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Abstract

This paper develops a theory of frequency domain invariants in computer vision. We derive novel

identities using spherical harmonics, which are the angular frequency domain analog to common spatial

domain invariants such as reflectance ratios. These invariants are derived from the spherical harmonic

convolution framework for reflection from a curved surface. Our identities apply in a number of canonical

cases, including single and multiple images of objects under the same and different lighting conditions.

One important case we consider is two different glossy objects in two different lighting environments.

For this case, we derive a novel identity, independent of the specific lighting configurations or BRDFs,

that allows us to directly estimate the fourth image if the other three are available. The identity can also

be used as an invariant to detect tampering in the images.

While this paper is primarily theoretical, it has the potential to lay the mathematical foundations

for two important practical applications. First, we can develop more general algorithms for inverse

rendering problems, which can directly relight and change material properties by transferring the BRDF

or lighting from another object or illumination. Second, we can check the consistency of an image, to

detect tampering or image splicing.

Index Terms

Frequency Domain Invariants, Spherical harmonic identities, Convolution, Inverse rendering, Re-

lighting, Tampering, Image Forensics.

I. I NTRODUCTION

In this paper, we develop a theory of frequency domain invariants in computer vision. This new

class of invariants can address complex materials in complex lighting conditions, for applications

like inverse rendering, image forensics and relighting. Our work extends the widely used spatial

domain theory of invariants [NRN03], [NB96], [JSY03], [DYW05], developing the frequency

domain analogs.

Our analysis is based on the spherical convolution theorem for reflection of distant lighting

from curved objects [BJ03], [RH01]. This theory shows that the reflected light in the frequency

domain is a product of the spherical harmonic coefficients of the lighting signal and BRDF

filter. This product relationship is similar to the spatial product of albedo and irradiance for

textured objects, that has been the basis for a variety of spatial domain invariants such as

reflectance ratios [NB96] and photometric invariants [NRN03]. By exploiting the product form
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of the frequency domain relations, we can derive analogous frequency-domain invariants, but

now for general lighting and reflectance properties.

This paper also describes one of the first applications in computer vision of the spherical

harmonic analysis for complex non-Lambertian materials. In earlier work, [BJ01], [BJ03],

[RH01] have shown that the set of all Lambertian reflectance functions (the mapping from surface

normals to intensities) lies close to a 9D linear subspace for convex objects of known shape lit by

complex distant illumination. This result often enables computer vision algorithms, previously

restricted to point sources without attached shadows, to work in general complex lighting. There

has been considerable work on novel algorithms for lighting-insensitive recognition, photometric

stereo and relighting [BJ03], [BJ01], [HS05], [SFB03], [ZWS05], [WLH03] In graphics, the

general convolution formulae have been used for rendering with environment maps [RH02], and

insights have been widely adopted for forward and inverse rendering (e.g., [RH01], [SKS02]).

However, there has been relatively little work in vision on using the convolution formulae for

glossy objects, even though the frequency analysis [RH01] applies for general materials. The

main goal of this paper is to derive new formulae and identities for direct frequency domain

spherical (de)convolution. Specifically, we make the following theoretical contributions:

Derivation of New Frequency Domain Identities: Our main contribution is the derivation of

a number of new theoretical results, involving a class of novel frequency domain identities. We

study a number of setups, including single (sections IV and V) and multiple (section VI) images

under single and multiple lighting conditions. For example, one important case we consider

(section VI-C) is that of two different glossy1 materials in two different lighting environments

(figure 1). Denote the spherical harmonic coefficients byBlight,material
lm , where the subscripts refer

to the harmonic indices, and the superscripts to the lighting (1 or 2) and object or material (again

1 or 2). We derive an identity for the specular component,B1,1
lm B2,2

lm = B1,2
lm B2,1

lm , directly from

the properties of convolution,independentof the specific lighting configurations or BRDFs.

