
Listening to Sounds of Si lence for Speech Denoising

Motivation
Observation: In a clean speech signal, there is often a pause between each
sentence or word (highlighted in red below). These pauses are exhibited as
silent intervals. In a noisy speech signal, silent intervals exposes pure noise.
With silent intervals over time, all together they assemble a time-varying
picture of background noise, which in turn benefits the denoising process.

Problem: Even with mild noise, silent intervals become hard to detect.
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Dataset & Data Synthesis
Clean speech dataset: We use AVSPEECH, from which we randomly choose
2448 videos and extract their speech audio channels. Among them, we use
2214 videos for training and 234 videos for testing, so the training and testing
speeches are fully separate. All these speech videos are in English, selected on

purpose: as we show on our project website, our model trained on this
dataset can readily denoise speeches in other languages.

Noise dataset: We use two datasets, DEMAND and Google’s AudioSet. Both
consist of environmental noise, transportation noise, music, and many other
types of noises. Our evaluations are conducted on both datasets, separately.

Here are some examples of noise from the noise dataset. Noise 1 is a
stationary (white) noise. Noise 2 is a monologue in a meeting. Noise 3 is party
noise from people speaking and laughing. Noise 4 is street noise from people
shouting with additional traffic noise.

Data synthesis: When synthesizing a noisy input signal, we randomly choose
a signal-to-noise ratio (SNR) from seven discrete values: -10dB, -7dB, -3dB,
0dB, 3dB, 7dB, and 10dB; and by mixing the foreground speech with
properly scaled noise, we produce a noisy signal with the chosen SNR.

Remarks on creating our own datasets: Unlike many previous models which
are trained using existing datasets such as Valentini’s VoiceBank-DEMAND,
we choose to create our own datasets because, 1) Valentini’s dataset has a
noise SNR level in [0dB, 15dB], much narrower than what we encounter in
real-world recordings; 2) although Valentini’s dataset provides several kinds
of environmental noise, it lacks the richness of other types of structured noise
such as music, making it less ideal for denoising real-world recordings.

We propose a neural network that harnesses the time distribution of silent intervals for speech
denoising. Our model has three components: (a) one that detects silent intervals over time, and
outputs a noise profile observed from detected silent intervals; (b) another that estimates the full
noise profile, and (c) yet another that cleans up the input signal.

The first component is dedicated to detecting silent intervals in the input signal. The input to this
component is the spectrogram, 𝑆!, of the input (noisy) signal 𝑥. The output from this network
component is a vector 𝑫(𝑆!). Each element of 𝑫(𝑆!) is a scalar in [0,1], indicating a confidence
score of a small time segment being silent.

𝑫(𝑆!) is then expanded to a longer mask, denoted as 𝑚(𝑥). With this mask, the noise profile '𝑥
exposed by silent intervals are estimated by an element-wise product, namely '𝑥 ≔ 𝑥 ⊙𝑚(𝑥).

Inputs to this component include both the noisy audio signal 𝑥 and the incomplete noise profile
'𝑥. Both are converted by STFT into spectrograms, denoted as 𝑆! and 𝑆 "!, respectively. We view
the spectrograms as 2D images. Estimating the full noise from the noise profile is conceptually
akin to the image inpainting task in computer vision. We denote this process as 𝑵(𝑆! , 𝑆 "!).

Lastly, we clean up the noise from the input signal 𝑥. We use a neural network 𝑹 that takes as
input both the input audio spectrogram 𝑆! and the estimated full noise spectrogram 𝑵(𝑆! , 𝑆 "!). The
output of this component is a vector with two channels which form the real and imaginary parts

of a complex ratio mask 𝐜 ≔ 𝑹 𝑆! , 𝑵 𝑆! , 𝑆 "! in frequency-time domain.

Loss Function

We optimize the following loss function:

ℒ# = 𝔼!~%(!) 𝑵 𝑆! , 𝑆 "! − 𝑆(∗ * + 𝛽 𝑆! ⊙𝑹 𝑆! , 𝑵 𝑆! , 𝑆 "! − 𝑆!∗ *

where 𝑆!∗ and 𝑆(∗ denote the spectrograms of the ground-truth foreground signal and background
noise, respectively. The first term penalizes the discrepancy between estimated noise and the
ground-truth noise, while the second term accounts for the estimation of foreground signal.

(a) The spectrogram of a noisy input signal, which is a superposition of a clean
speech signal (b) and a noise (c). The black regions in (b) indicate ground-truth
silent intervals. (d) The output of the silent interval detection component. (e) The
estimated noise profile using subfigure (a) and (d) as the input to the noise
estimation component. (f) The final denoised spectrogram output.
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SOTA Benchmark

The comparisons are conducted using our datasets with noise from DEMAND and
AudioSet separately. Ours-GTSI (in black) uses ground-truth silent intervals. The
green bar indicates the metric score of the noisy input without any processing.

To compare with SOTA methods, we train our model on Valentini’s DEMAND, the
same dataset used across all methods.


