
Nested Cages

Leonardo Sacht1 Etienne Vouga2 Alec Jacobson3

1Universidade Federal de Santa Catarina 2University of Texas at Austin 3Columbia University

Figure 1: Given an input shape (yellow on bottom right), our method constructs nested cages: each subsequent mesh is coarser than the last
and fully encloses it without intersections. A slice through all layers (left), shows a tightly encaged Bunny.

Abstract
Many tasks in geometry processing and physical simulation bene-
fit from multiresolution hierarchies. One important characteristic
across a variety of applications is that coarser layers strictly encage
finer layers, nesting one another. Existing techniques such as surface
mesh decimation, voxelization, or contouring distance level sets do
not provide sufficient control over the quality of the output surfaces
while maintaining strict nesting. We propose a solution that enables
use of application-specific decimation and quality metrics. The
method constructs each next-coarsest level of the hierarchy, using a
sequence of decimation, flow, and contact-aware optimization steps.
From coarse to fine, each layer then fully encages the next while
retaining a snug fit. The method is applicable to a wide variety of
shapes of complex geometry and topology. We demonstrate the
effectiveness of our nested cages not only for multigrid solvers, but
also for conservative collision detection, domain discretization for
elastic simulation, and cage-based geometric modeling.

CR Category: I.3.0 [Computer Graphics]

Keywords: Mesh decimation, geometric flow, multigrid

1 Introduction
As the complexity and size of computational objects continue to
grow, acceleration algorithms become increasingly important. One
powerful technique is to decompose a high-resolution mesh into a
hierarchy of increasingly coarse approximations or cages (see Fig-
ure 1). For example, multigrid FEM techniques efficiently solve

Eulerian PDEs on very fine meshes by moving up and down the
hierarchy; low frequency residual error disappears quickly on the
coarsest levels while fine levels smooth away high frequency er-
ror. Coarse enclosing cages also find use in physical simulation,
where deformations of the cage are interpolated onto embedded
high-resolution geometries; in interactive animation, where artists
specify large-scale deformations by adjusting the low-dimensional
cage; and in collision detection, where conservative culling reduces
computation time. For all these applications, the key to high perfor-
mance is the ability to generate a quality multiresolution hierarchy.

The straightforward approach to building a hierarchy around an ob-
ject F is to use an application-specific decimation algorithm to build
a coarse approximation C to F ; C itself can be further coarsened
to build the next level of the hierarchy, etc. (see Figure 2). Unfortu-
nately C will typically intersect F , which is often undesirable: most
algorithms for transferring the pose of a deformation cage to a de-
tailed object only guarantee small distortion of the object and lack of
element-inversion artifacts if the object is entirely contained within
the cage [Joshi et al. 2007; Ben-Chen et al. 2009b]; strict nesting
is essential for accelerating collision detection conservatively; and
while nesting is not a necessary condition for multigrid convergence
[Chan et al. 1996], the ability to use simple linear interpolation
for prolongation is known to be more robust, more efficient, and
easier to implement [Chan & Wan 2000; Dickopf 2010]. This is
particularly important for enforcing Neumann boundary conditions,
common to simulation and geometry processing [Chan et al. 1999].

Figure 2: 25 increasingly coarse cages nested around a Horse. Our
tight nesting property is robust even for a large number of cages.

Squiggly torus Császár torus Invalid cage

Figure 3: Some coarse-fine mesh combinations are impossible. The
Császár torus is too coarse to nested around the Squiggly torus’s
complex handle. While embedding the Squiggly torus inside the
Császár torus is possible (right), this is not a validly nesting cage.

For these reasons, one would like a cage C that is nested around F :
that surrounds F without intersecting it. More formally, given two
watertight (connected, closed, self-intersection-free and oriented)
meshes C and F (later we generalize our method to build cages
for polygon soups), we say that C nests F if: (i) F is contained in
the interior of C, and (ii) for every loop on C, there is a homotopy
from that loop to a loop on F that remains at all times inside C’s
enclosed volume. In other words, for every handle of C there is a
corresponding one on F , but not necessarily the other way around.
This definition extends naturally to when F is a polyhedron with
voids or multiple connected components.

The inset figure shows examples of cages
that do (top) and do not (bottom) nest
a 2D example (black outline). Given
a pC that does not nest F , we look for
the best perturbation C of pC that does
nest F ; where “best” is measured by
an application-dependent fitness energy
EpF, pC,Cq, penalizing, for example, to-
tal volume for tight fitting cages for effi-
cient multigrid; distortion for simulation
or collisions; or violations of symmetry
and quad-planarity for interactive defor-
mation cages. Finding C entails solving
the nested cage problem:

Given an embedded polyhedron F , a polyhedron pC, and a fitness
functionE, the goal is to minimizeEpF, pC,Cq over all embeddings
C of pC that nest F .

This problem in its full generality is intractable. For single polygons
in 2D, and simply-connected meshes in 3D, at least one nested
embedding C always exists, but once F is allowed to have nontrivial
topology, counterexamples exist where it is impossible to embed
pC in a way that nests F (see Figure 3). The decision problem of
whether any nesting of pC around F exists can be shown to be NP-
complete [Vouga et al. 2015]. Fortunately, in practice pC and F are
not completely arbitrary; any reasonable decimation scheme will
keep pC morphologically similar, and roughly aligned, to F , and
these favorable initial conditions can be leveraged by heuristics.

Contribution. We present a practical algorithm for solving the
nested cage problem on meshes typically used in applications such
as physical simulation and geometric modeling. Our method remains
completely agnostic to the decimation scheme used to create pC and
fitness function E. Briefly, the method first flows F inside pC along
pC’s signed distance field; once inside, we rewind the flow while
deforming pC to minimizeE; contact forces guarantee that the coarse
cage always encloses F at each reverse-flow time step. This process
can be generalized to building an entire multiresolution hierarchy
around F . Although our method is not guaranteed to always find

a solution C, especially for very coarse or nearly-self-intersecting
F (see Section 5 for discussion of failure cases), we tested our
algorithm on an extensive zoo of example meshes (see Section 4).

2 Related methods and special cases

Our method solves the nested cage problem for the large variety of
input meshes shown in Section 4 while interoperating with arbitrary
problem-specific decimation algorithms and fitness functions. Many
related approaches have been proposed that work for special cases,
or relax requirements imposed above.

If the algorithm is free to generate the coarse cage pC, rather than ac-
cepting it as input from the user, the problem becomes substantially
easier, and has been extensively studied:

Bounding polytopes. Most naively, one can simply take pC to be
a canonical bounding polytope (e.g. box, KDOP, convex hull). An
extension would be to “shrink-wrap” the bounding polytope around
pF to minimize E. This idea has been explored before [Peterhans
2012; Wang et al. 2013], but no full solution has been developed.
This is presumably because—while this approach works well for
convex pF—it will not give a good fit for meshes with nooks or
concavities. It is also not clear how to find a bounding polytope for
meshes of nontrivial topology. Another approach might be to stitch
overlapping convex volumes [Xian et al. 2012] using mesh boolean
operations, but cage topology and quality become difficult to control
without sacrificing control of resolution.

Offset surfaces for simulation meshes. Representing pF as an
implicit surface and contouring level sets is a popular method of
creating offset surfaces that nest pF , particularly in the context of
simulations that use a “simulation mesh” as a proxy for very fine
rendered geometry [Campen & Kobbelt 2010]. The challenge is
not just defining a scalar function with an isosurface enveloping
the object, but also contouring it with a piecewise-linear triangle
mesh without (i) cutting corners too harshly and intersecting pF or
(ii) resorting to fine resolution, nullifying any performance gains
of using the cage. Xu et al [2014] define a robust signed distance
field, but pass the field to an off-the-shelf contour mesher without
any attempt to guarantee non-intersection with the input. Similarly,
Shen at al [2004] iteratively refine a moving least squares iso-surface
to enclose an existing model tightly via a global scaling parameter.

Our nested layers

Original

Tightest fitting distance field contours

Figure 4: Contouring requires aggressive spacing between distance-
field isolevels to produce valid nesting. Semantically distant parts
fuse together, destroying shape-awareness, visualized by a pseudo-
coloring of a Poisson solution computed on each level.

Input [Ben-Chen et al. 09] Our tight cages[Sander et al. 00]

Figure 5: Methods like [Ben-Chen et al. 2009a] use coarse cages
as computational workhorses to reduce complexity. Their iterative
offset heuristic does not allow control of the cage topology. Mean-
while, [Sander et al. 2000] attempt to maintain nestedness during
greedy decimation with local constraints. Cages are loosely-fitting,
but more importantly self-intersections (orange) and intersections
with the input model (yellow) eventually accumulate.

Some applications, such as collision detection, can make use of
implicit representations without intermediary meshes, but when a
mesh is needed it is not enough that the continuous isosurface does
not intersect the input model since generic contouring will invalidate
this. A large enough iso-value or small-enough resolution tolerance
must always be chosen to ensure non-intersection after contouring.
For large iso-values, topological control is lost and close features
are quickly merged (see Figure 4), violating the nestedness of the
cage. A similar approach [Ben-Chen et al. 2009a] has been used
for building deformation cages around input shapes, where an offset
surface is created via Poisson surface reconstruction [Kazhdan et al.
2006] (we compare against this approach in Figure 5). While the
tightness of these cages could be controlled with post-hoc shrinking
of the cage, the method can introduce topology changes that are not
easily remedied. For meshes with well defined feature curves, it
may be possible to merge coarse on-surface triangulations of patches
[Xian et al. 2013], though strict nesting is not sought or guaranteed.

