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Abstract

Filtering is critical for representing detail, such as color textures or
normal maps, across a variety of scales. While MIP-mapping tex-
ture maps is commonplace, accurate normal map filtering remains
a challenging problem because of nonlinearities in shading—we
cannot simply average nearby surface normals. In this paper, we
show analytically that normal map filtering can be formalized as
a spherical convolution of the normal distribution function (NDF)
and the BRDF, for a large class of common BRDFs such as Lamber-
tian, microfacet and factored measurements. This theoretical result
explains many previous filtering techniques as special cases, and
leads to a generalization to a broader class of measured and ana-
lytic BRDFs. Our practical algorithms leverage a significant body
of work that has studied lighting-BRDF convolution. We show how
spherical harmonics can be used to filter the NDF for Lambertian
and low-frequency specular BRDFs, while spherical von Mises-
Fisher distributions can be used for high-frequency materials.

1 Introduction

Representing surface detail at a variety of scales requires good fil-
tering algorithms. For texture mapping, there has been consider-
able effort at developing and analyzing filtering methods [Heck-
bert 1989]. A common, linear approach to reduce aliasing is MIP-
mapping [Williams 1983]. Normal mapping (also known as bump
mapping [Blinn 1978] or normal perturbation), a simple and widely
used analogue to color texture mapping, specifies the surface nor-
mal at each texel. Unfortunately, normal map filtering is very diffi-
cult because shading is not linear in the normal.

For example, consider the simple V-groove surface geometry in
Fig. 1a. In a closeup, this spans two pixels, each of which has
distinct normals (b). As we zoom out (c), the average normal of the
two sides (e) corresponds simply to a flat surface, where the shading
is likely very different. By contrast, our method preserves the full
normal distribution (d) in the spirit of [Fournier 1992], and shows
how to convolve it with the BRDF (f) to get an accurate result.

A more complex example is Fig. 2, which compares our method
with “ground truth”1, standard MIP-mapping of normals, and the
recent normal map filtering technique of [Toksvig 2005]. At close
range (top row), minimal filtering is required and all methods per-
form identically. However, as we zoom out (middle and especially
bottom rows), we quickly obtain radically different results.

It has long been known qualitatively that antialiasing involves
convolution of the input signal (here, the distribution of surface
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1“Ground truth” images are obtained using jittered supersampling (on

the order of hundreds of samples per pixel) and unfiltered normal maps.
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Figure 1: Consider a simple V-groove. Initially in closeup (a), each face is

a single pixel. As we zoom out, and average into a single pixel (c), standard

MIP-mapping averages the normal to an effectively flat surface (e). How-

ever, our method uses the full normal distribution function or NDF (d), that

preserves the original normals. This NDF can be linearly convolved with

the BRDF (f) to obtain an effective BRDF, accurate for shading.

Figure 2: Top: Closeup of the base normal map; all other methods

are identical at this scale and are not shown. Schematic (a) and dif-

fusely shaded (b) views are provided to aid in comparison/visualization.

Middle: When we zoom out, differences emerge between our (6-lobe) spher-

ical vMF method, the Toksvig approach (rightmost), and normalized MIP-

mapping. (Unnormalized MIP-mapping of normals produces an essentially

black image.) Bottom: Zooming out even further, our method is clearly

more accurate than Toksvig’s model, and compares favorably with ground

truth. (The reader may zoom into the PDF to compare images.)

normals) and an appropriate low-pass filter. Our most important
contribution is theoretical, formalizing these ideas and developing
a comprehensive framework for normal map filtering.

In Sec. 4, we derive an analytic formula, showing that filtering
can be written as a spherical convolution of the BRDF of the ma-
terial with a function we define as the normal distribution function
(NDF)2 of the texel. This mathematical form holds for a large class
of common BRDFs including Lambertian, Blinn-Phong, microfacet
models like Torrance-Sparrow, and many measured BRDFs. How-
ever, the convolution does not apply exactly to BRDF models that

2We define the NDF as a weighted mapping of surface normals onto the

unit sphere; more formally, it is the extended Gaussian Image [Horn 1984]

of the geometry within a texel.



Acronym Definition Symbol

NDF normal distribution function γ(n)
SH spherical harmonics Ylm

SRBF spherical radial basis function γ(n ·µµµ)
EM expectation maximization

vMF von Mises-Fisher distribution γ(n ·µµµ ;θ),
θ = {κ,µ}

movMF mixture of vMF lobes γ(n;Θ),
Θ = {α j,θ j}J

j=1

Table 1: Important abbreviations and acronyms used in the paper.

depend on the “reflected direction” between the light source and
viewer, e.g., the standard Phong model. Our analytic result imme-
diately connects geometrical normal map filtering with the older
lighting-BRDF convolution result for appearance [Basri and Jacobs
2001; Ramamoorthi and Hanrahan 2001]. This result also unifies
many previous normal map filtering approaches, which can now be
viewed as special cases.

Moreover, we can immediately apply a host of mathematical rep-
resentations originally developed for lighting-BRDF convolution.
In particular, we develop two novel algorithms. Our first method
(Sec. 5) is a general framework that uses spherical harmonics (SH).
Although general, this method is most suitable for low-frequency
BRDFs, where it suffices to use a small number of SH coefficients.
Our second method, intended for high-frequency materials, uses
an approximate function fitting technique known as spherical ex-
pectation maximization (EM) [Banerjee et al. 2005]. This method
approximates or fits the NDF with von Mises-Fisher (vMF) distri-
butions (Sec. 7). vMFs are spherical Gaussian-like functions, sym-
metric about a central direction (average normal). To our knowl-
edge, the use of vMFs and spherical EM is new in graphics, and
may have broader relevance. Finally, our framework enables real-
istic BRDFs, including measured materials (Fig. 4), as well as dy-
namically changing reflectance, lighting and view (Fig. 8). We are
also able to incorporate low-frequency environment maps (Fig. 9).

Although this paper presents an in-depth theoretical discussion,
the final algorithms are relatively simple. Readers more interested
in implementation may wish to pay special attention to Sec. 5.1, that
describes the spherical harmonic method, and the full pseudocode
provided in Algorithms 1 and 2 for the vMF method of Sec. 7. Ad-
ditionally, videos and example GLSL shader code for all of our
results are available for download from our website.

2 Previous Work

Normal Map Filtering: Many previous methods approximate
the normal distribution function using a single symmetric or asym-
metric lobe. [Schilling 1997] described the lobe using covariance
matrices, while [Olano and North 1997] mapped normal distribu-
tions consisting of a single 3D Gaussian. A simple GPU method is
described in [Toksvig 2005]. In our framework, these methods can
retrospectively be considered similar to using a single vMF lobe.
As seen in Figs. 2 and 7, one lobe is insufficient for complex NDFs.

An early inspiration is [Fournier 1992], which uses up to seven
Phong lobes per texel (and up to 56 at the coarsest scales). This can
be seen as a special case of our framework, with some similarities to
our spherical vMF algorithm. Note that [Fournier 1992] uses non-
linear least-squares optimization to fit lobes. In our experience, this
is unstable and slow, especially considering the number of peaks
and texels in a normal map. vMFs are very similar to Gaussian or
Phong lobes, but have many technical advantages, in allowing for
fast and robust fitting using existing algorithms for spherical EM.