Analogy between Spatial and Frequency Domain Invariants:By definition, invariants

are insensitive to certain appearance parameters like lighting. They usually transform images

1Parts of the theory (in sections IV and VI) address only purely specular (or purely Lambertian) objects. However, as discussed

in the paper and shown in our results, the theory and algorithms can be adapted in practice to glossy objects having both diffuse

and specular components. Hence, we use the term “glossy” somewhat loosely throughout the paper.
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to a simple feature space where more accurate algorithms can be developed for the task

at hand. Invariants have been previously used mostly for material and lighting insensitive

recognition [NRN03], [NB96]. There has been a substantial body of previous work in developing

spatial domain invariants. Jin et al. [JSY03] derive a constraint on the rank of the radiance tensor

field to do stereo reconstruction for non-Lambertian objects. Nayar and Bolle [NB96] compute

the ratio of intensities at adjacent pixels to derive lighting independent reflectance ratios. Davis

et al. [DYW05] derive a similar BRDF independent ratio. Narsimhan et al. [NRN03] consider a

summation of multiple terms (diffuse plus specular), where each term is a product of material and

geometry. However most of the above methods are limited to point sources [NRN03], [DYW05]

or consider textured Lambertian objects only [NB96].

We show (section VII) that the class of identities derived in this paper can be considered the

analog in the frequency domain of fundamental spatial domain invariants. We consider curved

homogeneous glossy objects instead of textured Lambertian objects. We also assume radially

symmetric BRDFs, a good approximation for most specular reflectance. Moreover, we consider

general complex lighting; by contrast, much of the previous spatial domain theory is limited to

single point sources. Conversely, while our identities operate globally needing the full range of

reflected directions, spatial domain invariants involve mostly local pixel-based operations.

Analysis of Diffuse Irradiance in Reflected Parameterization:Another major contribution

of the paper is the analysis of diffuse irradiance in the reflected parameterization. This analysis

allows us to study objects with both diffuse and specular components in a unified framework. We

show that even with the parameterization by reflected direction, the effects of diffuse irradiance

are limited to low frequencies. To our knowledge, this is the first such combined diffuse plus

specular theory and is likely to have broader implications for other problems in vision.

The theory and novel identities presented in the paper have potential applications in many areas

of vision and graphics like inverse rendering, consistency checking, BRDF-invariant stereo and

photometric stereo or lighting-insensitive recognition. In particular, this paper is motivated by the

following three important practical applications, and seeks to lay the mathematical foundations

in these areas.

Inverse Rendering: Estimation of the BRDF and lighting has been an area of active research

in vision and graphics. Inverse rendering deals with measuring these rendering attributes from
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photographs. Rendering synthetic images by using these measurements from real objects greatly

enhances the visual realism of the rendered images. For example, we estimate illumination from

a single image of a glossy material with known BRDF. By the convolution theorem, a glossy

material will reflect a blurred version of the lighting. It is appealing to sharpen or deconvolve

this by dividing in the frequency domain by the spherical harmonic coefficients of the BRDF.

The basic formula is known [RH01], but cannot be robustly applied, since BRDF coefficients

become small at high frequencies. Our contribution is the adaptation of Wiener filtering [GW03],

[Wie42] from image processing to develop robust deconvolution filters (figures 4 and 12). We

are able to amplify low frequencies to recover the lighting and reduce noise simultaneously.

BRDF/Lighting Transfer: Given images of an object under a sparse set of lighting conditions,

relighting it with novel lighting is an interesting problem. Current methods [MWLT00], [MG97],

[SSI99] require explicit estimation of lighting and BRDF from the images of a scene. [ZWS05],

[WLH03] also use spherical harmonics for face relighting, but they assume Lambertian faces.

This paper presents more general algorithms, which directly relight and change material

properties by transferring the BRDF or lighting from another object or illumination. For example,

consider a simple case where we have images of two different objects in two different lighting

conditions. We derive an identity that enables us to render the fourth light/BRDF image, given the

other three,without explicitly estimating any lighting conditions or BRDFs. A common example

(figure 1) is when we observe two objects in one lighting, and want to insert the second object

in an image of the first object alone under new lighting. It is difficult to apply conventional

inverse rendering methods in this case, since none of the illuminations or BRDFs are known.

Image Consistency Checking and Tampering Detection:The final, newer application, is to

verify image consistency and detect tampering (Johnson and Farid [JF05], Lin et al. [LWTS05]).

The widespread availability of image processing tools enables users to create “forgeries”, e.g.,

by splicing images together (one example is shown in figure 13). Moreover, watermarking is not

usually a viable option in many applications, such as verifying authenticity for news reporting.

