
Multimaterial Mesh-Based Surface Tracking: Supplemental Material

Fang Da∗

Columbia University
Christopher Batty†

University of Waterloo
Eitan Grinspun‡

Columbia University

Abstract

This supplementary document summarizes additional details of our
multimaterial mesh-based surface tracking method, including mul-
timaterial enhancements for collision-safe mesh improvement, ex-
panded discussion of the zipper-based merging used as a compari-
son against snap-based merging, results of two scaling experiments
on our current implementation, and a discussion of the parameters
affecting the behavior of the method.

1 Multimaterial Mesh Improvement

Our multimaterial mesh-based surface tracking algorithm employs
collision-safe, local remeshing [Brochu and Bridson 2009] to main-
tain the quality of the triangle mesh, while preserving intersection-
safety. This is achieved via a set of local multimaterial remeshing
operations which are direct extensions of classic mesh operations,
including edge flipping, edge splitting, edge collapsing, and ver-
tex smoothing. For completeness, we describe the details of these
operations and their multimaterial modifications below.

1.1 Background

Remeshing of surface meshes is a very broad topic, with many ap-
plications and goals. Alliez et al. [2008] provide an overview of
recent developments; we will briefly review work that is relevant to
our setting. We focus on incremental local remeshing, since it al-
lows each remeshing operation to be robustly checked for collision-
safety [Brochu and Bridson 2009]. Various authors have applied
this style of remeshing for surfaces undergoing gradual but large
deformations (or mesh adaptation), and high quality results have
been achieved by considering anisotropy, curvature, and feature-
detection [Wicke et al. 2010; Jiao et al. 2010; Clark et al. 2012;
Narain et al. 2012; Clausen et al. 2013]. We employ uniform reso-
lution isotropic meshes with one particular choice of feature detec-
tion; combining our method with more advanced remeshing strate-
gies is a key future direction. Several authors have also studied
remeshing, subdivision, and fairing targeted at non-manifold sur-
faces [Hubeli and Gross 2000; Ying and Zorin 2001; Zilske et al.
2008; Pellerin et al. 2011].

1.2 Our approach

At each iteration, we perform passes of edge splitting, edge col-
lapsing, edge flipping, and vertex smoothing. We cancel any oper-
ations that would introduce collisions, as well as those that would
yield unacceptably poor quality angles, inverted normals (relative
to the original local patch), tiny-area triangles, and large volume
loss; following Brochu and Bridson [2009] we expose the target an-
gle bounds, edge length bounds, minimum triangle area bound, and
volume change bound as user parameters, as these may be problem-
dependent (see also §3). These bounds are respected by each of our
topological operations as well. (In particular, the maximum volume
change bound should be chosen with this in mind; an overly strict
limit can hinder merging.)

∗e-mail:fang@cs.columbia.edu
†e-mail:christopher.batty@uwaterloo.ca
‡e-mail:eitan@cs.columbia.edu

We detect feature edges by thresholding dihedral angles between
triangle pairs sharing an edge [Botsch and Kobbelt 2004; Dunyach
et al. 2013], rather than analyzing the local quadric metric tensor
[Brochu and Bridson 2009; Jiao et al. 2010]; we found this to be
more robust and intuitive to control, and it extends naturally to the
non-manifold case. We used a threshold of 30◦. Vertices lying
on one or two feature edges are considered to belong to a feature
curve or ridge, and vertices lying on three or more feature edges are
identified as peaks.

1.3 Edge Flipping

The primary subtlety in performing edge flips is to ensure that tri-
angle labeling remains correct, since two consistently labeled trian-
gles sharing a manifold edge may nevertheless have opposing ori-
entations. We pick one of the two incident triangles as a reference
triangle, and use it to construct the resulting flipped two-triangle
patch with the same vertex winding order (i.e., orientation) for both.
The new triangles can then simply be assigned the label of the ref-
erence triangle. To preserve sharp features we disallow flipping of
feature edges, though we do allow flipping of smooth non-feature
edges that connect two feature vertices. We do not perform flip-
ping on non-manifold edges, as this operation is not well-defined in
general. Collision-checking follows Brochu and Bridson [2009].

Rather than flipping based on a Delaunay(-like) criterion, we fol-
low Botsch and collaborators in seeking a mesh with more regular
connectivity [Botsch and Kobbelt 2004; Dunyach et al. 2013]. That
is, we perform flips that drive valences towards six for interior man-
ifold vertices and four for boundary vertices. To handle manifold
patches that border on non-manifold edges and vertices, we sim-
ply ignore triangles that are connected to the patch only through
a non-manifold edge for the purposes of valence-counting, so that
non-manifold vertices are seen as boundary vertices (i.e., with an
ideal valence of four, within the manifold patch in question). We
perform the flip if it reduces the total least squares difference be-
tween the ideal valences and the current valences.

min

4∑
i=1

(
deg(vi)− deg(vi)

opt)2 (1)

In the above, vi is one of the four vertices of the two-triangle patch,
deg indicates the vertex valence (or degree), and deg(vi)

opt is the
optimal valence of vi (either four or six).