The most recent and closest previous work is [Tan et al. 2005],
which uses EM to fit Gaussian lobes to a planar projection of
the hemispherical NDF at each texel. We introduce a new theo-
retical result in terms of the analysis of normal map filtering as

convolution—it is easy to understand [Tan et al. 2005] as an im-
portant special case in this framework. Our formulation also al-
lows spherical harmonic methods for low-frequency materials and
Lambertian objects, which do not even require non-linear fitting
of lobes. For high-frequency materials we use vMFs and spheri-
cal EM, which operate in the natural spherical domain of surface
normals; by contrast, planar Gaussian fits, as in [Tan et al. 2005],
have been shown to considerably reduce accuracy both in our work
(Fig. 7) and in other contexts [Strehl et al. 2000].

Note that [Tan et al. 2005] treat the BRDF itself as a pre-baked
distribution of normals at fine-scale texels. We support and discuss
this multi-scale tradeoff between BRDF and geometry (Sec. 6.2).
However, our spherical representation enables us to derive a for-
mal convolution result of the NDF with the BRDF, and allows us to
separate or factor the two. The same NDF can be used with differ-
ent, possibly non-Gaussian BRDFs, easily. We can also change the
BRDF at runtime, and support dynamic, low-frequency complex
lighting.

Hierarchy of Representations: A hierarchy of scales, with
geometry transitioning to bump or normal maps, transitioning to
BRDFs, was first proposed by Kajiya [1985]. This idea is explored
in detail by [Becker and Max 1993], but they do not focus on nor-
mal map filtering as in our work. Similarly, appearance-preserving
simplification methods replace fine-scale geometry with normal and
texture maps [Cohen et al. 1998]. It is likely that our approach could
enable continuous level of detail and antialiasing in these methods.
Separately, our formulation allows one to understand the tradeoff
between a normal distribution and the BRDF, since the final image
is given by a convolution of the NDF and BRDF.

Convolution and Precomputed Radiance Transfer (PRT):
Many of our mathematical representations and ideas derive from
previous spherical convolution techniques [Basri and Jacobs 2001;
Ramamoorthi and Hanrahan 2001]. We also build on PRT meth-
ods that have used spherical harmonics [Sloan et al. 2002]. Our
spherical vMF method extends zonal harmonics [Sloan et al. 2005]
and spherical radial basis functions [Tsai and Shih 2006]. We
also considered wavelet methods (introduced for reflectance in
[Lalonde and Fournier 1997]), but found the number of terms for an
artifact-free solution too large for practical use, even with smoother
wavelets.3 A real-time method for wavelet-based BRDF represen-
tation and filtering on the GPU is given in [Claustres et al. 2007],
which does not account for normal map filtering.

We emphasize, however, that ours is not a PRT algorithm; it re-
quires minimal precomputation and works with conventional real-
time rendering techniques. Furthermore, our method rests on an
explicit analytic convolution formula and uses the representations
above solely for normal map filtering, not for PRT.

3 Preliminaries

In this section, we introduce relevant notation for the reflectance
equation, and BRDF and normal map representations. Note that
in this paper, we focus only on normal map filtering and do not
consider displacement maps, occlusion, masking, geometry sim-
plification or cast shadows—filtering these additional effects is an
important direction of future work (and discussed in Sec. 9).

The reflected light B at a spatial point x in direction ωωωo is

B(x,ωωωo) =
∫

S2
L(x,ωωω i)ρ(ωωω ′i,ωωω

′
o)dωωω i, (1)

where L is the lighting at x from incident direction ωωω i, and ρ is the
BRDF (actually, the transfer function including the cosine of the in-
cident angle). Most generally we must integrate over the sphere S2

3PRT methods can use a coarse wavelet approximation of the lighting,

since it is not visualized directly, but we directly visualize NDF and BRDF.



of incident directions, but in this paper L will usually be assumed to
be from a small number of point lights, making equation 1 a sum-
mation over discrete directions ωωω i. We will relax this restriction,
and discuss extensions to environment maps, in Sec. 8.

Equation 1 is the standard reflectance equation. However, we
have made explicit that ωωω ′i and ωωω ′o are the local directions in the
surface coordinate frame (in which the BRDF is defined). To find
them, we must project or rotate the global incident and outgoing
directions ωωω i and ωωωo to the local tangent frame. This local frame is
defined by the surface normal n and a tangent direction. In this pa-
per, we limit ourselves to isotropic BRDFs, so the tangent direction
is not important, and we can use any rigid rotation Rn mapping the
normal to the z-axis [Ramamoorthi and Hanrahan 2001],

ωωω ′i = Rn(ωωω i) ωωω ′o = Rn(ωωωo).

3.1 BRDF Representation and Parameterization

Effective BRDF: We define a new function, the effective BRDF
or transfer function that depends on the surface normal (that we
denote as n(x) or simply n for clarity) as,

ρeff(ωωω i,ωωωo;n) = ρ (Rn(ωωω i),Rn(ωωωo)) ,

allowing us to write equation 1 using the global directions,

B(x,ωωωo) =
∫

S2
L(x,ωωω i)ρ

eff(ωωω i,ωωωo;n(x))dωωω i. (2)

BRDF Parameterizations: Many BRDFs can be written as

ρeff(ωωω i,ωωωo;n) = f (n ·ωωω(ωωω i,ωωωo)), (3)

where the 1D function f is radially symmetric about the shading
normal n, and depends on the chosen parameterization ωωω(ωωω i,ωωωo)
(henceforth ωωω). In this paper, we focus most of our effort on these
types of BRDFs, which encompass Lambertian, Blinn-Phong or mi-
crofacet half angle (like Torrance-Sparrow), and many factored and
measured BRDFs.

A very common example is Lambertian reflectance, where the
transfer function is simply the cosine of the incident angle, so that
ωωω = ωωω i, and f (u) = max(u,0). The Blinn-Phong specular model
with exponent s uses a transfer function of the form f (u) = us, with

the half-angle parameterization, ωωω = ωωωh = ωωω i+ωωωo

‖ωωω i+ωωωo‖ . Measured

BRDF functions f (ωωωh ·n) can also be used.4

3.2 Normal Map Representation and Filtering

Normal Map Input Representation: There are many equiv-
alent normal map representations, including bump maps [Blinn
1978] and normal offsets. For simplicity, we use normal maps, pa-
rameterized on a plane, that directly specify the normal in tangent
space. In the actual implementation, we perform all computations
in the local tangent frame of the geometric surface; lighting and
view are projected into this local frame, allowing the planar normal
map to be used directly without explicit rotation. For simplicity in
the proceeding discussion, the reader can therefore assume a planar
underlying surface while understanding that the extension to curved
3D geometry is straightforward.

For memory and practicality reasons, normal maps do not typi-
cally use resolutions much higher than 512× 512 or 1024× 1024.
To obtain effectively higher or finer resolutions, we therefore often
tile the base normal map over the surface.