Progressive decimation of pF using edge collapses, taking care
to place new vertices on the exterior of the current volume by solving
a system of inequality constraints [Sander et al. 2000], has found
some success in real-time rendering and collision detection [Platis
& Theoharis 2003]. Although the vertices of these “progressive
hulls” are guaranteed to lie outside of pF , edges and faces of pC

might still intersect pF (and pC might globally self-intersect); see
Figure 5. We tested this method on the entire “zoo” of examples
shown in Figure 11 and the supplementary material, and of the 26
examples there, in only one case was the entire hierarchy free of
such intersections. We also observe that for coarse cages these hulls
tend to be more loose-fitting than cages produced by methods that
optimize the cage shape globally (see Figure 5). Self-intersections
resulting from edge collapses can be corrected with post-hoc mesh
repair [Deng et al. 2011], but this technique relies on temperamental
3D tetrahedral meshing in tight regions near overlaps and does not
consider face- or edge-intersections with the input model.

Voxelization of pF will create a nested cage, provided that the
resolution is chosen fine enough to avoid topological artifacts (as in
the case of contouring implicit functions). Naive voxelization yields
dense, inefficient cages [Mehra et al. 2009], possibly improved by
progressive decimation [Xian et al. 2009] or mesh booleans [Xian
et al. 2015] though also inheriting their respective drawbacks.

Mesh untangling. All of the above methods require relinquishing
some degree of control over decimation to the nested cage algorithm;

Input Shrinking fine mesh: overlaps resolved

Expanding coarse mesh: overlaps persist forever

10 iters. 40 iters. 70 iters. 100 iters.

...

10 iters. 20 iters. 30 iters. 40 iters.

Figure 6: Shrinking the fine mesh inside the coarse quickly removes
overlaps (yellow). Expanding the coarse mesh requires self-contact
handling (e.g. between arms and body), blocking progress.

algorithms that accept an arbitrary pre-decimated cage pC are less
well-developed. History-free cloth collision response methods (e.g.
[Baraff et al. 2003; Volino & Magnenat-Thalmann 2006; Wicker
et al. 2006; Ye & Zhao 2012]) could be used to separate pC from pF
if intersections are not too severe; otherwise such methods quickly
get stuck in local minima.

Outward Flow. Before settling on an inward flow of pF , we ex-
perimented with an outward flow of pC away from pF , along its
signed distance field. For convex meshes this works well. However,
extensive testing revealed that this approach suffers from several
difficulties on more complex geometries: 1) Flowing vertices along
the signed distance field of pF is not guaranteed to resolve all face-
face collisions between the fine and coarse meshes; the flow is most
robust when the flowing elements are small and the signed distance
field does not have too many fine features. Flowing the coarse mesh
outward is more fragile than flowing the fine mesh in as both of
these factors are less favorable; 2) when flowing the fine mesh inside
the coarse mesh we do not need to handle self-collisions within the
fine mesh, whereas if inflating the coarse mesh, we do. Adding
collision constraints aggravates the fragility of the outward flow; the
constraints can prevent a flowing face from ever leaving the volume
of the fine mesh (see Figure 6).

Multigrid. Methods based on regular grids or lattices naturally
support multiresolution numerical methods. McAdams et al. [2011]
successfully employ multigrid on voxelized shapes to animate volu-
metric elastic characters. The main downside of grid-based methods
is their traditionally poor handling of irregular boundaries. Special-
ized multigrid methods using adaptive octrees to handle complex
boundaries for fractures [Dick et al. 2011] and fluids [Ferstl et al.
2014] exist, but are not immune to troubles of regular grids: bound-
aries must be represented at fine grid levels to avoid aliasing and
retain the input’s topology. To avoid fusing together geodesically
distant parts, the shape must be modeled in an accommodating pose.
If remodeling is not possible, the grid size must be chosen smaller
than not just the smallest features but also the smallest void between
features. One solution is to replicate cells in close areas and man-

age adjacencies when two or more replicated patches merge and
split [Teran et al. 2005; Nesme et al. 2009; Sýkora et al. 2009].
Cell replication is not only difficult to realize robustly, but also rid-
dles multigrid numerical methods with expensive, SIMD-breaking
boundary handling code, detracting from the performance gains of
memory-efficient regular grids [Demmel 2004].

Multigrid on unstructured grids or tetrahedral meshes is more tem-
peramental, and constructing each level requires care [Fish et al.
1995]. Geometric multigrid schemes typically coarsen an input
tetrahedral mesh by removing vertices, attempting to connect those
remaining in a reasonable way [Guillard 1993; Adams & Demmel
1999]. Special care is required to maintain any semblance of the
original boundary [Brune et al. 2011], essentially devolving into con-
strained Delaunay tessellation with no guarantee that the coarsening
will not eat away large portions of the domain. In many scenarios,
the boundary of the domain is assumed to be only as irregular as the
coarsest layer, simplifying level design [Feng et al. 1997].

A second group of methods generates a multiresolution hierarchy
using decimation. Unmodified mesh decimations [Garland & Heck-
bert 1997] have been used for adaptive simulations for visco-elastic
solids [Debunne et al. 2001]. Such non-nested cages require ex-
trapolation or one-to-many mappings to prolongate solutions on the
coarse levels to finer levels. We show cases where this fails to con-
verge for common linear systems on irregular domains, and we show
better convergence for strictly nesting cages where prolongation is a
purely linear interpolation.

Algebraic alternatives also exist [Ruge & Stüben 1987], but are rec-
ommended only when geometric information is not available [Fal-
gout 2006]. Recently, [Krishnan et al. 2013] proposed a multigrid
preconditioner for Laplace-based systems on images and surfaces.
This method combines the elegance of algebraic techniques with
some geometric information derived from the characteristics of the
Laplacian matrix, but is limited to special problems.

Simplification. The majority of surface mesh decimation tech-
niques aim to preserve outward appearance with lower and lower
mesh resolution [Hoppe 1996; Garland & Heckbert 1997; Melax
1998]. Along these lines, [Gumhold et al. 2003] output decimations
free of self-intersections, ensuring for example that a character’s
clothing stays outside its body. In contrast, our method assumes
self-intersection free input decimations and transforms them into
nested layers, with no intersections across hierarchy layers. Recent
work has considered more elaborate decimation goals than appear-
ance such as preserving haptic sensations [Otaduy & Lin 2003b].
Otdauy and Lin [2003a] also demonstrate how to combine mesh
decimations and bounding volume hierarchies to achieve faster colli-
sion detection without affecting visual appearance. Our nested cages
are hierarchical decimations strictly containing the input shape, en-
suring strictly conservative collision detection. Rather than work
against the sophistication of existing shape decimation techniques,
we complement them. Our method takes arbitrary decimations as
input and nests them as a post process.

Interference-aware processing. We credit [Harmon et al. 2011]
for their ground-breaking introduction of contact handling to main-
stream geometry processing. Their work inspires us to consider the
contact and collisions tool-set familiar to physically based simula-
tion in our geometry processing task. In this task, our novel flow is
essential for finding a feasible starting state.

3 Method

The input to our method is a sequence of k ` 1 potentially over-
lapping triangle meshes xM0, xM1, . . . , xMk. Each mesh xMi has a

Input: overlapping decimations Output: nested cages

M0M1M2M3M4 M0 M1 M2 M3 M4

Figure 7: We deform a set of input overlapping decimations so that
each contains all finer layers (2D illustration).

corresponding list of initial vertex positions xMi P Rniˆ3 and list of
triangle indices Ti P t1, . . . , niu

miˆ3. In a typical scenario, xM0 is
a high-resolution original mesh and xM1, . . . , xMk are decimations
of decreasing resolution; the method of decimation is unimportant so
long as the input meshes all approximate xM0 and are all watertight.
Depending on the application, troublesome input meshes can be
cleaned as a pre-process using available tools (e.g. [Attene 2010;
Jacobson et al. 2013]).

The output of our method is a new sequence of k lists of vertex posi-
tions M1, . . . ,Mk such that for i “ 1 . . . k each Mi “ pMi,Tiq

is a deformed mesh whose surface nests Mi´1 (with M0 “ xM0.)
Recursively this ensures that each Mi lies strictly outside Mj for
j “ i´ 1, . . . , 0. We call such meshes nested (see Figure 7).

We preserve the original combinatorics of xM0, xM1, . . . , xMk (Ti

are unchanged), respecting the output of whichever problem-specific
decimation routine produced them. The nesting property of the
output meshes is easily verified by testing that at least one vertex
(per connected component in the general case) of Mi´1 lies inside
Mi (e.g. has positive winding number) and that no intersections
exist between Mi´1 and Mi.

We now describe a general method that produces this nesting prop-
erty while also optimizing any problem-specific energy E (see
Algorithm 1, with additional subroutines in Appendix B).

Algorithm 1: nested_cages(M0, L,Dec,Energy) ÑM1, . . . ,Mk

Inputs:
M0 Initial high-res mesh, vertices M0, faces T0

L k-long list of desired mesh resolutions
Dec Function object for black-box decimator
Energy Function object for re-inflation energy and gradient

Outputs:
M1,...,Mk k-long list of nested cages

begin
for i P t1, . . . , ku do

/* Decimate from previous layer or input mesh */
xMi Ð Dec

´

Mi´1, xMi´1, Lpiq
¯

F ÐMi´1, pC Ð xMi // Rename coarse and fine meshes
H Ð Shrinkp pC,F q // history of shrinking fine mesh
/* Reverse history, then Mi will nest Mi´1 */
Mi Ð ReInflatepH, pC,Energyq

Our method operates recursively on two meshes of the sequence at a
time: we compute Mi by considering only its original embedding

 Re-inflate F to F
pushing C to C

Flow F to F
until inside C

 Overlapping pair
and CF C

F F̄

C

FF̄

C

Figure 8: Our pipeline has two stages for each pair of neighboring
coarse C and fine F layers.

xMi and the solution to the previous level Mi´1. In this way we
compute M1,M2, . . . ,Mk in order, ensuring nesting between each
subsequent pair. Breaking the problem of nesting many cages into
individual subproblems is key to our success as it greatly reduces
the complexity of the collision and optimization subproblems.

To simplify notation, from now on, we only consider computing
the new positions of a coarse mesh C from its original mesh pC and
the next finer output mesh F . Computing new coarse mesh vertex
positions C involves two phases: flow of the fine mesh until it is
fully inside the coarse mesh, and re-inflation of the fine mesh to its
original embedding while pushing the coarse mesh out of the way
(see Figure 8). During the flow, we do not care about the fine mesh’s
aesthetic surface quality or even whether it self-intersects because
we will re-inflate it back to its original positions in the next step.