1.4 Edge Splitting and Collapsing

Splitting and collapsing of non-manifold edges are straightforward
extensions of the manifold case (Figure 1), and can be checked for
collisions in the same way [Brochu and Bridson 2009]. We use an
upper and lower edge-length bound to trigger splitting and collaps-
ing, respectively. Child triangles created by an edge split inherit
the labels of their parents. Edge collapses do not require relabel-
ing, since the two triangles bordering the edge are deleted and the
surrounding labels remain correct.

To generate smooth new vertex positions when splitting or collaps-
ing, we use the modified butterfly scheme [Zorin et al. 1996; Brochu
and Bridson 2009; Wojtan et al. 2010]. We treat both non-manifold
edges and feature edges in the same manner as Zorin’s original



scheme treats boundary edges. This has two benefits. First, se-
quences of non-manifold or feature edges are subdivided by fitting a
smooth cubic curve, thereby better preserving their shape. Second,
a smooth region separated by a non-manifold curve or sharp feature
curve from an adjacent smooth region uses information only from
the “same side” to perform subdivision; as in the regular bound-
ary edge case, reflection is used to derive ghost-data for “missing”
triangles. This preserves the smoothness of patches on either side,
such as in the case of the sharp intersection curve produced by the
merging of two spheres, seen in our supplemental video. Similarly,
for situations in which two or more surface patches are connected at
only a single non-manifold vertex (i.e., share no edges or triangles),
each patch is treated as a distinct manifold.

When collapsing an edge to a point, we can choose the position
of the final point to be either one of the existing endpoints or a
new point computed using subdivision. In smooth regions, subdi-
vision is preferred, whereas near sharp features selecting one of the
end points better maintains the shape. Following Brochu and Brid-
son [2009], we preserve peak vertices over ridge vertices, and ridge
vertices over smooth non-feature vertices. In our non-manifold set-
ting, when two vertices have the same feature type, we break the tie
by preferring to keep a non-manifold vertex over a manifold one, to
avoid perturbing triple- and higher-order junctions. If two vertices
are equivalent in terms of features and manifoldness, we simply use
the midpoint.

Taken together, these choices minimize the disruption of features
and non-manifold boundaries that collapses can cause. For exam-
ple, even for our simple example of merging of two spheres ex-
panding and shrinking under normal flow, nı̈ve remeshing can cause
the intersection triple-curve to drift substantially, both normally and
tangentially relative to the outer surface.

1.5 Vertex Smoothing

We apply smoothing of vertex positions to improve the shape
of mesh triangles. Because naı̈ve Laplacian smoothing tends to
rapidly destroy volume, particularly in high curvature regions,
we follow previous authors in applying tangential or null-space
smoothing, which removes the normal component of the displace-
ment induced by smoothing [Botsch and Kobbelt 2004; Jiao and
Alexander 2005; Jiao et al. 2010]. For feature ridge vertices,
smoothing-induced displacement perpendicular to the ridge direc-
tion is projected out instead so that smoothing occurs only along
the ridge. For peak vertices, no smoothing is applied. We compute
the vertex normal and ridge direction per Jiao and Bayyana [2008].
No special treatment is required for non-manifold geometry.

For strongly folded geometry (dihedral angles exceeding 165◦) we
instead perform Laplacian vertex smoothing in the average plane
of the fold, as a special case. That is, we find the average nor-
mal of the incident triangles, and project out smoothing perpendic-
ular to that axis. The goal is to widen the angle at the fold, under
the assumption that such very sharp folds correspond to a crease
that is in the process of merging. Treating this case via smoothing
rather than relying entirely on collision-induced merging produces
smoother intersection curves, for example during the initial colli-
sions of spheres undergoing normal flow, as seen in our video.

Smoothing yields an updated position for each vertex; these dis-
placements are treated as pseudo-motions allowing collisions to
be detected and resolved in the same manner as time integration
[Brochu and Bridson 2009].

Split Collapse

Figure 1: Non-manifold edge splits and collapses closely parallel
their manifold counterparts.

1.6 Eliminating Very Poor Triangles

As discussed above, individual remeshing operations are canceled
if they damage features or violate bounds on volume change, areas,
angles, or edge lengths. However, in complex scenarios these po-
tentially conflicting constraints can limit the remesher’s ability to
resolve poor triangles. For example, eliminating a poor quality tri-
angle may require smoothing a vertex in a manner that damages a
feature, or performing a collapse that temporarily introduces a very
small angle. Therefore, if triangles with very poor angles (e.g.,
outside [2◦, 178◦]) remain after our standard remeshing pass, we
turn to a more aggressive strategy: we apply our remeshing opera-
tions on those elements alone while ignoring all quality constraints
except intersection-safety. We found this infrequently invoked fail-
safe to be effective at eliminating poor triangles at the cost of addi-
tional localized regularization.

