
102 communications of the acm | april 2012 | vol. 55 | no. 4

research highlights

doi:10.1145/2133806.2133828

Asynchronous Contact Mechanics
By David Harmon,* Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan Grinspun

1. MOTIVATION
Physicists have long observed physical phenomena, such
as the motion of fluids and the interaction of galaxies, and
developed mathematical models to describe these systems.
More recently, the advent of computers has allowed us to
implement these models as software in a computational
environment, launching the field of physical simulation.
On a computer we are able to recreate and study physical
phenomena within a controlled setting both for descrip-
tive as well as exploratory purposes, leading to advance-
ments in design, engineering, and entertainment.

However, even as computer hardware benefits from
Moore’s Law, our ability to program, debug, and maintain
software advances at a slower pace. This observation shapes
our priorities as we develop physical simulation tools
for computer graphics. While making choices that yield
up-front simplicity and blazing performance is important
today, we prefer that these choices do not obstruct our long-
term goals of extending functionality and improving physi-
cal realism. Laying aside ad hoc models in favor of physical
approaches might require a deeper initial investment, but
it promises to pay off handsomely in predictability, control-
lability, and extensibility.

1.1. Safety, correctness, progress
One particularly difficult aspect of simulation is the mod-
eling of complex collisions. A collision occurs when two
objects attempt to occupy the same point in space at the
same time. Even simple scenarios, like a crumpled shirt,
contain an extraordinary number of these contacting points
that arise and disappear through the course of a simulation.
Robust simulation of complex contact scenarios is critical
to applications spanning graphics (training, virtual worlds,
entertainment) and engineering (product design, safety
analysis, experimental validation). The presence of frequent
and plentiful collisions (Figure 1), interactions involving
sharp boundaries, resting and sliding contact, and all com-
binations thereof make it challenging to simulate contact

reliably. The inability to handle these difficult situations
results in interpenetration, visual artifacts where objects
intersect one another—a clearly unphysical configuration.
Useful resolution of these scenarios requires consider-
ation of the fundamental issues of geometric safety, physi-
cal correctness, and computational progress. These have the
respective meanings that (a) for well-posed problems the
simulation does not enter an invalid (interpenetrating) state,
(b) collision response obeys physical laws of causality and
conservation (of mass, momentum, energy, etc.), and (c) the
algorithm completes a simulation in finite, preferably short,
time. An ideal algorithm offers provable guarantees of safety,
correctness, and progress that hold even in the discrete set-
ting of a computer. A safety guarantee eliminates the need
to iterate through the animation-design process because
of unsightly penetration artifacts; such a guarantee should
not fall on a user overburdened with tunable parameters.
Respecting discrete conservation laws allows for the develop-
ment of controllable dissipation without artificial numerical
damping. Respect for causality is critical to capturing chain
reactions and phenomena such as wave propagation and
stacking. If, however, these two guarantees are not accompa-
nied by guaranteed progress, the simulation may never com-
plete, no matter how fast or parallel the hardware.

1.2. Shortcomings of synchrony
Dynamic simulations progress by integrating differen-
tial equations, such as Newton’s familiar second law, over
small steps in time. Most of these integration methods are
synchronous, moving the entire configuration forward in
lock-step from one instant in time to the next. Such syn-
chrony is fundamentally at odds with safety, correctness,
and progress: the first two goals are assured by attending to
collisions in order of causality, which, since collisions may
propagate at unbounded speed, can require arbitrarily small
time steps. The number of possible impact events in a single

The original version of this paper was published in
Proceedings of SIGGRAPH ’09, July 2009, ACM.

Figure 1. A prescribed particle slowly moves through a set of curtains, then impulsively shifts to a very high velocity. The slow and
fast phases highlight the method’s ability to handle smooth resting and sliding with deep stacking, and arbitrarily fast penetration-free
movements in which collisions are treated when (as opposed to well before or after) they occur. The curtains continue to swing for a long
time, even as controlled internal dissipation damps high frequencies.

*Now at New York University. Work was done while at Columbia University.

april 2012 | vol. 55 | no. 4 | communications of the acm 103

“reasonable” time step can be enormous: in their analysis of
contact, Cirak and West5 present a counting argument and
conclude that synchronous “contact simulation algorithms
cannot attempt to exactly compute the sequence and timing
of all impacts,” as this would preclude reasonable progress.

The graphics community’s prevailing emphasis on prog-
ress has motivated many efforts to find, retroactively, a phys-
ically plausible resolution to a given set of collisions that
occurred over a preceding time interval.4, 20 Such methods
typically have adjustable parameters that must be carefully
chosen to balance safety and progress; other methods dis-
card causality in favor of progress.19 The principled, faithful
simulation of complex collisions for deformable objects,
such as cloth and other flexible materials, remains an open,
challenging, and important problem.

