Interactive Acoustic Transfer Approximation for Modal Sound

Dingzeyu Li Yun Fei Changxi Zheng

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Rigid Body Sounds

Rigid Body Sounds

Modal Sound Synthesis

COLUMBIA COMPUTER GRAPHICS GROUP

Modal Sound Synthesis

COLUMBIA COMPUTER GRAPHICS GROUP

Linear Modal Analysis

Modal Vibrations

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

July 27, 2016

Linear Modal Analysis

Modal Vibrations

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

July 27, 2016

Linear Modal Analysis

Modal Vibrations

Sound Propagation

COLUMBIA COMPUTER GRAPHICS GROUP

Sound Propagation

COLUMBIA COMPUTER GRAPHICS GROUP

Sound Propagation

COLUMBIA COMPUTER GRAPHICS GROUP

V

Dingzeyu Li

Sound Propagation p_{ω_1}

COLUMBIA COMPUTER GRAPHICS GROUP

 p_{ω_3}

Dingzeyu Li

Interactive Acoustic Transfer Approximation

Helmholtz Equation

s.t. $\frac{\partial p}{\partial \mathbf{n}} = f(\mathbf{u}_{\omega})$

\mathcal{D} acoustic transfer / pressure listening location X frequency

COLUMBIA COMPUTER GRAPHICS GROUP

 $\nabla^2 p(\mathbf{x}, \omega) + k^2 p(\mathbf{x}, \omega) = 0$

Helmholtz Equation

s.t. $\frac{\partial p}{\partial \mathbf{n}} = f(\mathbf{u}_{\omega})$

\mathcal{D} listening location X frequency

COLUMBIA COMPUTER GRAPHICS GROUP

 $\nabla^2 p(\mathbf{x}, \omega) + k^2 p(\mathbf{x}, \omega) = 0$

acoustic transfer / pressure

wave equation $\nabla^2 u = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$

Dingzeyu Li

Helmholtz Equation

s.t. $\frac{\partial p}{\partial \mathbf{n}} = f(\mathbf{u}_{\omega})$

\mathcal{D} acoustic transfer / pressure listening location X frequency

COLUMBIA COMPUTER GRAPHICS GROUP

 $\nabla^2 p(\mathbf{x}, \omega) + k^2 p(\mathbf{x}, \omega) = 0$

Ceramics				
Glasses	Borosilicate Glass	61	-	64
	Glass Ceramic	64	-	110
	Silica Glass	68	-	74
	Soda-Lime Glass	68	-	72
Porous	Brick	10	-	50
	Concrete, typical	25	-	38
	Stone	6.9	-	21
Technical	Alumina	215		413
	Aluminium Nitride	302	-	348
	Boron Carbide	400	-	472
	Silicon	140	-	155
	Silicon Carbide	300	-	460
	Silicon Nitride	280	-	310
	Tungsten Carbide	600	-	720

Material Parameters

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

July 27, 2016

Ceramics				
Glasses	Borosilicate Glass	61	-	64
	Glass Ceramic	64	-	110
	Silica Glass	68	-	74
	Soda-Lime Glass	68	-	72
Porous	Brick	10	-	50
	Concrete, typical	25	-	38
	Stone	6.9	-	21
Technical	Alumina	215		413
	Aluminium Nitride	302	-	348
	Boron Carbide	400	-	472
	Silicon	140	-	155
	Silicon Carbide	300	-	460
	Silicon Nitride	280	-	310
	Tungsten Carbide	600	-	720

Material Parameters

Linear Modal Analysis

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

July 27, 2016

Ceramics				
Glasses	Borosilicate Glass	61	-	64
	Glass Ceramic	64	-	110
	Silica Glass	68	-	74
	Soda-Lime Glass	68	-	72
Porous	Brick	10	-	50
	Concrete, typical	25	-	38
	Stone	6.9	-	21
Technical	Alumina	215		413
	Aluminium Nitride	302	-	348
	Boron Carbide	400	-	472
	Silicon	140	-	155
	Silicon Carbide	300	-	460
	Silicon Nitride	280	-	310
	Tungsten Carbide	600	-	720

