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Lecture 3: Network Design
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1 Overview

We will examine the network design problem, which features

• A directed graph G = (V,E).

• A number of players. Each player i wants to go from some source vertex si to a sink
vertex ti.

• A cost ce for each edge e, for which the edge can be bought. Several players can split
the cost of an edge. Once an edge is bought, all players can use it.

A valid network is then any set of purchases that allows every player to travel from his
source to his sink by travelling only along bought edges. If only one player wishes to cross a
certain edge, naturally that player pays the full cost of the edge. If several players wish to
cross the same edge, however, such as the middle edge in Figure (1), we must specify how
they are to split the cost. For now we impose a fair cost sharing scheme, where all players
who cross an edge split its cost evenly. Later we will look at an alternative scheme.

2 Optimal Solution

Given a graph, sources and sinks, and edge costs as described above, one can ask for a
subset T ⊆ E of edges such that

• Every source si is connected (using the edges in T ) to its sink ti, and

• T minimizes the total cost C(T ) =
∑

e∈T ce.

Such a T is called the optimal solution. Finding T is equivalent to the Steiner tree problem,
which is known to be NP -complete.

Figure 1: A sample two-player network. The optimal and Nash solutions (green) are iden-
tical.
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Figure 2: Left: An example network where the optimal solution is a Nash solution (green),
but a second Nash solution (blue) exists as well. Right: An example where the Nash
solutions are optimal.

3 Selfish Solution

Alternatively, we could let each player individually choose a path pi from si to ti. For each
edge e, we then let ke be the number of people using e, so that the total cost charged to
the i-th player for his path is

Ci(pi) =
∑
e∈pi

ce
ke
.

A solution T̂ ⊂ E =
⋃

i pi is then selfish or Nash if, for any alternative path p̃i for player i,
Ci(p̃i) ≥ Ci(pi). As illustrated in Figure (2), the optimal solution may or may not be Nash,
and a Nash solution is not necessary unique.

Figure 3: A network for k players where the price of stability is a big improvement over the
price of anarchy. The optimal solution (which is also a Nash solution) has cost 1 + e, for
any small e > 0. (green). The worst Nash solution has cost k (blue).
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4 Price of Stability

Since the Nash solution is not unique, we refine our definition of the price of anarchy,
introduced in the previous lecture:

Price of Anarchy =
C(worst Nash solution)
C(optimal solution)

.

For example, the price of anarchy for the left network in Figure (2) is 7
6 .

Given that all players will act selfishly, an outside agent could nevertheless notice that
there are multiple Nash solutions, and direct the players to implement that solution; it
would then be to no player’s advantage to deviate form that solution. The price of stability
measures how close this directed selfish solution is to optimal:

Price of Stability =
C(best Nash solution)
C(optimal solution)

.

Figure (3) gives an example network where the price of stability is a significant improvement
over the price of anarchy.

4.1 Bounding the Price of Stability

We will now prove an upper bound on the price of stability, using the technique of potential
functions.

Given a choice of paths S = {pi} we associate to each edge e a potential

φe(S) = ce

(
1 +

1
2

+
1
3

+ . . .+
1
ke

)
= ceHke ,

where Hke is the ke-th harmonic number. The potential Φ(S) of the system is then the sum
of all potentials

∑
e∈E φe(S).

Lemma 4.1 Suppose player i changes his chosen path from pi to p′i. Then if S′ = {p1, . . . , p
′
i, . . . , pn},

Ci(p′i)− Ci(pi) = Φ(S′)− Φ(S).

Proof. Let’s categorize the edges of E.

1. Edges e in both pi and p′i.

2. Edges e ∈ pi, e 6∈ p′i.

3. Edges e 6∈ pi, e ∈ p′i.

4. Edges in neither pi nor p′i.
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Edges of type 1 or 4 have no effect on Ci. For each edge of type 2, player i receives a refund∑
e∈2

ce
ke

, and he pays a fee
∑

e∈3
ce

ke+1 for each edge of type 3. The total change in cost is
thus

Ci(p′i)− Ci(pi) =
∑
e∈3

ce
ke + 1

−
∑
e∈2

ce
ke
. (1)

The change in potential is just the sum of the changes in the individual edge potentials,

Φ(S′)− Φ(S) =
∑

e

(
φe(S′)− φe(S)

)
.

The potentials of edges of type 1 or 4 do not change, so they contribute nothing to the
above sum. For the other two types,∑

e∈2

(
φe(S′)− φe(S)

)
=
∑
e∈2

(ceHke−1 − ceHke) = −
∑
e∈2

ce
ke∑

e∈3

(
φe(S′)− φe(S)

)
=
∑
e∈3

(ceHke+1 − ceHke) =
∑
e∈3

ce
ke + 1

,

the same two terms as in (1), so

Ci(p′i)− Ci(pi) = Φ(S′)− Φ(S).
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Corollary 4.2 Let Sn be a set of paths that minimize Φ. Then Sn is a Nash solution.

