because a bid cannot be
“first” blocked by two different bids. Thus we can write∑

i∈I∗
wi =

∑
i∈I

∑
i′∈Fi

wi′ . (13)

We therefore consider each i ∈ I separately to reach the bound (11). Summing (12) over
all i′ ∈ Fi we obtain ∑

i′∈Fi

wi′ ≤
wi√
|Si|

∑
i′∈Fi

√
|Si′ |

 . (14)

We want to bound the expression in parentheses. Since the bids in Fi are part of a feasible
solution, they are mutually disjoint, and thus

∑
i′∈Fi

|Si′ | ≤ m. In the worst-case this holds
with equality, and to maximize the term in parentheses we would distribute the items evenly
among the elements of Fi. Thus we can weaken (14) to

∑
i′∈Fi

wi′ ≤
wi√
|Si|

∑
i′∈Fi

√
m

|Fi|

 =
wi√
|Si|
√
m
√
|Fi| (15)

We are almost there: all we need now is to show
√
|Fi| ≤

√
|Si|. But we must have

|Fi| ≤ |Si| since Si must contain an item of each bid in Fi (because it blocks all of them),
and the bids in Fi are disjoint. So (15) leads to∑

i′∈Fi

wi′ ≤
√
m wi,

and summing over all i ∈ I and applying (13), we have (11). 2

To understand the payment rule of the LOS mechanism, we need to define what it means
for a bid to “uniquely block” another.

Definition 3 A bid i uniquely blocks a bid j if j is not granted when i is included in the
input, but is granted when i is removed from the input.

As an exercise, you should prove to yourself that if i uniquely blocks j, we must have j > i
in the greedy ordering.

To prove that payments (10) make truthful bidding an optimal strategy, we proceed in
two steps. First we show there is no benefit to any bid (Ti, bi) over the bid (Si, bi)—there is
no reason to misreport the bundle Si. Then we show that setting bi = wi is optimal. First,
however, we establish that the LOS mechanism is individually rational.
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Lemma 1 In the LOS mechanism, the utility derived by a truthful agent is non-negative.

Proof. The lemma holds if a bidder is always charged at most its bid. Because the index
σ(i) defined in step 4 of the LOS mechanism occurs after i in the greedy ordering, we have

bi√
|Ti|
≥

bσ(i)√
|Tσ(i)|

and rearranging gives bi ≥ qi. 2

The following is a key insight for the following proofs.

Lemma 2 Suppose bid i uniquely blocks at least one other bid, and let j be the highest
indexed bid in the ordering that i uniquely blocks. Let I be the set of bids ranked before
j, other than i. Then, when i is removed from the input, the LOS mechanism grants and
rejects bids in I exactly as it would were i included.

Proof. By induction on the indices in I, from highest ranked to lowest. For the base case,
if the highest index bid is granted with i in the input, then it is granted with i not part of
the input, because no bid blocks it. If it is not granted with i in the input, it cannot be
granted when i is not part of the input, because this would contradict the fact that j is the
highest bid in the ordering uniquely blocked by i.

Assume bids are rejected and granted identically with and without i in the input for
the first k − 1 bids in I, where k < j. If k is granted when i is present, this means none
of the first k − 1 bids selected besides i block it. These bids are selected identically when i
is removed (and no other bid is selected) by the induction hypothesis, thus bid k remains
unblocked and is granted. If k is not granted with i present, it cannot be granted when i
is removed, because this would contradict the fact that j is the highest bid in the ordering
uniquely blocked by i. 2

The following simple fact is also useful.

Lemma 3 In the LOS mechanism, if i uniquely blocks at least one bid, then Ti ∩Tσ(i) 6= ∅.

Proof. Bid σ(i) is rejected when i is included in the input, but granted when i is removed.
Because bids in i are granted and rejected identically whether i is included in the input or
not, by Lemma 2, we must therefore have Ti ∩ Tσ(i) 6= ∅. 2

The next lemma shows we can assume Ti = Si for all i ∈ N .

Lemma 4 In the LOS mechanism, if a player can benefit over the truthful strategy by
bidding (Ti, bi), it can benefit just as much by bidding (Si, bi).

Proof. Consider an arbitrary bidder i and fix the others’ bids. Assume for the sake of
contradiction that the false bid (Ti, bi) leads to strictly higher utility than truthful bidding.
By Lemma 1, this means the bid must yield positive utility. In particular, the bid must be
granted, and we must also have Ti ⊇ Si (recall the definition of single-minded bidders).

To prove the result it suffices to show that: (a) the bid (Si, bi) would be granted, and (b)
the payment charged with this bid would be no more than the payment given bid (Ti, bi).

8



To see (a), note that Si ⊆ Ti implies that bid (Si, bi) would lie higher in the ordering than
(Ti, bi) according to (9), and thus would also be granted.