Material Parameters

Linear Modal Analysis

COLUMBIA COMPUTER GRAPHICS GROUP

SLOW $\nabla^2 p(\mathbf{x}, \omega) + k^2 p(\mathbf{x}, \omega) = 0$ Helmholtz Solves

July 27, 2016

Ceramics				
Glasses	Borosilicate Glass	61	-	64
	Glass Ceramic	64	-	110
	Silica Glass	68	-	74
	Soda-Lime Glass	68	-	72
Porous	Brick	10	-	50
	Concrete, typical	25	-	38
	Stone	6.9	-	21
Technical	Alumina	215		413
	Aluminium Nitride	302	-	348
	Boron Carbide	400	-	472
	Silicon	140	-	155
	Silicon Carbide	300	-	460
	Silicon Nitride	280	-	310
	Tungsten Carbide	600	-	720

Material Parameters

Linear Modal Analysis

COLUMBIA COMPUTER GRAPHICS GROUP

SLOW $\nabla^2 p(\mathbf{x}, \omega) + k^2 p(\mathbf{x}, \omega) = 0$

Helmholtz Solves

July 27, 2016

Ceramics				
Glasses	Borosilicate Glass	61	-	64
	Glass Ceramic	64	-	110
	Silica Glass	68	-	74
	Soda-Lime Glass	68	-	72
Porous	Brick	10	-	50
	Concrete, typical	25	-	38
	Stone	6.9	-	21
Technical	Alumina	215		413
	Aluminium Nitride	302	-	348
	Boron Carbide	400	-	472
	Silicon	140	-	155
	Silicon Carbide	300	-	460
	Silicon Nitride	280	-	310
	Tungsten Carbide	600	-	720

Young's modulus Material Data Book, University of Cambridge

COLUMBIA COMPUTER GRAPHICS GROUP

A wide range of materials No exact parameter

Possible range is large

Ceramics				
Glasses	Borosilicate Glass	61	-	64
	Glass Ceramic	64	-	110
	Silica Glass	68	-	74
	Soda-Lime Glass	68	-	72
Porous	Brick	10	-	50
	Concrete, typical	25	-	38
	Stone	6.9	-	21
Technical	Alumina	215		413
	Aluminium Nitride	302	-	348
	Boron Carbide	400	-	472
	Silicon	140	-	155
	Silicon Carbide	300	-	460
	Silicon Nitride	280	-	310
	Tungsten Carbide	600	-	720

Young's modulus Material Data Book, University of Cambridge

COLUMBIA COMPUTER GRAPHICS GROUP

A wide range of materials No exact parameter

Possible range is large

Young's modulus Material Data Book, University of Cambridge

Columbia Computer Graphics Group 🔨

61	-	64
64	-	110
68	-	74
68	-	72
10	-	50
25	-	38
6.9	-	21
215		413
302	-	348
400	-	472
140	-	155
300	-	460
280	-	310
600	-	720

A wide range of materials No exact parameter

Possible range is large

Young's modulus Material Data Book, University of Cambridge

COLUMBIA COMPUTER GRAPHICS GROUP

61		64
64	-	110
68		/4
68	-	. 72
10		50
25		38
6.9	-	21
215		413
302	-	348
400	-	472
140	-	155
300	-	460
280	-	310
600	-	720

A wide range of materials No exact parameter Possible range is large

Problem Definition

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

Problem Definition

 $\nabla^2 p(\mathbf{x}, \omega) + k^2 p(\mathbf{x}, \omega) = 0$ $_{\uparrow} p(\mathbf{x}, \omega)$

Related Work - Acoustic Simulation

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

July 27, 2016

Related Work - Acoustic Simulation

[Pentland and Williams 1989] [O'Brien et al. 2001]