3.1 Flow

The first step of our pipeline is to move vertices sF of the fine mesh
along a flow that minimizes total signed distance to pC integrated
over all deforming surface points sp P sF (see Figure 9, top left):

ΦpsFq “

ż

F

spspqdpspq dA, (1)

where dpspq is the unsigned distance from sp to the coarse mesh
and spspq modulates by the appropriate sign (negative inside). We
minimize Φ by taking small steps opposite its gradient direction for
each vertex position sf in sFptq as a function of a fictitious time t:

F̄

C

invalid
Bsf

Bt
“ ´∇

sfΦpsFq (2)

By following this gradient, we flow the
fine mesh vertices sFptq until all of sF
(not just vertices, see inset) is fully inside
the coarse mesh (determined by check-
ing for intersections at each time step).

While Φ is similar to data terms found in iterative closest point
(ICP) methods for non-rigid registration [Chang et al. 2010], the
sign modulator spspq is an important difference. Minimizing un-
signed (positive) distances would flow points toward the surface of
the coarse mesh. Instead, by allowing and encouraging negative
distances, points flow to the medial axis within the coarse mesh.

Since Φ is nonlinear and intractable to compute exactly, we approxi-
mate the gradient using numerical quadrature: For each triangle Ti

incident on vertices a, b, c, we sample s and d at quadrature points

spj with corresponding weights wj , j “ 1, . . . , h:

ΦpsFq “

mF
ÿ

i“1

ż

spPTi

spspqdpspq dA «

mF
ÿ

i“1

h
ÿ

j“1

wjspspjqdpspjq,

spj “ λa
sfa ` λb

sfb ` λc
sfc,

where λa, λb, λc are the barycentric coordinates of spj in Ti andmF

is the number of fine mesh triangles. We use second-order quadrature
rules and see diminishing returns with more exact schemes.

The difficulty of differentiating the unsigned distance function dpspjq

remains. To tackle this, we adapt the successful ICP approach of non-
rigid registration techniques. Namely, we assume that the closest
point pq˚j to each spj and sign spspjq “ s˚j remain constant during
each small time step (one could consider modifications common to
ICP, e.g. point-to-plane distance, but our goal is not to align the two
surfaces, rather to flow one inside the other).

We may now push the gradient through the summation to the terms
involving each vertex position sf :

Bsf

Bt
« ´

ÿ

iPNpsfq

h
ÿ

j“1

wjs
˚
j ∇sf }spj ´ pq˚j }, (3)

where Npsfq gathers all triangles incident on vertex sf . Applying the
chain rule, and handling the special case where spj « pq˚j (i.e. when
our assumption that spspjq “ s˚j is invalid), we arrive at

Bsf

Bt
« ´

ÿ

iPNpsfq

h
ÿ

j“1

wjs
˚
j p∇sf spjq

T∇
spj }spj ´ pq˚j } (4)

“ ´
ÿ

iPNpsfq

h
ÿ

j“1

wjλfgi, (5)

where gi “

#

s˚j
ppi´q˚

i

}ppi´q˚
i }

if }ppi ´ q˚i } ą ε,

npq˚i q otherwise,
(6)

where λf is the barycentric coordinate of spi corresponding to sf and
npq˚i q is the unit normal at q˚i . For q˚i near edges and vertices, we
use an angle-weighted normal [Baerentzen & Aanaes 2005].

We use a step size ∆t « 10´3 (after scaling inputs to unit diameter).
After each step we update signs s˚i and closest points q˚i for all
quadrature points. We terminate if all signs are negative and no
intersection exists between sF and pC.

inputs failed flow

Our signed distance flow is not guaran-
teed to always succeed. Indeed, in diffi-
cult cases (e.g. very coarse meshes with
very thin features or highly concave ver-
tices) the flow converges without mov-
ing the fine mesh fully inside the coarse
mesh (see inset). It is possible for all
quadrature points on the fine mesh to
flow toward the medial axis of the coarse mesh, while stretching
triangles through corners leaving intersections (yellow cage facets).

In particularly difficult cases, we propose an additional step: we
reverse the picture and expand the coarse mesh, flowing it away from
the current fine mesh along its signed distance field. Contact forces
must also be included in this case to ensure the coarse mesh does
not flow into a configuration where it self-intersects. Fortunately, in
these hard cases only a few expansion steps are typically necessary.

We experimented with an alternative formulation where we only
consider expansion of the coarse mesh, but this proved problematic.

conformalized mean curvature flow

our signed distance flow successful re-inflation

failed re-inflation

Figure 9: Our method directly flows the fine mesh (blue) inside the coarse mesh (wireframe). In contrast, curvature flow [Kazhdan et al. 2012]
shrinks the fine mesh, but strays outside the coarse mesh. During re-inflation this causes unnecessary collisions, leading to failure.

Self-contacts may obstruct the flow early on, disrupting further
progress (see Figure 6). In addition, the signed distance field outside
the fine mesh is, in general, more complicated than inside the coarse
mesh: there are more cusps and more variation due to more surface
variation in the fine mesh. The coarse mesh inflates too far outside
the fine mesh or gets stuck too early, then struggles to shrink back
into place (particularly around and inside concavities).

Experiments with alternative flows. We experimented with
more elegant flows that induce shrinking effects [Taubin 1995; Des-
brun et al. 1999; Crane et al. 2013]. Of particular interest were flows
that eventually degenerate to the shape’s medial axis [Wang & Lee
2008; Au et al. 2008; Tagliasacchi et al. 2012] or to a round point
[Kazhdan et al. 2012], but we observed that these often flow the sur-
face outside of its own original volume (much less that of a nearby
coarse decimation), particularly for non-convex and high-genus sur-
faces. Such wandering flows caused unnecessary complications in
the re-inflation step we describe next. In Figure 9, we compare to
the conformalized mean curvature flow of [Kazhdan et al. 2012],
a particularly promising method as it is guaranteed to flow sphere-
topology surfaces to round points (easily embeddable in the coarse
mesh) and that has proven useful in the past [Sacht et al. 2013]. How-
ever, for complicated shapes the flow deviates dramatically from the
original surface, thus hindering further processing. For high genus
shapes it does not resolve intersections upon convergence.

We also experimented with modifications to the surface distance
function [Peng et al. 2004], observing that it was not appreciably
more robust than the usual L8 distance. In fact, simpler exper-
iments of flowing a mesh against itself reveal that designing an
inward flow with guarantees is surprisingly difficult. Even picking
inward pointing normals at mesh vertices is non-trivial. In fact, the
usual uniform-/area-/angle-weighted normals are not guaranteed to
point inward. One effective but inelegant normal definition is to
tetrahedralize the inner volume and choose a normal pointing toward
the center of an incident tetrahedron to each vertex. But even flowing
along inward pointing normals at vertices is not guaranteed to nest a
mesh inside itself. Counterexamples exist to show that sometimes
no inward flow is possible (see Appendix A).

3.2 Re-inflation

After the flow step, sF is fully inside pC. We now restore the fine mesh
to its original vertex positions F, detecting and resolving collisions
with the coarse mesh along the way (see Figure 8).

Jumping directly from sF to F in a single linear step would typically
introduce an unwieldy number of simultaneous collisions: too many

to disentangle. Fortunately, our previously described signed distance
flow provides a meaningful path taking sF back to F : we simply
exactly reverse the motion of the fine mesh, restoring it to its original
position in as many iterations as were taken by the flow. As the
coarse mesh moves, we detect and respond to would-be intersections
between the expanding fine mesh and the current coarse mesh.

We can describe each reverse step in our flow in terms of a displace-
ment per time step, that is, in terms of virtual velocities. For ease of
notation, we mirror the trajectories of the fine mesh on the time axis
so that time continues to point forward (this means, w.l.o.g., t “ 0
is the moment when the flow with N steps finishes and t “ N∆t
is the moment when the fine mesh returns to its original positions).
For the fine mesh, the positions after the next reverse time step are
known, and thus so are its velocities:

UF ptq “
sFpt`∆tq ´ sFptq

∆t
, (7)

where UF ptq P RnFˆ3 are instantaneous per-vertex velocities.

The positions of the coarse mesh Cpt`∆tq—and in turn its similarly
defined velocities UCptq—are not fixed. In general, there are an
infinite number of feasible choices of UCptq so that the repositioned
coarse mesh Cpt ` ∆tq remains free of intersections with itself
and with the re-inflating fine mesh sF pt `∆tq. To regularize this
problem, we introduce a generic energy EpF, pC,Cq measuring the
quality of the coarse mesh positions. We optimize this energy to
update C at each reverse time step:

min
Cpt`∆tq

E
´

F, pC,Cpt`∆tq
¯

subject to: (8)

Cpsq does not intersect itself @s P rt, t`∆ts, (9)

Cpsq does not intersect sF psq@s P rt, t`∆ts, (10)

where we are careful to solve the continuous-time collision problem
rather than only checking for instantaneous collisions at s “ t
and s “ t `∆t. This ensures the re-inflating fine mesh does not
completely tunnel through some part of the coarse mesh.

By reformulating our problem in a manner familiar to physical
simulation, we may leverage state of the art contact detection (e.g.
[Brochu et al. 2012; Wang 2014]) and response methods. Abstractly,
we can treat these methods as “black boxes” (velocity filters). We
input the fine mesh sF ptq, coarse mesh Cptq and desired velocities
UF ptq and U˚

Cptq, where U˚
Cptq is a descent direction minimizing

E. The black box outputs new adjusted velocities U`
F ptq and U`

Cptq
satisfying the non-intersection constraints 9-10.

Evol Esarap Evarap

Figure 10: For a coarse cage around the Anchor, optimizing total
volume Evol can create zero-volume tents (left inset) but tight fits
elsewhere (next inset); surface ARAPEsarap keeps the surface quality,
but loosens the fit; volumetric ARAPEvarap balances these two goals.

