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1. MOTIVATION
Physicists have long observed physical phenomena, such 
as the motion of fluids and the interaction of galaxies, and 
developed mathematical models to describe these systems. 
More recently, the advent of computers has allowed us to 
implement these models as software in a computational 
environment, launching the field of physical simulation. 
On a computer we are able to recreate and study physical 
phenomena within a controlled setting both for descrip-
tive as well as exploratory purposes, leading to advance-
ments in design, engineering, and entertainment.

However, even as computer hardware benefits from 
Moore’s Law, our ability to program, debug, and maintain 
software advances at a slower pace. This observation shapes 
our priorities as we develop physical simulation tools 
for computer graphics. While making choices that yield 
up-front simplicity and blazing performance is important 
today, we prefer that these choices do not obstruct our long-
term goals of extending functionality and improving physi-
cal realism. Laying aside ad hoc models in favor of physical 
approaches might require a deeper initial investment, but 
it promises to pay off handsomely in predictability, control-
lability, and extensibility.

1.1. Safety, correctness, progress
One particularly difficult aspect of simulation is the mod-
eling of complex collisions. A collision occurs when two 
objects attempt to occupy the same point in space at the 
same time. Even simple scenarios, like a crumpled shirt, 
contain an extraordinary number of these contacting points 
that arise and disappear through the course of a simulation. 
Robust simulation of complex contact scenarios is critical 
to applications spanning graphics (training, virtual worlds, 
entertainment) and engineering (product design, safety 
analysis, experimental validation). The presence of frequent 
and plentiful collisions (Figure 1), interactions involving 
sharp boundaries, resting and sliding contact, and all com-
binations thereof make it challenging to simulate contact 

reliably. The inability to handle these difficult situations 
results in interpenetration, visual artifacts where objects 
intersect one another—a clearly unphysical configuration. 
Useful resolution of these scenarios requires consider-
ation of the fundamental issues of geometric safety, physi-
cal correctness, and computational progress. These have the 
respective meanings that (a) for well-posed problems the 
simulation does not enter an invalid (interpenetrating) state, 
(b) collision response obeys physical laws of causality and 
conservation (of mass, momentum, energy, etc.), and (c) the 
algorithm completes a simulation in finite, preferably short, 
time. An ideal algorithm offers provable guarantees of safety, 
correctness, and progress that hold even in the discrete set-
ting of a computer. A safety guarantee eliminates the need 
to iterate through the animation-design process because 
of unsightly penetration artifacts; such a guarantee should 
not fall on a user overburdened with tunable parameters. 
Respecting discrete conservation laws allows for the develop-
ment of controllable dissipation without artificial numerical 
damping. Respect for causality is critical to capturing chain 
reactions and phenomena such as wave propagation and 
stacking. If, however, these two guarantees are not accompa-
nied by guaranteed progress, the simulation may never com-
plete, no matter how fast or parallel the hardware.

1.2. Shortcomings of synchrony
Dynamic simulations progress by integrating differen-
tial equations, such as Newton’s familiar second law, over 
small steps in time. Most of these integration methods are 
synchronous, moving the entire configuration forward in 
lock-step from one instant in time to the next. Such syn-
chrony is fundamentally at odds with safety, correctness, 
and progress: the first two goals are assured by attending to 
collisions in order of causality, which, since collisions may 
propagate at unbounded speed, can require arbitrarily small 
time steps. The number of possible impact events in a single 

The original version of this paper was published in 
Proceedings of SIGGRAPH ’09, July 2009, ACM.

Figure 1. A prescribed particle slowly moves through a set of curtains, then impulsively shifts to a very high velocity. The slow and 
fast phases highlight the method’s ability to handle smooth resting and sliding with deep stacking, and arbitrarily fast penetration-free 
movements in which collisions are treated when (as opposed to well before or after) they occur. The curtains continue to swing for a long 
time, even as controlled internal dissipation damps high frequencies.
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“reasonable” time step can be enormous: in their analysis of 
contact, Cirak and West5 present a counting argument and 
conclude that synchronous “contact simulation algorithms 
cannot attempt to exactly compute the sequence and timing 
of all impacts,” as this would preclude reasonable progress.