4A number of recent papers have proposed factored BRDFs for mea-

sured reflectance. [Lawrence et al. 2006] uses a factorization f (θh)g(θd),
in terms of half and difference angles. The f (θh) term clearly fits into the

framework of equation 3, but the BRDF now also includes a product with

g(θd). However, θd does not depend on n (and g does not need to be fil-

tered). Thus, our framework also applies to general BRDFs of the form

f (ωωω ·n)g(ωωω i,ωωωo), where the g factor does not depend directly on n.

Normal Map Filtering: In screen space, the exitant radiance
or pixel color B(x,ωωωo) at a surface location x should represent the
average radiance at the N corresponding finer-level texels q:

B(x,ωωωo) =
1

N
∑
q∈x

∫

S2
L(x,ωωω i)ρ

eff(ωωω i,ωωωo;n(q))dωωω i

=
∫

S2
L(x,ωωω i)

(

1

N
∑
q∈x

ρeff(ωωω i,ωωωo;n(q))

)

dωωω i.

This formulation allows us to define a new effective BRDF,

ρeff(ωωω i,ωωωo;x) =
1

N
∑
q∈x

ρ
(

Rn(q)(ωωω i),Rn(q)(ωωωo)
)

. (4)

Note that the effective BRDF now depends implicitly on all the
normals n(q) at x, rather than on a single normal.

This paper is about efficiently computing and representing ρeff.

The next section shows how to explicitly represent ρeff as a convo-
lution of the original BRDF and a new function we call the NDF.

4 Theory of Normal Mapping as Convolution

In this section, we introduce our theoretical framework for normal
map filtering as convolution. The next sections describe mathemat-
ical representations that can be used for practical implementation.

4.1 Normal Distribution Function (NDF)

Our first step is to convert equation 4 into continuous form, defining

ρeff(ωωω i,ωωωo;γ(·)) =
∫

S2
ρ (Rn(ωωω i),Rn(ωωωo))γ(n)dn, (5)

where γ(n) is a new function that we introduce and define as the
normal distribution function (NDF), and the integral is over the
sphere S2 of surface orientations. Note that a unique NDF γ(n)
exists at each surface location x; for a discrete normal map, γ(n)
would simply be a sum of (spherical) delta distributions at n(q),

the fine-scale normals at x. Formally, γ(n) = 1
N ∑q∈x δ (n−n(q)),

as seen in Fig. 1d. For some procedurally generated normal maps,
γ(n) may be available analytically.

4.2 Frequency Domain Analysis in 2D

Although we will not directly use the results of this section for ren-
dering, we can gain many insights by starting in the simpler 2D
case. This “flatland” analysis is easier because the rotation operator
in equation 5 is given simply by Rn(ω) = ω +n, yielding

ρeff(ωi,ωo;γ(·)) =
∫ 2π

0
ρ(ωi +n,ωo +n)γ(n)dn. (6)

Significant new insight is gained by analyzing equation 6 in the
frequency domain. Specifically, we expand in Fourier series:

γ(n) = ∑
k

γkFk(n)

ρ(ωi +n,ωo +n) = ∑
l

∑
m

ρlmFl(ωi +n)Fm(ωo +n), (7)

where Fk(n) are the familiar Fourier basis functions 1√
2π

eikn. Not-

ing that Fk(ω + n) =
√

2πFk(ω)Fk(n), equations 6 and 7 can be
simplified to

ρeff(ωi,ωo;γ(·)) = 2π ∑
k,l,m

γkρlmFl(ωi)Fm(ωo)×

∫ 2π

0
Fk(n)Fl(n)Fm(n)dn. (8)



The integral above involves a triple integral of Fourier series,
and we denote the corresponding tripling coefficients Cklm. These
tripling coefficients have recently been studied in [Ng et al. 2004],
and for Fourier series they vanish unless k = −(l + m), where

Cklm = 1√
2π

. Since ρeff above is already expressed in terms of

Fl(ωi)Fm(ωo), we can write a formula for its Fourier coefficients:

ρeff
lm =

√
2πγ−(l+m)ρlm. (9)

Discussion and Analogy with Convolution: Equation 9 gives
a very simple product formula for the frequency coefficients of the
effective BRDF. This is much like a convolution, where the final
Fourier coefficients are a product of the Fourier coefficients of the
functions being convolved (here the NDF and BRDF). However,
the convolution analogy is not exact, since equation 8 involves a
triple integral and n appears thrice in equation 6. In 3D, the for-
mulae and sparsity for triple integrals in the frequency domain (es-
pecially those involving rotations) are much more complicated [Ng
et al. 2004]. Fortunately, many BRDFs are primarily single-variable
functions f (ωωω ·n) as in equation 3. In these cases, we will obtain a
spherical convolution of the NDF and BRDF.

4.3 Frequency Domain Analysis in 3D

To proceed with analyzing equation 5 in the 3D case, we substitute
the form of the BRDF from equation 3. Recall in this case that the
BRDF only depends on the angle between ωωω and the surface normal
n, and is given by f (ωωω ·n). The effective BRDF is now also only a
function of ωωω ,

ρeff(ωωω;γ(·)) =
∫

S2
f (ωωω ·n)γ(n)dn. (10)

Note that the initial BRDF ρ(·) = f (ωωω ·n) is symmetric about n,

but the final result ρeff(ωωω) is an arbitrary function on the sphere and
is generally not symmetric.

We would like to analyze equation 10 in the frequency domain,
just as we did with equation 6. In 3D, we must use the spherical
harmonic (SH) basis functions Ylm(·), which are the frequency do-
main analog to Fourier series on the unit sphere. The l index is the
frequency with l ≥ 0, and −l ≤ m≤ l,

γ(n) =
∞

∑
l=0

l

∑
m=−l

γlmYlm(n) f (ωωω ·n) =
∞

∑
l=0

flYl0(ωωω ·n)

ρeff(ωωω) =
∞

∑
l=0

l

∑
m=−l

ρeff
lm Ylm(ωωω).

The above is a standard function expansion, as in Fourier series.
Note that the symmetric function f (ωωω ·n) is expanded only in terms
of the zonal harmonics Yl0(·) (m = 0), which are radially symmetric
and thus depend only on the elevation angle.

Equation 10 has been extensively studied in recent years, within
the context of lighting-BRDF convolution for Lambertian or radi-
ally symmetric BRDFs [Basri and Jacobs 2001; Ramamoorthi and
Hanrahan 2001]. In those works, the NDF γ(n) is replaced by the
incident lighting environment map. Since the theory is mathemati-
cally identical, we may directly use their results. Specifically, equa-
tion 10 expresses a spherical convolution of the NDF γ(n) with the
BRDF filter f . In particular, there is a simple product formula in
spherical harmonic coefficients, similar to the way standard convo-
lution can be expressed as a product of Fourier coefficients,

ρeff
lm =

√

4π

2l +1
flγlm.

Explicitly making the NDF and effective BRDF functions of a texel
q, we have

Our method

Standard anisotropic

filtering

“Ground truth”

Figure 3: Spherical harmonic anisotropic filtering for Lambertian reflec-

tion. Note the behavior for far regions of the plane. With standard normal

filtering, these regions are averaged to a nearly flat surface. By contrast,

our method is quite accurate in distant regions.

