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reconfigurable | riːkən'fɪg(ə)rəb(ə)l |

noun 




an object or collection of objects whose transformation between 
various states defines its functionality or aesthetic appeal. 




Foldable bicycle is a classic example 
of a reconfigurable!
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state #1
 state #2
transition




Transforming!
furniture is !
also a !
reconfigurable !

4!https://youtu.be/A3PDiDLiOEI
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Space-saving kitchen is"
also a reconfigurable 
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Problems occur if we design !
each state in isolation…!
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v	

state #1




...collisions prevent transitioning!
to other states!
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state #2




...collisions prevent transitioning!
to other states!
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state #2
 first contact




We model reconfigurables !
as a graph of transitions!
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We model reconfigurables !
as a graph of transitions!
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Our goal is to help the designer 
keep all transitions collision free!
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need UI to notify 

designer of new collisions


need UI to track 

progress of collisions 


need modeling tools 

to resolve collisions
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Harmonization of all three enables!
to rapid and creative editing sessions!

need UI to notify 

designer of new collisions


need UI to track 

progress of collisions 


need modeling tools 

to resolve collisions




Traditional CAD tools have !
limited collision support!
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solidworks


offline detection



notification via “audible bell”


no automatic resolution




Animation tools detect and respond !
to collisions for physically-based effects!

20!maya


time is linear and “one-way”



no salient states


overlaps OK if not noticeable




Previous computational design tools either:!

21!

ignore collisions
 leverage a 

specialized subspace
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We begin with objects as rigid triangle meshes!
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yt
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Along each transition an object is a 
4D spacetime volume!
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x

yt

x

y

Collisions correspond to 
intersections in spacetime!



Collision Intervals form the foundation of !
our notification and tracking UIs!

25!x

yt

spacetime bounding box


spatial projection


temporal projection




Collision Intervals form the foundation of !
our notification and tracking UIs!
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spacetime bounding box


spatial projection


temporal projection


see paper about 4D k-DOP

for collision interval detection




Spatial and temporal projections of 
collision intervals alert the designer!
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First priority: alert designer when 
collision is occurring!
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Next: alert designer where !
collision is occurring  !

29!



Designer’s current view may be poor,!
hotkey tumbles to optimized view!
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Designer’s current view may be poor,!
hotkey tumbles to optimized view!
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What makes a poor view?!
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Collision interval

not central




What makes a poor view?!
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Collision interval

not central


Collision interval

occluded




What makes a poor view?!
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Collision interval

not central


Collision interval

occluded


View direction 
along trajectory




What makes a poor view?!
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Collision interval

not central


Collision interval

occluded


View direction 
along trajectory




For two objects, center collision interval 
along view direction orthogonal to motions…!
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Generally, two choices left: !
pick direction with least occlusion!
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�rA ⇥ rB

not occluded


rA ⇥ rB

partially occluded




For degenerate views or multiple objects,!
we search over all views via Monte Carlo!
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For degenerate views or multiple objects,!
we search over all views via Monte Carlo!
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For degenerate views or multiple objects,!
we search over all views via Monte Carlo!

40!count “red” pixels using hardware “occlusion queries” (GL_SAMPLES_PASSED) 



Picture-in-picture allows rapid editing!
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original
 add 
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when!

where!


better view


swap view
 swap view
edit
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original
 add 
armrest


when!

where!


better view


swap view
 edit
 again


when!
 gone.


swap view
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Stroboscopic ghosting complements !
interactive collision interval tracking!
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Stroboscopic ghosting complements !
interactive collision interval tracking!
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Stroboscopic ghosting complements !
interactive collision interval tracking!



Fixing collisions can be tedious and unintuitive, 
how about a hint?!
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decrease/remove collisions



agnostic to direction of time



in terms of UI DOFs




First contacts between objects 
produce unreliable, biased directions!

55!t=0
 t=1




First contacts between objects 
produce unreliable, biased directions!
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 t=1




First contacts between objects 
produce unreliable, biased directions!

57!t=0
 t=1




Global solution should untangle 
spacetime intersection!
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Global solution should untangle 
spacetime intersection!

59!t=0
 t=1




Global solution should untangle 
spacetime intersection!

60!t=0
 t=1




2D reconfigurables could be 
untangled like 3D cloths!