The graphics community’s prevailing emphasis on prog-
ress has motivated many efforts to find, retroactively, a phys-
ically plausible resolution to a given set of collisions that 
occurred over a preceding time interval.4, 20 Such methods 
typically have adjustable parameters that must be carefully 
chosen to balance safety and progress; other methods dis-
card causality in favor of progress.19 The principled, faithful 
simulation of complex collisions for deformable objects, 
such as cloth and other flexible materials, remains an open, 
challenging, and important problem.

1.3. Asynchrony
We propose to place safety and correctness on an equal 
footing with progress. To overcome the fundamental oppo-
sition between these requirements, we turn to asynchro-
nous integration, which integrates each geometric element 
of a discrete shape (e.g., the stretching resistance of cloth 
defined across a triangle) at its own pace, not in lockstep 
with the entire object. Asynchrony offers compelling long-
term advantages for simulations of deformable objects in 
complex contact—advantages that remain unexplored, in 
particular, in terms of safety, correctness, and progress. For 
scenarios involving sharp boundaries or dispersed points 
of contact, such as crumpled clothing, asynchrony renders 
noninterpenetration and momentum conservation tracta-
ble. Because elements advance at their own pace, those not 
entangled in collisions can proceed at large time steps. As 
shown in Figure 2, the median time step of an asynchronous 
method can be moderate even when high-impact collisions 
force some elements to proceed at small time steps.

1.4. Asynchronous integration
As a point of departure we consider asynchronous varia-
tional integrators (AVIs),16 which belong to a larger class 
of integrators that exactly conserve both momentum and 
symplecticity (loosely related to preservation of areas in 
phase space); such integrators are highly regarded because 
of their provable approximate conservation of energy over 

long spans of simulated time. However, a correct contact 
model remains unexplored.

1.5. Asynchronous collision detection
To ensure safety, we require an equally principled approach 
to collision detection. With every object able to collide with 
any other object, collision detection is fundamentally a 
quadratic problem. Thus, efficient collision detection algo-
rithms are necessary to prune the non-intersecting pairs. 
Furthermore, we must reliably find those elements which are 
proximate rather than actually intersecting, so that we may 
counteract the impending penetration. This is a heavily stud-
ied problem; alas, the many reported successes are specific 
to the synchronous context, and as a group current meth-
ods can be intractably slow if naïvely applied after each local 
asynchronous step. This motivates our interest in kinetic data 
structures (KDSs)3: a KDS algorithm maintains a data struc-
ture governed by formal invariants describing some discrete 
attribute (such as absence of collisions), in response to the 
continuous movement of geometric elements. Many exist-
ing collision detection methods can be reformulated from 
a KDS perspective. KDSs seem destined for asynchronous 
applications, because their focus on fast, minimal, “output-
sensitive” data-structure updates makes them ideally suited 
for the small, local changes effected by each AVI step.

These observations motivate our interest in approaching 
contact mechanics for both graphics and mechanics appli-
cations from a new direction. In particular, (a) we formulate 
a contact model that is safe independent of user parameters, 
such as the stiffness and “bounciness” of collisions. (b) We 
correctly discretize time, using asynchrony to preserve the 
model’s safety and to respect causality, and using a sym-
plectic-momentum integrator to exactly conserve momen-
tum and approximately conserve energy over long runtimes. 
Finally, (c) we lay out the basic foundations for the union of 
AVIs with KDSs, making the safe, correct integration of com-
plex contact for highly deformable objects tractable.