There remains one interesting twist. Our problem requires the fine
mesh to return exactly to its original positions: U`

F ptq “ UF ptq. In
physically-based simulation parlance, this is tantamount to assigning
the fine mesh infinite mass. While collision handling is a black box
in theory, in practice, the many, many collisions that occur between
the coarse and fine meshes, the self-intersecting and degenerate
nature of the initial fine mesh, and the fact that the moving mesh has
infinite mass, all contribute to a very challenging contact problem
beyond the scope of typical cloth and thin shell collision codes. We
found two methods that can solve the problem successfully:

First, we adapt the surface tracking method of [Brochu & Bridson
2009] to deal better with infinite masses by removing the rigid
impact zone phase (similar adaptations of other methods are probably
possible, e.g. [Volino & Magnenat-Thalmann 2006; Mueller et al.
2015]).

In cases when this method fails to find a feasible solution, we subdi-
vide ∆t recursively. In particularly difficult cases, too many subdivi-
sions are needed, suggesting failure to progress. To handle these hard
cases, we fall back on a more robust but slower method: speculative
asynchronous contact mechanics [Ainsley et al. 2012]. This method
is an extension of the only known method to guarantee intersection
prevention and positive progress for finite mass objects [Harmon
et al. 2009]. Even this algorithm does not guarantee that the colli-
sions can be resolved (in cases where the fine mesh tries to “pinch”
the coarse mesh, no solution can possibly exist, see Figure 22) but
in practice we see success, albeit at a slow pace.

Choice of energy. We briefly describe the implementations and
unique benefits of energies we tested (see Figure 10).

The simplest energies are those measuring vertex displacement in a
least squares sense:

Einit “ }Cpt`∆tq ´ pC}2C (11)

ë U˚
Cptq „ pC´Cpt`∆tq,

Estep “ }Cpt`∆tq ´Cptq}2C (12)

ë U˚
Cptq „ Cptq ´Cpt`∆tq,

where Einit and Estep penalize displacement from the coarse mesh’s
initial positions and from its position at the beginning of the time
step, respectively. These energies successfully regularize the space
of feasible solutions, but are not representative of energies useful to
interesting applications.

For multiresolution hierarchies or collision detection, we propose a

volume energy to encourage very tight fitting cages:

Evol “

ż

VolpCpt`∆tqq

1 dV “

ż

Cpt`∆tq

x ¨ n dA, (13)

ë U˚
Cptq „ ´∇Evol “ ´Npt`∆tq,

where N are the area-weighted vertex normals.

During re-inflation, minimizing Evol immediately starts to shrink-
wrap the coarse mesh Cptq around the expanding fine mesh sF ptq.
If sF ptq needs to expand a significant amount, then this tight shrink-
wrap behavior causes unnecessary collisions early in the reverse
flow. Therefore, we propose minimizing Estep for t ą 0 in order to
find a feasible state before switching to Evol only at t “ N∆t.

The null space of Evol is spanned by all zero-volume meshes, disre-
garding shape quality or surface area. Shape is retained only by the
fine mesh as an obstacle. In some applications, e.g. low-resolution
conservative contact replacements or deformation cages, surface
appearance or shape-preservation is important. We explored surface-
based [Sorkine & Alexa 2007] and volumetric [Chao et al. 2010]
forms of as-rigid-as-possible energies (a.k.a. co-rotational elasticity):

Esarap “

nC
ÿ

i“1

argmin
RPSOp3q

ÿ

jPNpiq

}eijpt`∆tq ´Rpeij}
2 (14)

ë U˚
Cptq „ ´∇Esarap

Evarap “
ÿ

TPT
argmin
RPSOp3q

ÿ

tijuPT

}eijpt`∆tq ´Rpeij}
2 (15)

ë U˚
Cptq „ ´∇CEvarap

where eijpt ` ∆tq and peij are the edge vectors between vertices
i and j of the unknown coarse mesh Cpt ` ∆tq and the original
coarse mesh pC, and T is a list of tetrahedra tessellating pC. We
use TETGEN to create a graded mesh with few auxiliary variables at
internal Steiner vertices [Si 2003]. Computing gradients ∇Esarap and
∇Evarap involves first optimizing for “best fit rotations” R via polar
decomposition and then computing a sparse matrix product [Chao
et al. 2010]. Pure gradient descent of the volumetric ARAP energy is
inefficient, as the gradient at interior vertices remains zero until their
neighbors move. We accelerate minimization of this energy using
a local-global optimization [Sorkine & Alexa 2007]: we update
boundary vertices using gradient descent, then optimize for the inte-
rior while holding the boundary fixed. This converges quickly when
given an initial guess from the previous gradient computation. In
any case, our “black box” collision handling dominates computation
time, so gradient computation is not a bottleneck.

We continue to minimize the energy even after the fine mesh has
returned to its original position, until either Cpt`∆tq converges
or until bisecting the step length ∆t does not decrease the energy.
The combination of our energy-minimizing re-inflation and signed-
distance flow leads to minimal coarse cage expansion (see Figure 9).

Our method is effectively projected gradient descent. For simple
displacement energies, higher-order alternatives do not apply. We
experimented with Newton’s method for the ARAP energies, but
saw little improvement.

4 Results and applications

We implemented a prototype of our method as a serial MATLAB
program. We report timings of our unoptimized code for a few
representative examples in Table 1 recorded on an iMac Intel Core
i7 3.5GHz computer with 8GB memory. As expected the bottle-
neck is the collision-free re-inflation step. We experimented with a

Model name Fig. # #F k tflow tre Energy

S.W.A.T. 21 9,820 1 5s 269s Symmetry
Anchor 11 10,778 6 6s 43s Evol

Warrior 11 26,658 7 2s 86s Evarap

Pelvis 11 40,316 7 11s 460s Evol

Bunny 13 52,910 7 11s 202s Evarap

Mug 11 74,720 7 7s 54s Evol

Octopus 11 500,000 11 13s 63s Estep

Table 1: We report the average time per cage to flow tflow, and to
re-inflate tre.

wide variety of shapes, ranging from CAD models, characters, and
scanned objects (see Figure 11). By default we compute layers so
that each coarser layer has 2´

2{3 times as many facets as the previous
finer layer, a ratio chosen so that resulting tetrahedral meshes will
have approximately 8 times fewer elements. For most meshes we
compute seven layers, with fewer for lower resolution inputs. In our
supplemental material, we attach all input models, corresponding
output cages, and a small program to visualize volumetric slices.

Our method is agnostic to the decimator used to create the input
meshes xM1, . . . , xMk. In this way we inherit the feature set of the
decimator. Figure 12 compares using the regular mesh inducing
decimator in [CGAL] (default for all remaining examples) and the
feature-adaptive decimator of [Botsch et al. 2002].

To test robustness, we compare computing nested cages on the Bunny
and the same model corrupted with noise in the normal direction
(see Figure 13). The resulting layers tightly hug both shapes.

We also conducted stress tests to evaluate how well our method scales
with the number of layers. We nest 25 tightly fitting layers around
the Horse in Figure 2, and 50 around Max Planck in Figure 14.
We purposefully continue nesting cages around the the Gargoyle in
Figure 11, top left, until only eight vertices of an extremely coarse
cage remain.

For some applications (e.g. conservative collision detection) there
is no need for the output cage to be homeomorphic to the input
mesh, and indeed preserving tiny handles unnecessarily increases
the complexity of the cage. Our definition of the problem in Section 1
allows the cage to have less handles than the input mesh. Figure 15
illustrates this point, where we generate a cage that is homeomorphic
to the input mesh and another cage that has smaller genus.

Constructing our nested cages can be considered expensive precom-
putation for a multiresolution linear system solver. However, once
cage meshes are computed and their interiors are meshed with tetra-
hedra (e.g. using [Si 2003]), the volumetric multigrid solver is sleek
and memory efficient. A single multiresolution V-cycle for a Poisson
equation with homogeneous Dirichlet boundary conditions inside
the volume of the Octopus with over seven million vertices takes
1.4 seconds using 2GB max memory. With 14 more V-cycles the
solution converges for a total time of 21 seconds (see Figure 16). In
contrast, MATLAB’s backslash operator thrashes, using over 22GB
of memory and finishing in over 16 minutes. CHOLMOD’s Cholesky
factorization with reordering is mildly better than MATLAB, solving
via backsubstitution in 10 minutes, but suffers from similar memory
issues during factorization, which takes over an hour using 17GB
max memory, due to high fill-in. In terms of precomputation, our
time consuming cage computation lives at a much earlier stage
than system-matrix factorization: before determining constraints or
boundary conditions and before even choosing the particular sys-
tem being solved. This is even true for inhomogeneous systems

Figure 11: Each triplet shows: input model, slice through all nested
layers, and outermost, coarsest layer. As a stress test, we purpose-
fully continue nesting cages around Gargoyle to a very coarse level
(top left). The topological holes of the high-genus Fertility are main-
tained across all layers (top right). The deep concavity of the Mug
does not get smoothed away in coarser levels (bottom right).

Regular decimation, CGAL Adaptive decimation, OPENMESH

Figure 12: By post-processing meshes from any existing decimator,
our output inherits desired regularity or adaptivity of the decimation.

Figure 13: Noise added in the normal direction to the input bunny
does not affect our ability to generate seven quality outer layers.

Figure 14: We fit 50 layers tightly around Max Planck’s head.

Figure 15: Depending on the target application, our method gener-
ates cages homeomorphic to the input mesh (center) or with handles
removed (right).

7M tetrahedra vertices Single V-cycle Converged solution

Figure 16: A single multigrid v-cycle takes 1.4 secs on this 7M-
vertex volumetric Poisson equation in the Octopus. With 14 more
iterations (21 secs) the residual error matches a direct solver’s (11
mins, back substitution only).