COLUMBIA COMPUTER GRAPHICS GROUP

[Zheng and James 2011] [Langlois et al. 2014]
Related Work - Acoustic Simulation

[Pentland and Williams 1989]

[O'Brien et al. 2001]

[James et al. 2006] COLUMBIA COMPUTER GRAPHICS GROUP ₩ E

[Zheng and James 2011] [Langlois et al. 2014]

[Allen and Raghuvanshi 2015]

Dingzeyu Li

Related Work - Acoustic Simulation

[Pentland and Williams 1989]

[O'Brien et al. 2001]

[James et al. 2006] COLUMBIA COMPUTER GRAPHICS GROUP 6

[Ren et al. 2013]

[Zheng and James 2011] [Langlois et al. 2014]

[Allen and Raghuvanshi 2015]

Dingzeyu Li

Related Work - Acoustic Simulation

[Pentland and Williams 1989]

[O'Brien et al. 2001]

[James et al. 2006] COLUMBIA COMPUTER GRAPHICS GROUP ₩ E

[Zheng and James 2011] [Langlois et al. 2014]

[Allen and Raghuvanshi 2015]

Dingzeyu Li

July 27, 2016

17

Applications beyond modal sound synthesis

COLUMBIA COMPUTER GRAPHICS GROUP

Method Overview

Multipole Approximation for Helmholtz Eq.

$$\nabla^2 p(\mathbf{x}, \omega) + k^2 p(\mathbf{x}, \omega) = 0$$

$$p_i(\mathbf{x},\omega) \approx ik \sum_{n=0}^{N} \sum_{m=-n}^{n} S_n^m(\mathbf{x},\bar{\mathbf{x}}_0) M_n^m(\mathbf{x},\bar{\mathbf{x}}_0) M_n^m(\mathbf{x},\bar{\mathbf{x}}_0)$$

 S_n^m : singular Helmholtz basis functions

 $M_n^m(\omega)$: moments (depending on frequency)

Multipole Approximation for Helmholtz Eq.

$$\nabla^2 p(\mathbf{x}, \omega) + k^2 p(\mathbf{x}, \omega) = 0$$

$$p_i(\mathbf{x},\omega) \approx ik \sum_{n=0}^{N} \sum_{m=-n}^{n} S_n^m(\mathbf{x},\bar{\mathbf{x}}_0) M_n^m(\mathbf{x},\bar{\mathbf{x}}_0) M_n^m(\mathbf{x},\bar{\mathbf{x}}_0)$$

 S_n^m : singular Helmholtz basis functions

 $M_n^m(\omega)$: moments (depending on frequency)

 (ω)

Irregularity of Moments

21

Pressure to Moments

Pressure to Moments

Pressure to Moments

Algorithm in Brief

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

Algorithm in Brief

COLUMBIA COMPUTER GRAPHICS GROUP

Algorithm in Brief

Nn $p_i(\mathbf{x},\omega) \approx ik \sum S_n^m(\mathbf{x},\bar{\mathbf{x}}_0) M_n^m(\omega)$ n=0 m=-n

Contributions

Interactive Runtime Solve Fast Helmholtz Precomputation

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

Fast Helmholtz Precomputation

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

	$p(\boldsymbol{x};\omega)$	
Columbia	Computer Graphics Group	

Dingzeyu Li

Dingzeyu Li

Asymptotic Expansion

$p(\boldsymbol{x}; \omega)$	
COLUMBIA COMPUTER GRAPHICS GROUP A	Dingzeyu Li

Asymptotic Expansion

	p((x;	$\omega)$		
Columbia	Computer	GRAPHICS	GROUP	-~	

Dingzeyu Li

Asymptotic Expansion

	p((x;	$\omega)$		
Columbia	Computer	GRAPHICS	GROUP A	-~	

How to expand locally? Can we speed up at each solve?