1.3. Asynchrony
We propose to place safety and correctness on an equal
footing with progress. To overcome the fundamental oppo-
sition between these requirements, we turn to asynchro-
nous integration, which integrates each geometric element
of a discrete shape (e.g., the stretching resistance of cloth
defined across a triangle) at its own pace, not in lockstep
with the entire object. Asynchrony offers compelling long-
term advantages for simulations of deformable objects in
complex contact—advantages that remain unexplored, in
particular, in terms of safety, correctness, and progress. For
scenarios involving sharp boundaries or dispersed points
of contact, such as crumpled clothing, asynchrony renders
noninterpenetration and momentum conservation tracta-
ble. Because elements advance at their own pace, those not
entangled in collisions can proceed at large time steps. As
shown in Figure 2, the median time step of an asynchronous
method can be moderate even when high-impact collisions
force some elements to proceed at small time steps.

1.4. Asynchronous integration
As a point of departure we consider asynchronous varia-
tional integrators (AVIs),16 which belong to a larger class
of integrators that exactly conserve both momentum and
symplecticity (loosely related to preservation of areas in
phase space); such integrators are highly regarded because
of their provable approximate conservation of energy over

long spans of simulated time. However, a correct contact
model remains unexplored.

1.5. Asynchronous collision detection
To ensure safety, we require an equally principled approach
to collision detection. With every object able to collide with
any other object, collision detection is fundamentally a
quadratic problem. Thus, efficient collision detection algo-
rithms are necessary to prune the non-intersecting pairs.
Furthermore, we must reliably find those elements which are
proximate rather than actually intersecting, so that we may
counteract the impending penetration. This is a heavily stud-
ied problem; alas, the many reported successes are specific
to the synchronous context, and as a group current meth-
ods can be intractably slow if naïvely applied after each local
asynchronous step. This motivates our interest in kinetic data
structures (KDSs)3: a KDS algorithm maintains a data struc-
ture governed by formal invariants describing some discrete
attribute (such as absence of collisions), in response to the
continuous movement of geometric elements. Many exist-
ing collision detection methods can be reformulated from
a KDS perspective. KDSs seem destined for asynchronous
applications, because their focus on fast, minimal, “output-
sensitive” data-structure updates makes them ideally suited
for the small, local changes effected by each AVI step.

These observations motivate our interest in approaching
contact mechanics for both graphics and mechanics appli-
cations from a new direction. In particular, (a) we formulate
a contact model that is safe independent of user parameters,
such as the stiffness and “bounciness” of collisions. (b) We
correctly discretize time, using asynchrony to preserve the
model’s safety and to respect causality, and using a sym-
plectic-momentum integrator to exactly conserve momen-
tum and approximately conserve energy over long runtimes.
Finally, (c) we lay out the basic foundations for the union of
AVIs with KDSs, making the safe, correct integration of com-
plex contact for highly deformable objects tractable.

2. ASYNCHRONOUS INTEGRATORS
Consider a physical system with a time-varying configura-
tion q(t) in the space Q of all configurations; concretely, for
a mesh with vertices x1, …, xn in 3D we represent Q = R3n by a
vector of all the vertices’ Cartesian coordinates. We use a dot
to denote differentiation in time, so that q·(t) is the velocity
of the system. Let M be the mass matrix, so that p = Mq· is
the momentum. The Störmer–Verlet (“leapfrog”) integrator
evolves a sequence of positions q0, q1, q2, . .  . and momenta

1 11 1+ 2+0+
2 2 2, , ,...p p p via the update rules

1
+1 2

+1

1 1
+

2 2

1

= ,

= (),

= ,

k

k k

k k

k

k k

hM

hF

t t h

−

−

−

−

−
−

q q p

p p q

where h is the time step and F(q) is the force. The sub/super-
scripted indices remind us that positions and velocities are
staggered in time, with tk associated to qk, and (tk, tk+1) asso-
ciated to

1+
2

kp . In effect, leapfrog first updates the position at
tk using the constant momentum associated to the preced-
ing interval (tk−1, tk), and then impulsively “kicks,” obtaining

0 8 9

0
20

40
60

80
10

0

Simulated time (seconds)

P
er

ce
nt

ag
e

of
 v

er
tic

es

3.29´10−6 3.16´10−4
(larger)(smaller)

2 4 61 3 5 7

Time step (log scale)

Figure 2. Asynchrony in the curtain simulation, depicted by the
time-evolving distribution of vertex time step sizes, enables adaptive
allocation of computational resources in space time.

104 communications of the acm | april 2012 | vol. 55 | no. 4

research highlights

a new momentum for the following interval (tk, tk + 1), yield-
ing a piecewise linear (p.l.) trajectory over the intervals
(tk, tk + 1) (Figure 3). Being a geometric integrator,14 leapfrog
tracks conservation laws (e.g., mass, momentum, energy)
and adiabatic invariants (e.g., temperature) over long run-
times, and offers more consistency and qualitatively pre-
dictable behavior across a range of time step sizes.