ρeff
lm (q) = ρ̂lγlm(q) ρ̂l =

√

4π

2l +1
fl , (11)

where the NDF considers all normals covered by q. While q usu-
ally corresponds to a given level and offset in a MIP-map, it can
also consider more general “footprints”—we show an example with
anisotropic filtering in Fig. 3.

Generality and Supported BRDFs: The form above is accu-
rate for all BRDFs described by equation 3, including Lambertian,
Blinn-Phong and measured microfacet distributions. Moreover, our
results also apply when the BRDF has an additional Fresnel or
g(θd) multiplicative factor, since θd (and hence g) does not depend
on n and does not need to be filtered.

Note that for some specular BRDFs, we also need to multiply by
the cosine of the incident angle for a full transfer function. For
the spherical vMF method in Sec. 7, we address this by simply
multiplying for each lobe by the cosine of the angle between light
and lobe center (or effective normal). For the spherical harmonic
method in Sec. 5, we simply use the MIP-mapped normals for the
cosine term, since it is a relatively low-frequency effect.

5 Spherical Harmonics

To recap, we have as input a normal map which provides a sin-
gle normal n(q0) for each finest-level texel q0. We also have a
BRDF ρ(·) = f (ωωω · n), with spherical harmonic coefficients ρ̂l .
In this section, we develop a spherical harmonics-based algorithm
from the final formula in equation 11. Later, Sec. 7 will discuss
an alternative algorithm better suited for higher-frequency effective
BRDFs. While the theory in the previous section is somewhat in-
volved, the practical algorithm in this section is relatively straight-
forward, involving two basic steps: (1) computing the NDF spher-
ical harmonic coefficients γlm(q) for each (coarse-level) texel q of
the normal map, and (2) rendering the final color by directly imple-
menting equation 11 in a GPU pixel shader.

5.1 Algorithm

Computing NDF Coefficients: We compute a MIP-map of NDF
coefficients5, starting with the finest level normal map, and moving

5As explained in Sec. 3.2, we are operating in the local tangent frame

of the geometric surface, with lighting and view projected into this frame.

Thus, we do not need to explicitly consider rotations into the global frame.

Note that the overall geometric surface is assumed to be locally planar (a



to coarser levels. At the finest level (denoted by subscript 0), γ(q0)
is a delta distribution at n(q0), i.e., γ(q0) = δ (n−n(q0)) with cor-

responding spherical harmonic coefficients6

γlm(q0) = Ylm(n(q0)).

An important insight is that, unlike the original normals, these
spherical harmonic NDF coefficients γlm(q0) can now correctly be
linearly filtered or averaged for coarser levels γlm(q). Hence, we
can simply MIP-map the spherical harmonic coefficients γlm(q0) in
the standard way, and no non-linear fitting is required.

Rendering: Rendering requires knowing the NDF coefficients
γlm(q), the BRDF coefficients ρ̂l , and then applying equation 11.
We have already computed a MIP-map of NDF coefficients. At
the time of rendering, we also know the BRDF. For many analytic
models, formulae for ρ̂l are known [Ramamoorthi and Hanrahan

2001]. For example, for Blinn-Phong, ρ̂l ∼ e−l2/2s where s is the
Phong exponent. For measured reflectance, ρ̂l is obtained directly
by a spherical harmonic transform of f (ωωω ·n).

Now, we can compute the spherical harmonic coefficients of the
effective BRDF, per equation 11. Finally, to evaluate it, we must
expand in terms of spherical harmonics,

ρeff(ωωω,q) =
l∗

∑
l=0

l

∑
m=−l

ρ̂lγlm(q)Ylm(ωωω), (12)

where ωωω(ωωω i,ωωωo) depends on the BRDF as usual (such as incident
direction ωωω = ωωω i for Lambertian or halfway-vector ωωω = ωωωh for
specular), and l∗ is the maximum l used in the shader (accurate

results generally require l∗ ∼
√

4s where s is the Blinn-Phong ex-
ponent). For shading, assume a single point light source for now.
At each surface location, we know the incident and outgoing direc-
tions, so it is easy to find the half-vector ωωωh or other parameteriza-
tion ωωω , and then use the BRDF formula above for rendering.7

We implement equation 12 in a pixel shader using GLSL (see our
website for example code). The spherical harmonics Ylm are stored
in floating point textures, as are the MIP-mapped NDF coefficients
γlm(q). Real-time frame rates are achieved comfortably for up to 64
spherical harmonic terms (l∗ ≤ 7, corresponding to a Blinn-Phong
exponent s≤ 12 or a Torrance-Sparrow surface roughness σ ≥ 0.2).

5.2 Results

Lambertian Reflection: In the Lambertian case, using only nine
spherical harmonic coefficients (l ≤ 2) suffices [Ramamoorthi and
Hanrahan 2001]. An example is shown in Fig. 3. This figure also
shows the generality of our method in terms of the footprint for
texel q, by using GPU-based anisotropic filtering, instead of MIP-
mapping. Note that we preserve accuracy in far away regions of the
plane, while naïve averaging of the normal produces a nearly flat
surface that is much darker than the actual (as illustrated in Fig. 1e).

Low-Frequency Specularities and Measured Reflectance:
Specular materials with BRDF f (ωωωh ·n) also fit within our frame-
work. The BRDF can also be changed at run-time, since the NDF
is independent of it. We have factored all of the materials in the
database of [Matusik et al. 2003], using the f (θh)g(θd) factoriza-
tion in [Lawrence et al. 2006]. Figure 4 shows two examples of
different materials, which we can switch between at runtime.

Figure 5 shows closeup views from an animation sequence of
cloth draping over a sphere, using the blue fabric material from the

single “geometric normal”) over the region being filtered.
6We use the real form of the spherical harmonics, rather than the com-

plex form, to simplify implementation. Otherwise, γlm(q0) = Y ∗lm(n(q0)).
7Our spherical harmonic algorithm does not explicitly address color tex-

tures; a simple approximation would be to MIP-map them separately, and

then modulate the scalar result in equation 12. A more correct approach to

filtering material properties is discussed for our vMF method in Sec. 7.3.

“Leather” “Violet Rubber”

Figure 4: Our spherical harmonic algorithm for normal mapping, with two

of the materials in the Matusik database—we can support general measured

BRDFs and change reflectance or material in real time. Notice also the

correct filtering of the zoomed out view, shown at the bottom right.

Matusik database. Note the accuracy of our method (compare (b)
with the supersampled “ground truth” in (c)). Also note the smooth
transition between close (unfiltered) and distant (fully filtered) re-
gions in (a) and (b), as well as the filtered zoomed out view in (d).

Discussion and Limitations: Our spherical harmonic method
is a practical approach for low-frequency materials. Unlike pre-
vious techniques, all operations are linear—no nonlinear fitting is
required, and we can handle arbitrary lobe shapes and functions
f (ωωωh · n). Moreover, the BRDF is decoupled from the NDF, en-
abling simultaneous changes of BRDF, lighting and viewpoint.