Right-hand side Solutions for increasing diffusion rates

Figure 17: We solve a diffusion equation pλ∆ ` Iqx “ b for
various diffusion rates λ with our nested cages in a volumetric
multiresolution solver (top: surface values via Neumann boundary
conditions, bottom: slice through tet-mesh volumes).

where local metrics vary between solves. In this case, the internal
tet-meshing might need to be recomputed (seconds for Octopus),
but our boundary cages can be reused. Since all fine mesh vertices
are inside coarse-mesh tetrahedra, we use linear interpolation for
prolongation and its transpose for restriction [Demmel 2004].

10-2

10-4

10-6

10-8

100

naive
decimation

our cages

Residual error

number of v-cycles

As we do not alter the core iterative na-
ture of multiresolution, we benefit from
its flexibility. For example, we may
quickly change the diffusion rate in a
heat equation solved in the volume of
the Pelvis (see Figure 17). Factorization
based solvers, in general, scrap previ-
ous precomputation after such a global
change to the system matrix. Multireso-
lution hardly notices, and previous solu-
tions become warm starts. We employ Neumann boundary condi-
tions and notice that naively decimating the input mesh leads to a
divergent solver (inset), agreeing with previous analysis that nesting
is important for such boundary conditions [Chan et al. 1999]. Be-
cause naive decimations do not nest, the prolongation operator must
extrapolate for fine mesh vertices lying outside the coarse domain.
It may be possible to tweak extrapolation parameters to handle these
cases with naive decimation, but an automatic method for correcting
extrapolation for convergence is not obvious. For comparisons, we
tried: linear extrapolation from the nearest tet, constant interpolation
of nearest vertex, linear interpolation at the closest point on nearest
face. We compare to the most favorable choice.

On less challenging domains, naive decimations can be used, but
may require many relaxation (a.k.a. smoothing) iterations on each
level of each v-cycle. In Figure 18, we compute smooth geodesics
via two Poisson equations in the volume of the Armadillo [Crane
et al. 2013]. Using our nested cages, the multiresolution solver
converges independent of the number of relaxation iterations used
(typically fewer relaxation iterations and more v-cycles is preferable).
In contrast, multiresolution using naive non-nested decimations con-
verge when using a large number of relaxation iterations, and then
at a rate equivalent to single relaxation iteration with our meshes.

A single enclosing cage is useful for creating a lower dimensional
volumetric domain for elastic simulation of an input model that is ei-
ther too high resolution or too complex due to meshing imperfections
[Xu & Barbič 2014]. In Figure 19, we compare to extracting the

100

10-5

10-10

10-15

105

1010

1015

naive

ours
number of v-cycles

1 5 10

15

20

1510
20

15

Solution Relative residual error number of
relaxtion iterations

Figure 18: We solve for smooth geodesics over a volumetric tetra-
hedral mesh inside the Armadillo. Using naive overlapping and
shrinking decimations leads to divergence unless a very large num-
ber of relaxation iterations is used. Ours is always convergent.

[Jacobson et al. 2013] [Xu & Barbic 2014] Ours

Simulation on our coarse cage, with embedded artifact-ridden input

Figure 19: Extracting an outer hull with Jacobson et al [2013]
fails to coarsen the domain (top left). Contouring a distance field
achieves nesting at a large iso-level but fuses the legs (top center).
Our coarse cage fits the input tightly and provides a reduced domain
for real-time physics.

outer hull of the multi-component and self-intersecting Frankenstein
using [Jacobson et al. 2013]. While technically a “perfectly tight fit”,
this cage fails to coarsen the domain and meshing near intersections
creates sliver triangles problematic for numerics. We also compare
to signed-distance field contouring [Xu & Barbič 2014], which cre-
ates a loose fit joining the legs near the knees. With the same vertex
count, our cage is a tight fit making it especially suitable for elastic
simulation with collision handling. The deformation of the volume
inside the coarse cage is then propagated via linear interpolation to
the embedded mesh (see also accompanying video).

Another application area for nested cages is collision detection for
rigid objects: if an object does not collide against a surface enclosing
a second object, this certifies that the two objects do not collide either.
Bounding sphere, cubes, and higher-degree polytopes are often used
to quick-reject candidate collisions for this reason, but these convex
cages lose effectiveness when objects are concave or have holes and
cavities. On the other hand, a coarse nested cage is ideal for this pur-
pose, since the nesting property guarantees correctness and the tight
fit allows the coarse cage to efficiently reject nearly all false positives
during collision detection. As a proof of concept, we simulated drop-
ping eighteen instances of the octopus mesh (Figure 11, bottom-left)
one by one into a narrow tank, where they collide with each other and
the tank walls (with coefficient of restitution 0.99) using continuous-
time collision detection (see inset). We compared the performance
of two different broad phase strategies for collision detection:

Figure 20: Left to right: a quad mesh is quickly sketched atop the
Hand and our pipeline moves it outside the input while planarizing
quads. A cage-based deformation is applied via harmonic coordi-
nates computed over the volume inside the planar-quad polyhedron
(a few coordinates visualized in pseudocolor). These weights are
smooth inside each quad. In contrast, triangulating the quads would
lead to non-smooth, meshing-dependent values in each quad (two
alternative triangulations).

in the first, bounding cubes around swept
spacetime volumes are used to prune
distant pairs of objects from consider-
ation, then kDOP bounding volume hi-
erarchies are built to find candidate col-
liding vertex-face pairs, which are then
passed to the continuous-time narrow
phase. The second strategy is the same,
except that we first check if the octopus’s
coarse cage is colliding before building
the BVH on the octopus itself. We found
that the latter strategy is „ 8ˆ faster,
for intuitive reasons: the octopus’s many
protruding arms causes it to easily nestle
near other copies of itself, so that their
convex hulls overlap but our tight, coarse
cages do not. Nesting is applicable for
rigid or nearly rigid objects, but it is not
obvious how to track cages along with
deformable bodies, unless, for example,
deformations could be precomputed.

The ability to customize our optimization energy enables not just
better cages, but also better generalized barycentric coordinates. In
particular, harmonic coordinates are defined for arbitrary polyhedra,
yet most works implement them inside triangle-mesh cages only
[Joshi et al. 2007]. To utilize popular quad-dominant meshes as
cages, all faces must be outside the input model and planar. Since
such cages are difficult to model manually, many implementations
simply triangulate high-order facets [Joshi et al. 2007]. We comple-
ment the recent sketch-based quad-meshing tool [Takayama et al.
2013], post-processing its output to enclose the input model and min-
imize a planarization energy [Poranne et al. 2013]. Quad-dominant
cages are easier to control as their visualization is less cluttered (see
Figure 20). More importantly, harmonic coordinates constructed
(via their recursive definition) on the planar-quad polyhedron are
also higher quality: coordinates are smooth functions inside each
quad. In contrast, coordinates of a triangulated cage would depend
heavily on the choice of diagonals splitting each quad.

Generalizations beyond watertight meshes. Though not
strictly meeting our input criteria, we apply our method to poly-
gon soups. In Figure 21, we again adapt the optimization energy,
this time to maintain the reflectional symmetry of the coarse input
cage. The input polygon soup S.W.A.T. man is riddled with meshing
artifacts, but we still flow it inside. Though details on the expanding
input mesh are asymmetric (see hip pockets or hands), the energy
minimization keeps the cage symmetric.

Overlapping cage Enclosing cageFlow Deformation

Figure 21: S.W.A.T. man is a polygon soup with 2806 intersecting
triangle pairs, 24 non-manifold edges, 51 boundary loops and 51
components. Our shrinking flow is robust to such artifacts. Once in-
side the coarse, overlapping input cage, we re-inflate it and produce
a fully exterior cage used to deform the embedded model.

Figure 22: If an expanding coarse mesh collides with itself (green),
it creates a pinch preventing processing of further coarser layers.

5 Limitations and future work

We plan to optimize the performance of both the signed distance
field flow and the re-inflation steps. Collision detection and response
dominates running time, and our prototype naively recomputes ac-
celeration data-structures rather than updating them continuously.

Our insight to break the multi-layer nesting problem into pairwise
subproblems ensures tractability, but in some cases leads to con-
verging at an “artificial local minimum.” If a coarse cage collides
with itself during inflation then it may create a pinch that blocks
inflation of subsequent coarse layers (see Figure 22). One solution
is to iterate through the fine layers to make sufficient room in these
problem areas, but defining this relaxation direction is not obvious.

In cases where the input coarse cage begins too far away from the
fine mesh, the signed-distance flow will fail: for example, by flowing
vertices of a triangle into opposite parts of the coarse mesh. Adding
a small amount of smoothing on the flowing fine mesh or expanding
the coarse mesh alleviates some of these problems, but a general
solution is elusive. The correct assignment seems related to correctly
matching medial axes of both meshes: perhaps an avenue of future
improvement.

We believe the performance of our multigrid solver could be further
improved by parameter tuning and experimenting with different
coarsening gradations. We would also like to consider using our
meshes to build multigrid preconditioners for conjugate gradient
solvers. We expect that higher order PDEs with more involved
boundary conditions will receive an even greater benefit from our
nested cages.

It would be interesting to analyze formally the convergence of our
nested cages along the lines of [Chan & Zou 1996] who consider the
then-available non-nested hierarchies.

Our cages are designed for volumetric multigrid solvers, and are not
immediately applicable to surface-based multiresolution problems
(cf. [Aksoylu et al. 2005; Chuang et al. 2009]). Whether nesting is
at all useful for surface problems remains an open question.

In conclusion, nested cages prove to be a powerful tool in a variety
of applications. Our signed-distance flow consistently finds initial
feasible states for our constraint-based optimization. By leverag-
ing state-of-the-art collision handling tools from physically based
simulation, we are able to generate cages that in turn enable faster
physical simulations, more-efficient linear system solvers and better
real-time deformation user interfaces. We hope that our algorithm’s
success encourages more multiresolution volumetric methods using
unstructured meshes in geometry processing, computer graphics,
and beyond.

