
1!

Computational Design of
Reconfigurables!

1Columbia University!
2University of Toronto!

Akash Garg1!

Alec Jacobson1,2!

Eitan Grinspun1!

!
!

2!

reconfigurable | riːkən'fɪg(ə)rəb(ə)l |

noun

an object or collection of objects whose transformation between
various states defines its functionality or aesthetic appeal.

Foldable bicycle is a classic example
of a reconfigurable!

3!
state #1
 state #2
transition

Transforming!
furniture is !
also a !
reconfigurable !

4!https://youtu.be/A3PDiDLiOEI

Transforming!
furniture is !
also a !
reconfigurable !

5!https://youtu.be/A3PDiDLiOEI

Space-saving kitchen is"
also a reconfigurable

6!

7!

8!

9!

10!

Problems occur if we design !
each state in isolation…!

11!

v	

state #1

...collisions prevent transitioning!
to other states!

12!

state #2

...collisions prevent transitioning!
to other states!

13!

state #2
 first contact

We model reconfigurables !
as a graph of transitions!

14!

1
 2

We model reconfigurables !
as a graph of transitions!

15!

1

2
 3

4

5

Our goal is to help the designer
keep all transitions collision free!

16!

1
 2

17!

need UI to notify

designer of new collisions

need UI to track

progress of collisions

need modeling tools

to resolve collisions

18!

Harmonization of all three enables!
to rapid and creative editing sessions!

need UI to notify

designer of new collisions

need UI to track

progress of collisions

need modeling tools

to resolve collisions

Traditional CAD tools have !
limited collision support!

19!

solidworks

offline detection

notification via “audible bell”

no automatic resolution

Animation tools detect and respond !
to collisions for physically-based effects!

20!maya

time is linear and “one-way”

no salient states

overlaps OK if not noticeable

Previous computational design tools either:!

21!

ignore collisions
 leverage a

specialized subspace

22!

We begin with objects as rigid triangle meshes!

23!

x

yt

x

y

Along each transition an object is a
4D spacetime volume!

24!

x

yt

x

y

Collisions correspond to
intersections in spacetime!

Collision Intervals form the foundation of !
our notification and tracking UIs!

25!x

yt

spacetime bounding box

spatial projection

temporal projection

Collision Intervals form the foundation of !
our notification and tracking UIs!

26!

spacetime bounding box

spatial projection

temporal projection

see paper about 4D k-DOP

for collision interval detection

Spatial and temporal projections of
collision intervals alert the designer!

27!

First priority: alert designer when
collision is occurring!

28!

Next: alert designer where !
collision is occurring !

29!

Designer’s current view may be poor,!
hotkey tumbles to optimized view!

30!

Designer’s current view may be poor,!
hotkey tumbles to optimized view!

31!

What makes a poor view?!

32!

Collision interval

not central

What makes a poor view?!

33!

Collision interval

not central

Collision interval

occluded

What makes a poor view?!

34!

Collision interval

not central

Collision interval

occluded

View direction
along trajectory

What makes a poor view?!

35!

Collision interval

not central

Collision interval

occluded

View direction
along trajectory

For two objects, center collision interval
along view direction orthogonal to motions…!

36!

Generally, two choices left: !
pick direction with least occlusion!

37!

�rA ⇥ rB

not occluded

rA ⇥ rB

partially occluded

For degenerate views or multiple objects,!
we search over all views via Monte Carlo!

38!

For degenerate views or multiple objects,!
we search over all views via Monte Carlo!

39!

For degenerate views or multiple objects,!
we search over all views via Monte Carlo!

40!count “red” pixels using hardware “occlusion queries” (GL_SAMPLES_PASSED)

Picture-in-picture allows rapid editing!

41!

original
 add
armrest

when!

where!

better view

swap view
 swap view
edit
 again

original
 add
armrest

when!

where!

better view

swap view
 swap view
edit
 again

when!
 gone.

add
armrest

when!

where!

better view

swap view
 swap view
edit
 again

when!
 gone.

original

original

where!

better view

swap view
 swap view
edit
 again

when!
 gone.

add
armrest

when!

original
 add
armrest

when!

swap view
 swap view
edit
 again

when!
 gone.

where!

better view

original
 add
armrest

when!

where!

better view

swap view
edit
 again

when!
 gone.

swap view

original
 add
armrest

when!

where!

better view

swap view
 swap view
again

gone.

edit

original
 add
armrest

when!

where!

better view

swap view
 swap view
edit

when!

again

original
 add
armrest

when!

where!

better view

swap view
 edit
 again

when!
 gone.

swap view

51!

Stroboscopic ghosting complements !
interactive collision interval tracking!

52!

Stroboscopic ghosting complements !
interactive collision interval tracking!

53!

Stroboscopic ghosting complements !
interactive collision interval tracking!

Fixing collisions can be tedious and unintuitive,
how about a hint?!

54!

decrease/remove collisions

agnostic to direction of time

in terms of UI DOFs

First contacts between objects
produce unreliable, biased directions!

55!t=0
 t=1

First contacts between objects
produce unreliable, biased directions!

56!t=0
 t=1

First contacts between objects
produce unreliable, biased directions!

57!t=0
 t=1

Global solution should untangle
spacetime intersection!