Proof. Suppose, for contradiction, that it’s not. Then there is some player i who can
deviate from path pi to p′i to cheapen his cost, Ci(p′i)− Ci(pi) < 0. But then

Φ(S′)− Φ(Sn) < 0

Φ(S′) < Φ(Sn)

and Sn is not a minimum, a contradiction. 2

Now for a network with k players let Sn be the minimizer of Φ, S the best Nash solution,
and S∗ the optimum solution. Then

• C(S) ≤ C(Sn) by the corollary.

• C(Sn) ≤ Φ(Sn) since for each edge, ce ≤ ce
(

1 + 1
2 + . . .+ 1

ke

)
= φe.

• Φ(Sn) ≤ Φ(S∗) since Sn minimizes Φ.

• Φ(S∗) ≤ C(S∗)Hk since for each edge, φe = ceHke ≤ ceHk.

Chaining together inequalities,
C(S) ≤ C(S∗)Hk

Price of Stability =
C(S)
C(S∗)

≤ Hk ≈ log k.

In fact this bound is tight: Figure (4) shows a worst-case network where the optimal
solution has cost 1 + ε for ε→ 0, and the only Nash solution has cost 1 + 1

2 + . . .+ 1
k = Hk.

4



Figure 4: A worst-case network for k players. In the Nash solution (blue), the i-th player
pays 1

i , whereas the total cost of the optimal solution (yellow) is just 1 + e, for e→ 0.

5 Potential Games

The method of potential functions used here can also be used to analyze other games. The
key is the existence of a magical potential Φ that directly relates the overall potential of
the system to the benefit to individual players, as described in the theorem. Games with
such a Φ are called potential games. As with network design, the minimizer of a potential
games’s Φ is a Nash solution. Moreover, suppose there is some lower bound ε > 0 such
that, if player i can deviate from his current strategy to decreases his cost, his cost does so
by at least ε (this condition is easy to show for finite games.) Then we have an algorithm
for finding a Nash solution: start with any solution S. If no player can deviate to a cheaper
strategy, S is Nash. Otherwise, let a player deviate, and check again.

Each deviation decreases Φ by at least ε, and Φ is bounded below since, at best, every
player pays 0 cost, so this algorithm is guaranteed to terminate and find a Nash solution.
Unfortunately, does so may take a while.

Consider again the specific case of the network design problem, and suppose all edge
costs are integral with C = maxe ce be the cost of the most expensive edge (So ce ∈
{0, 1, 2, . . . , C}.). Then we know, for any starting solution S, 0 ≤ Φ(S) ≤ C |E|Hk. Fur-
thermore it’s easy to lower bound the change in potential at every step. In the worst case, at
number of players sharing one edge will drop from k to k−1, thereby reducing φe by at least
1
k . Therefore after O(C|E|k log k) best responses we must have found a Nash Equilibrium.
(Otherwise the potential Φ would have become negative.)

6 Open Research Question

What if G is undirected? When we bounded the price of stability above by Hk, we never
used that G was directed; however, the example in Figure (4) used to show tightness of
this bound no longer works. What is the new tight bound? For simplicity, you can assume
that all players share the same sink t. Even in this setting, no example networks have been
found with price of stability greater than 12

7 .

7 Other Cost Shares

In all of the above, we charged all players equally for the edges they shared. We now look
at alternative ways to split the cost.
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Consider a cost sharing function ξe(i, Se) which, for edge e, player i, and set of players
who share the edge Se, gives the cost charged to player i for e. We require any cost-sharing
scheme ξe to satisfy two common-sense conditions:

• Individually Rational: ξe(i, Se) = 0 if i 6∈ Se. In other words, players who do not use
an edge do not have to help pay for it.

• Budget Balance:
∑

i∈Se
ξe(i, Se) = ce. The cost of the edge is paid in full, and the

players as a whole are not overcharged.

For example, the fair cost sharing scheme we’ve been using, ξe = ce
|Se| , satisfies both

properties.
Suppose all players have a common sink t. Then we can define the distance d(si, t) to

be the sum of the costs of the edges in the cheapest path from si to t. We then order the
players so that

d(s1, t) ≤ d(s2, t) ≤ . . . ≤ d(sk, t)

and define a cost sharing function

ξe(i, Se) =

{
ce, if i is the smallest index in Se

0, otherwise.

For this cost sharing function, finding Nash solutions is easy. The first player can ignore all
others, and so will choose the shortest path from s1 to t. For the second player, arriving at
any point along p1 is just as good as arriving at t, so he will build the shortest path from
s2 to p1. Similarly, the i-th player will build the shortest path from si to p1 ∪ p2 . . . ∪ pi−1.

Finding the paths pi is equivalent to finding a minimum spanning tree, the players
essentially simulate Prim’s algorithm. It is also known that

C(minimum spanning tree) ≤ 2C(Steiner tree),

so for this choice of ξe,
Price of Anarchy ≤ 2.
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