Acknowledgements

Humanoid models courtesy Ilya Baran were initially created using
Cosmic Blobs(R) software developed by Dassault Systèmes Solid-
Works Corp. Medical models courtesy of Muhibur Rasheed. We
thank: Derek Bradley, Keenan Crane, Eitan Grinspun, and Daniele
Panozzo, for illuminating discussions; Eric Price, for brainstorming
the NP completeness proof; Henrique Maia, Papoj Thamjaroenporn,
and Sarah Abraham, for proofreading; and Peter Schroeder, Richard
Kenyon, Alexander I. Bobenko, Helmut Pottmann, and Johannes
Wallner for organizing the DDG Oberwolfach and Seggau Geometry
workshops. The Columbia Computer Graphics Group is supported
by the NSF, Intel, The Walt Disney Company, and Autodesk. Funded
in part by NSF grant DMS-1304211. We thank the Visgraf Lab and
IMPA, for the technical support and software resources, CNPq, for
the first author’s PhD fellowship, and CAPES and FAPESC, for
supporting the presentation of this work at SIGGRAPH Asia 2015.

References

ADAMS, M., AND DEMMEL, J. W. 1999. Parallel multigrid solver
for 3d unstructured finite element problems. In Proceedings of
the 1999 ACM/IEEE Conference on Supercomputing.

AINSLEY, S., VOUGA, E., GRINSPUN, E., AND TAMSTORF, R.
2012. Speculative parallel asynchronous contact mechanics. ACM
Trans. Graph. 31, 6.

AKSOYLU, B., KHODAKOVSKY, A., AND SCHRÖDER, P. 2005.
Multilevel Solvers for Unstructured Surface Meshes. SIAM Jour-
nal on Scientific Computing 26, 4, 1146.

ATTENE, M. 2010. A lightweight approach to repairing digitized
polygon meshes. The Visual Computer 26, 11, 1393–1406.

AU, O. K.-C., TAI, C.-L., CHU, H.-K., COHEN-OR, D., AND
LEE, T.-Y. 2008. Skeleton extraction by mesh contraction. ACM
Trans. Graph. 27, 3.

BAERENTZEN, J. A., AND AANAES, H. 2005. Signed distance
computation using the angle weighted pseudonormal. Trans. Vis.
& Comp. Graphics 11, 3 (May).

BARAFF, D., WITKIN, A., AND KASS, M. 2003. Untangling cloth.
ACM Trans. Graph. 22.

BEN-CHEN, M., WEBER, O., AND GOTSMAN, C. 2009. Spatial
deformation transfer. In Proc. SCA, 67–74.

http://www.google.com/search?q=Parallel+multigrid+solver+for+3d+unstructured+finite+element+problems
http://www.google.com/search?q=Parallel+multigrid+solver+for+3d+unstructured+finite+element+problems
http://www.google.com/search?q=Speculative+parallel+asynchronous+contact+mechanics
http://www.google.com/search?q=Multilevel+Solvers+for+Unstructured+Surface+Meshes
http://www.google.com/search?q=A+lightweight+approach+to+repairing+digitized+polygon+meshes
http://www.google.com/search?q=A+lightweight+approach+to+repairing+digitized+polygon+meshes
http://www.google.com/search?q=Skeleton+extraction+by+mesh+contraction
http://www.google.com/search?q=Signed+distance+computation+using+the+angle+weighted+pseudonormal
http://www.google.com/search?q=Signed+distance+computation+using+the+angle+weighted+pseudonormal
http://www.google.com/search?q=Untangling+cloth
http://www.google.com/search?q=Spatial+deformation+transfer
http://www.google.com/search?q=Spatial+deformation+transfer

BEN-CHEN, M., WEBER, O., AND GOTSMAN, C. 2009. Varia-
tional harmonic maps for space deformation. ACM Trans. Graph.
28, 3.

BOTSCH, M., STEINBERG, S., BISCHOFF, S., AND KOBBELT, L.
2002. OpenMesh – a generic and efficient polygon mesh data
structure. In OpenSG Symposium.

BROCHU, T., AND BRIDSON, R. 2009. Robust topological opera-
tions for dynamic explicit surfaces. SIAM Sci. Comp. 31, 4.

BROCHU, T., EDWARDS, E., AND BRIDSON, R. 2012. Efficient
geometrically exact continuous collision detection. ACM Trans.
Graph. 31, 4.

BRUNE, P. R., KNEPLEY, M. G., AND SCOTT, L. R. 2011. Un-
structured geometric multigrid in two and three dimensions on
complex and graded meshes. CoRR abs/1104.0261.

CAMPEN, M., AND KOBBELT, L. 2010. Polygonal Boundary
Evaluation of Minkowski Sums and Swept Volumes. Comput.
Graph. Forum 29, 5, 1613–1622.

CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

CHAN, T. F., AND WAN, W. 2000. Robust multigrid methods for
nonsmooth coefficient elliptic linear systems. J. Comput. Appl.
Math. 123, 1-2.

CHAN, T. F., AND ZOU, J. 1996. A convergence theory of multi-
level additive schwarz methods on unstructured meshes. Numeri-
cal Algorithms 13, 2, 365–398.

CHAN, T. F., SMITH, B., AND ZOU, J. 1996. Overlapping schwarz
methods on unstructured meshes using non-matching coarse grids.
Numer. Math 73, 149–167.

CHAN, T. F., GO, S., AND ZOU, J. 1999. Boundary treatments
for multilevel methods on unstructured meshes. SIAM Journal on
Scientific Computing 21, 1, 46–66.

CHANG, W., LI, H., MITRA, N. J., PAULY, M., AND WAND,
M. 2010. Geometric registration for deformable shapes. In
Eurographics 2010: Tutorial Notes.

CHAO, I., PINKALL, U., SANAN, P., AND SCHRÖDER, P. 2010.
A simple geometric model for elastic deformations. ACM Trans.
Graph. 29, 4.

CHUANG, M., LUO, L., BROWN, B. J., RUSINKIEWICZ, S., AND
KAZHDAN, M. 2009. Estimating the laplace-beltrami operator
by restricting 3d functions. In Proc. SGP, 1475–1484.

CRANE, K., PINKALL, U., AND SCHRÖDER, P. 2013. Robust
fairing via conformal curvature flow. ACM Trans. Graph. 32, 4.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. H.
2001. Dynamic real-time deformations using space & time adap-
tive sampling. Proceedings of SIGGRAPH 2001, 31–36.

DEMMEL, J., 2004. Multigrid overview. http://www.cs.
berkeley.edu/~demmel.

DENG, Z.-J., LUO, X.-N., AND MIAO, X.-P. 2011. Automatic
cage building with quadric error metrics. Comp. Sci. & Tech. 26,
3.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H.
1999. Implicit fairing of irregular meshes using diffusion and
curvature flow. In Proccedings of ACM SIGGRAPH, 317–324.

DICK, C., GEORGII, J., AND WESTERMANN, R. 2011. A hexahe-
dral multigrid approach for simulating cuts in deformable objects.
Trans. Vis. & Comp. Graphics 17, 11.

DICKOPF, T. 2010. Multilevel methods based on non-nested meshes.
PhD thesis, Universität Bonn.

EPPSTEIN, D., 2015. When is it possible to “shrink” a polyhedron?
MathOverflow. http://mathoverflow.net/q/206750
(version: 2015-05-16).

FALGOUT, R. 2006. An introduction to algebraic multigrid comput-
ing. Computing in Science Engineering (Nov).

FENG, Y., PERIĆ, D., AND OWEN, D. 1997. A non-nested galerkin
multi-grid method for solving linear and nonlinear solid mechan-
ics problems. Comp. methods in applied mech. & eng. 144, 3.

FERSTL, F., WESTERMANN, R., AND DICK, C. 2014. Large-scale
liquid simulation on adaptive hexahedral grids. Trans. Vis. &
Comp. Graphics 20, 10.

FISH, J., PANDHEERADI, M., AND BELSKY, V. 1995. An efficient
multilevel solution scheme for large scale non-linear systems. Int.
Journal for Numerical Methods in Eng. 38, 10, 1597–1610.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplification
using quadric error metrics. In Proc. SIGGRAPH.

GUILLARD, H. 1993. Node-nested multi-grid method with Delau-
nay coarsening. Research Report RR-1898.

GUMHOLD, S., BORODIN, P., AND KLEIN, R. 2003. Intersection
free simplification. IJSM, 155–176.

HARMON, D., VOUGA, E., SMITH, B., TAMSTORF, R., AND
GRINSPUN, E. 2009. Asynchronous contact mechanics. ACM
Trans. Graph. 28, 3.

HARMON, D., PANOZZO, D., SORKINE, O., AND ZORIN, D. 2011.
Interference aware geometric modeling. ACM Trans. Graph. 30,
6.

HOPPE, H. 1996. Progressive meshes. In Proc. SIGGRAPH.

JACOBSON, A., KAVAN, L., AND SORKINE-HORNUNG, O. 2013.
Robust inside-outside segmentation using generalized winding
numbers. ACM Trans. Graph. 32, 4.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND SANOCKI,
T. 2007. Harmonic coordinates for character articulation. ACM
Trans. Graph. 26, 3, 71.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Proc. SGP, 61–70.

KAZHDAN, M., SOLOMON, J., AND BEN-CHEN, M. 2012. Can
mean-curvature flow be modified to be non-singular? Comput.
Graph. Forum 31, 5.

KRISHNAN, D., FATTAL, R., AND SZELISKI, R. 2013. Effi-
cient preconditioning of laplacian matrices for computer graphics.
ACM Trans. Graph. 32, 4.

MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF,
R., TERAN, J., AND SIFAKIS, E. 2011. Efficient elasticity
for character skinning with contact and collisions. ACM Trans.
Graph. 30 (Aug.), 37:1–37:12.