To see (b), let (Tj , bj) be the highest new bid granted if we remove bid (Ti, bi), and let
(Tk, bk) be the highest new bid granted if we remove bid (Si, bi). We argue that (Tj , bj)
lies higher than (Tk, bk). Assume that the contrary holds, and assume first that (Ti, bi)
lies before (Tk, bk). By Lemma 3, we have Si ∩ Tk 6= ∅, and since Ti ⊇ Si, we then have
Ti ∩ Tk 6= ∅. Now if we remove (Si, bi), by Lemma 2 the algorithm proceeds as if this bid
were there until (Tk, bk) is reached, and then the latter is granted. Thus the same occurs if
we remove (Ti, bi). This means that (Tk, bk) is uniquely blocked by (Ti, bi). But if (Ti, bi) is
present, bid (Tk, bk) cannot be granted because Ti ∩ Tk 6= ∅. But this contradicts the fact
that (Tj , bj) is the first bid blocked by (Ti, bi).

On the other hand, suppose (Ti, bi) lies after (Tk, bk). Because (Tk, bk) is granted when we
remove (Si, bi), this means it is granted when (Ti, bi) is included. But this is a contradiction
because (Ti, bi) is granted, and Ti ∩ Tk 6= ∅.

Thus (Tk, bk), the first bid uniquely blocked by (Si, bi), lies after (Tj , bj), the first bid
uniquely blocked by (Ti, bi). We therefore have

bj√
|Tj |

√
|Ti| ≥

bk√
|Tk|

√
|Ti| ≥

bk√
|Tk|

√
|Si|.

Thus (Si, bi) leads to lower payment than (Ti, bi), completing the proof. 2

Finally, the main result.

Theorem 2 In the LOS mechanism, truthful reporting is an always optimal strategy for
each bidder.

Proof. Consider a bidder i, and hold the others’ bids fixed (to some arbitrary bids). We
consider all possible bids (Ti, bi) by case analysis and show that none can yield higher utility
than (Si, wi). By Lemma 4 it suffices to consider bids of the form (Si, bi). First suppose
(Si, wi) would be granted. If that bid does not uniquely block any other, the payment is
0 and the utility is wi, the highest possible. So assume the truthful bid uniquely blocks at
least one other bid, and let j be the highest-ranked such bid. Let qi be the payment under
truthful bidding. There are three cases.

(a) bi > qi. We claim that in this range, the bid is granted and the payment is always qi.
We show that the selection of bids before j does not depend on the presence of bid
(Si, bi). Note that the selection of bids up to j is identical when we remove (Si, bi)
and when we remove (Si, wi). By Lemma 2 this selection is also identical (other than
bid i of course) when (Si, wi) is present. Consider the first bid k before j that is not
identical to this selection when we introduce (Si, bi). Necessarily k occurs after the
latter. If k was selected before introducing (Si, bi), but not after, then we must have
Si ∩ Tk 6= ∅. But this contradicts the fact that bid k is selected when we introduce
(Si, wi). If k is not selected before (Si, bi) is added, some higher ranked bid blocks it.
This bid remains granted when (Si, bi) is introduced, as k is the highest ranked bid
that changes status, and thus k is still not granted.
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(b) bi < qi. We claim that in this range, the bid is not granted and so the utility is 0, no
better than truthful bidding by Lemma 1. Let (Tj , bj) be the first bid uniquely blocked
by (Si, bi). Since (Si, bi) lies below (Tj , bj) for this range of bi, the latter is granted
by the fact that it is granted when (Si, wi) is removed. But we have Si ∩ Tj 6= ∅ by
Lemma 3, and so (Si, bi) cannot be granted.

(c) bi = qi. This depends on how the tie between bids (Si, bi) and (Tj , bj) is broken. If the
former is granted, we have case (a), if the latter is granted, we have case (b).

Now suppose that (Si, wi) would not be granted. The only way to gain positive utility is
to bid bi > wi such that the bid is granted, so consider such a bid. Since (Si, wi) is not
granted, there is a bid (Tj , bj) ranked higher that is granted and such that Tj∩Si 6= ∅. Since
(Si, bi) is granted, (Tj , bj) cannot be granted when (Si, bi) is placed; thus the latter is not
granted. But when (Si, bi) is removed, (Tj , bj) is granted. By definition, (Si, bi) uniquely
blocks (Tj , bj), and thus the payment under this bid is at least

bj√
|Tj |

√
|Si| ≥ wi

where the inequality follows from the fact that (Si, wi) is ranked lower than (Tj , bj). This
implies that the utility from bidding (Si, bi) is at most 0. 2

Again, you should check than when there is a single item, the LOS mechanism reduces to
the Vickrey auction.
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