2. ASYNCHRONOUS INTEGRATORS
Consider a physical system with a time-varying configura-
tion q(t) in the space Q of all configurations; concretely, for 
a mesh with vertices x1, …, xn in 3D we represent Q = R3n by a 
vector of all the vertices’ Cartesian coordinates. We use a dot 
to denote differentiation in time, so that q·(t) is the velocity 
of the system. Let M be the mass matrix, so that p = Mq·  is 
the momentum. The Störmer–Verlet (“leapfrog”) integrator 
evolves a sequence of positions q0, q1, q2, . .  . and momenta 
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where h is the time step and F(q) is the force. The sub/super-
scripted indices remind us that positions and velocities are 
staggered in time, with tk associated to qk, and (tk, tk+1) asso-
ciated to 

1+
2

kp . In effect, leapfrog first updates the position at 
tk using the constant momentum associated to the preced-
ing interval (tk−1, tk), and then impulsively “kicks,” obtaining 
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Figure 2. Asynchrony in the curtain simulation, depicted by the 
time-evolving distribution of vertex time step sizes, enables adaptive 
allocation of computational resources in space time.
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a new momentum for the following interval (tk, tk + 1), yield-
ing a piecewise linear (p.l.) trajectory over the intervals  
(tk, tk + 1) (Figure 3). Being a geometric integrator,14 leapfrog 
tracks conservation laws (e.g., mass, momentum, energy) 
and adiabatic invariants (e.g., temperature) over long run-
times, and offers more consistency and qualitatively pre-
dictable behavior across a range of time step sizes.

AVIs naturally extend leapfrog. Each force receives an 
independent, regular (fixed-rate) clock, fixed a priori by sta-
bility requirements. While impulses of a force are regularly 
spaced in time, the superposition of forces yields events 
irregular in time. As with leapfrog, the trajectory is p.l., inter-
rupted by “kicks.” When their clocks are nested—as quarter 
notes are nested in half notes—AVIs reduce to an instance 
of multistepping methods14; our developments apply to this 
family of methods.

For example, Lew et al.16 assign an elastic potential to 
each mesh element. Irregular meshes have spatially vary-
ing element shapes and corresponding time step stability 
restrictions; with AVIs each element advances at its own 
pace. Since an elemental potential depends only on a 
local mesh neighborhood, each integration event is local, 
affecting the position and velocity of a small number of 
stencil vertices.

To schedule the interrupts to the p.l. trajectory, AVIs 
use a priority queue, conceptually populated with all event 
times until eternity. In practice it suffices to schedule only 
the next tick for each clock, since that event can schedule 
the subsequent tock.

2.1. Ensuring correctness
A more complete analysis leading to the geometric and 
conservation properties of AVIs invokes ideas from discrete 
mechanics and variational integration.16, 17 Here we stress a 
key outcome: Lew et al. conjecture that AVIs’ remarkable 
properties are due to its multisymplecticity; the derivation 
requires each force to have a regular (constant-rate, ever-
ticking) clock. Playing with this clock—accelerating or 
pausing—is strictly forbidden. Interrupting the p.l. trajec-
tory with other mechanisms (e.g., interleaving a velocity fil-
ter) breaks multisymplecticity.

2.2. AVIs and contact
The conservation properties of AVIs rely on preservation 
of the multisymplectic form17, 18 and are easily broken by 
naïvely incorporating existing contact-resolution methods. 
A principled treatment must consider a multisymplectic for-
mulation of contact mechanics and an asynchronous com-
putation of collision detection and response.

3. DISCRETE PENALTY LAYERS
As a contact model, consider a simple penalty method that 
penalizes proximity between bodies. We will represent 
this penalty as a linear half-spring, which only counteracts 
compression from its designated rest length. Elongation is 
ignored, allowing separating bodies to move away freely.

For a given surface thickness h, the gap function

gh (q) = xb − xa − h

tracks signed proximity between moving points xa and xb. 
When g < 0, the points are said to be proximate. We can 
express the penalty (half-spring) potential and force in 
terms of g
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respectively, where r is the contact stiffness. Choosing a pen-
alty stiffness is the most criticized problem of the penalty 
method.1 For any fixed stiffness r, there exists a sufficiently 
large approach velocity such that the contact potential will 
be overcome by the momentum, allowing the configuration 
to tunnel illegally into a penetrating state.