MEHRA, R., ZHOU, Q., LONG, J., SHEFFER, A., GOOCH, A.,
AND MITRA, N. J. 2009. Abstraction of man-made shapes. ACM
Trans. Graph. 28, 5.

http://www.google.com/search?q=Variational+harmonic+maps+for+space+deformation
http://www.google.com/search?q=Variational+harmonic+maps+for+space+deformation
http://www.google.com/search?q=OpenMesh+--+a+generic+and+efficient+polygon+mesh+data+structure
http://www.google.com/search?q=OpenMesh+--+a+generic+and+efficient+polygon+mesh+data+structure
http://www.google.com/search?q=Robust+topological+operations+for+dynamic+explicit+surfaces
http://www.google.com/search?q=Robust+topological+operations+for+dynamic+explicit+surfaces
http://www.google.com/search?q=Efficient+geometrically+exact+continuous+collision+detection
http://www.google.com/search?q=Efficient+geometrically+exact+continuous+collision+detection
http://www.google.com/search?q=Unstructured+geometric+multigrid+in+two+and+three+dimensions+on+complex+and+graded+meshes
http://www.google.com/search?q=Unstructured+geometric+multigrid+in+two+and+three+dimensions+on+complex+and+graded+meshes
http://www.google.com/search?q=Unstructured+geometric+multigrid+in+two+and+three+dimensions+on+complex+and+graded+meshes
http://www.google.com/search?q=Polygonal+Boundary+Evaluation+of+Minkowski+Sums+and+Swept+Volumes
http://www.google.com/search?q=Polygonal+Boundary+Evaluation+of+Minkowski+Sums+and+Swept+Volumes
http://www.google.com/search?q=textscCgal,+Computational+Geometry+Algorithms+Library
http://www.google.com/search?q=Robust+multigrid+methods+for+nonsmooth+coefficient+elliptic+linear+systems
http://www.google.com/search?q=Robust+multigrid+methods+for+nonsmooth+coefficient+elliptic+linear+systems
http://www.google.com/search?q=A+convergence+theory+of+multilevel+additive+schwarz+methods+on+unstructured+meshes
http://www.google.com/search?q=A+convergence+theory+of+multilevel+additive+schwarz+methods+on+unstructured+meshes
http://www.google.com/search?q=Overlapping+schwarz+methods+on+unstructured+meshes+using+non-matching+coarse+grids
http://www.google.com/search?q=Overlapping+schwarz+methods+on+unstructured+meshes+using+non-matching+coarse+grids
http://www.google.com/search?q=Boundary+treatments+for+multilevel+methods+on+unstructured+meshes
http://www.google.com/search?q=Boundary+treatments+for+multilevel+methods+on+unstructured+meshes
http://www.google.com/search?q=Geometric+registration+for+deformable+shapes
http://www.google.com/search?q=A+simple+geometric+model+for+elastic+deformations
http://www.google.com/search?q=Estimating+the+laplace-beltrami+operator+by+restricting+3d+functions
http://www.google.com/search?q=Estimating+the+laplace-beltrami+operator+by+restricting+3d+functions
http://www.google.com/search?q=Robust+fairing+via+conformal+curvature+flow
http://www.google.com/search?q=Robust+fairing+via+conformal+curvature+flow
http://www.google.com/search?q=Dynamic+real-time+deformations+using+space+&+time+adaptive+sampling
http://www.google.com/search?q=Dynamic+real-time+deformations+using+space+&+time+adaptive+sampling
http://www.google.com/search?q=Multigrid+overview
http://www.cs.berkeley.edu/~demmel
http://www.cs.berkeley.edu/~demmel
http://www.google.com/search?q=Automatic+cage+building+with+quadric+error+metrics
http://www.google.com/search?q=Automatic+cage+building+with+quadric+error+metrics
http://www.google.com/search?q=Implicit+fairing+of+irregular+meshes+using+diffusion+and+curvature+flow
http://www.google.com/search?q=Implicit+fairing+of+irregular+meshes+using+diffusion+and+curvature+flow
http://www.google.com/search?q=A+hexahedral+multigrid+approach+for+simulating+cuts+in+deformable+objects
http://www.google.com/search?q=A+hexahedral+multigrid+approach+for+simulating+cuts+in+deformable+objects
http://www.google.com/search?q=When+is+it+possible+to+``shrink''+a+polyhedron?
http://mathoverflow.net/q/206750
http://www.google.com/search?q=An+introduction+to+algebraic+multigrid+computing
http://www.google.com/search?q=An+introduction+to+algebraic+multigrid+computing
http://www.google.com/search?q=A+non-nested+galerkin+multi-grid+method+for+solving+linear+and+nonlinear+solid+mechanics+problems
http://www.google.com/search?q=A+non-nested+galerkin+multi-grid+method+for+solving+linear+and+nonlinear+solid+mechanics+problems
http://www.google.com/search?q=A+non-nested+galerkin+multi-grid+method+for+solving+linear+and+nonlinear+solid+mechanics+problems
http://www.google.com/search?q=Large-scale+liquid+simulation+on+adaptive+hexahedral+grids
http://www.google.com/search?q=Large-scale+liquid+simulation+on+adaptive+hexahedral+grids
http://www.google.com/search?q=An+efficient+multilevel+solution+scheme+for+large+scale+non-linear+systems
http://www.google.com/search?q=An+efficient+multilevel+solution+scheme+for+large+scale+non-linear+systems
http://www.google.com/search?q=Surface+simplification+using+quadric+error+metrics
http://www.google.com/search?q=Surface+simplification+using+quadric+error+metrics
http://www.google.com/search?q=Node-nested+multi-grid+method+with+Delaunay+coarsening
http://www.google.com/search?q=Node-nested+multi-grid+method+with+Delaunay+coarsening
http://www.google.com/search?q=Intersection+free+simplification
http://www.google.com/search?q=Intersection+free+simplification
http://www.google.com/search?q=Asynchronous+contact+mechanics
http://www.google.com/search?q=Interference+aware+geometric+modeling
http://www.google.com/search?q=Progressive+meshes
http://www.google.com/search?q=Robust+inside-outside+segmentation+using+generalized+winding+numbers
http://www.google.com/search?q=Robust+inside-outside+segmentation+using+generalized+winding+numbers
http://www.google.com/search?q=Harmonic+coordinates+for+character+articulation
http://www.google.com/search?q=Poisson+surface+reconstruction
http://www.google.com/search?q=Poisson+surface+reconstruction
http://www.google.com/search?q=Can+mean-curvature+flow+be+modified+to+be+non-singular?
http://www.google.com/search?q=Can+mean-curvature+flow+be+modified+to+be+non-singular?
http://www.google.com/search?q=Efficient+preconditioning+of+laplacian+matrices+for+computer+graphics
http://www.google.com/search?q=Efficient+preconditioning+of+laplacian+matrices+for+computer+graphics
http://www.google.com/search?q=Efficient+elasticity+for+character+skinning+with+contact+and+collisions
http://www.google.com/search?q=Efficient+elasticity+for+character+skinning+with+contact+and+collisions
http://www.google.com/search?q=Abstraction+of+man-made+shapes

MELAX, S. 1998. A simple, fast, and effective polygon reduction
algorithm. Game Developer Magazine, 44–49.

MUELLER, M., CHENTANEZ, N., KIM, T.-Y., AND MACKLIN,
M. 2015. Air meshes for robust collision handling. ACM Trans.
Graph. 34, 4.

NESME, M., KRY, P. G., JEŘÁBKOVÁ, L., AND FAURE, F. 2009.
Preserving topology and elasticity for embedded deformable mod-
els. ACM Trans. Graph. 28, 3.

OTADUY, M. A., AND LIN, M. C. 2003. CLODs: Dual hierarchies
for multiresolution collision detection. In Proc. SGP.

OTADUY, M. A., AND LIN, M. C. 2003. Sensation preserving
simplification for haptic rendering. ACM Trans. Graph. 22.

PENG, J., KRISTJANSSON, D., AND ZORIN, D. 2004. Interactive
modeling of topologically complex geometric detail. ACM Trans.
Graph. 23, 3, 635–643.

PETERHANS, C. 2012. Interactive Surface Reconstruction. Master’s
thesis, ETH Zurich.

PLATIS, N., AND THEOHARIS, T. 2003. Progressive hulls for
intersection applications. Comput. Graph. Forum 22, 2.

PORANNE, R., OVREIU, E., AND GOTSMAN, C. 2013. Interactive
planarization and optimization of 3d meshes. In Comput. Graph.
Forum, vol. 32, 152–163.

RUGE, J., AND STÜBEN, K. 1987. Algebraic multigrid. Multigrid
methods 3.

SACHT, L., JACOBSON, A., PANOZZO, D., SCHÜLLER, C., AND
SORKINE-HORNUNG, O. 2013. Consistent volumetric discretiza-
tions inside self-intersecting surfaces. In Proc. SGP.

SANDER, P. V., GU, X., GORTLER, S. J., HOPPE, H., AND SNY-
DER, J. 2000. Silhouette clipping. In Proc. SIGGRAPH.

SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. 2004. Inter-
polating and approximating implicit surfaces from polygon soup.
ACM Trans. Graph. 23, 3, 896–904.

SI, H., 2003. TETGEN: A 3D delaunay tetrahedral mesh generator.
http://tetgen.berlios.de.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible surface
modeling. In Proc. SGP, 109–116.

SÝKORA, D., DINGLIANA, J., AND COLLINS, S. 2009. As-rigid-
as-possible image registration for hand-drawn cartoon animations.
In Proc. NPAR.

TAGLIASACCHI, A., ALHASHIM, I., OLSON, M., AND ZHANG, H.
2012. Mean curvature skeletons. Comput. Graph. Forum 31, 5.

TAKAYAMA, K., PANOZZO, D., SORKINE-HORNUNG, A., AND
SORKINE-HORNUNG, O. 2013. Sketch-based generation and
editing of quad meshes. ACM Trans. Graph. 32, 4.

TAUBIN, G. 1995. A signal processing approach to fair surface
design. In Proceedings of ACM SIGGRAPH, 351–358.

TERAN, J., SIFAKIS, E., BLEMKER, S. S., NG-THOW-HING, V.,
LAU, C., AND FEDKIW, R. 2005. Creating and simulating
skeletal muscle from the visible human data set. Trans. Vis. &
Comp. Graphics 11, 3.

VOLINO, P., AND MAGNENAT-THALMANN, N. 2006. Resolv-
ing surface collisions through intersection contour minimization.
ACM Trans. Graph. 25, 3.