2 Multimaterial Zipper-based Merging

In the paper, we present a new snap-based merging approach that
performs better than the zipper-based merging of Brochu and Brid-
son [2009]. This section describes how we extended zipper-based
merging to the multimaterial case, in order to provide a valid prac-
tical comparison.

The basic two-material zipper-based merging scheme proceeds as
follows. First, proximate edge-edge pairs are identified, and the
two triangles incident to each edge are deleted. This deletion cre-
ates two quadrilateral holes which are zippered together using eight
new triangles to create a seamless tube connecting the previously
disjoint regions. (Stanculescu et al. [2011] similarly detected prox-
imate vertices and zippered their entire one-rings.) If the connect-
ing tube geometry induces new interpenetrations with itself or the
existing mesh, the operation is canceled to preserve intersection-
safety. We extended this zippering approach to multiple materials
by simply leaving in place and appropriately relabeling one of the
pre-existing two-triangle patches to create the separating interface
(Figure 2).

While generally effective, the resulting zippering process has two
flaws. First, retaining one of the two existing interfaces introduces
a mild asymmetry in the merge operation; this could be corrected
by adding the new separating interface at the midpoint of the tube,
at the cost of additional geometry (i.e., a 16- rather than 8-triangle
tube). More fundamentally, however, zippering relies on colliding
geometries being in relatively ideal alignment in order for the pro-
posed holes to be safely connected. We experimentally observed
that many proposed merges are immediately canceled to preserve
intersection-safety, and in complex collision scenarios there may
simply not be sufficient space to safely zipper at all; this holds true
for both the original two-phase and multimaterial versions. This has
been known to delay or entirely prohibit topology change, leading



Figure 2: Zipper-based merging: Left: Two nearby edges are iden-
tified, with incident triangles in blue. Deleting these triangles pro-
duces a quad-shaped hole in each surface. Middle: If the two outer
materials match, the holes are zippered to form a connecting tube.
Right: If the materials differ, one triangle-pair is preserved and its
labels are modified to keep the two materials separated.

to lingering surface noise in liquid animations [Brochu et al. 2010].
We therefore conclude that zippering’s large edits limit its practical
effectiveness.

3 Simulation Parameters

Our algorithm exposes a set of parameters that control the behavior
of various mesh operations, allowing the method to cope with the
diverse needs of different applications. Some of these parameters
are drawn directly from the original El Topo method [Brochu and
Bridson 2009], while a few are specific to our new multimaterial
setting.

For most of the simulations presented in the paper, we used the fol-
lowing default set of parameter values. Maximum volume change
allowed in any remeshing operation is set to 0.1%L̄3 where L̄ is the
mean of the upper and lower target bounds for edge lengths during
remeshing. The minimum area triangle allowed to be created dur-
ing remeshing is set to 2%L̄2. Vertex separation distance is set to
10%L̄. The range of triangle internal angles allowed to be created
by any remeshing operation is set to [3◦, 177◦]. In addition to edge
length bounds, we also attempt to split edges whose opposing angle
exceeds 160◦. The distance threshold that triggers proximity-based
impulses during collision handling ranged from 10−4L̄ to 10−3L̄.
The distance threshold at which merging is initiated ranged from
10−4L̄ to 2 × 10−2L̄. The merge distance threshold should typi-
cally be set larger than the collision proximity threshold, since oth-
erwise the collision code will act to keep surfaces too far apart to
merge, which would clearly be counterproductive.

While these parameter settings were generally effective there are
clear tradeoffs involved, which is why we chose to expose them
to the user. For example, in situations where smaller perturbations
at T1 transitions are desired, the user can specify a smaller sepa-
ration distance for the vertex separation operation used to resolve
irregular vertices. This reduces the size of the required instanta-
neous mesh modifications at the expense of reduced mesh regu-
larity (i.e., a shorter new edge). Similarly, a low threshold on the
allowable volume change during remeshing operations can better
preserve volume, but requires canceling some operations that may
have lead to better mesh quality.

4 Scaling Study

To experimentally examine how our method’s performance cur-
rently scales with mesh size, we conducted a series of simulations
with identical initial geometry, but varying remeshing resolution,
for two different simulation scenarios:

1. face offsetting on two initially disjoint spheres, and

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

Face count

T
im

e
 (

s
e

c
o

n
d

s
)

slope = 1.07

slope = 1.34

 

 

Mean Curvature Flow

Two Sphere Face−Offsetting

Figure 3: Scaling of the total run time against mesh complexity.