AVIs naturally extend leapfrog. Each force receives an
independent, regular (fixed-rate) clock, fixed a priori by sta-
bility requirements. While impulses of a force are regularly
spaced in time, the superposition of forces yields events
irregular in time. As with leapfrog, the trajectory is p.l., inter-
rupted by “kicks.” When their clocks are nested—as quarter
notes are nested in half notes—AVIs reduce to an instance
of multistepping methods14; our developments apply to this
family of methods.

For example, Lew et al.16 assign an elastic potential to
each mesh element. Irregular meshes have spatially vary-
ing element shapes and corresponding time step stability
restrictions; with AVIs each element advances at its own
pace. Since an elemental potential depends only on a
local mesh neighborhood, each integration event is local,
affecting the position and velocity of a small number of
stencil vertices.

To schedule the interrupts to the p.l. trajectory, AVIs
use a priority queue, conceptually populated with all event
times until eternity. In practice it suffices to schedule only
the next tick for each clock, since that event can schedule
the subsequent tock.

2.1. Ensuring correctness
A more complete analysis leading to the geometric and
conservation properties of AVIs invokes ideas from discrete
mechanics and variational integration.16, 17 Here we stress a
key outcome: Lew et al. conjecture that AVIs’ remarkable
properties are due to its multisymplecticity; the derivation
requires each force to have a regular (constant-rate, ever-
ticking) clock. Playing with this clock—accelerating or
pausing—is strictly forbidden. Interrupting the p.l. trajec-
tory with other mechanisms (e.g., interleaving a velocity fil-
ter) breaks multisymplecticity.

2.2. AVIs and contact
The conservation properties of AVIs rely on preservation
of the multisymplectic form17, 18 and are easily broken by
naïvely incorporating existing contact-resolution methods.
A principled treatment must consider a multisymplectic for-
mulation of contact mechanics and an asynchronous com-
putation of collision detection and response.

3. DISCRETE PENALTY LAYERS
As a contact model, consider a simple penalty method that
penalizes proximity between bodies. We will represent
this penalty as a linear half-spring, which only counteracts
compression from its designated rest length. Elongation is
ignored, allowing separating bodies to move away freely.

For a given surface thickness h, the gap function

gh (q) = xb − xa − h

tracks signed proximity between moving points xa and xb.
When g < 0, the points are said to be proximate. We can
express the penalty (half-spring) potential and force in
terms of g

2 00
1 if ,if ,

(()) 2
0 if 0,0 if 0,

r rg g grg g
V g

gg

≤≤ − ∇= =  > >
h q F

respectively, where r is the contact stiffness. Choosing a pen-
alty stiffness is the most criticized problem of the penalty
method.1 For any fixed stiffness r, there exists a sufficiently
large approach velocity such that the contact potential will
be overcome by the momentum, allowing the configuration
to tunnel illegally into a penetrating state.

The barrier method replaces the above contact potential by
a function that grows unbounded as the configuration nears
the boundary g (q) = 0, eliminating the possibility of tunnel-
ing. However, such a function must also have unbounded
second derivative, ruling out stable fixed-step time integra-
tion for any choice of step size.14

To alleviate these concerns, we propose a construction
consisting of an infinite family of nested potentials

()
() , =1,2,...,r lV llh

where h(l ) is a monotonically decreasing proximity (or
“thickness”) for the lth potential, and r (l ) is a monotonically
increasing penalty stiffness. For these nested potentials to
be a barrier, the cumulative energy of these potentials must
diverge as the distance between two primitives vanishes:

2 .
l

r l l → ∞∑ () ()h

We use r(l ) = r(1)l 3 and h(l ) = h(1)l−1/4, where r (1) and h(1) are
a simulation-dependent base stiffness and thickness for the
outermost layer.

We call the region h(n + 1) ≤ g (q) ≤ h(n), where exactly n
of the potentials are nonzero, the n th discrete penalty layer
(see Figure 4).

The nested potentials’ respective maximal stable time
steps form a decaying sequence, and therefore this con-
struction requires an adaptive or asynchronous time step-
ping algorithm. Each interaction potential has its own
integration clock and has the opportunity to apply an impul-
sive change in trajectory when its clock ticks. The question is
how to time step such an infinite sequence.

As we are about to see, the above construction trans-
forms a seemingly intractable problem in Computational
Mechanics—establishing a multisymplectic treatment of

q

qi

qi+1 qi+2
pi-1/2

pi+1/2

pi+3/2

i-1

Figure 3. A piecewise linear trajectory where mid-step momenta p
1+
2

i
carry positions from.qi to qi+1.

april 2012 | vol. 55 | no. 4 | communications of the acm 105

contact mechanics with guaranteed absence of tunneling—
into a challenging but addressable problem in Computer
Science: efficient bookkeeping on a conceptually infinite set
of interaction potentials.