VOUGA, E., SACHT, L., AND JACOBSON, A. 2015. Polyhedral
nesting is NP-complete. Tech. rep., in supplementary materials.

WANG, Y.-S., AND LEE, T.-Y. 2008. Curve-skeleton extraction
using iterative least squares optimization. Trans. Vis. & Comp.
Graphics 14, 4.

WANG, H., SIDOROV, K. A., SANDILANDS, P., AND KOMURA, T.
2013. Harmonic parameterization by electrostatics. ACM Trans.
Graph. 32, 5.

WANG, H. 2014. Defending continuous collision detection against
errors. ACM Trans. Graph. 33, 4.

WICKER, M., LANKER, H., AND GROSS, M. 2006. Untangling
cloth with boundaries. In Proc. VMV.

XIAN, C., LIN, H., AND GAO, S. 2009. Automatic generation of
coarse bounding cages from dense meshes. In Proc. SMA.

XIAN, C., LIN, H., AND GAO, S. 2012. Automatic cage generation
by improved OBBs for mesh deformation. The Visual Computer.

XIAN, C., ZHANG, T., AND GAO, S. 2013. Semantic cage genera-
tion for fe mesh editing. In CADG.

XIAN, C., LI, G., AND XIONG, Y. 2015. Efficient and effective
cage generation by region decomposition. Computer Animation
and Virtual Worlds 26, 2, 173–184.

XU, H., AND BARBIČ, J. 2014. Signed distance fields for polygon
soup meshes. Graphics Interface 2014.

YE, J., AND ZHAO, J. 2012. The intersection contour minimization
method for untangling oriented deformable surfaces. In Proc.
SCA.

Appendix A: Flow counterexample

There exist polyhedra that cannot be continuously flowed inside
themselves [Eppstein 2015]. Consider the surface constructed in
Figure 23, right. Though inward pointing normals can be defined at
all vertices, any non-negative (even infinitesimal) inward movement
of the vertices will introduce “edge-edge” collisions with the original
surface. To see this, consider the set of points inside the polyhedron
that can be "seen" by the central vertex c of the star. This set changes
discontinuously for any motion of c: no matter which direction is
chosen to flow c, there exists some neighbor n such that c loses sight
of not only n, but also an entire neighborhood around n. Therefore
there exists no inward flow of all of the vertices where c maintains
sight with all of its neighbors.

Figure 23: Take every other vertex around the star surface on the left
and rotate it about the origin to create the “origami pinwheel” on
the right. Vertices of this new surface cannot be continuously flowed
inward without creating intersections with the original surface.

http://www.google.com/search?q=A+simple,+fast,+and+effective+polygon+reduction+algorithm
http://www.google.com/search?q=A+simple,+fast,+and+effective+polygon+reduction+algorithm
http://www.google.com/search?q=Air+meshes+for+robust+collision+handling
http://www.google.com/search?q=Preserving+topology+and+elasticity+for+embedded+deformable+models
http://www.google.com/search?q=Preserving+topology+and+elasticity+for+embedded+deformable+models
http://www.google.com/search?q=CLODs:+Dual+hierarchies+for+multiresolution+collision+detection
http://www.google.com/search?q=CLODs:+Dual+hierarchies+for+multiresolution+collision+detection
http://www.google.com/search?q=Sensation+preserving+simplification+for+haptic+rendering
http://www.google.com/search?q=Sensation+preserving+simplification+for+haptic+rendering
http://www.google.com/search?q=Interactive+modeling+of+topologically+complex+geometric+detail
http://www.google.com/search?q=Interactive+modeling+of+topologically+complex+geometric+detail
http://www.google.com/search?q=Progressive+hulls+for+intersection+applications
http://www.google.com/search?q=Progressive+hulls+for+intersection+applications
http://www.google.com/search?q=Interactive+planarization+and+optimization+of+3d+meshes
http://www.google.com/search?q=Interactive+planarization+and+optimization+of+3d+meshes
http://www.google.com/search?q=Algebraic+multigrid
http://www.google.com/search?q=Consistent+volumetric+discretizations+inside+self-intersecting+surfaces
http://www.google.com/search?q=Consistent+volumetric+discretizations+inside+self-intersecting+surfaces
http://www.google.com/search?q=Silhouette+clipping
http://www.google.com/search?q=Interpolating+and+approximating+implicit+surfaces+from+polygon+soup
http://www.google.com/search?q=Interpolating+and+approximating+implicit+surfaces+from+polygon+soup
http://www.google.com/search?q=textscTetGen:+A+3D+delaunay+tetrahedral+mesh+generator
http://tetgen.berlios.de
http://www.google.com/search?q=As-rigid-as-possible+surface+modeling
http://www.google.com/search?q=As-rigid-as-possible+surface+modeling
http://www.google.com/search?q=As-rigid-as-possible+image+registration+for+hand-drawn+cartoon+animations
http://www.google.com/search?q=As-rigid-as-possible+image+registration+for+hand-drawn+cartoon+animations
http://www.google.com/search?q=Mean+curvature+skeletons
http://www.google.com/search?q=Sketch-based+generation+and+editing+of+quad+meshes
http://www.google.com/search?q=Sketch-based+generation+and+editing+of+quad+meshes
http://www.google.com/search?q=A+signal+processing+approach+to+fair+surface+design
http://www.google.com/search?q=A+signal+processing+approach+to+fair+surface+design
http://www.google.com/search?q=Creating+and+simulating+skeletal+muscle+from+the+visible+human+data+set
http://www.google.com/search?q=Creating+and+simulating+skeletal+muscle+from+the+visible+human+data+set
http://www.google.com/search?q=Resolving+surface+collisions+through+intersection+contour+minimization
http://www.google.com/search?q=Resolving+surface+collisions+through+intersection+contour+minimization
http://www.google.com/search?q=Polyhedral+nesting+is+NP-complete
http://www.google.com/search?q=Polyhedral+nesting+is+NP-complete
http://www.google.com/search?q=Curve-skeleton+extraction+using+iterative+least+squares+optimization
http://www.google.com/search?q=Curve-skeleton+extraction+using+iterative+least+squares+optimization
http://www.google.com/search?q=Harmonic+parameterization+by+electrostatics
http://www.google.com/search?q=Defending+continuous+collision+detection+against+errors
http://www.google.com/search?q=Defending+continuous+collision+detection+against+errors
http://www.google.com/search?q=Untangling+cloth+with+boundaries
http://www.google.com/search?q=Untangling+cloth+with+boundaries
http://www.google.com/search?q=Automatic+generation+of+coarse+bounding+cages+from+dense+meshes
http://www.google.com/search?q=Automatic+generation+of+coarse+bounding+cages+from+dense+meshes
http://www.google.com/search?q=Automatic+cage+generation+by+improved+OBBs+for+mesh+deformation
http://www.google.com/search?q=Automatic+cage+generation+by+improved+OBBs+for+mesh+deformation
http://www.google.com/search?q=Semantic+cage+generation+for+fe+mesh+editing
http://www.google.com/search?q=Semantic+cage+generation+for+fe+mesh+editing
http://www.google.com/search?q=Efficient+and+effective+cage+generation+by+region+decomposition
http://www.google.com/search?q=Efficient+and+effective+cage+generation+by+region+decomposition
http://www.google.com/search?q=Signed+distance+fields+for+polygon+soup+meshes
http://www.google.com/search?q=Signed+distance+fields+for+polygon+soup+meshes
http://www.google.com/search?q=The+intersection+contour+minimization+method+for+untangling+oriented+deformable+surfaces
http://www.google.com/search?q=The+intersection+contour+minimization+method+for+untangling+oriented+deformable+surfaces

Appendix B: Pseudocode

Algorithm 2: Shrinkp pC,F q Ñ H

Inputs:
pC Initial coarse mesh (will remain constant)
F Initial fine mesh (possibly overlapping with pC)

Outputs:
H Fine mesh history: H Ð tsFp0q, sFp∆tq, . . . , sFpN∆tqu

begin
H Ð tF u // Initialize history with input fine mesh
while pC does not nest H .last do

∇Φ Ð 0 // Initialize gradients to zero
for each quadrature point spi on H .last do

qÐ closest point to spi on pC

sÐ

"

1 if spi is outside pC
´1 otherwise

// Distance sign

if }spi ´ q} ą 1e-5 then
gÐ spspi ´ qq{}spi ´ q}

else
/* If too close use normal [Baerentzen & Aanaes
2005] */
gÐ npqq

for each vertex j in H .last do
/* wi is the weight of the quadrature point and
λij is the hat function of vertex j evaluated at
quadrature point spi */
∇Φpjq Ð Φpjq ` wiλijg

∆tÐ 1e-3 // Default time step
H .pushpH .last´∆t ¨∇Φ)

Algorithm 3: ReinflatepH, pC,Energyq Ñ C

Inputs:
H Fine mesh history: H Ð tsFp0q, sFp∆tq, . . . , sFpN∆tqu
pC Initial coarse mesh
Energy Function object for re-inflation energy and gradient

Outputs:
C Final nested cage

begin
F0 Ð H .first // Initial fine mesh
F Ð H .pop // Shrunken fine mesh
C Ð pC // Initialize output cage
while H is not empty do

β Ð βinitp “ 1e-2q // Initial step size
Emin Ð8 // Initial minimum energy
UF Ð H .pop´ F // Desired velocities for fine mesh
repeat

UC Ð ´β ∇EnergypF0, C, pCq // —"— coarse mesh
/* Filter velocities, e.g. modified [Brochu & Bridson
2009] or [Ainsley et al. 2012] */
UC Ð FilterpF,UF , C,UCq

if EnergypC `UCq ą Emin then
β Ð β{2 // Decrease step size
if β ă βminp “ 1e-3q then break // No progress

else
C Ð C `UC // Step coarse mesh
Emin Ð EnergypCq // Update energy
β Ð 1.1β // Slightly increase step size

if }UC} ă ∆Cp“ 1e-5q then break // "Converged"
F Ð F `UF // Step fine mesh