As with all low-frequency approaches, our spherical harmonic
method requires many terms for high-frequency specularities (a
Blinn-Phong exponent of s = 50 needs about 200 coefficients). The
following sections provide more practical solutions in these cases.

6 Spherically Symmetric Distributions

Spherical harmonics are a suitable basis for representing low-
frequency functions, but are impractical for higher-frequency func-
tions due to the large number of coefficients required. For higher-
frequency NDFs, then, we will instead use radially symmetric ba-
sis functions, which are one-dimensional and therefore much more
compactly represented. By performing an offline optimization, we
approximate the NDF at each texel as the sum of a small number of
such lobes. Our approach is inspired by the symmetric Phong lobes
used in [Fournier 1992], and effectively formalizes that method
within our convolution framework.

6.1 Basic Theoretical Framework for using SRBFs

Consider a single basis function γ(n · µµµ) for the NDF, symmetric
about some central direction µµµ . For now, γ is a general spherical
radial basis function (SRBF). Equation 10 now becomes

ρeff(ωωω ·µµµ;γ(·)) =
∫

S2
f (ωωω ·n)γ(n ·µµµ)dn.

It can be shown (for example, see [Tsai and Shih 2006]) that ρeff

is itself radially symmetric about µµµ (hence the form ρeff(ωωω · µµµ)
above), and its spherical harmonic coefficients are given by

ρeff
l = ρ̂lγl . (13)

Compared to equation 11, this is a simpler 1D convolution, since
all functions are radially symmetric and therefore one-dimensional.
To represent general functions, we can use a small number of repre-
sentative lobes γl, j . Note that the calculation of the lobe directions



(a) Our method, f rame 1 (b) Our method, f rame 2 (c) “Ground truth”, f rame 2 (d) Our method, zoomed out

Figure 5: Stills from a sequence of cloth draping over a sphere, with closeups indicating correct normal filtering using our spherical harmonic algorithm (the

full movie is shown in the video). Note the smooth transition from the center (almost no filtering) to the corners (fully filtered) in (b)—compare also with ground

truth in (c). (d) is a zoomed out view that also filters correctly. We use a blue fabric material from the Matusik database as the BRDF.

is generally a nonlinear process; our particular implementation is
given in Sec. 7.

For rendering, we need to expand the effective BRDF in spheri-
cal harmonics, analogously to equation 12, but now using only the
m = 0 terms. Considering the summation of J lobes, we obtain

ρeff(ωωω,q) =
J

∑
j=1

∞

∑
l=0

ρ̂lγl, j(q)Yl0(ωωω ·µµµ j), (14)

where we again make clear that the NDF γl, j is a function of the
texel q. This equation can be used directly for shading once we find
ωωω for the light source and view direction.

6.2 Discussion: Unifying Framework and Multiscale

Our theoretical framework in Sec. 6.1 unifies many normal filtering
algorithms. Previous lobe- or peak-fitting methods can be seen as
special cases. For instance, [Schilling 1997; Toksvig 2005] effec-
tively use a single lobe (J = 1), while [Fournier 1992] uses multiple
Phong lobes for γ(n · µµµ). These methods have generally adopted
simple heuristics in terms of the BRDF. By developing a general
convolution framework, we show how to separate the NDF from the
BRDF. Since we properly account for general BRDFs ρ̂l , we can
even change BRDFs on the fly—in contrast, even [Tan et al. 2005]
is limited to predetermined Gaussian Torrance-Sparrow BRDFs.

Equation 13 has an interesting multi-scale interpretation, as de-
picted in Fig. 6. At the finest scale (a), the geometry used is the
original highest-resolution normal map. Therefore, the NDF is a
delta distribution at each texel, and the effective BRDF ρeff

l = ρ̂l .
At coarser scales, the shading geometry used is effectively a fil-
tered version of the fine-scale normal map, with the NDF becoming
smoother from (b)-(d). The effective BRDF is now filtered by the
smoothed NDF, essentially representing the complex fine-scale ge-
ometry as a blurring of the BRDF.

Also note the symmetry between the BRDF and NDF in equa-
tion 13. While the common fine-scale interpretation is for a delta
function NDF and the original BRDF, we can also view it as a delta
function BRDF and an NDF given by ρ̂l . These interpretations are
consistent with most microfacet BRDF models, which start by as-
suming a mirror-like BRDF (delta function) and complex NDF (mi-
crofacet distribution), and derive a net glossy BRDF on a smooth
macrosurface (delta function NDF).

6.3 Choice of Radial Basis Function

We now briefly discuss some possible approaches for approximat-
ing and representing our radial basis functions γ(n · µµµ). One pos-
sible method is to use zonal harmonics [Sloan et al. 2005]; how-
ever, our high-frequency NDFs lead to large orders l, making fit-
ting difficult and storage inefficient. An alternative is to use Gaus-
sian RBFs, with parameters chosen using expectation maximization
(EM) [Dempster et al. 1977]. In this case, we simply need to store
3 parameters per SRBF: the amplitude, width and central direction.
Whereas [Tan et al. 2005] pursued this approach using Euclidean

Figure 6: Illustration of multiscale filtering of the BRDF (rendered sphere)

and NDF (inset). (a) shows a closeup of the sphere, where we see the in-

dividual facets and a sharp NDF/effective BRDF. In (b), we have zoomed

out to where the geometry now appears smoother, although roughness is

still clearly visible. The effective BRDF is now blurred, now incorporating

finer-scale geometry. As we zoom further out in (c) and (d), the geometry

appears even smoother, while the BRDF is further filtered.

or planar (and therefore distorted) RBFs, we consider NDFs repre-
sented on their natural spherical domain, which also enables us to
derive a simple convolution formula.

Indeed, spherical Gaussian RBFs, such as in [Tsai and Shih
2006] or Phong lobes, as in [Fournier 1992], are most appropri-
ate. However, the nonlinear minimization required for fitting these
models is inefficient, given that we need to do so at each texel. In-
stead, we use a spherical variant [Banerjee et al. 2005] of EM, with
the von Mises-Fisher8 (vMF) distribution [Fisher 1953]. Spheri-
cal EM and vMFs have previously been used in other areas such
as computer vision [Hara et al. 2005] for approximating Torrance-
Sparrow BRDFs; here we introduce them for the first time in com-
puter graphics, to represent NDFs.

7 Spherical vMF Algorithm

We now describe our algorithms for fitting the NDF, and rendering
with mixtures of vMF lobes. The fitting is done using a technique

8For the unit 3D sphere, this function is also known as the Fisher dis-

tribution. We use the more general term von Mises-Fisher distribution, that

applies to n-dimensional hyperspheres.



known as spherical expectation maximization (EM) [Banerjee et al.
2005]. EM is a common algorithm for fitting in statistics, that finds
“maximum likelihood” estimates of parameters [Dempster et al.
1977]. It is an iterative method, with each iteration consisting of
two steps known as the E-step and the M-step. We use EM as op-
posed to other fitting and minimization techniques because of its
simplicity, efficiency, robustness, and ability to work with sparse
data (the discrete normals in the NDF). We also show how to ex-
tend the basic spherical EM algorithm to handle color and different
materials, create coherent lobes for hardware interpolation, and im-
plement spherical harmonic convolution for rendering. Note that
while the theoretical development of this section is somewhat com-
plicated, the actual implementation is quite simple, and full pseu-
docode is provided in Algorithms 1 and 2.

