Conservation of Core Desiderata under Interpolation

Breannan SmithDanColumbia UniversityColumbia

Danny M. Kaufman Columbia University Etienne Vouga Columbia University Eitan Grinspun Columbia University

1 Preservation of Desiderata

We prove that the restitution model proposed in Reflections on Simultaneous Impact (Section 5) produces feasible post-impact velocities and continues to satisfy the five core desiderata outlined in the same work.

1.1 Feasibility

A feasible post-impact velocity satisfies $G(q)^T \dot{q}^+ \ge 0$.

Theorem. Interpolation yields a feasible post-impact velocity for all coefficients of restitution $c_r \in [0, 1]$.

Proof. Computing the post-impact relative velocity, we obtain:

$$\mathsf{G}^T\dot{\mathsf{q}}^+ = (1-\mathsf{c}_r)\,\mathsf{G}^T\dot{\mathsf{q}}_0^+ + \mathsf{c}_r\mathsf{G}^T\dot{\mathsf{q}}_1^+$$

By construction the LCP model guarantees that $G^T \dot{q}_0^+ \ge 0$. Similarly, upon termination the GR model guarantees that $G^T \dot{q}_1^+ \ge 0$. Each term in this sum is non-negative. Therefore the interpolation yields a feasible velocity.

1.2 Conservation of Momentum

We begin with the observation that interpolating two post-impact velocities is equivalent to interpolating the corresponding impulses.

Lemma. Interpolating \dot{q}_0^+ and \dot{q}_1^+ is equivalent to interpolating λ_0 and λ_1 .

Proof.

$$\begin{split} \dot{q}^{+} &= (1 - c_r) \, \dot{q}_0^{+} + c_r \dot{q}_1^{+} \\ &= (1 - c_r) \left(\dot{q}^{-} + \mathsf{M}^{-1} \mathsf{G} \lambda_0 \right) + c_r \left(\dot{q}^{-} + \mathsf{M}^{-1} \mathsf{G} \lambda_1 \right) \\ &= \dot{q}^{-} + \mathsf{M}^{-1} \mathsf{G} \left((1 - c_r) \, \lambda_0 + c_r \lambda_1 \right) \end{split}$$

Therefore the net impulse magnitude is $\lambda = (1 - c_r) \lambda_0 + c_r \lambda_1$.

Theorem. Interpolation conserves momentum.

Proof. The generalized normals, by construction, conserve momentum and angular momentum, therefore $G\lambda$ exerts a momentum conserving impulse on the system for any given set of magnitudes λ . The interpolated response thus conserves momentum.

1.3 One-Sided

A one-sided impulse satisfies $\lambda \geq 0$.

Theorem. Interpolation produces one-sided impulses for all $c_r \in [0, 1]$.

Proof. Given two sets of one-sided impulses $\lambda_0 \ge 0$ and $\lambda_1 \ge 0$, the sum $(1 - c_r) \lambda_0 + c_r \lambda_1 \ge 0$ is also one-sided.

1.4 Bounded Kinetic Energy

The post-impact kinetic energy is given by

Rasmus Tamstorf

Walt Disney Animation Studios

$$T\left(\mathsf{c}_{r}\right) = \frac{1}{2} \left(\left(1 - \mathsf{c}_{r}\right) \dot{\mathsf{q}}_{0}^{+} + \mathsf{c}_{r} \dot{\mathsf{q}}_{1}^{+} \right)^{T} \mathsf{M}\left(\left(1 - \mathsf{c}_{r}\right) \dot{\mathsf{q}}_{0}^{+} + \mathsf{c}_{r} \dot{\mathsf{q}}_{1}^{+} \right).$$

Theorem. Interpolating post-impact velocities from an inelastic and from an elastic response yields a post-impact kinetic energy bounded by that of elastic response.

Proof. The kinetic energy is quadratic in c_r and T(0) < T(1). Therefore, if the second derivative of the energy with respect to c_r is positive, the energy can never exceed that of the elastic response when $c_r \in [0, 1]$. Computing the second derivative, we find that

$$\frac{\partial^2 T}{\partial \mathsf{c}_r{}^2} = \left(\dot{\mathsf{q}}_1^+ - \dot{\mathsf{q}}_0^+\right)^T \mathsf{M} \left(\dot{\mathsf{q}}_1^+ - \dot{\mathsf{q}}_0^+\right).$$

M is positive definite, which implies that the second derivative is positive. Therefore, the post-impact kinetic energy is bounded by that of the elastic response. $\hfill\square$

1.5 Preservation of Symmetry

The interpolation model does not act on the configuration q of the system, therefore we only consider its effect on the system's velocity \dot{q} .

Theorem. Interpolation preserves symmetry.

Proof. Let S(q) = q define a (potentially non-linear) symmetry in the system's configuration. This map operates linearly on the velocity as $\nabla S(q)\dot{q} = \dot{q}$. Given two velocities that respect this symmetry, we find for the interpolant:

$$\begin{split} \nabla \mathsf{S} \dot{\mathsf{q}}^{+} &= \nabla \mathsf{S} \left((1-\mathsf{c}_{r}) \, \dot{\mathsf{q}}_{0}^{+} + \mathsf{c}_{r} \dot{\mathsf{q}}_{1}^{+} \right) \\ &= (1-\mathsf{c}_{r}) \, \nabla \mathsf{S} \dot{\mathsf{q}}_{0}^{+} + \mathsf{c}_{r} \nabla \mathsf{S} \dot{\mathsf{q}}_{1}^{+} \\ &= (1-\mathsf{c}_{r}) \, \dot{\mathsf{q}}_{0}^{+} + \mathsf{c}_{r} \dot{\mathsf{q}}_{1}^{+} \\ &= \dot{\mathsf{q}}^{+} \end{split}$$

Therefore, the interpolated response preserves symmetry. \Box

1.6 Break-Away

Theorem. If a post-impact velocity satisfies $\nabla g(\mathbf{q})^T \dot{\mathbf{q}}_1^+ > 0$ under GR, then the interpolated post-impact velocity satisfies $\nabla g(\mathbf{q})^T \dot{\mathbf{q}}^+ > 0$.

Proof. Under interpolation with the inelastic LCP response $\nabla g^T \dot{q}_0^+ \ge 0$, we find that

$$\nabla g^{T} \dot{\mathbf{q}}^{+} = (1 - \mathbf{c}_{r}) \nabla g^{T} \dot{\mathbf{q}}_{0}^{+} + \mathbf{c}_{r} \nabla g^{T} \dot{\mathbf{q}}_{1}^{+} > 0$$

for all $c_r \in (0, 1]$.