61!
x

yt

x

y

A,B ⇢ R3



2D reconfigurables could be 
untangled like 3D cloths!

x

yt

@A \ @B 2 C1D
@A, @B 2 S2D



2D reconfigurables could be 
untangled like 3D cloths!

x

yt

@A \ @B ! ?
+

A \ B ! ?

@A \ @B 2 C1D
@A, @B 2 S2D



Minimizing length of intersection 
curve results in untangling!
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intersection 
contour


IC



argmin
V

kICk

Minimizing length of intersection 
curve results in untangling!
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intersection 
contour


IC length

3D mesh 
vertices




argmin
V

kICk

Minimizing length of intersection 
curve results in untangling!
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intersection 
contour


IC length

3D mesh 
vertices


V V �rVkICk
update via gradient descent




argmin
V

kICk

Minimizing length of intersection 
curve results in untangling!

67!

intersection 
contour


IC length

3D mesh 
vertices


V V �rVkICk
update via gradient descent


[Volino & M-T 2006] 




Naive extension to 3D objects is problematic!
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A,B ⇢ R4



Naive extension to 3D objects is problematic!

69!

@A \ @B 2 S2D

@A, @B 2 S3D

Difficult to compute or 
optimize over




Naive extension to 3D objects is problematic!

70!

Difficult to compute or 
optimize over


How to minimize surface 
area of intersection?


argmin
UI

|IS |



Intersections of generic surfaces are!
non-trivial to parameterize…!

71!



Intersections of generic surfaces are!
non-trivial to parameterize…!

72!

need to resolve 

intersections




… but spacetime surfaces are !
explicit functions of monotonic time!
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… but spacetime surfaces are !
explicit functions of monotonic time!

74!

trivial 

parameterization




Spacetime intersection surface area reduces 
to integral of 1D intersection contours!

75!

argmin
UI

|IS |

UI UI�rUI|IS |



Spacetime intersection surface area reduces 
to integral of 1D intersection contours!
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UI UI�
Z 1

0
rUIkIC(t)k dt

argmin
UI

Z 1

0
kIC(t)k dt



Applying the chain rule reveals !
UI couples surface positions across time!
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UI UI�
Z 1

0
rUIkIC(t)k dt

apply chain rule


argmin
UI

Z 1

0
kIC(t)k dt



Applying the chain rule reveals !
UI couples surface positions across time!
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UI UI�
Z 1

0
(rUIVt) (rVt kIC(t)k) dt

argmin
UI

Z 1

0
kIC(t)k dt



[Volino & M-T 2006] 


Applying the chain rule reveals !
UI couples surface positions across time!
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UI UI�
Z 1

0
(rUIVt) (rVt kIC(t)k) dt

argmin
UI

Z 1

0
kIC(t)k dt



See paper for details…

[Harmon et al. 2011] 

[Umetani et al. 2011]


Applying the chain rule reveals !
UI couples surface positions across time!
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UI UI�
Z 1

0
(rUIVt) (rVt kIC(t)k) dt

argmin
UI

Z 1

0
kIC(t)k dt



Gradient direction with respect to UI 
immediately helps as hint!

81!



Gradient direction with respect to UI 
immediately helps as hint!
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Gradient direction with respect to UI 
immediately helps as hint!
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Collisions involving many objects can be 
very tedious to fix…!
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Collisions involving many objects can be 
very tedious to fix…!
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… manually fixing one collision may 
cause more at another place or time!
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… manually fixing one collision may 
cause more at another place or time!

87!



… instead we may follow gradient descent !
until all collisions disappear!

88!



… instead we may follow gradient descent !
until all collisions disappear!
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Sometimes, one part’s geometry is 
less important than another’s…!
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Sometimes, one part’s geometry is 
less important than another’s…!
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Sometimes, one part’s geometry is 
less important than another’s…!

92!

See paper for details. Made possible in part by

“Mesh Arrangements for Solid Geometry” [Zhou et al. 2016]

presented on Monday




Swept volume carving invites !
creative space-saving solutions!
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Swept volume carving invites !
creative space-saving solutions!
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Limitations & Future Work!

99!

extend to full modeling / deformation tools
modeling space




Limitations & Future Work!

100!

extend to full modeling / deformation tools


integrate with 3D scanning / model repos





modeling space


data




Limitations & Future Work!
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extend to full modeling / deformation tools


integrate with 3D scanning / model repos


feasibility extends beyond collisions





modeling space


data


physics
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