The barrier method replaces the above contact potential by 
a function that grows unbounded as the configuration nears 
the boundary g (q) = 0, eliminating the possibility of tunnel-
ing. However, such a function must also have unbounded 
second derivative, ruling out stable fixed-step time integra-
tion for any choice of step size.14

To alleviate these concerns, we propose a construction 
consisting of an infinite family of nested potentials

( )
( ) , =1,2,...,r lV llh

where h(l ) is a monotonically decreasing proximity (or 
“thickness”) for the lth potential, and r (l ) is a monotonically 
increasing penalty stiffness. For these nested potentials to 
be a barrier, the cumulative energy of these potentials must 
diverge as the distance between two primitives vanishes:

2 .
l

r l l → ∞∑ ( ) ( )h

We use r(l ) = r(1)l 3 and h(l ) = h(1)l−1/4, where r (1) and h(1) are 
a simulation-dependent base stiffness and thickness for the 
outermost layer.

We call the region h(n + 1) ≤ g (q) ≤ h(n), where exactly n 
of the potentials are nonzero, the n th discrete penalty layer 
(see Figure 4).

The nested potentials’ respective maximal stable time 
steps form a decaying sequence, and therefore this con-
struction requires an adaptive or asynchronous time step-
ping algorithm. Each interaction potential has its own 
integration clock and has the opportunity to apply an impul-
sive change in trajectory when its clock ticks. The question is 
how to time step such an infinite sequence.

As we are about to see, the above construction trans-
forms a seemingly intractable problem in Computational 
Mechanics—establishing a multisymplectic treatment of 
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contact mechanics with guaranteed absence of tunneling—
into a challenging but addressable problem in Computer 
Science: efficient bookkeeping on a conceptually infinite set 
of interaction potentials.

3.1. Central observation
During any time interval, while conceptually the (infinite 
number of) clocks continues to tick, and the totality of the 
clock ticks is dense in time, only a finite, sparse set of clock 
ticks apply (nonzero) impulses. In particular, the index (l) 
of the discrete penalty layer (DPL) indicates the number of 
active potentials; the rest, while conceptually present, do not 
influence the trajectory and can be culled without approxi-
mation (Figure 5). What is needed is efficient bookkeeping 
to track which interaction potentials are active; each status 
change corresponds to a transition between penalty layers—
a discrete change in state due to motion along a continuous 
trajectory. This is a problem that KDSs were born to solve.

4. KINETIC DATA STRUCTURES
Guibas12 gives an overview of kinetic data structures. Our 
culling of inactive forces uses an implementation of kinetic 
separating slabs for tracking proximity between primitives, 
closely related to those used by Guibas et al.13 in the context 
of rigid polytopes.

4.1. Kinetic separating slabs
Proximity for triangle meshes can be written in terms of 
distances between vertex-triangle and edge–edge pairs. 
Thus, our algorithm tracks proximity between these primi-
tives using certificates, a concept from the kinetic data 
structures literature. A certificate is a declaration of some 

invariant, in this case, that two primitives are separated by 
at least h(l ) for a penalty layer l.

To maintain the data structure, we must compute a cer-
tificate failure, which is the time, given current configuration 
and velocity, that a certificate ceases to be valid. Computing 
the time at which two primitives with piece-wise linear 
motion enter within some fixed proximity requires finding 
the roots of a degree-six polynomial. This is too expensive 
for our application, so we use the observation that a certifi-
cate failure time needs only to be conservative, not exact.

In this light, we introduce a kinetic separation slab, 
which we define as a plane in 3-space with constant veloc-
ity extruded by h (l ). Then, for each vertex qi in the primitive 
pair, we can compute the time at which it enters this slab,

(qi · n̂ − h (l ))/v,

where n̂ is the normal of the separating plane and v is the 
assigned constant velocity (we use the relative velocity 
between the closest point of the two primitives). The earliest 
of these times is selected as the certificate failure event time.