However, (in)consistencies of lighting, shading and reflectance can also provide valuable clues.

Most previous work has focused on checking consistency at a signal or pixel level, such as

the camera response [LWTS05], or wavelet coefficients (Ng et al. [NCS04]). But most of

these methods do not exploit consistencies of lighting, shading and reflectance. Johnson and

Farid [JF05] detect inconsistencies in lighting to expose forgeries, but their method is limited to
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Fig. 1. One application of our framework. We are given real photographs of two objects of known geometry (shown in inset;

note that both objects can be arbitrary, and one of them is a sphere here only for convenience). The two objects have different

(and unknown) diffuse and specular material properties. Both objects are present in the first image under complex lighting, but

the cat is not available in the second image, under new lighting.Unlike previous methods, none of the lighting conditions or

BRDFs are known(lightings on left shown only for reference). Our method enables us to render or relight the cat, to obtain its

image in lighting 2 (compare to actual shown on the right). This could be used for example to synthetically insert the cat in the

second image.

point light sources. This paper takes an important first step in laying the theoretical foundations

for this new research direction, by deriving a new class of identities which can be checked to

detect tampering and consistency of lighting and shading in a complex lighting environment. A

limitation of our approach is that our identities require the knowledge of 3D model/geometry of

the object, though such geometry could be available through prior acquisition or estimated from

the images, e.g., based on known shape distributions [BV99].

The rest of this paper is organized as follows. Section 2 briefly explains the spherical

convolution and signal processing framework. Section 3 demonstrates the use of deconvolution

to estimate lighting. In sections 4 and 5, we introduce identities for the simple case of a single

image of an object. Section 6 derives more identities for the case of multiple images. In section 7

we discuss the implications of our theory and its relation to spatial domain invariants. Section 8

gives experimental validation of our theory and shows potential applications. Finally, we conclude

our discussion in section 9 and talk about the future research directions that this work makes

possible. This paper is an extended and detailed version of a paper that was presented at ECCV
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2006 [MRC06].

II. BACKGROUND

We now briefly introduce the spherical convolution and signal-processing framework [BJ03],

[RH01] needed for our later derivations. We start with the Lambertian case,

B(n) =

∫

S2

L(ω) max(n · ω, 0) dω, (1)

whereB(n) denotes the reflected light as a function of the surface normal.B is proportional

to the irradiance (we omit the albedo for simplicity), andL(ω) is the incident illumination. The

integral is over the sphereS2, and the second term in the integrand is thehalf-cosinefunction.

The equations in this paper do not explicitly consider color; the (R,G,B) channels are simply

computed independently. A similar mathematical form holds for other radially symmetric BRDFs,

such as the Phong model for specular materials. In the specular2 case, we reparameterize by the

reflected directionR (the reflection of the viewing ray about the surface normal), which takes

the place of the surface normal. For the Phong model, the reflection equation becomes:

B(R) =
s + 1

2π

∫

S2

L(ω) max(R · ω, 0)s dω, (2)

wheres is the Phong exponent, and the BRDF is normalized (by(s + 1)/2π).

If we expand in spherical harmonicsYlm(θ, φ), using spherical coordinatesω = (θ, φ),

n or R = (α, β), andρ(θ) for the (radially symmetric) BRDF kernel, we obtain

L(θ, φ) =
∞∑

l=0

l∑

m=−l

LlmYlm(θ, φ) B(α, β) =
∞∑

l=0

l∑

m=−l

BlmYlm(α, β) ρ(θ) =
∞∑

l=0

ρlYl0(θ).

(3)

It is also possible to derive analytic forms and good approximations for common BRDF filtersρ.

For the Lambertian case, almost all of the energy is captured byl ≤ 2. For Phong and Torrance-

Sparrow models of specular reflection, good approximations [RH01] are Gaussians:exp[−l2/2s]

for Phong, andexp[−(σl)2] for Torrance-Sparrow, whereσ is the surface roughness parameter

in the Torrance-Sparrow model, ands is the Phong exponent.