July 27, 2016

Dingzeyu Li

 $(\mathbf{1})$

Boundary Integral

• $p(\mathbf{x},\omega) = \int_{S} \left| G(\mathbf{x};\mathbf{y}) \frac{\partial \phi_{\omega}}{\partial \mathbf{n}}(\mathbf{y}) - \frac{\partial G}{\partial \mathbf{n}}(\mathbf{x};\mathbf{y})\phi_{\omega}(\mathbf{y}) \right| dS(\mathbf{y})$ $= f(\phi_w)$

COLUMBIA COMPUTER GRAPHICS GROUP

Boundary Integral

• $p(\mathbf{x},\omega) = \int_{S} \left[G(\mathbf{x};\mathbf{y}) \frac{\partial \phi_{\omega}}{\partial \mathbf{n}}(\mathbf{y}) - \frac{\partial G}{\partial \mathbf{n}}(\mathbf{x};\mathbf{y}) \phi_{\omega}(\mathbf{y}) \right] dS(\mathbf{y})$ $= f(\phi_w)$

COLUMBIA COMPUTER GRAPHICS GROUP

Boundary Integral

• $p(\mathbf{x},\omega) = \int_{S} \left[G(\mathbf{x};\mathbf{y}) \frac{\partial \phi_{\omega}}{\partial \mathbf{n}}(\mathbf{y}) - \frac{\partial G}{\partial \mathbf{n}}(\mathbf{x};\mathbf{y}) \phi_{\omega}(\mathbf{y}) \right] dS(\mathbf{y})$ $= f(\phi_w)$ $\mathsf{A}(\omega)\phi(\omega) = \mathbf{b}(\omega)$

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

 $\mathsf{A}(\omega_0)\phi(\omega_0) = \mathbf{b}(\omega_0)$

COLUMBIA COMPUTER GRAPHICS GROUP

 $\mathsf{A}(\omega_0)\phi(\omega_0) = \mathbf{b}(\omega_0)$ N $\phi(\omega) = \sum \phi_i (\omega - \omega_0)^i$ i=0

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

 $\mathsf{A}(\omega_0)\phi(\omega_0) = \mathbf{b}(\omega_0)$ \mathbf{N} $\phi(\omega) = \sum \phi_i (\omega - \omega_0)^i$ i=0 $\mathsf{A}(\omega_0)\phi_1(\omega) = \mathbf{b}'(\omega_0) - \mathsf{A}'(\omega_0)\phi(\omega_0)$

Dingzeyu Li

 $\mathsf{A}(\omega_0)\phi(\omega_0) = \mathbf{b}(\omega_0)$ \mathbf{N} $\phi(\omega) = \sum \phi_i (\omega - \omega_0)^i$ i=0 $\mathsf{A}(\omega_0)\phi_1(\omega) = \mathbf{b}'(\omega_0) - \mathsf{A}'(\omega_0)\phi(\omega_0)$

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

d d

 $\mathsf{A}(\omega_0)\phi(\omega_0) = \mathbf{b}(\omega_0)$ \mathbb{N} $\phi(\omega) = \sum \phi_i (\omega - \omega_0)^i$ i=0 $\mathsf{A}(\omega_0)\phi_1(\omega) = \mathbf{b}'(\omega_0) - \mathsf{A}'(\omega_0)\phi(\omega_0)$ \mathcal{N} $n!\mathsf{A}(\omega_0)\phi_n = \mathbf{b}^{(n)}(\omega_0) - \sum (n-i)!C_n^i\mathsf{A}^{(i)}(\omega_0)\phi_{n-i}$ i=1COLUMBIA COMPUTER GRAPHICS GROUP July 27, 2016 Dingzeyu Li