Because this time is conservative, at the time of a cer-
tificate failure event we must check that the primitives are 
indeed within proximity before creating an appropriate 
penalty layer event. See Section 5.1 for a walkthrough of the 
complete algorithm.

4.2. Broad phase
Our implementation begins with the simple separating slab 
KDS described above. We consider this the “narrow phase” 
of collision detection, the low-level processing required to 
track intersections between geometric elements.

While formally correct, the simple KDS used on its own 
will not scale efficiently to large scenes. Various sophisti-
cated KDSs track proximity, offer better “broad-phase” scal-
ing, and could be easily adapted to the bookkeeping of the 
DPL index.6, 9, 11

One common broad-phase algorithm in traditional 
(synchronous) simulations are bounding volume hierar-
chies (BVH).7 For our implementation, we adopt the kinetic 
BVH described by Weller and Zachmann,22 extending their 
axis-aligned bounding box based method to use k-Discrete 
Oriented Polytopes, or k-DOPs, which in general provide 
tighter bounds. For implementation and optimization 
details, we refer the reader to the full-length publication.

5. ALGORITHM
Kinetic data structures have existed for some time, but this 
is the first time they have been integrated with AVIs, despite 
their similar implementations. In this section, we walk 
the reader through a simple setup to reveal the logic of our 
algorithm. For simplicity of exposition, we will forego the 
existence of a k-DOP hierarchy and assume separating slabs 
are responsible for all proximity detection.

5.1. Walkthrough
Consider a single particle falling toward a fixed floor (Figure 
6). Conceptually, the clock for the first penalty layer is always 
ticking; however, it is active (exerting a nonzero impulse) 
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only when the particle drops below height h(1), say at time t. 
We must “activate the clock,” no later than time t. Activating 
too late introduces error (misses impulses), while activat-
ing too early is correct, albeit overly conservative (some null 
events are not culled). The separation slab KDS is respon-
sible for this activation.

We initialize a priority queue of events, sorted by time. 
Initially, this queue contains a gravity event with time step 
g (in general, internal forces will be added as well) and one 
certificate failure event representing the separation slab 
between the particle and floor. Simulation progresses by 
repeatedly popping events off the queue and processing 
them (updating velocities or rescheduling certificates). 
When a force event modifies velocities, all certificates 
which depend on that velocity must be rescheduled.

Initially, the particle’s velocity is zero and the gravity 
event is at the front of the queue (Figure 6a). When pro-
cessed, the particle is given some velocity downward (Figure 
6b). The certificate must be rescheduled for the time the par-
ticle enters the separation slab, say time tc.

At time tc the certificate event is popped off the queue 
(Figure 6c). We see that the particle is within proximity of 
the floor and add a layer 1 penalty event to the queue. The 
queue now contains two force events: gravity and a penalty 
layer 1 event. In general, penalty events are far more fre-
quent than gravity events.

With the creation of a penalty layer 1 event, the certificate 
event switches to tracking h(2) proximity. However, the pen-
alty layer 1 event is still counteracting this motion to reduce 
further penetration (Figure 6d).

The simulation progresses with penalty force events 
and gravity events applying impulses in opposite direc-
tions. Eventually one of two things will happen: either the 
particle will enter layer 2 proximity and a second, stiffer 
penalty force will aid the first in counteracting gravity, or 
the layer 1 event’s force will balance the downward force of 
gravity. In our illustration, the layer 1 force reaches equilib-
rium with gravity, a state called resting contact (Figure 6e).

For elastic contact where the interacting elements 

separate, we will need to deactivate penalty forces. The 
penalty layer force event serves as an opportunity to check 
whether the particle is transitioning to a shallower penalty 
layer: if (a) the penalty impulse is null, i.e., separation dis-
tance exceeds h(l), and (b) the relative velocity is separating 
rather than approaching, then we deactivate the penalty 
force, transitioning to the next-shallower layer, and adjust-
ing the certificates accordingly. This lazy approach to deacti-
vation is safe by clause (a) alone; clause (b) aids in efficiency, 
avoiding rapid toggling of penalty layers.