In the angular (vs. angular frequency) domain, equations 1 and 2 represent rotational

convolution of lighting with BRDF. The BRDF can be thought of as the filter, while the lighting

2“Specular” will always be used to mean generally glossy, including but not restricted to mirror-like.
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is the input signal. This allows us to relate them multiplicatively in the angular frequency domain

(convolution theorem). In the frequency domain, the reflected lightB is given by a simple product

formula or spherical convolution (see [BJ03], [RH01] for the derivation and an analysis of this

convolution),

Blm = ΛlρlLlm = AlLlm, (4)

where for convenience, we define the normalization constantΛl as

Λl =

√
4π

2l + 1
Al = Λlρl. (5)

It is also possible to extend these results to non-radially symmetric general isotropic

BRDFs [RH01]. For this case, we must consider the entire 4D light field, expressed as a function

of both orientation and outgoing direction,

Blmpq = Λlρlq,pqLlm, (6)

where the reflected light field is now expanded in a mixed basis of representation matrices and

spherical harmonics, and has four indices because it is a 4D quantity. The 3D isotropic BRDF

involves an expansion over both incoming and outgoing directions. The new indicesp and q

correspond to the spherical harmonic indices for the expansion over outgoing angles (analogous

to the indicesl andm used for the lighting).

The remainder of this paper derives new identities and formulae from equation 4,Blm =

AlLlm. Most glossy BRDFs (such as Torrance-Sparrow) are approximately radially symmetric,

especially for non-grazing angles of reflection [RH01], [RH02]. Most of the theory in this paper

also carries over to general isotropic materials, as per equation 6, if we consider the entire light

field. Another reason to focus on equation 4, is that it is simple and allows practical spherical

harmonic computations from only asingle image—a single view of a sufficiently curved object

(assuming a distant viewer) sees all reflected directions.3

3In case we do not have the full range of normals, we can use multiple cameras. As we move the camera (viewer) the same

point on the object now corresponds to a different reflected direction. Hence we can get all the reflected directions even if the

object has only a partial set of normals by the careful placement of cameras.
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III. K NOWN BRDF: DECONVOLUTION TO ESTIMATE L IGHTING

Lighting estimation is a specific example of the general inverse rendering problem. Given a

single image and BRDF of known geometry and homogenous material, we want to estimate the

directional distribution of the incident light. This information can then be used to insert new

objects in the scene, alter the lighting of the object or check lighting consistency between two

objects. Since reflected light is a spherical convolution of lighting and BRDF, it makes sense

to deconvolve it to estimate lighting. We present a deconvolution algorithm for curved surfaces

under complex lighting. Section III-A describes the basic deconvolution idea and introduces

an ideal deconvolution filter. We then discuss the properties of this filter for Phong-like BRDFs

in section III-B. Section III-C describes the Wiener filter used to regularize the inverse filter so

that it can be used for practical purposes. Finally, we show the results of applying this filter in

section III-D.

A. Deconvolution - Basic Idea

Given a single image of a curved surface, we can map local viewing directions to the reflected

direction, determiningB(R), and thenBlm by taking a spherical harmonic transform. If the

material includes a diffuse component as well as specular, we use the dual lighting estimation

algorithm of Ramamoorthi and Hanrahan [RH01], which estimates the specularBlm consistent

with the diffuse component. As per equation 4,Blm will be a blurred version of the original

lighting, filtered by the glossy BRDF.

From equation 4 in the spherical harmonic domain, we derive

Llm =
Blm

Al

= Al
−1Blm, (7)

where the last identity makes explicit that we are convolving (in the angular domain) with a new

radially symmetric kernelA−1
l , which can be called the inverse, sharpening or deconvolution

filter. A−1
l effectively amplifies high frequencies to recover blurred out details.

B. Analysis of Inverse Phong Filter

We now discuss the properties of the angular form of the inverse filter. Surprisingly, not

much work has been done to analyze this filter in detail. For simplicity, we will use the Fourier
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transform rather than spherical harmonics. We will illustrate that the properties discussed in the

Fourier domain are also valid for spherical harmonics.