 $\mathsf{A}(\omega_0)\phi(\omega_0) = \mathbf{b}(\omega_0)$ $\phi(\omega) = \sum \phi_i (\omega - \omega_0)^i$ i=0 $\mathsf{A}(\omega_0)\phi_1(\omega) = \mathsf{D}'(\omega_0) - \mathsf{A}'(\omega_0)\phi(\omega_0)$ $n! \mathsf{A}(\omega_0) \phi_n \neq \mathbf{b}^{(n)}(\omega_0) - \sum^n (n-i)! C_n^i \mathsf{A}^{(i)}(\omega_0) \phi_{n-i}$ i=1COLUMBIA COMPUTER GRAPHICS GROUP Dingzeyu Li July 27, 2016

Padé Approximant for Better Convergence

COLUMBIA COMPUTER GRAPHICS GROUP ₩ E

Singularities [Lenzi et al. 2013] Polynomial expansion

July 27, 2016

31

Padé Approximant for Better Convergence

COLUMBIA COMPUTER GRAPHICS GROUP ₩ E

Singularities [Lenzi et al. 2013]

Polynomial expansion

Padé Approximant

July 27, 2016

31

Padé Approximant for Better Convergence

COLUMBIA COMPUTER GRAPHICS GROUP

Singularities [Lenzi et al. 2013]

Polynomial expansion

Padé Approximant

 $\phi(\omega) = \frac{\sum_{i=0}^{L} \alpha_i (\omega - \omega_0)^i}{1 + \sum_{j=1}^{M} \beta_j (\omega - \omega_0)^j}$

Mesh Simplification for Pressure Solves

 $p(\boldsymbol{x};\omega)$ COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

Mesh Simplification for Pressure Solves

 $p(\boldsymbol{x};\omega)$ COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

Mesh Simplification for Pressure Solves

Existing approach loses acoustic pressure.

Original 30k triangles

2k triangles

Simplified [Hoppe 1999]

33

Existing approach loses acoustic pressure.

Original 30k triangles

2k triangles

COLUMBIA COMPUTER GRAPHICS GROUP ٢.

Simplified [Hoppe 1999]

Acoustic Transfer Preserving Simplification

Edge Collapse Algorithm [Hoppe 1999]

 $\mathbf{v}_{new} = \arg\min Q^{v_1}(\mathbf{v}) + Q^{v_2}(\mathbf{v})$ s.t. $\mathbf{g}_{vol}^T \mathbf{v} + d_{vol} = 0$ Volume Constraint

edge collapse V_2

Acoustic Transfer Preserving Simplification

Edge Collapse Algorithm [Hoppe 1999]

 $\mathbf{v}_{new} = \arg\min_{\mathbf{v}} Q^{v_1}(\mathbf{v}) + Q^{v_2}(\mathbf{v})$ s.t. $\mathbf{g}_{vol}^T \mathbf{v} + d_{vol} = 0$ Volume Constraint

 $\nabla^2 p(\mathbf{x}, \omega) + k^2 p(\mathbf{x}, \omega) = 0$ s.t. $\frac{\partial p}{\partial \mathbf{n}} = f(\mathbf{u}_{\omega})$

Acoustic Transfer Preserving Simplification

Edge Collapse Algorithm [Hoppe 1999]

- $\mathbf{v}_{new} = \arg\min_{\mathbf{v}} Q^{v_1}(\mathbf{v}) + Q^{v_2}(\mathbf{v})$
- s.t. $\mathbf{g}_{vol}^T \mathbf{v} + d_{vol} = 0$ Volume Constraint

 $\frac{1}{6} \sum_{f \in \mathcal{N}(v)} \left[\left(\mathbf{v} - \mathbf{v}_{f1} \right) \times \left(\mathbf{v} - \mathbf{v}_{f2} \right) \right]^T \left(\mathbf{u} + \mathbf{u}_{f1} + \mathbf{m}_{f2} \right) = C_v$ Acoustic Transfer Constraint

COLUMBIA COMPUTER GRAPHICS GROUP

edge collapse

Dingzeyu Li

Our approach preserves acoustic pressure.