3.1. Central observation
During any time interval, while conceptually the (infinite
number of) clocks continues to tick, and the totality of the
clock ticks is dense in time, only a finite, sparse set of clock
ticks apply (nonzero) impulses. In particular, the index (l)
of the discrete penalty layer (DPL) indicates the number of
active potentials; the rest, while conceptually present, do not
influence the trajectory and can be culled without approxi-
mation (Figure 5). What is needed is efficient bookkeeping
to track which interaction potentials are active; each status
change corresponds to a transition between penalty layers—
a discrete change in state due to motion along a continuous
trajectory. This is a problem that KDSs were born to solve.

4. KINETIC DATA STRUCTURES
Guibas12 gives an overview of kinetic data structures. Our
culling of inactive forces uses an implementation of kinetic
separating slabs for tracking proximity between primitives,
closely related to those used by Guibas et al.13 in the context
of rigid polytopes.

4.1. Kinetic separating slabs
Proximity for triangle meshes can be written in terms of
distances between vertex-triangle and edge–edge pairs.
Thus, our algorithm tracks proximity between these primi-
tives using certificates, a concept from the kinetic data
structures literature. A certificate is a declaration of some

invariant, in this case, that two primitives are separated by
at least h(l ) for a penalty layer l.

To maintain the data structure, we must compute a cer-
tificate failure, which is the time, given current configuration
and velocity, that a certificate ceases to be valid. Computing
the time at which two primitives with piece-wise linear
motion enter within some fixed proximity requires finding
the roots of a degree-six polynomial. This is too expensive
for our application, so we use the observation that a certifi-
cate failure time needs only to be conservative, not exact.

In this light, we introduce a kinetic separation slab,
which we define as a plane in 3-space with constant veloc-
ity extruded by h (l ). Then, for each vertex qi in the primitive
pair, we can compute the time at which it enters this slab,

(qi · n̂ − h (l))/v,

where n̂ is the normal of the separating plane and v is the
assigned constant velocity (we use the relative velocity
between the closest point of the two primitives). The earliest
of these times is selected as the certificate failure event time.

Because this time is conservative, at the time of a cer-
tificate failure event we must check that the primitives are
indeed within proximity before creating an appropriate
penalty layer event. See Section 5.1 for a walkthrough of the
complete algorithm.

4.2. Broad phase
Our implementation begins with the simple separating slab
KDS described above. We consider this the “narrow phase”
of collision detection, the low-level processing required to
track intersections between geometric elements.

While formally correct, the simple KDS used on its own
will not scale efficiently to large scenes. Various sophisti-
cated KDSs track proximity, offer better “broad-phase” scal-
ing, and could be easily adapted to the bookkeeping of the
DPL index.6, 9, 11

One common broad-phase algorithm in traditional
(synchronous) simulations are bounding volume hierar-
chies (BVH).7 For our implementation, we adopt the kinetic
BVH described by Weller and Zachmann,22 extending their
axis-aligned bounding box based method to use k-Discrete
Oriented Polytopes, or k-DOPs, which in general provide
tighter bounds. For implementation and optimization
details, we refer the reader to the full-length publication.

5. ALGORITHM
Kinetic data structures have existed for some time, but this
is the first time they have been integrated with AVIs, despite
their similar implementations. In this section, we walk
the reader through a simple setup to reveal the logic of our
algorithm. For simplicity of exposition, we will forego the
existence of a k-DOP hierarchy and assume separating slabs
are responsible for all proximity detection.

5.1. Walkthrough
Consider a single particle falling toward a fixed floor (Figure
6). Conceptually, the clock for the first penalty layer is always
ticking; however, it is active (exerting a nonzero impulse)

0 10

0
0 x

3

P
ot

en
tia

l e
ne

rg
y

3

1

2

1

1

Figure 4. Discrete penalty layers. Potential energy of layer n plotted
against proximity. Inset: total potential energy contributed by
all layers ≤ n. The potential energy diverges as xa approaches xb,
guaranteeing that constraint enforcement is robust.

Time

P
ot

en
tia

l e
ne

rg
y

Figure 5. Force evaluations (dashed lines) must be evenly spaced
in time, yet only those where the potential is nonzero (blue region)
must be explicitly evaluated.

106 communications of the acm | april 2012 | vol. 55 | no. 4

research highlights

only when the particle drops below height h(1), say at time t.
We must “activate the clock,” no later than time t. Activating
too late introduces error (misses impulses), while activat-
ing too early is correct, albeit overly conservative (some null
events are not culled). The separation slab KDS is respon-
sible for this activation.