We use the inverse Phong filter for our analysis. As mentioned earlier, a Gaussianexp[−l2/2s]

gives a good approximation for Phong reflection, wheres is the Phong exponent. So, the inverse

Phong filter can be approximated byexp[l2/2s]. Note that this analysis also applies to the

Torrance-Sparrow approximation by substitutings = 1/2σ2. Since the filter becomes large at

high frequencies, leading to amplification of the noise, we need to truncate it first to a cut-off

frequencyr. The inverse Fourier transform of this truncated filter is

f(x; r, s) =

∫ r

−r

e
u2

2s e2πixudu (8)

Puttingu =
√

2sv

f(x; r, s) =
√

2s

∫ r√
2s

− r√
2s

ev2

e2
√

2sπivxdv

f(x; r, s) =
√

2sg(
√

2sx,
r√
2s

), (9)

g(x; k) =

∫ k

−k

et2e2πitxdt (10)

g(x; k) is the inverse Fourier transform of the cannonical filterexp[t2] truncated atk and is

independent of Phong exponents. Going fromf to g is just the application of the Fourier Scale

Theorem. LetH(u) be the Fourier transform ofh(x).

h(x) ↔ H(u)

Then, the Fourier scale theorem states that

h(ax) ↔ 1

| a |H(
u

a
)

In our casea = 1√
2s

. The frequenciesu of the cannonical filterexp[u2] get scaled by 1√
2s

. By

the Fourier scale theorem, this means thatx gets scaled by
√

2s in the spatial domain. Hence

f(x; r, s) is just the spatially scaled version ofg(x; k). g(x; k) can be further analyzed to give

g(x; k) =
2πek2

k
n(kx,

π

k
), (11)

n(α, β) =

∫ ∞

α

eβ2(α2−u2)sin(2πu)du (12)
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Fig. 2. Left: f , g andn functions for two different values of frequency cut-offr. As r increases,f becomes more and more

oscillatory with period1
r
. The period ofn however does not change.Right: (g) shows that the amplitude off (at x = 0)

increases exponentially withr2. The log-log plot (h) of amplitude off vs. x is a straight line with slope -1, showing that the

filter falls off as 1
x

.

A detailed derivation is given in Appendix A. Plots forf(x; r, s), g(x; k) andn(α, β) are shown

in figure 2(a)-(f). Herek andr are related to each other byk = r√
2s

.

n(α, β) can be considered as a normalized form of the inverse filter and is independent of both

Phong exponents and cut-off frequencyr. We now make some important empirical observations

aboutn(α, β). For fixedβ, it has the shape of a damped sinusoid with a period of1 in α. This

insight comes from a large number of plots, only two representative examples of which we have

shown (figure 2(c,f)). We have also found out that the variation in peak amplitude ofn (at α = 0)

is small for differentβ. Moreover, the amplitude ofn falls off as 1
α
.

We now discuss some important properties off(x; r, s).
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1) Periodicity: : Sincen has period1 in α, g(x; k) has period1
k

4(from equation 11). From

equation 9,

Period of f(x; r, s) =
1√
2s
∗ Period of g(x; k)

=
1√
2s
∗ 1

k

=
1√
2s
∗
√

2s

r

=
1

r
(13)

So as cut-off frequencyr increases, the filter becomes more and more oscillatory (figure 2(a,d)).

2) Peak Amplitude: :We now discuss the effect of cut-off frequencyr and Phong exponent

s on the peak amplitude of the filterf (which occurs atx = 0). From equations 9 and 11,

the peak amplitude introduced due to frequency cut-offr and Phong exponents is
√

2s ek2

k
∗

Peak Amplitude of n. Since the variation in peak amplitude ofn is small for differentβ, we

can neglect it in comparison to other terms. Hence the peak amplitude is approximately

√
2s

ek2

k
≈ 2se

r2

2s

r
(14)

As r increases, the peak amplitude grows almost exponentially,as can be seen from figure 2(g).

3) Amplitude Fall-off: : The amplitude fall-off inx of f(x; r, s) is the same as that of

n(α, β) in α. Figure 2(h) shows that the log-log plot of amplitude fall-off forf(x; r, s) is a

straight line withslope = −1. Hence the amplitude off(x; r, s) falls off as 1
x
.

C. Wiener Regularization

Section III-B shows that it is difficult to apply equation 7 directly and that we need

regularization. From the analysis of section III-B and figure 2, it is clear that simply cutting

off high frequencies makes the filter more oscillatory and causes an increase in amplitude,

resulting in substantial ringing and amplification of noise. Choosing a lower cut-off results in

a loss of all the high frequencies, even if they could be somewhat recovered, and we still have

substantial residual ringing.