5.2. Stencils, supports, and scheduling dependencies
Consider the execution of an event at its scheduled time. 
The set of vertices whose velocities are altered by this event 
is the stencil of the event. The set of vertices whose trajectory 
was used to schedule this time is the support of that event. 
Building on the notions of stencil and support, an event 
depends, or is contingent, on another event if the support of 
the former overlaps the stencil of the latter; vice versa, an 
event supports another if the stencil of the former overlaps 
the support of the latter. Table 1 shows the support and 
stencils for a set of typical events.

KDSs were previously applied only to synchronous simula-
tions, where the velocities of all primitives are updated at the 
same instant, i.e., the stencil of the force-integration event 
contains the set of all vertices. By contrast, in an AVI simu-
lation, force-integration events typically bear small stencils.

Having executed a supporting event, we must resched-
ule all dependent events before proceeding. This is a 
problem of executing partially ordered instructions with 
dependencies, and it is thoroughly studied in the com-
puter systems literature.15

Our implementation maintains a directed graph, where 
edges from events to vertices and vice versa denote stencil 
and support relations, respectively. When an event executes, 
the two-neighborhood of outgoing edges yields the set of 
events to reschedule. The graph abstraction reveals that 
events with large stencils, such as gravity, should cache a list 
of contingent events, while events with small stencils should 
construct the list of contingent events on-the-fly; refer to 
Figure 7a and b, respectively.

6. RESULTS
We turn our attention to challenging problems involving 
complex contact geometries, sharp features, and sliding 
during extremely tight contact.

} η(2)η(1) {

G: g

C: ∞ C: tc

C: tc C: tc

C: ∞

0 g 2gtc tp

G: g

G: 2g G: 2g

G: 2gP: tp

P: tp

...

Time:

Queue:

(a) (b) (c) (d) (e)

Figure 6. This didactic example shows a particle falling towards 
a fixed floor. The queue shows the processing order of events as 
gravity pulls the particle downward (a)–(b), the certificate creates 
penalty forces (c), and the penalty force counteracts the penetration 
(d)–(e).

Table 1. Events and their associated supports and stencils

Event Supporting vertices Stencil vertices

Gravity Entire mesh
Stretching force16 Triangle
Bending force10 Hinge
Penalty force (Section 3) Pair of primitives
Separation slab (Section 5.1) Pair of primitives
k-DOP overlap (Section 4.2) Those in k-DOP
Render frame
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6.1. Knots
We simulate the tying of a ribbon into a reef knot (see Figures 
8 and 9). The ribbon is modeled as a loose knot, assigned a 
material with stiff stretching and weak bending, and the 
ends are pulled by a prescribed force. The final configuration 
is faithful to the shape of actual “boyscout manual” knots.

This example demonstrates the strength of asynchrony in 
allocating resources to loci of tight contact. As the knot tight-
ens, progressively finer time steps are used for the tightest 
areas of contact. If instead of prescribing reasonable forces 
we directly prescribe an outward motion of the two ends of 
the ribbon, the simulations execute to the point where the 
mesh resolution becomes the limiting reagent, i.e., a tighter 
knot cannot be tied without splitting triangles; past this 
point, the computation slows as penalty interactions bur-
row to deeper layers and the mean time step decays. This 
highlights both a feature and a potential artistic objection 
to the method: when presented with an impossible or nearly 
impossible situation (nonstretchy ribbon with prescribed 
diametrically opposing displacements at its ends) the meth-
od’s safety guarantee induces Zeno’s Paradox (Figure 9). 

6.2. Trash compactor
We place triangle meshes of varying complexity into a virtual 
trash compactor consisting of a floor and four walls, and then 
prescribe the inward motion of opposing walls (see Figure 
10 and incident image). The method is able to simulate the 
approach of the walls without ever allowing for seen or unseen 
penetrations. As with the knots, the overall rate of progress 
decays as the simulation approaches a limiting configuration.

