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Lecture 2: Selfish Routing

Lecturer: Sergei Vassilvitskii Scribe:Etienne Vouga

Recall from the first lecture that we are working graphs G : (V,E) with vertices V
and directed edges E. We also specify two distinct special vertices, s ∈ V and t ∈ V ,
termed the source and sink respectively, and associate monotonic edge latency functions
!e : [0, 1] → R+ to each edge e ∈ E. We let P = {p1, . . . , pn} be the set of paths from s
to t, and define a flow f to be an assignment to each path pi a nonnegative real number
fpi , with

∑n
i=1 fpi = 1. One intuitive interpretation of flow is to imagine 1 unit of infinitely

splittable supply starting at s, and trying to travel to t. Then an fpi fraction of supply
travels on each path pi.

We consider only simple paths, that is each path pi has no cycles, and passes through
each edge at most once. We write e ∈ pi if pi passes through edge e. Then for a flow f
of G, we can compute the flow fe through an edge e by summing the contribution of each
path through e:

fe =
∑

i|e∈pi

fpi .

The latency contributed by edge e is then !e(fe), and the cost cpi(fpi) induced by f on
a path pi is

cpi(f) =
∑

e∈pi

fpi!e(fe).

The total cost C(f) is then the sum of the costs of all of the paths:

C(f) =
∑

i

cpi(f)

=
∑

i

∑

e∈pi

fpi!e(fe)

=
∑

e∈E

∑

pi∈P

fpi!e(fe)

=
∑

e∈E

fe!e(fe)

The last equality follows after switching the order of summations, and will prove useful
to us later.

Given the above structure, there are two canonical problems we can pose: first, we can
try to find an optimal routing, a flow f∗ which minimizes the total cost C(f∗). Second,
we can look for a Nash equilibrium f , in which, intuitively, every infinitesimal “piece” of
supply acts selfishly and takes the cheapest available path to the sink, regardless of the
consequences this choice has on the rest of the supply. We give a more precise formulation
of Nash equilibria below.

Given the two solutions flows f∗ and f , we can consider the ratio C(f)
C(f∗) , the price paid

by the supply for acting greedily instead of in concert. This is also known as the price of
anarchy. The remainder of the lecture proves the following theorem:
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Theorem 1 In the case of linear latency functions, le, the price of anarchy, C(f)
C(f∗) ≤

4
3 .

1 Nash Equilibrium

Suppose we have a flow f on G, and any two paths p1, p2 with fp1 > 0. If you’re flowing
along p1 and acting greedily, and flowing along p2 instead would be cheaper, you would
switch; hence, a necessary condition on f being a Nash equilibrium is that

∑

e∈p1

!e(fe) ≤
∑

e∈p2

!e(fe) ∀p2 ∈ P, p1 ∈ P |fp1 > 0. (1)

It can be shown the above condition is also sufficient.

2 Optimal Solution

Again, consider a flow f on G, p1, p2 paths, with fp1 > 0. Suppose we were to move some
amount of flow δ from p1 to p2. On the one hand, the cost along p1 will decrease since less
supply is moving through it, but on the other hand, the const along p2 will increase. If f
is optimal, such a switch cannot improve the total cost, so the benefit cannot outweigh the
cost.

Writing it down formally, the total cost of the original flow f is:

C(f) =
∑

e

ce(fe) =
∑

e∈p1
e∈p2

ce(fe) +
∑

e∈p1
e#∈p2

ce(fe) +
∑

e#∈p1
e∈p2

ce(fe) +
∑

e#∈p1
e#∈p2

ce(fe).

Consider a flow f ′ where we take a δ fraction of flow from p1 and route it on p2 instead.
Notice that for edges e contained both in p1 and p2 or neither p1 nor p2 the flow doesn’t
change. Formally, :

f ′
e =






fe e ∈ p1, e ∈ p2

fe − δ e ∈ p1, e &∈ p2

fe + δ e &∈ p1, e ∈ p2

fe e &∈ p1, e &]inp2

The total cost of f ′ is:

C(f ′) =
∑

e

ce(f ′
e) =

∑

e∈p1
e∈p2

ce(fe) +
∑

e∈p1
e#∈p2

ce(fe − δ) +
∑

e#∈p1
e∈p2

ce(fe + δ) +
∑

e#∈p1
e#∈p2

ce(fe).

If f is the optimal solution, then:

C(f) ≤ C(f ′)
∑

e∈p1
e#∈p2

ce(fe) +
∑

e#∈p1
e∈p2

ce(fe) ≤
∑

e∈p1
e#∈p2

ce(fe − δ) +
∑

e#∈p1
e∈p2

ce(fe + δ)

∑

e∈p1
e#∈p2

(ce(fe)− ce(fe − δ)) ≤
∑

e#∈p1
e∈p2

(ce(fe + δ)− ce(fe))
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Dividing through by δ, and taking the limit as δ → 0, we have:
∑

e∈p1
e#∈p2

c′e(f) ≤
∑

e#∈p1
e∈p2

c′e(f)

where c′e(f) = dce
dfe

is the derivative of the cost function. By adding
∑

e∈p1
e∈p2

c′e(f) to both

sides we conclude that a solution f is optimal if, for a path p1 for fp1 > 0,

c′p1
(f) < c′p2

(f).