2. mean curvature flow on a cube divided into 20 Voronoi cells.

The total simulation time was recorded for each run and plotted
against the average number of triangles throughout the simulation,
shown in figure 3. The slope of the two fit lines suggest our overall
method scales close to linearly with the number of triangles in the
mesh. We nevertheless hope to improve scaling and extend our
algorithm to even larger examples in the future by investigating
parallelism, spatial adaptivity, and more advanced collision-culling
strategies.

References

ALLIEZ, P., UCELLI, G., GOTSMAN, C., AND ATTENE, M. 2008.
Recent advances in remeshing of surfaces. In Shape Analysis
and Structuring, L. Floriani and M. Spagnuolo, Eds. Springer,
Berlin, 53–82.

BOTSCH, M., AND KOBBELT, L. 2004. A remeshing approach
to multiresolution modeling. In Proceedings of the 2004 Euro-
graphics/ACM SIGGRAPH symposium on Geometry processing,
ACM, New York, 185–192.

BROCHU, T., AND BRIDSON, R. 2009. Robust topological opera-
tions for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4,
2472–2493.

BROCHU, T., BATTY, C., AND BRIDSON, R. 2010. Matching fluid
simulation elements to surface geometry and topology. ACM
Trans. Graph. (SIGGRAPH) 29, 4, 47.

CLARK, B., RAY, N., AND JIAO, X. 2012. Surface mesh opti-
mization, adaption, and untangling with high-order accuracy. In
International Meshing Roundtable, Springer, Berlin, X. Jiao and
J.-C. Weill, Eds., 385–402.

CLAUSEN, P., WICKE, M., SHEWCHUK, J. R., AND O’BRIEN,
J. F. 2013. Simulating liquids and solid-liquid interactions with
Lagrangian meshes. ACM Trans. Graph. 32, 2, 17.

DUNYACH, M., VANDERHAEGHE, D., BARTHE, L., AND
BOTSCH, M. 2013. Adaptive remeshing for real-time mesh



deformation. In Eurographics short papers, Eurographics Asso-
ciation, Girona, Spain, 29–32.

HUBELI, A., AND GROSS, M. 2000. Fairing of non-manifold
models for visualization. In Proceedings of Visualization ’00,
IEEE Computer Society Press, Salt Lake City, Utah, USA, 407–
414.

JIAO, X., AND ALEXANDER, P. J. 2005. Parallel feature-
preserving mesh smoothing. In Proceedings of the 2005 interna-
tional conference on Computational Science and Its Applications
- Volume Part IV, Springer-Verlag, Singapore, 1180–1189.

JIAO, X., AND BAYYANA, N. 2008. Identification of C1 and C2
discontinuities for surface meshes in CAD. Computer Aided De-
sign 40, 2, 160–175.

JIAO, X., COLOMBI, A., NI, X., AND HART, J. 2010. Anisotropic
mesh adaptation for evolving triangulated surfaces. Engineering
with Computers 26, 4, 363–376.

NARAIN, R., SAMII, A., AND O’BRIEN, J. F. 2012. Adaptive
anisotropic remeshing for cloth simulation. ACM Trans. Graph.
(SIGGRAPH Asia) 31, 6, 147.

PELLERIN, J., LÉVY, B., AND CAUMON, G. 2011. Topologi-
cal control for isotropic remeshing of nonmanifold surfaces with
varying resolution: application to 3D structural models. In
IAMG, International Association of Mathematical Geosciences,
Salzburg, Austria, 678–688.

STANCULESCU, L., CHAINE, R., AND CANI, M.-P. 2011.
Freestyle: Sculpting meshes with self-adaptive topology. Com-
puters and Graphics 35, 3, 614–622.

WICKE, M., RITCHIE, D., KLINGNER, B. M., BURKE, S.,
SHEWCHUK, J. R., AND O’BRIEN, J. F. 2010. Dynamic lo-
cal remeshing for elastoplastic simulation. ACM Trans. Graph.
(SIGGRAPH) 29, 4, 49.

WOJTAN, C., THUEREY, N., GROSS, M., AND TURK, G. 2010.
Physically-inspired topology changes for thin fluid features.
ACM Trans. Graph. (SIGGRAPH) 29, 3, 50.

YING, L., AND ZORIN, D. 2001. Nonmanifold subdivision. In
Proceedings of Visualization ’01, IEEE, San Diego, CA, USA,
325 – 332.

ZILSKE, M., LAMECKER, H., AND ZACHOW, S. 2008. Adap-
tive remeshing of non-manifold surfaces. In Eurographics short
papers, Eurographics Association, Crete, Greece.

ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. 1996. Interpo-
lating subdivision for meshes with arbitrary topology. In SIG-
GRAPH 1996, ACM, New Orleans, 189–192.