7.1 Fitting NDF with Mixtures of vMFs

vMF distributions were introduced in statistics to model Gaussian-
like distributions on the unit sphere (or hypersphere). An advantage
of vMFs is that they are well suited to a spherical expectation max-
imization algorithm to estimate their parameters. They are charac-
terized by two parameters θ = {κ,µµµ} corresponding to the inverse
width κ and central direction µµµ . vMFs are normalized to integrate
to 1, as required by a probability distribution, and are given by

γ(n ·µµµ ;θ) =
κ

4π sinh(κ)
eκ(n·µµµ). (15)

A mixture of vMFs (movMF) is defined as an affine combination
of vMF lobes θ j, with amplitude α j, where ∑ j α j = 1,

γ(n;Θ) =
J

∑
j=1

α jγ j(n ·µµµ j;θ j).

Here, θ j = {κ j,µ j} characterizes a single vMF lobe, and Θ stores

the parameters {α j,θ j}J
j=1 of all J vMFs in the movMF.

We use spherical EM (Algorithm 1) to fit a movMF to the nor-
mals covered at each texel in the MIP-map. Line 5 of Algorithm 1
shows the E-step. For all normals ni in a given texel, we compute
the expected likelihood 〈zi j〉 that ni corresponds to lobe j. Lines 9-
14 execute the M-step, which computes maximum likelihood esti-
mates of the parameters. In practice, we seldom need more than
10 iterations, so the full EM algorithm for a 512×512 normal map
converges in under 2 minutes. Note that this is an offline computa-
tion that needs to be done only once per normal map—unlike most
previous work, it is also independent of the BRDF (and lighting).

Note the use of auxiliary variable r j in line 11, which represents
〈x j〉/α j, where 〈x j〉 is the expected value of a random vector gener-
ated according to the scaled vMF distribution γ(x;θ j). The central
normal µµµ j and the inverse width κ j are related to r j by

r = A(κ)µµµ,

where A(κ) = coth(κ)− 1

κ
. (16)

The direction µµµ is found simply by normalizing r (line 13), while
κ is given by A−1(‖r‖); since no closed-form expression exists for

A−1, we use the approximation in [Banerjee et al. 2005] (line 12).

Since EM is an iterative method, good initialization is important.
For normal map filtering, we can proceed from the finest texels to
coarser levels. At the finest level, we have only a single normal at
each texel, so we need only a single lobe and directly set α = 1,
µµµ = n, and κ to a large initial value. At coarser levels, a good
initialization is to choose the furthest-apart J lobes from among the
4J µµµ’s in the four finer-level texels; for this we use Hochbaum-
Shmoys clustering [Hochbaum and Shmoys 1985]. Note that the
actual fitting uses all normals covered by a given texel in the MIP-
map.

Algorithm 1 The Spherical EM algorithm. Inputs are normals ni in
a texel. Outputs are movMF parameters α , κ and µ for each lobe j.

1: repeat
2: {The E-step}
3: for all samples ni do
4: for j = 1 to J do

5: 〈zi j〉 ← γ j(ni;θ j)

∑J
k=1 γk(ni;θk)

{Expected likelihood of ni in lobe j}

6: end for
7: end for
8: {The M-step}
9: for j = 1 to J do

10: α j← ∑N
i=1〈zi j〉

N

11: r j← ∑N
i=1〈zi j〉ni

∑N
i=1〈zi j〉

{Auxiliary variable for κ,µµµ in equation 16}

12: κ j ← 3‖r j‖−‖r j‖3
1−‖r j‖2

13: µµµ j ← normalize(r j)
14: end for
15: until convergence

The accuracy of our method is shown in Fig. 7, where we see that
about four lobes suffices in most cases, with excellent agreement
with six lobes. We also compare with the Gaussian EM fits of [Tan
et al. 2005]. They work on a projection of the hemisphere onto the
plane, and use standard Euclidean (rather than spherical) EM. Be-
cause this planar projection introduces distortions, they have a sig-
nificant loss of accuracy near the boundaries (top row). Our method
(middle row) works on the natural spherical domain (hence the side
view shown), and is able to fit undistorted lobes anywhere on the
sphere. Also note that [Tan et al. 2005] do not have an explicit
convolution formula, while our method can be combined with any
BRDF to produce accurate renderings (bottom row).

7.2 Spherical Harmonic Coefficients for Rendering

For rendering, we will need the spherical harmonic coefficients γl of
a normalized vMF lobe. To the best of our knowledge, these coeffi-
cients are not found in the literature, so we derive them here based
on reasonable approximations. First, for large κ , we can assume
that sinh(κ) ≈ eκ/2. In practice, this approximation is accurate as
long as κ > 2, which is almost always the case. Hence, the vMF in
equation 15 becomes

γ(n ·µµµ;θ)≈ κ

2π
e−κ(1−n·µµµ).

Let β be the angle between n and µµµ . Then, 1−n ·µµµ = 1−cosβ .
For moderate κ , β must be small for the exponential to be nonzero.
In these cases, 1− cosβ ≈ β 2/2, and we get a Gaussian form,

γ(n ·µµµ ;θ)≈ κ

2π
e−

κ
2

β 2

. (17)

In [Ramamoorthi and Hanrahan 2001], the spherical harmonic
coefficients of a Torrance-Sparrow model of a similar form are com-

puted. For notational simplicity, let Λl =
√

4π
2l+1 . Then,

γ =
e−β 2/(4σ 2)

4πσ2
⇒ Λlγl = e−(σ l)2

. (18)

Comparing with equation 17, we obtain σ2 = 1
2κ and

Λlγl = e−σ 2l2

= e−
l2

2κ . (19)

This formula provides us the desired spherical harmonic coeffi-
cients γl for a vMF lobe, in terms of the inverse width κ .

Having obtained γl , we are now ready to proceed to rendering.
Since each vMF lobe is treated independently, and the constants α j

and BRDF coefficients can be multiplied separately, we focus on



Figure 7: Fitting of a spherical NDF from one of the texels in the MIP-map with increasing numbers of vMF lobes (middle row, our method). With 3-4 lobes,

we already get excellent agreement in the rendered image. Each vMF lobe is symmetric about some central direction, and is fit on the natural spherical domain

(which is why we show both a top and side view in the middle row). By contrast, a Gaussian EM fit on a planar projection of the hemisphere (top row, Tan et al.