58!t=0
 t=1

Global solution should untangle
spacetime intersection!

59!t=0
 t=1

Global solution should untangle
spacetime intersection!

60!t=0
 t=1

2D reconfigurables could be
untangled like 3D cloths!

61!
x

yt

x

y

A,B ⇢ R3

2D reconfigurables could be
untangled like 3D cloths!

x

yt

@A \ @B 2 C1D
@A, @B 2 S2D

2D reconfigurables could be
untangled like 3D cloths!

x

yt

@A \ @B ! ?
+

A \ B ! ?

@A \ @B 2 C1D
@A, @B 2 S2D

Minimizing length of intersection
curve results in untangling!

64!

intersection
contour

IC

argmin
V

kICk

Minimizing length of intersection
curve results in untangling!

65!

intersection
contour

IC length

3D mesh
vertices

argmin
V

kICk

Minimizing length of intersection
curve results in untangling!

66!

intersection
contour

IC length

3D mesh
vertices

V V �rVkICk
update via gradient descent

argmin
V

kICk

Minimizing length of intersection
curve results in untangling!

67!

intersection
contour

IC length

3D mesh
vertices

V V �rVkICk
update via gradient descent

[Volino & M-T 2006]

Naive extension to 3D objects is problematic!

68!

A,B ⇢ R4

Naive extension to 3D objects is problematic!

69!

@A \ @B 2 S2D

@A, @B 2 S3D

Difficult to compute or
optimize over

Naive extension to 3D objects is problematic!

70!

Difficult to compute or
optimize over

How to minimize surface
area of intersection?

argmin
UI

|IS |

Intersections of generic surfaces are!
non-trivial to parameterize…!

71!

Intersections of generic surfaces are!
non-trivial to parameterize…!

72!

need to resolve

intersections

… but spacetime surfaces are !
explicit functions of monotonic time!

73!

… but spacetime surfaces are !
explicit functions of monotonic time!

74!

trivial

parameterization

Spacetime intersection surface area reduces
to integral of 1D intersection contours!

75!

argmin
UI

|IS |

UI UI�rUI|IS |

Spacetime intersection surface area reduces
to integral of 1D intersection contours!

76!

UI UI�
Z 1

0
rUIkIC(t)k dt

argmin
UI

Z 1

0
kIC(t)k dt

Applying the chain rule reveals !
UI couples surface positions across time!

77!

UI UI�
Z 1

0
rUIkIC(t)k dt

apply chain rule

argmin
UI

Z 1

0
kIC(t)k dt

Applying the chain rule reveals !
UI couples surface positions across time!

78!

UI UI�
Z 1

0
(rUIVt) (rVt kIC(t)k) dt

argmin
UI

Z 1

0
kIC(t)k dt

[Volino & M-T 2006]

Applying the chain rule reveals !
UI couples surface positions across time!

79!

UI UI�
Z 1

0
(rUIVt) (rVt kIC(t)k) dt

argmin
UI

Z 1

0
kIC(t)k dt

See paper for details…

[Harmon et al. 2011]

[Umetani et al. 2011]

Applying the chain rule reveals !
UI couples surface positions across time!

80!

UI UI�
Z 1

0
(rUIVt) (rVt kIC(t)k) dt

argmin
UI

Z 1

0
kIC(t)k dt

Gradient direction with respect to UI
immediately helps as hint!

81!

Gradient direction with respect to UI
immediately helps as hint!

82!

Gradient direction with respect to UI
immediately helps as hint!

83!

Collisions involving many objects can be
very tedious to fix…!

84!

Collisions involving many objects can be
very tedious to fix…!

85!

… manually fixing one collision may
cause more at another place or time!

86!

… manually fixing one collision may
cause more at another place or time!

87!

… instead we may follow gradient descent !
until all collisions disappear!

88!

… instead we may follow gradient descent !
until all collisions disappear!

89!

Sometimes, one part’s geometry is
less important than another’s…!

90!

Sometimes, one part’s geometry is
less important than another’s…!

91!

Sometimes, one part’s geometry is
less important than another’s…!

92!

See paper for details. Made possible in part by

“Mesh Arrangements for Solid Geometry” [Zhou et al. 2016]

presented on Monday

Swept volume carving invites !
creative space-saving solutions!

93!

Swept volume carving invites !
creative space-saving solutions!

94!

95!

96!

97!

98!

Limitations & Future Work!

99!

extend to full modeling / deformation tools
modeling space

Limitations & Future Work!

100!

extend to full modeling / deformation tools

integrate with 3D scanning / model repos

modeling space

data

Limitations & Future Work!

101!

extend to full modeling / deformation tools

integrate with 3D scanning / model repos

feasibility extends beyond collisions

modeling space

data

physics

Acknowledgements!

102!

We thank Keenan Crane and Henrique Maia for
illuminating discussions.

The Columbia Computer Graphics Group is supported
by Disney Research, Pixar, Adobe, and Altair.

Funded in part by NSF grants CMMI-11-29917,
IIS-12-08153, IIS-14-09286, and IIS-17257.

Computational Design of
Reconfigurables!
Akash Garg!

Alec Jacobson jacobson@cs.toronto.edu!
Eitan Grinspun!
!
!

I’m accepting PhD and
postdoc applications

