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reconfigurable | riːkən'fɪg(ə)rəb(ə)l |
noun 


an object or collection of objects whose transformation between 
various states defines its functionality or aesthetic appeal. 



Foldable bicycle is a classic example 
of a reconfigurable!
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state #1 state #2transition



Transforming!
furniture is !
also a !
reconfigurable !

4!https://youtu.be/A3PDiDLiOEI



Transforming!
furniture is !
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Space-saving kitchen is"
also a reconfigurable 
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Problems occur if we design !
each state in isolation…!
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v	

state #1



...collisions prevent transitioning!
to other states!
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state #2



...collisions prevent transitioning!
to other states!
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state #2 first contact



We model reconfigurables !
as a graph of transitions!
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We model reconfigurables !
as a graph of transitions!
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Our goal is to help the designer 
keep all transitions collision free!

16!

1 2



17!

need UI to notify 
designer of new collisions

need UI to track 
progress of collisions 

need modeling tools 
to resolve collisions
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Harmonization of all three enables!
to rapid and creative editing sessions!

need UI to notify 
designer of new collisions

need UI to track 
progress of collisions 

need modeling tools 
to resolve collisions



Traditional CAD tools have !
limited collision support!

19!

solidworks

offline detection

notification via “audible bell”

no automatic resolution



Animation tools detect and respond !
to collisions for physically-based effects!

20!maya

time is linear and “one-way”

no salient states

overlaps OK if not noticeable



Previous computational design tools either:!
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ignore collisions leverage a 
specialized subspace
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We begin with objects as rigid triangle meshes!



23!

x

yt

x

y

Along each transition an object is a 
4D spacetime volume!
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Collisions correspond to 
intersections in spacetime!



Collision Intervals form the foundation of !
our notification and tracking UIs!

25!x

yt

spacetime bounding box

spatial projection

temporal projection



Collision Intervals form the foundation of !
our notification and tracking UIs!
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spacetime bounding box

spatial projection

temporal projection

see paper about 4D k-DOP
for collision interval detection



Spatial and temporal projections of 
collision intervals alert the designer!
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First priority: alert designer when 
collision is occurring!

28!



Next: alert designer where !
collision is occurring  !

29!



Designer’s current view may be poor,!
hotkey tumbles to optimized view!
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Designer’s current view may be poor,!
hotkey tumbles to optimized view!
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What makes a poor view?!

32!

Collision interval
not central



What makes a poor view?!
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Collision interval
not central

Collision interval
occluded



What makes a poor view?!

34!

Collision interval
not central

Collision interval
occluded

View direction 
along trajectory



What makes a poor view?!
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Collision interval
not central

Collision interval
occluded

View direction 
along trajectory



For two objects, center collision interval 
along view direction orthogonal to motions…!
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Generally, two choices left: !
pick direction with least occlusion!

37!

�rA ⇥ rB

not occluded

rA ⇥ rB

partially occluded



For degenerate views or multiple objects,!
we search over all views via Monte Carlo!
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For degenerate views or multiple objects,!
we search over all views via Monte Carlo!

39!



For degenerate views or multiple objects,!
we search over all views via Monte Carlo!

40!count “red” pixels using hardware “occlusion queries” (GL_SAMPLES_PASSED) 



Picture-in-picture allows rapid editing!
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original add 
armrest

when!
where!

better view

swap view swap viewedit again
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original add 
armrest

when!
where!

better view
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swap view



original add 
armrest

when!
where!

better view

swap view swap viewagain

gone.

edit



original add 
armrest

when!
where!

better view

swap view swap viewedit

when!

again



original add 
armrest

when!
where!

better view

swap view edit again

when! gone.

swap view
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Stroboscopic ghosting complements !
interactive collision interval tracking!
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Stroboscopic ghosting complements !
interactive collision interval tracking!
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Stroboscopic ghosting complements !
interactive collision interval tracking!



Fixing collisions can be tedious and unintuitive, 
how about a hint?!
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decrease/remove collisions

agnostic to direction of time

in terms of UI DOFs



First contacts between objects 
produce unreliable, biased directions!

55!t=0 t=1



First contacts between objects 
produce unreliable, biased directions!
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First contacts between objects 
produce unreliable, biased directions!

57!t=0 t=1



Global solution should untangle 
spacetime intersection!

58!t=0 t=1



Global solution should untangle 
spacetime intersection!

59!t=0 t=1



Global solution should untangle 
spacetime intersection!

60!t=0 t=1



2D reconfigurables could be 
untangled like 3D cloths!