05), must remain symmetric in the distorted planar space, and has considerable errors at the boundaries of the hemisphere. Because no explicit convolution

formula exists in the planar case, we only show renderings with our method (bottom row), which accurately match a reference with a few vMF lobes.

convolving the normalized BRDF ρ̂l with a single normalized vMF
lobe γl . It is possible to directly use equation 19 for the vMF coef-
ficients and equation 14 for rendering with general BRDFs. How-
ever, a much simpler method is available for the important special
forms of Blinn-Phong and Torrance-Sparrow like BRDFs. First,
consider a normalized Blinn-Phong model of the form,

ρ = f (ωωωh ·n) =
s+1

2π
(ωωωh ·n)s,

where s is the specular exponent or shininess. It can be shown [Ra-
mamoorthi and Hanrahan 2001] that the spherical harmonic coeffi-

cients are ρ̂l ≈ e−l2/2s. Therefore, the result after convolution with
the vMF is still approximately a Blinn-Phong shape:

Λlρ
eff
l = ρ̂lΛlγl = e−l2/2se−l2/2κ = e−l2/2s′ ,

s′ =
κs

κ + s

=⇒ ρeff(ωωωh ·µµµ) =
s′+1

2π
(ωωωh ·µµµ)s′ . (20)

For a Torrance-Sparrow like BRDF of the form of equation 18,
we obtain a similar form for ρeff, only with a new surface roughness
σ ′ in the Torrance-Sparrow model, given by

σ ′ =
√

σ2 +(2κ)−1. (21)

Equations 20 and 21 can easily be implemented in a GPU shader
for rendering (lines 12-13 in Algorithm 2 implement equation 20;
the full Algorithm 2 is explained at the end of Sec. 7.3). The sim-
plicity of these formulae allows us to change BRDF parameters on
the fly, and also to consider very high-frequency BRDFs.

7.3 Extensions

Different Materials/Colors: It is often the case that one would
like to associate additional spatially varying properties (such as col-
ors, material blending weights, etc.) to a normal map. For example,
the normal map in Fig. 2 contains regions of different colors. We
represent these properties in a feature vector yi associated with each
normal ni, and extend the EM algorithm accordingly.

For each vMF lobe, we would now like to find a y j that best
describes the yi of all its underlying texels. In the appendix, we
augment the EM likelihood function with an additional term whose
maximization yields an extra line in the M-step,

y j←
∑N

i=1〈zi j〉yi

∑N
i=1〈zi j〉

(22)

Note that, since y j does not affect the E-step, the preceding can be
run as a postprocess to the vanilla EM algorithm.

This extension enables correct filtering of spatially-varying ma-
terials (as in Fig. 2). Note however that only linear blending of basis
BRDFs (and not for example, freely varying specular exponents) is
allowed. Moreover, the result is a “best-fit” approximation, since
normals and colors are assumed decorrelated.

Coherent Lobes for Hardware Interpolation: In our case, ac-
curate rendering involves shading the 8 neighboring MIP-map tex-
els (using the BRDF and respective movMFs), and then trilinearly
interpolating them with appropriate weights. Greater efficiency
(usually a 2× to 4× speedup) is obtained if we instead follow the
classic hardware approach of first trilinearly interpolating the pa-
rameters Θ of the movMFs. We can then simply run our GPU pixel
shader once on the interpolated parameters Θ̃. For accurate inter-
polation, this requires us to construct the movMFs in the MIP-map
such that lobe j of each texel be similarly aligned to the jth lobe
stored at each neighboring texel.

For alignment, we introduce a new term in our EM likelihood
function, and maximize (details are provided in the appendix). The
final result replaces line 13 in the M-step of Algorithm 1 with

µµµ j← normalize

(

r j +C
K

∑
k=1

α jkµµµ jk

)

. (23)

C is a parameter that controls the strength of alignment (intuitively,
it seeks to move µµµ j closer to the central directions µµµ jk of the K
neighbors, favoring neighbors with larger amplitudes α jk.).

As in the Gaussian mixture model method of [Tan et al. 2005],
we build our aligned movMFs starting at the topmost (that is, most
filtered) MIP-map level and proceed downward, following scan-



Algorithm 2 Pseudocode for the vMF GLSL fragment shader

1: {Setup: calculate half angle ωωωh and incident angle ωωω i}
2: ρ ← 0
3: for j = 1 to J do {Add up contributions for all J lobes}
4: {Look up vMF parameters stored in 2D texture map}
5: θ ← texture2D(vMFTexture[ j],s, t)
6: αy← texture2D(colorTexture[ j],s, t)
7: α ← θ .x
8: r← θ .yzw

α {θ .yzw stores αr}

9: κ ← 3‖r‖−‖r‖3

1−‖r‖2

10: µµµ ← normalize(r)
11: {Calculate shading per equation 20}
12: s′← κs

κ+s {s is Blinn-Phong exponent}

13: Bs← s′+1
2π (ωωωh ·µµµ)s′ {Equation 20}

14: ρ ← ρ +αy(KsBs +Kd)(ωωω i ·µµµ)
15: end for
16: gl_FragColor← L×ρ {L is light intensity}

line ordering within each individual level. In the interest of per-
formance, we use only previously visited texels as neighbors.

We next consider trilinear interpolation of the variables. Unfor-
tunately, the customary vMF parameters {κ,µµµ} control non-linear
aspects of the vMF lobe and therefore cannot be linearly interpo-
lated. To solve this problem, we recall from Sec. 7.1 that µµµ and
κ can be inferred from the scaled Euclidean mean r = 〈x〉/α of a
given vMF distribution. By linearity of expectation, we can inter-
polate αr = 〈x〉 linearly, as well as the amplitude α , giving

α̃ j = T (α j) r̃ j = T (α jr j)/T (α j),

where T (·) denotes trilinear hardware interpolation. Finally, κ̃ j and
µ̃µµ j can easily be found in-shader (lines 9 and 10 of Algorithm 2).

Algorithm 2 shows pseudocode for our GLSL fragment shader.
Lines 5-10 look up α and αr, and then compute κ and µ . For im-
plementation, we store the jth lobe of each movMF in a standard
RGBA MIP-map (vMFTexture in Algorithm 2) using one channel
for α and one channel each for the three components of αr. Nor-
malized color/material properties αy are stored in corresponding
textures (colorTexture in line 6 of Algorithm 2). Line 5 reads the
parameters θ for a single vMF lobe as an RGBA value. Lines 12-13
compute the specular shading (assuming a Blinn-Phong model with
exponent s) using equation 20. The Torrance-Sparrow model can
be handled similarly, using equation 21. Line 14 computes the final
shading contribution by including the color parameters y, and scal-
ing by the lobe amplitude α , specular coefficient Ks, and the cosine
of the incident angle, while adding the Lambertian component Kd .
Note that this shader can be used equally with aligned or unaligned
vMF lobes; the only difference is whether we manually compute
and combine results from all 8 neighboring texels (unaligned) or
use hardware interpolate to first obtain lobe parameters (aligned).

7.4 Results

Figure 2 shows the accuracy of our method, and makes comparisons
to ground truth and alternative techniques. It also shows our ability
to use different materials for different parts of the normal map.