We initialize a priority queue of events, sorted by time.
Initially, this queue contains a gravity event with time step
g (in general, internal forces will be added as well) and one
certificate failure event representing the separation slab
between the particle and floor. Simulation progresses by
repeatedly popping events off the queue and processing
them (updating velocities or rescheduling certificates).
When a force event modifies velocities, all certificates
which depend on that velocity must be rescheduled.

Initially, the particle’s velocity is zero and the gravity
event is at the front of the queue (Figure 6a). When pro-
cessed, the particle is given some velocity downward (Figure
6b). The certificate must be rescheduled for the time the par-
ticle enters the separation slab, say time tc.

At time tc the certificate event is popped off the queue
(Figure 6c). We see that the particle is within proximity of
the floor and add a layer 1 penalty event to the queue. The
queue now contains two force events: gravity and a penalty
layer 1 event. In general, penalty events are far more fre-
quent than gravity events.

With the creation of a penalty layer 1 event, the certificate
event switches to tracking h(2) proximity. However, the pen-
alty layer 1 event is still counteracting this motion to reduce
further penetration (Figure 6d).

The simulation progresses with penalty force events
and gravity events applying impulses in opposite direc-
tions. Eventually one of two things will happen: either the
particle will enter layer 2 proximity and a second, stiffer
penalty force will aid the first in counteracting gravity, or
the layer 1 event’s force will balance the downward force of
gravity. In our illustration, the layer 1 force reaches equilib-
rium with gravity, a state called resting contact (Figure 6e).

For elastic contact where the interacting elements

separate, we will need to deactivate penalty forces. The
penalty layer force event serves as an opportunity to check
whether the particle is transitioning to a shallower penalty
layer: if (a) the penalty impulse is null, i.e., separation dis-
tance exceeds h(l), and (b) the relative velocity is separating
rather than approaching, then we deactivate the penalty
force, transitioning to the next-shallower layer, and adjust-
ing the certificates accordingly. This lazy approach to deacti-
vation is safe by clause (a) alone; clause (b) aids in efficiency,
avoiding rapid toggling of penalty layers.

5.2. Stencils, supports, and scheduling dependencies
Consider the execution of an event at its scheduled time.
The set of vertices whose velocities are altered by this event
is the stencil of the event. The set of vertices whose trajectory
was used to schedule this time is the support of that event.
Building on the notions of stencil and support, an event
depends, or is contingent, on another event if the support of
the former overlaps the stencil of the latter; vice versa, an
event supports another if the stencil of the former overlaps
the support of the latter. Table 1 shows the support and
stencils for a set of typical events.

KDSs were previously applied only to synchronous simula-
tions, where the velocities of all primitives are updated at the
same instant, i.e., the stencil of the force-integration event
contains the set of all vertices. By contrast, in an AVI simu-
lation, force-integration events typically bear small stencils.

Having executed a supporting event, we must resched-
ule all dependent events before proceeding. This is a
problem of executing partially ordered instructions with
dependencies, and it is thoroughly studied in the com-
puter systems literature.15

Our implementation maintains a directed graph, where
edges from events to vertices and vice versa denote stencil
and support relations, respectively. When an event executes,
the two-neighborhood of outgoing edges yields the set of
events to reschedule. The graph abstraction reveals that
events with large stencils, such as gravity, should cache a list
of contingent events, while events with small stencils should
construct the list of contingent events on-the-fly; refer to
Figure 7a and b, respectively.

6. RESULTS
We turn our attention to challenging problems involving
complex contact geometries, sharp features, and sliding
during extremely tight contact.

} η(2)η(1) {

G: g

C: ∞ C: tc

C: tc C: tc

C: ∞

0 g 2gtc tp

G: g

G: 2g G: 2g

G: 2gP: tp

P: tp

...

Time:

Queue:

(a) (b) (c) (d) (e)

Figure 6. This didactic example shows a particle falling towards
a fixed floor. The queue shows the processing order of events as
gravity pulls the particle downward (a)–(b), the certificate creates
penalty forces (c), and the penalty force counteracts the penetration
(d)–(e).

Table 1. Events and their associated supports and stencils

Event Supporting vertices Stencil vertices

Gravity Entire mesh
Stretching force16 Triangle
Bending force10 Hinge
Penalty force (Section 3) Pair of primitives
Separation slab (Section 5.1) Pair of primitives
k-DOP overlap (Section 4.2) Those in k-DOP
Render frame

april 2012 | vol. 55 | no. 4 | communications of the acm 107

6.1. Knots
We simulate the tying of a ribbon into a reef knot (see Figures
8 and 9). The ribbon is modeled as a loose knot, assigned a
material with stiff stretching and weak bending, and the
ends are pulled by a prescribed force. The final configuration
is faithful to the shape of actual “boyscout manual” knots.