Original 30k triangles

2k triangles

COLUMBIA COMPUTER GRAPHICS GROUP ₩ E

Simplified [Hoppe 1999]

Simplified (Ours) 2k triangles

Our approach preserves acoustic pressure.

Original 30k triangles

Simplified [Hoppe 1999] 2k triangles

COLUMBIA COMPUTER GRAPHICS GROUP

Simplified (Ours) 2k triangles

July 27, 2016

Dingzeyu Li

Recap: Fast Helmholtz Precomputation

	$p(\boldsymbol{x}; \omega)$	
Columbia	Computer Graphics Group	

₫ĝ

W

July 27, 2016

Dingzeyu Li

Recap: Fast Helmholtz Precomputation

COLUMBIA COMPUTER GRAPHICS GROUP ₩ E

COLUMBIA COMPUTER GRAPHICS GROUP

COLUMBIA COMPUTER GRAPHICS GROUP

$$p_i(\boldsymbol{x}) \approx ik \sum_{n=0}^{N} \sum_{m=-n}^{n} S_n^m(\boldsymbol{x}, \bar{\boldsymbol{x}}_0) \boldsymbol{\lambda}$$

$$\begin{bmatrix} S_0^0(x_1, \bar{x}_0) & \dots & S_N^N(x_1, \bar{x}_0) \end{bmatrix}$$

COLUMBIA COMPUTER GRAPHICS GROUP

$$p_i(\boldsymbol{x}) \approx ik \sum_{n=0}^{N} \sum_{m=-n}^{n} S_n^m(\boldsymbol{x}, \bar{\boldsymbol{x}}_0) \boldsymbol{\lambda}$$

$$\begin{bmatrix} S_0^0(x_1, \bar{x}_0) & \dots & S_N^N(x_1, \bar{x}_0) \end{bmatrix}$$

COLUMBIA COMPUTER GRAPHICS GROUP

$$p_i(\boldsymbol{x}) \approx ik \sum_{n=0}^{N} \sum_{m=-n}^{n} S_n^m(\boldsymbol{x}, \bar{\boldsymbol{x}}_0) \boldsymbol{\lambda}$$

$$\begin{bmatrix} S_0^0(x_1, \bar{x}_0) & \dots & S_N^N(x_1, \bar{x}_0) \end{bmatrix}$$

COLUMBIA COMPUTER GRAPHICS GROUP

Least Squares Solve for Moments

Columbia Computer Graphics Group

41

Least Squares Solve for Moments

COLUMBIA COMPUTER GRAPHICS GROUP

July 27, 2016

41

Evaluation

COLUMBIA COMPUTER GRAPHICS GROUP

Timing Statistics

ii) Mesh Simplification				(iii) Adaptive Freq. Sweep			(iv) Runtime Evaluation					
	afte	er (avg.)	simp.	rpeedup	before	after	meedun	befo	re	afte	r	cnee
e	# tri.	BE Solve	time	specuup	# solves	# solves	specuup	size	time	size	time	spec
	5750	4.2m	16.8m	4.2>	4740	253	17.2>	8.1MB	59m	5.1MB	12.9s	
	7255	6.1m	14.7m	5.5×	4492	379	11.3×	8.7MB	96m	5.4MB	13.6s	2
	4297	4.6m	10.2m	10.1×	3360	198	14.5×	7.7MB	132m	4.8MB	22.2s	3
	4139	4.1m	30.6m	4.9×	13396	1068	10.4×	30.2MB	237m	22.1MB	28.9s	۷
	3123	3.8m	6.5m	3.7×	5075	267	17.6×	9.2MB	96m	6.0MB	24.8s	2
	5425	5.8m	21.2m	2.9×	3626	221	13.2×	6.7MB	38m	4.2MB	11.6s	1
	7841	5.6m	28.4m	4.9×	12623	715	17.1×	62.4MB	258m	26.1MB	12.2s	12
	6406	5.1m	40.3m	7.8×	14131	624	22.2×	61.2MB	312m	25.7MB	23.8s	7
	5364	4.7m	36.6m	4.4×	9246	436	<u>?0.5</u> ×	42.7MB	186m	19.9MB	19.4s	
												C.