It turns out that this condition, too, is both necessary and sufficient. Observe that this
condition looks superficially similar to the condition for a flow f to be an equilibrium flow,
the only difference is the functions – latency for the equilibrium, marginal costs for the
optimum.

3 Linear Latency Functions

Suppose now our latency functions are linear, that is, of the form !e(x) = aex + be, Then
the above Nash equilibrium condition (1) becomes, assuming fp1 > 0,

∑

e∈p1

aefe + be ≤
∑

e∈p2

aefe + be. (2)

Similarly, for the optimal solution, using the chain rule we get

∑

e∈p1

(
d

dfe
fe!e(fe)

)
(fe) ≤

∑

e∈p2

(
d

dfe
fe!e(fe)

)
(fe)

∑

e∈p1

(
!e(fe) + fe!

′
e(fe)

)
(fe) ≤

∑

e∈p2

(
!e(fe) + fe!

′
e(fe)

)
(fe)

∑

e∈p1

aefe + be + feae ≤
∑

e∈p2

aefe + be + feae

∑

e∈p1

2aefe + be ≤
∑

e∈p2

2aefe + be (3)

Notice that if be1 = be2 = 0, equations (2) and (3) are multiples of each other, and so
any flow that is a Nash equilibrium is optimal, and vice verse.

The key insight for analyzing the general case bei &= 0 is to notice that half of the Nash
flow is optimal for routing half a unit of supply, since if f satisfies equation (2), then f

2
satisfies (3). In particular, for each edge e, the marginal cost over e after routing half of the
flow optimally is the latency of the Nash flow !e(fe). Our strategy now will be to bound
C(f∗), the cost of the optimal solution, relative to the Nash solution, by taking the Nash
route for half of the supply, and bounding the cost of routing the other half.

Before we proceed, we prove a technical lemma. Let L∗(f) be the marginal cost of
increasing the flow starting with the flow f .
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Lemma 1 Let f∗ be an optimal partial flow of some amount k < 1 of supply, and f any
flow of k + δ supply. Then

C(f) ≤ C(f∗) + δL∗(f∗),

where L∗(f∗) is the marginal cost of increasing the flow starting with f∗, L∗(f∗) =
∑

i c
′
pi

(f∗
pi

).

Proof. Notice that since f∗ is optimal, we know that for any two paths p1 and p2, the
marginal costs are the same,

∑
e∈p1

c′e(f∗
e ) =

∑
e∈p2

c′e(f∗
e ) = L∗(f∗). Consider a flow f ,

with cost

C(f) =
∑

e∈E

fe!e(fe)

≥
∑

e∈E

f∗
e !e(fe) +

∑

e∈E

(fe − f∗
e )c′e(f

∗
e )

The inequality follows due tot he convexity of the cost function. It is each to check that
fe > f∗

e then ce(fe) > ce(f∗
e ) + (fe − f∗

e )c′e(fe). On the other hand, if fe < f∗
e then

ce(fe) < ce(f∗
e ) + (fe − f∗

e )c′e(fe). Continuing, we have:

C(f) ≥
∑

e∈E

f∗
e !e(fe) +

∑

e∈E

(fe − f∗
e )c′e(f

∗
e )

= C(f∗) +
∑

pi∈P

(fpi − f∗
pi

)c′pi
(f∗

pi
)

= C(f∗) +
∑

pi∈P

(fpi − f∗
pi

)L∗(f∗)

= C(f∗) + δL∗(f∗)

!

We are now ready to prove the theorem.
Proof of Theorem 1: Letting f∗ be the optimal flow, f the Nash flow, and f

2 half of
the Nash flow. We know from the discussion above that for the path pi, the marginal cost
c′pi

(
f
2 pi

)
is equal to the Nash latency !ei(feI ). Thus L∗

(
f
2

)
= C(f), and so, applying the

lemma with δ = 1
2 ,

C(f∗) ≥ C

(
f

2

)
+

1
2
L∗

(
f

2

)
≥ C

(
f

2

)
+

1
2
C(f).
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It remains to calculate C
(

f
2

)
:

C

(
f

2

)
=

∑

e

fe

2
le

(
fe

2

)

=
∑

e

fe

2

(
ae

fe

2
+ be

)

=
∑

e

(
aef2

e

4
+

befe

2

)

≥
∑

e

1
4

(
aef

2
e + befe

)

=
1
4
C(f),

so C(f∗) ≥ 3
4C(f), and

C(f)
C(f∗)

≤ 4
3
.
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