Our formulation allows for general and even dynamically chang-
ing BRDFs. Figure 8 shows a complex scene, where the reflectance
changes over time, decreasing in shininess (intended to simulate
drying using the model in [Sun et al. 2007]). Although not shown,
the lighting and view can also vary—the bottom row shows close-
ups with different illumination. Note the correct filtering for di-
nosaurs in the background, and for further regions along the neck
and body of the foreground dinosaur. Even where individual bumps
are not visible, the overall change in appearance as the reflectance
changes is clear. This complex scene has 14,898 triangles for the
dinosaurs, 139,392 triangles for the terrain and 6 different textures

Figure 8: Our framework can handle complex scenes, allowing for general

reflectance, which can even be changed at run-time. Here, the BRDF be-

comes less shiny over time. Note the correct filtering and overall changes in

appearance for further regions of the foreground dinosaur, and those in the

background. The bottom row shows closeups (when the material is shiny)

with a different lighting condition. This example also shows that we can

combine filtered normal maps with standard color texture mapping.

and normal maps for the dinosaur skins. It renders at 75 frames
per second at a resolution of 640x480 on an nVIDIA 8800 graphics
card. In this example, we used six vMF lobes, with both diffuse and
specular shading implemented as a simple fragment shader. Please
see our website for videos of all of our examples.

8 Complex Lighting

Our vMF-based normal map filtering technique can also be ex-
tended to complex environment map lighting.9 Equation 2,
rephrased below, is a convolution (mathematically similar to equa-

9The direct spherical harmonic method in Sec. 5 is more difficult to ap-

ply, since general spherical harmonics cannot be rotated as easily as radially

symmetric functions between local and global frames.



Figure 9: Armadillo model with 350,000 polygons rendered interactively

with normal maps in dynamic environment lighting. We use 6 vMF lobes,

and spherical harmonics up to order 8 for the specular component.

tion 10), that becomes a simple dot product in spherical harmonics,

B(µµµ) =
∫

S2
L(ωωω i)ρ

eff(ωωω ·µµµ)dωωω i, (24)

where the effective BRDF ρeff is the convolution of the vMF lobe
with the BRDF, and µµµ is the central direction of the vMF lobe
(effective “normal”) as usual. For the diffuse or Lambertian com-
ponent of the BRDF ωωω(ωωω i,ωωωo) = ωωω i, and the spherical harmonic
coefficients can simply be multiplied according to the convolution
formula, Blm = Λlρ

eff
l Llm, so that

B =
l∗

∑
l=0

l

∑
m=−l

Λlρ
eff
l LlmYlm(µµµ). (25)

However, the specular component of the BRDF is expressed in
terms of ωωω(ωωω i,ωωωo) = ωωωh, and we need to change the variable of
integration in equation 24 to ωωωh (which leads to a factor 4(ωωω i ·ωωωh)),

B(µµµ) =
∫

S2
[L(ωωω i(ωωωh,ωωωo)) ·4(ωωω i ·ωωωh)]ρ

eff(ωωωh ·µµµ)dωωωh

=
∫

S2
L′(ωωωh)ρ

eff(ωωωh ·µµµ)dωωωh.

Thus, we simply need to consider a new reparameterized lighting
L′(ωωωh) = L(ωωω i(ωωωh,ωωωo)) ·4(ωωω i ·ωωωh). As the half angle depends on
both viewing and lighting angles (ωωωo and ωωω i), the above integration
implicitly limits us to a fixed view with respect to the lighting. To
interactively rotate the lighting, we precompute a sparse set (typi-
cally, about 16×16) of rotated lighting coefficients and interpolate
the shading.

Finally, in analogy with equation 25,

B =
l∗

∑
l=0

l

∑
m=−l

Λlρ
eff
l L′lmYlm(µµµ). (26)

Figure 9 shows an image of an armadillo, with approximately
350,000 polygons and a normal map, rendered at real-time rates in
dynamic environment lighting. We are able to render interactively
with up to 6 vMF lobes and l∗ = 8 in equation 26.

9 Conclusions and Future Work

We have developed a comprehensive theoretical framework for nor-
mal map filtering with many common types of reflectance models.
Our method is based on a new analytic formulation of normal map
filtering as a convolution of the NDF and BRDF. This leads to novel
practical algorithms using spherical harmonics and spherical vMFs.
The algorithms are simple enough to be implemented as GPU pixel
shaders, enabling real-time rendering on graphics hardware.

We believe this paper also makes broader contributions to many
areas of rendering, and beyond. The convolution result unifies a
geometric problem (normal mapping) with understanding of light-
ing and BRDF interaction in appearance. Moreover, we introduce
spherical EM and vMF distributions into computer graphics, where
they will likely find many other applications.

In [Kajiya 1985], a hierarchy of level-of-details was spelled out
including explicit 3D geometry, normal or bump maps, and BRDF
or reflectance. This paper has addressed filtering of normal maps
and to some extent, the transition to a BRDF at far distances. A
critical direction for future work is filtering of geometry or dis-
placement maps, where effects like local occlusions, shadowing,
masking and interreflections are important.

In summary, although normal mapping is an old technique, cor-
rect filtering has been challenging because shading is nonlinear in
the surface normal. In this paper, we have shown how frequency-
domain analysis reveals important new insights, and taken a signif-
icant step towards addressing this long-standing problem.
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Appendix: Spherical EM Extensions

In this appendix, we briefly describe the likelihood function for
spherical EM, and how we augment it for colors/materials and co-
herent lobes. The net likelihood function is a product of 3 terms,

P(X ,Z|Θ)P(Y,Z|Θ)P(Θ|N(Θ)),

where X are the samples (in this case input normals), Y are the col-
ors/materials, Z are the hidden variables (in this case which vMF
lobe a sample X is drawn from), Θ are parameters for all vMF lobes
and N(Θ) are parameters for neighbors. The first factor corresponds
to standard spherical EM, the second factor corresponds to the col-
ors/materials Y ,

P(Y,Z|Θ) =
N

∏
i=1

e−‖yzi
−yi‖2

,

and the final factor to coherent lobes for interpolation,

P(N(Θ)|Θ) =
J

∏
j=1

K

∏
k=1

eC′α jk(µµµ j ·µµµ jk).

We use C′ above as a constant weighting factor (it will be related to
the weight C used in the main text as discussed below).

In EM, we seek to maximize the log likelihood

ln [P(X ,Z|Θ)P(Y,Z|Θ)P(Θ|N(Θ))] =

N

∑
i=1

lnγ(ni|θzi
)+

N

∑
i=1

−‖yi−yzi
‖2 +

J

∑
j=1

K

∑
k=1

C′α jk(µµµ j ·µµµ jk) ,

which, considering all J lobes and hidden variables 〈zi j〉, becomes

J

∑
j=1

[

N

∑
i=1

lnγ(ni|θ j)〈zi j〉+
N

∑
i=1

−‖yi−yzi
‖2〈zi j〉+

K

∑
k=1

C′α jk(µµµ j ·µµµ jk)

]

.

Maximizing with respect to y j, we directly obtain equation 22. The
maximization with respect to µµµ j is more complex,

µµµ j = normalize

(

κ j

N

∑
i=1

ni〈zi j〉+C′
K

∑
k=1

α jkµµµ jk

)

.

Finally, redefining C = C′/κ j , we obtain equation 23.