61!
x

yt

x

y

A,B ⇢ R3



2D reconfigurables could be 
untangled like 3D cloths!

x

yt

@A \ @B 2 C1D
@A, @B 2 S2D



2D reconfigurables could be 
untangled like 3D cloths!

x

yt

@A \ @B ! ?
+

A \ B ! ?

@A \ @B 2 C1D
@A, @B 2 S2D



Minimizing length of intersection 
curve results in untangling!

64!

intersection 
contour

IC



argmin
V

kICk

Minimizing length of intersection 
curve results in untangling!

65!

intersection 
contour

IC length
3D mesh 
vertices



argmin
V

kICk

Minimizing length of intersection 
curve results in untangling!

66!

intersection 
contour

IC length
3D mesh 
vertices

V V �rVkICk
update via gradient descent



argmin
V

kICk

Minimizing length of intersection 
curve results in untangling!

67!

intersection 
contour

IC length
3D mesh 
vertices

V V �rVkICk
update via gradient descent

[Volino & M-T 2006] 



Naive extension to 3D objects is problematic!
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A,B ⇢ R4



Naive extension to 3D objects is problematic!

69!

@A \ @B 2 S2D

@A, @B 2 S3D

Difficult to compute or 
optimize over



Naive extension to 3D objects is problematic!
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Difficult to compute or 
optimize over

How to minimize surface 
area of intersection?

argmin
UI

|IS |



Intersections of generic surfaces are!
non-trivial to parameterize…!
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Intersections of generic surfaces are!
non-trivial to parameterize…!

72!

need to resolve 
intersections



… but spacetime surfaces are !
explicit functions of monotonic time!
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… but spacetime surfaces are !
explicit functions of monotonic time!

74!

trivial 
parameterization



Spacetime intersection surface area reduces 
to integral of 1D intersection contours!
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argmin
UI

|IS |

UI UI�rUI|IS |



Spacetime intersection surface area reduces 
to integral of 1D intersection contours!

76!

UI UI�
Z 1

0
rUIkIC(t)k dt

argmin
UI

Z 1

0
kIC(t)k dt



Applying the chain rule reveals !
UI couples surface positions across time!
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UI UI�
Z 1

0
rUIkIC(t)k dt

apply chain rule

argmin
UI

Z 1

0
kIC(t)k dt



Applying the chain rule reveals !
UI couples surface positions across time!
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UI UI�
Z 1

0
(rUIVt) (rVt kIC(t)k) dt

argmin
UI

Z 1

0
kIC(t)k dt



[Volino & M-T 2006] 

Applying the chain rule reveals !
UI couples surface positions across time!
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UI UI�
Z 1

0
(rUIVt) (rVt kIC(t)k) dt

argmin
UI

Z 1

0
kIC(t)k dt



See paper for details…
[Harmon et al. 2011] 
[Umetani et al. 2011]

Applying the chain rule reveals !
UI couples surface positions across time!
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UI UI�
Z 1

0
(rUIVt) (rVt kIC(t)k) dt

argmin
UI

Z 1

0
kIC(t)k dt



Gradient direction with respect to UI 
immediately helps as hint!
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Gradient direction with respect to UI 
immediately helps as hint!
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Gradient direction with respect to UI 
immediately helps as hint!
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Collisions involving many objects can be 
very tedious to fix…!
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Collisions involving many objects can be 
very tedious to fix…!
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… manually fixing one collision may 
cause more at another place or time!
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… manually fixing one collision may 
cause more at another place or time!
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… instead we may follow gradient descent !
until all collisions disappear!

88!



… instead we may follow gradient descent !
until all collisions disappear!

89!



Sometimes, one part’s geometry is 
less important than another’s…!
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Sometimes, one part’s geometry is 
less important than another’s…!
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Sometimes, one part’s geometry is 
less important than another’s…!
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See paper for details. Made possible in part by
“Mesh Arrangements for Solid Geometry” [Zhou et al. 2016]
presented on Monday



Swept volume carving invites !
creative space-saving solutions!
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Swept volume carving invites !
creative space-saving solutions!
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Limitations & Future Work!

99!

extend to full modeling / deformation toolsmodeling space



Limitations & Future Work!

100!

extend to full modeling / deformation tools

integrate with 3D scanning / model repos



modeling space

data



Limitations & Future Work!
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extend to full modeling / deformation tools

integrate with 3D scanning / model repos

feasibility extends beyond collisions



modeling space

data

physics
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