This example demonstrates the strength of asynchrony in
allocating resources to loci of tight contact. As the knot tight-
ens, progressively finer time steps are used for the tightest
areas of contact. If instead of prescribing reasonable forces
we directly prescribe an outward motion of the two ends of
the ribbon, the simulations execute to the point where the
mesh resolution becomes the limiting reagent, i.e., a tighter
knot cannot be tied without splitting triangles; past this
point, the computation slows as penalty interactions bur-
row to deeper layers and the mean time step decays. This
highlights both a feature and a potential artistic objection
to the method: when presented with an impossible or nearly
impossible situation (nonstretchy ribbon with prescribed
diametrically opposing displacements at its ends) the meth-
od’s safety guarantee induces Zeno’s Paradox (Figure 9).

6.2. Trash compactor
We place triangle meshes of varying complexity into a virtual
trash compactor consisting of a floor and four walls, and then
prescribe the inward motion of opposing walls (see Figure
10 and incident image). The method is able to simulate the
approach of the walls without ever allowing for seen or unseen
penetrations. As with the knots, the overall rate of progress
decays as the simulation approaches a limiting configuration.

6.3. Bed of nails
We crafted a problem to test the handling of isolated point
contacts and sharp boundaries. Four sliver triangles are
assembled into a nail, and many such nails are placed point-
up on a flat bed. We drape two stacked fabrics over the bed of
nails (see Figure 11), and observe that the simulated trajec-
tory is both realistic and free of penetrations, oscillations, or

any other artifacts typically associated to contact discontinu-
ities. Next, we prescribe the motion of one end of the fabric,
tugging on the draped configuration to demonstrate sliding
over sharp features. We extend the bed of nails into a landing
pad for various coarsely meshed projectiles. Variably sized to
barely fit or not fit between the nails, and thrown with differ-
ent initial velocities
and angles, the pro-
jectiles exhibit a wide
array of behaviors,
including bouncing,
rolling, simple stack-
ing, ricocheting at
high frequencies (this
requires resolving
each collision when
it occurs, as resolving
collisions over a fixed collision step size can cause aliasing
that prevents the ricochet); sliding and getting stuck between
nails (the sliding requires a deformable model and friction,
since a perfectly rigid object would be constrained to a sud-
den stop by the distance between nails).

6.4. Timing
We list computation time for the various examples, as exe-
cuted on a single thread of a 3.06 GHz Intel Xeon with 4GB
RAM. The bulk is allocated to the maintenance of the kinetic
data structures used for collision detection.

As a more detailed study, consider that the reef knot sim-
ulation required 4.8% of total
simulation time for integration
of elastic forces and gravity,
0.09% for integration of pen-
alty forces, 0.9% for process-
ing and 1.0% for rescheduling

Figure 7. Directed graphs depicting events (boxes), vertices
(dots), and dependencies (directed edges). Integration events (left
green boxes) alter vertex trajectories, forcing rescheduling of
dependent events due to certificate failure (right orange boxes).
(a) If an integration event has a large stencil, we store event–
event dependencies. (b) If a vertex belongs to multiple stencil and
support relations, we store event–vertex–event dependencies.

(a) (b)

Gravity

Failure
Penalty

Penalty

Penalty

Failure

Failure

Failure

Failure

Failure

Figure 8. Simulated tying of ribbons into a reef knot.

Figure 9. A closeup of the reef knot.

Figure 10. Virtual trash compactor and assorted virtual trash.

0 1.25

0
20

40
60

80
10

0

Simulated time (seconds)

P
er

ce
nt

ag
e

of
 v

er
tic

es

3.7´10–7 1.0´10–4

time step
(log scale) (larger)(smaller)

0.50 1.000.25 0.75

108 communications of the acm | april 2012 | vol. 55 | no. 4

research highlights

scenarios, therefore, was
qualitatively different than
when using other methods,
in that we did not need to
search for parameters to
ensure a successful model-
ing of contact. On the other
hand, our method does not
address the spatial discretiza-
tion of elasticity (stretching and bending models), which
can also require user tuning.

Although in theory the nested penalty barrier has infi-
nitely many penalty layers at its disposal, it is impractical to

of separating plane events, respectively, 5.2% and 23.0% for
processing and rescheduling of k-DOP events, respectively.
The incident figure demonstrates how per frame runtime
increases as the stress on the ribbons elevates.

6.5. Parameters
We list parameters for the various examples. Bending and
stretching stiffness refers to the Discrete Shells10 and com-
mon edge spring models. COR refers to coefficient of resti-
tution, or the “bounciness” of the collisions.

7. DISCUSSION

7.1. Parameters and the triad of safety, correctness,
and progress
One of our driving goals is to investigate methods that
ensure safety, correctness, and progress regardless of the
choice of parameters. The method proposed here does
expose some parameters to the user, such as the proxim-
ity h. These parameters affect performance, not the triad
of guarantees. Our experience in running the problem

activate penalty layers whose stable time steps are too small,
e.g., below the floating point epsilon. Simulations with thick-
nesses h (1) too small, or velocities or masses too high, can
thus fail to make progress (but remain safe). This limitation
can be worked around by choosing a slow-shrinking layer dis-
tribution function, which is why we recommend h(l) = h(l)l−1/4.