6.3. Bed of nails
We crafted a problem to test the handling of isolated point 
contacts and sharp boundaries. Four sliver triangles are 
assembled into a nail, and many such nails are placed point-
up on a flat bed. We drape two stacked fabrics over the bed of 
nails (see Figure 11), and observe that the simulated trajec-
tory is both realistic and free of penetrations, oscillations, or 

any other artifacts typically associated to contact discontinu-
ities. Next, we prescribe the motion of one end of the fabric, 
tugging on the draped configuration to demonstrate sliding 
over sharp features. We extend the bed of nails into a landing 
pad for various coarsely meshed projectiles. Variably sized to 
barely fit or not fit between the nails, and thrown with differ-
ent initial velocities 
and angles, the pro-
jectiles exhibit a wide 
array of behaviors, 
including bouncing, 
rolling, simple stack-
ing, ricocheting at 
high frequencies (this 
requires resolving 
each collision when 
it occurs, as resolving 
collisions over a fixed collision step size can cause aliasing 
that prevents the ricochet); sliding and getting stuck between 
nails (the sliding requires a deformable model and friction, 
since a perfectly rigid object would be constrained to a sud-
den stop by the distance between nails).

6.4. Timing
We list computation time for the various examples, as exe-
cuted on a single thread of a 3.06 GHz Intel Xeon with 4GB 
RAM. The bulk is allocated to the maintenance of the kinetic 
data structures used for collision detection.

As a more detailed study, consider that the reef knot sim-
ulation required 4.8% of total 
simulation time for integration 
of elastic forces and gravity, 
0.09% for integration of pen-
alty forces, 0.9% for process-
ing and 1.0% for rescheduling 

Figure 7. Directed graphs depicting events (boxes), vertices 
(dots), and dependencies (directed edges). Integration events (left 
green boxes) alter vertex trajectories, forcing rescheduling of 
dependent events due to certificate failure (right orange boxes). 
(a) If an integration event has a large stencil, we store event–
event dependencies. (b) If a vertex belongs to multiple stencil and 
support relations, we store event–vertex–event dependencies.

(a) (b)
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Figure 8. Simulated tying of ribbons into a reef knot.

Figure 9. A closeup of the reef knot.

Figure 10. Virtual trash compactor and assorted virtual trash.
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scenarios, therefore, was 
qualitatively different than 
when using other methods, 
in that we did not need to 
search for parameters to 
ensure a successful model-
ing of contact. On the other 
hand, our method does not 
address the spatial discretiza-
tion of elasticity (stretching and bending models), which 
can also require user tuning.

Although in theory the nested penalty barrier has infi-
nitely many penalty layers at its disposal, it is impractical to 

of separating plane events, respectively, 5.2% and 23.0% for 
processing and rescheduling of k-DOP events, respectively. 
The incident figure demonstrates how per frame runtime 
increases as the stress on the ribbons elevates.

6.5. Parameters
We list parameters for the various examples. Bending and 
stretching stiffness refers to the Discrete Shells10 and com-
mon edge spring models. COR refers to coefficient of resti-
tution, or the “bounciness” of the collisions.

7. DISCUSSION

7.1. Parameters and the triad of safety, correctness, 
and progress
One of our driving goals is to investigate methods that 
ensure safety, correctness, and progress regardless of the 
choice of parameters. The method proposed here does 
expose some parameters to the user, such as the proxim-
ity h. These parameters affect performance, not the triad 
of guarantees. Our experience in running the problem 

activate penalty layers whose stable time steps are too small, 
e.g., below the floating point epsilon. Simulations with thick-
nesses h (1) too small, or velocities or masses too high, can 
thus fail to make progress (but remain safe). This limitation 
can be worked around by choosing a slow-shrinking layer dis-
tribution function, which is why we recommend h(l) = h(l)l−1/4.