COLUMBIA COMPUTER GRAPHICS GROUP

Timing Statistics

Fre	q. Sweep	(iv) Runtime Evaluation					
r	rneedun	befo	re	afte	(noo		
ves	specuup	size	time	size	time	spec	
253	17.2>	8.1MB	59m	5.1MB	12.9s	2	
70	_ 11.3×	8.7MB	96m	5.4MB	13.6s	2	
70	14.5×	7.7MB	132m	4.8MB	22.2s	3	
=	i0.4×	30.2MB	237m	22.1MB	28.9s	4	
67	17.6×	9.2MB	96m	6.0MB	24.8s	2	
ati	ON ZX	6.7MB	38m	4.2MB	11.6s	1	
15	17.1×	62.4MB	258m	26.1MB	12.2s	12	
	22.2×	61.2MB	312m	25.7MB	23.8s	7	
36	<u>20.5×</u>	42.7MB	186m	19.9MB	19.4s		
						n.	

Timing Statistics

Results

Results

Parameter Space Exploration

Time-varying Frequency Effects

Fast Parameter Editing

Dingzeyu Li

Mug

porcelain

glass

wood

Mug

porcelain

glass

wood

PLATE

porcelain

wood

PLATE

porcelain

wood

Oloid

ivory

Oloid

ivory

Parameter Space Exploration

Parameter Space Exploration

Time-Varying Frequency Effects

BOTTLE

Time-Varying Frequency Effects

BOTTLE
Time-Varying Frequency Effects

IJUMP interactive editing

animation courtesy of [Tan et al. 2012]

Time-Varying Frequency Effects

IJUMP interactive editing

animation courtesy of [Tan et al. 2012]

COLUMBIA COMPUTER GRAPHICS GROUP

Dingzeyu Li

July 25, 2016

A Numerical Method for Interactive modal sound synthesis interactive parameter editing efficient precomputation

A Numerical Method for Interactive Acoustic Transfer Approximation

modal sound synthesis interactive parameter editing efficient precomputation

Future Work better keypoint selection algorithm

A Numerical Method for Interactive Acoustic Transfer Approximation

A Numerical Method for Interactive modal sound synthesis interactive parameter editing efficient precomputation

Future Work better keypoint selection algorithm geometry-independent parameters

Columbia Computer Graphics Group

A Numerical Method for Interactive Acoustic Transfer Approximation

Dingzeyu Li

A Numerical Method for Interactive modal sound synthesis interactive parameter editing efficient precomputation

Future Work

better keypoint selection algorithm geometry-independent parameters other applications beyond modal sounds

COLUMBIA COMPUTER GRAPHICS GROUP

A Numerical Method for Interactive Acoustic Transfer Approximation

Dingzeyu Li

July 25, 2016

Acknowledgement

Jeff Chadwick, Jie Tan, Timothy Sun, Breannan Smith, Henrique Maia

National Science Foundation (CAREER-1453101) Intel

COLUMBIA COMPUTER GRAPHICS GROUP ₩ E

July 27, 2016

Interactive Acoustic Transfer Approximation for Modal Sound http://www.cs.columbia.edu/cg/transfer/ (or Google "interactive acoustic transfer")

Dingzeyu Li dli@cs.columbia.edu Yun Fei Changxi Zheng

Interactive Acoustic Transfer Approximation for Modal Sound http://www.cs.columbia.edu/cg/transfer/ (or Google "interactive acoustic transfer")

Dingzeyu Li dli@cs.columbia.edu Yun Fei Changxi Zheng