Figure 11. Experiments with a bed of nails highlight the method’s
ability to deal with sharp boundaries, isolated points of contact,
sliver triangles, and localized points of high pressure between two
nearly incident surfaces.

 0
 5

00
 1

00
0

 3

W
al

l c
lo

ck
 ti

m
e

(in
 s

ec
on

ds
)

Simulation time (in seconds)

Total

Event Processing
Event Rescheduling

 2 1 0

Example Density COR r(1) h(1)
Stretching
stiffness

Stretching
damping

Bending
stiffness

Reef knot 0.1 0.0 1000.0 0.1 750.0 0.1 0.01

Bowline
knot

0.01 0.0 1000.0 0.1 100.0 0.1 0.01

Bunny
compactor

0.01 0.01 10000.0 0.05 1000.0 0.0 1000.0

Trash
compactor

0.001 0.01 1000.0 0.05 1000.0 15.0 10.0

Two sheets
draped

0.001 0.0 1000.0 0.1 1000.0 1.0 0.1

Reef knot
untied

0.1 0.0 1000.0 0.1 1000.0 0.1 0.01

Two sheets
pulled

0.001 0.0 1000.0 0.1 1000.0 1.0 0.1

Balls on
nails

0.016 0.3 10000.0 0.1 50000.0 1.0 100000.0

2D sludge – 0.0 1000.0 0.1 – – –

Examples Verticles
Simulation

seconds

Event
processing

(hours)

KDS event
rescheduling

(hours)
Total

(hours)

Reef knot 10,642 2.00 1.5 16.7 18.5

Bowline knot 3,995 5.00 3.0 141.1 144.5

Trash
compactor

714 3.08 0.5 53.0 53.6

Two sheets
draped

15,982 3.95 4.5 260.8 265.5

Two sheets
pulled

15,982 3.83 13.6 310.5 325.6

Multistepping methods such as AVIs are known to have
resonance instabilities,8, 14 particularly if the simulation con-
tains adjacent mesh elements of very different size. However,
we have not observed any such instabilities or artifacts that
we can attribute to such instabilities in our use of the method.

7.2. Broader exploration
In this paper we were concerned with building the most
robust contact implementation we could; therefore, we tied
the knots as tight as possible, until each triangle was packed
as tightly as possible into its neighbors. In the tightest config-
urations the spatial discretization becomes evident. It would
therefore be interesting to introduce spatial adaptation, refin-
ing the mesh where curvature is high. Another alternative
would be to improve the smoothness at render time, using for
example the collision-aware subdivision of Bridson et al.4

Dissipation and friction are critical for expressing the
widest possible range of scenarios in physical simulation.
We have omitted their discussion in this extended abstract,
but refer the reader to the original publication for simple
models that fit this criteria. Nevertheless, future work might
explore efficient algorithms to handle stacking and static
friction while still fitting the multisymplectic treatment.

7.3. Immediate and future impact
In considering this method for immediate industrial use,
we anticipate two important hurdles. From the standpoint
of incorporation into animation systems the first hurdle is
the method’s insistence on safety even at the cost of artistic
freedom. This effectively disallows all pinching,2, 21 as well as
commencing from invalid configurations. We believe that
the method can be extended to permit shallow (“skimming”)
pinching, but handling extremely unphysical boundary con-
ditions within this framework seems at least initially at odds

april 2012 | vol. 55 | no. 4 | communications of the acm 109

with the basic premise, and will require further research.
Second, the proposed method is not competitive in per-

formance compared to existing methods, which do not
attempt to make strong safety and correctness guarantees;
if an artist is willing to search for parameters that provide
non-penetrating good-looking results, they may become
impatient with the method proposed here.

From the standpoint of long-term, curiosity-driven
research, however, this method is appealing not just in its
formalism but also in terms of performance, since it lays
out a formal asynchronous framework from which one can
investigate parallelization, optimization, and even approxi-
mation techniques that preserve guarantees of safety, cor-
rectness, and progress. To aid such future investigation,
source code for our initial C++ implementation, along with
data files needed to generate the examples shown in this
paper, is available online a.	

	 8.	 Fong, W., Darve, E., Lew, A. Stability of
asynchronous variational integrators.
J. Comput. Phys., 227(18) (2008),
8367–8394.

	 9.	G ao, J., Guibas, L. Hershberger, J., Zhang,
L., Zhu, A. Discrete mobile centers. Dis-
crete Comput. Geom. 30(1):45–65, 2003.

	10.	G rinspun, E., Hirani, A., Desbrun, M.,
Schröder, P. Discrete shells. In ACM
SIGGRAPH/Eurographics Symposium
on Computer Animation (August
2003), 62–67.