Figure 11. Experiments with a bed of nails highlight the method’s 
ability to deal with sharp boundaries, isolated points of contact, 
sliver triangles, and localized points of high pressure between two 
nearly incident surfaces.
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Example Density COR r(1) h(1)
Stretching 
stiffness

Stretching 
damping

Bending 
stiffness

Reef knot 0.1 0.0 1000.0 0.1 750.0 0.1 0.01

Bowline 
knot

0.01 0.0 1000.0 0.1 100.0 0.1 0.01

Bunny 
compactor

0.01 0.01 10000.0 0.05 1000.0 0.0 1000.0

Trash 
compactor

0.001 0.01 1000.0 0.05 1000.0 15.0 10.0

Two sheets 
draped

0.001 0.0 1000.0 0.1 1000.0 1.0 0.1

Reef knot 
untied

0.1 0.0 1000.0 0.1 1000.0 0.1 0.01

Two sheets 
pulled

0.001 0.0 1000.0 0.1 1000.0 1.0 0.1

Balls on 
nails

0.016 0.3 10000.0 0.1 50000.0 1.0 100000.0

2D sludge – 0.0 1000.0 0.1 – – –

Examples Verticles
Simulation 

seconds

Event 
processing 

(hours)

KDS event 
rescheduling 

(hours)
Total 

(hours)

Reef knot 10,642 2.00 1.5 16.7 18.5

Bowline knot 3,995 5.00 3.0 141.1 144.5

Trash 
compactor

714 3.08 0.5 53.0 53.6

Two sheets 
draped

15,982 3.95 4.5 260.8 265.5

Two sheets 
pulled

15,982 3.83 13.6 310.5 325.6

Multistepping methods such as AVIs are known to have 
resonance instabilities,8, 14 particularly if the simulation con-
tains adjacent mesh elements of very different size. However, 
we have not observed any such instabilities or artifacts that 
we can attribute to such instabilities in our use of the method.

7.2. Broader exploration
In this paper we were concerned with building the most 
robust contact implementation we could; therefore, we tied 
the knots as tight as possible, until each triangle was packed 
as tightly as possible into its neighbors. In the tightest config-
urations the spatial discretization becomes evident. It would 
therefore be interesting to introduce spatial adaptation, refin-
ing the mesh where curvature is high. Another alternative 
would be to improve the smoothness at render time, using for 
example the collision-aware subdivision of Bridson et al.4

Dissipation and friction are critical for expressing the 
widest possible range of scenarios in physical simulation. 
We have omitted their discussion in this extended abstract, 
but refer the reader to the original publication for simple 
models that fit this criteria. Nevertheless, future work might 
explore efficient algorithms to handle stacking and static 
friction while still fitting the multisymplectic treatment.

7.3. Immediate and future impact
In considering this method for immediate industrial use, 
we anticipate two important hurdles. From the standpoint 
of incorporation into animation systems the first hurdle is 
the method’s insistence on safety even at the cost of artistic 
freedom. This effectively disallows all pinching,2, 21 as well as 
commencing from invalid configurations. We believe that 
the method can be extended to permit shallow (“skimming”) 
pinching, but handling extremely unphysical boundary con-
ditions within this framework seems at least initially at odds 
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with the basic premise, and will require further research.
Second, the proposed method is not competitive in per-

formance compared to existing methods, which do not 
attempt to make strong safety and correctness guarantees; 
if an artist is willing to search for parameters that provide 
non-penetrating good-looking results, they may become 
impatient with the method proposed here.

From the standpoint of long-term, curiosity-driven 
research, however, this method is appealing not just in its 
formalism but also in terms of performance, since it lays 
out a formal asynchronous framework from which one can 
investigate parallelization, optimization, and even approxi-
mation techniques that preserve guarantees of safety, cor-
rectness, and progress. To aid such future investigation, 
source code for our initial C++ implementation, along with 
data files needed to generate the examples shown in this 
paper, is available online a.	
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