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1 Preservation of Desiderata

We prove that the restitution model proposed in Reflections on Si-
multaneous Impact (Section 5) produces feasible post-impact ve-
locities and continues to satisfy the five core desiderata outlined in
the same work.

1.1 Feasibility

A feasible post-impact velocity satisfies G(q)T q̇+ ≥ 0.

Theorem. Interpolation yields a feasible post-impact
velocity for all coefficients of restitution cr ∈ [0, 1].

Proof. Computing the post-impact relative velocity, we obtain:

GT q̇+ = (1− cr)G
T q̇+0 + crG

T q̇+1

By construction the LCP model guarantees that GT q̇+0 ≥ 0. Sim-
ilarly, upon termination the GR model guarantees that GT q̇+1 ≥ 0.
Each term in this sum is non-negative. Therefore the interpolation
yields a feasible velocity.

1.2 Conservation of Momentum

We begin with the observation that interpolating two post-impact
velocities is equivalent to interpolating the corresponding impulses.

Lemma. Interpolating q̇+0 and q̇+1 is equivalent to inter-
polating λ0 and λ1.

Proof.

q̇+ = (1− cr) q̇
+
0 + crq̇

+
1

= (1− cr)
(
q̇− +M−1Gλ0

)
+ cr

(
q̇− +M−1Gλ1

)
= q̇− +M−1G ((1− cr)λ0 + crλ1)

Therefore the net impulse magnitude is λ = (1− cr)λ0 + crλ1.

Theorem. Interpolation conserves momentum.

Proof. The generalized normals, by construction, conserve mo-
mentum and angular momentum, therefore Gλ exerts a momentum
conserving impulse on the system for any given set of magnitudes
λ. The interpolated response thus conserves momentum.

1.3 One-Sided

A one-sided impulse satisfies λ ≥ 0.

Theorem. Interpolation produces one-sided impulses
for all cr ∈ [0, 1].

Proof. Given two sets of one-sided impulses λ0 ≥ 0 and λ1 ≥ 0,
the sum (1− cr)λ0 + crλ1 ≥ 0 is also one-sided.

1.4 Bounded Kinetic Energy

The post-impact kinetic energy is given by

T (cr) =
1

2

(
(1− cr) q̇

+
0 + crq̇

+
1

)T
M

(
(1− cr) q̇

+
0 + crq̇

+
1

)
.

Theorem. Interpolating post-impact velocities from an
inelastic and from an elastic response yields a post-
impact kinetic energy bounded by that of elastic re-
sponse.

Proof. The kinetic energy is quadratic in cr and T (0) < T (1).
Therefore, if the second derivative of the energy with respect to cr
is positive, the energy can never exceed that of the elastic response
when cr ∈ [0, 1]. Computing the second derivative, we find that

∂2T

∂cr2
=

(
q̇+1 − q̇+0

)T
M

(
q̇+1 − q̇+0

)
.

M is positive definite, which implies that the second derivative is
positive. Therefore, the post-impact kinetic energy is bounded by
that of the elastic response.

1.5 Preservation of Symmetry

The interpolation model does not act on the configuration q of the
system, therefore we only consider its effect on the system’s veloc-
ity q̇.

Theorem. Interpolation preserves symmetry.

Proof. Let S(q) = q define a (potentially non-linear) symmetry
in the system’s configuration. This map operates linearly on the
velocity as ∇S(q)q̇ = q̇. Given two velocities that respect this
symmetry, we find for the interpolant:

∇Sq̇+ = ∇S
(
(1− cr) q̇

+
0 + crq̇

+
1

)
= (1− cr)∇Sq̇+0 + cr∇Sq̇+1
= (1− cr) q̇

+
0 + crq̇

+
1

= q̇+

Therefore, the interpolated response preserves symmetry.

1.6 Break-Away

Theorem. If a post-impact velocity satisfies
∇g(q)T q̇+1 > 0 under GR, then the interpolated
post-impact velocity satisfies∇g(q)T q̇+ > 0.

Proof. Under interpolation with the inelastic LCP response
∇gT q̇+0 ≥ 0, we find that

∇gT q̇+ = (1− cr)∇gT q̇+0 + cr∇gT q̇+1 > 0

for all cr ∈ (0, 1].