	11.	G uibas, L., Xie, F., Zhang, L. Kinetic
collision detection: Algorithms and
experiments. In Proceedings of the
International Conference on Robotics
and Automation (2001), 2903–2910.

	12.	G uibas, L. J. Kinetic data structures—a
state of the art report. In Proceedings
of the 3rd Workshop on Algorithmic
Foundations of Robotics (WAFR) (1998),
191–209.

	13.	G uibas, L. J., Xie, F., Zhang, L. Kinetic
collision detection: Algorithms and ex-
periments. In ICRA (2001), 2903–2910.
http://www.cs.columbia.edu/cg/ACM/

	14.	H airer, E., Lubich, C., Wanner, G.
Geometric Numerical Integration:
Structure-Preserving Algorithms for Or-
dinary Differential Equations. Springer,
2002.

	15.	 Korneev, V., Kiselev, A. Modern Micro-
processors. Charles River Media, 2004.

	16.	L ew, A., Marsden, J. E., Ortiz, M., West,
M. Asynchronous variational integra-

tors. Arch. Rational Mech. Anal. 167
(2003), 85–146.

	17.	M arsden, J., Patrick, G., Shkoller, S. Mul-
tisymplectic geometry, variational inte-
grators, and nonlinear PDEs. Commun.
Math. Phys. 199(2) (1998), 351–395.

	18.	M arsden, J., Pekarsky, S., Shkoller, S.,
West, M. Variational methods, multi-
symplectic geometry and continuum
mechanics. J. Geom. Phys. 38(3–4)
(June 2001), 253–284.

	19.	M ilenkovic, V. J., Schmidl, H.
Optimization-based animation. In SIG-
GRAPH’01: Proceedings of the 28th An-
nual Conference on Computer Graphics
and Interactive Techniques (2001),
ACM, New York, NY, USA, 37–46.

	20.	 Provot, X. Collision and self-collision
handling in cloth model dedicated to
design garments. In Computer Anima-
tion and Simulation ‘97 (1997), Springer
Verlag, Wien, 177–189.

	21.	 Volino, P., Magnenat-Thalmann, N.
Resolving surface collisions through
intersection contour minimization. In
SIGGRAPH’06: ACM SIGGRAPH 2006
Papers (2006), ACM, New York, NY,
USA,1154–1159.

	22.	W eller, R. and Zachmann, G. Kinetic
separation lists for continuous colli-
sion detection of deformable objects.
In Third Workshop in Virtual Reality
Interactions and Physical Simulation
(Vriphys) (Madrid, Spain, 6–7 November
2006).

References
	 1.	B araff, D. Analytical methods for

dynamic simulation of non-penetrating
rigid bodies. In SIGGRAPH’89: Pro-
ceedings of the 16th Annual Conference
on Computer Graphics and Interactive
Techniques (1989), ACM, New York, NY,
USA, 223–232.

	 2.	B araff, D., Witkin, A., Kass, M. Untan-
gling cloth. ACM Trans. Graph. 22(3)
(2003), 862–870.

	 3.	B asch, J., Guibas, L. J., Hershberger,
J. Data structures for mobile data. J.
Algorithms 31 (1999), 1–28.

	 4.	B ridson, R., Fedkiw, R., Anderson, J.
Robust treatment of collisions, contact

and friction for cloth animation. In SIG-
GRAPH’02 (2002), 594–603.

	 5.	C irak, F., West, M. Decomposition-based
contact response (DCR) for explicit
finite element dynamics. Int. J. Numer.
Methods Eng., 64(8) (2005), 1078–1110.

	 6.	E rickson, J., Guibas, L. J., Stolfi, J.,
Zhang, L. Separation-sensitive colli-
sion detection for convex objects. In
Proceedings of the 10th ACM-SIAM
Symposium on Discrete Algorithms
(1999), 102–111.

	 7.	E ricson, C. Real-Time Collision Detec-
tion (The Morgan Kaufmann Series in
Interactive 3D Technology). Morgan
Kaufmann, December 2004.

David Harmon Columbia University, New
York, NY.

Etienne Vouga Columbia University, New
York, NY.

Breannan Smith Columbia University,
New York, NY.

Rasmus Tamstorf Walt Disney Animation
Studios, Burbank, CA.

Eitan Grinspun Columbia University, New
York, NY.

© 2012 ACM 0001-0782/12/04 $10.00 a  http://www.cs.columbia.edu/cg/ACM

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring network in engineering,
science and mathematics. MentorNet’s award-winningOne-on-OneMentoring Programs pair ACM
student members with mentors from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.
Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet
MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals, Bechtel Group Foundation, Cisco
Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed Martin Space Systems, National Science Foundation, Naval Research
Laboratory, NVIDIA, Sandia National Laboratories, Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