4We call them “periodic”, in the sense of the periodicity of the damped sinusoid shape they have.

DRAFT



13

Fig. 3. Left: Wiener filters in the frequency domain. (a) shows the Wiener filters for different values ofK for a Phong BRDF

(s = 100). Note that the maximum occurs atl∗ =
q

log( 1
Ks ), the value beingA∗

max

l = 1

2
√

K
. K = 0 (magenta graph) is

the ideal inverse Phong filter and can be approximated byexp[l2/2s]. Note that this filter attains very large values for large

frequencies. (b) shows the result of applying the Wiener filters back to the original Phong filter (blue graph in b) to see which

frequencies are let through. Most frequencies are let through without attenuation, while very high frequencies are filtered out.

Without Wiener filtering, it should be one everywhere.Right: Wiener filters in the angular domain. Note the decrease in

oscillations as we increase the value ofK (c,e and d,f). Also the period of the filter decreases with increasing Phong exponent

s (c,d and e,f).

These types of problems have been well studied in image processing, where a number of

methods for deconvolution have been proposed. We adapt Wiener filtering [GW03], [Wie42]

for this purpose. Assuming spectrally white noise, we define a new inverse filter,

A∗
l =

1

Al

( | Al |2
| Al |2 +K

)
=

Al

| Al |2 +K
Llm = Al

∗Blm, (15)

whereK is a small user-controlled constant5. When | Al |2À K, the expression in parentheses

on the left is close to1, andA∗
l ≈ A−1

l . When | Al |2¿ K, A∗
l ≈ Al/K.

Figure 3 shows the Wiener filter in the spatial and frequency domains for a Phong BRDF with

different Phong exponents andK values. Note the smooth fall-off of the filter in the frequency

5Wiener filters are widely used in image restoration. There,K is the ratio of the power spectral density (PSD) of the undegraded

image (without blur) and the PSD of the noise. In our case, the BRDF plays the role of the blurring function and henceK

needs to be defined suitably. In fact, it needs to be estimated from the image. Finding the optimalK value is one of the difficult

issues in applying Wiener filters. For now, we do not attempt to estimate it, and instead use a user-specified constant.
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Fig. 4. (a): Original synthetic image (Phong BRDF with exponents = 100, diffuse Kd = 2 and specularKs = 1) with

noise—close examination of (a),(b) will reveal the noise.Top row: We recover (c) much of the “ECCV” text in the original

lighting (d). Previous techniques (b) can estimate only a blurred result. Note that top and bottom rows show a closeup of the

sphere.Bottom row: We can use the recovered illumination to create a new rendering of a high-frequency material (f). This

compares well with the actual result (g); a previous method (e) creates a very blurred image.

domain. Differentiating equation 15 with respect toAl reveals thatA∗
l attains its maximum value

of A∗max

l = 1
2
√

K
at Amax

l =
√

K. We can think of the corresponding value ofl at this maximum

as the cut-off frequencyl∗ of the filter. For a Phong filter approximated asexp[−l2/2s], this

corresponds to the cut-off frequencyl∗ =
√

log( 1
Ks ). K = 0 (magenta graph) is the ideal inverse

Phong filter and can be approximated byexp[l2/2s]. Note that this filter attains very large values

for large frequencies. For a givens, asK increases,l∗ decreases and hence more and more of

the higher frequencies get truncated. (b) shows the result of applying the Wiener filters back

to the original Phong filter (blue graph in b) to see which frequencies are let through. Most

frequencies are let through without attenuation, while very high frequencies are filtered out.

Note that without Wiener filtering, it should be equal to1 everywhere. (c)-(f) shows these filters

in the angular domain. Inreasing the value ofK (c,e and d,f) decreases the amplitude of the filter

and makes it less oscillatory, thus decreasing the ringing effects. A similar behavior was noted

when choosing a lower cut-off frequency in section III-B; however, with Wiener filtering the

ringing is substantially more damped. Increasing the Phong exponents (c,d and e,f) decreases

the periodicity of the filter.
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Fig. 5. Lighting estimation for different values ofK with the synthetic ECCV sphere of figure 4. The ideal inverse Phong filter

is very high for large frequencies resulting in the amplification of noise (K = 0 case). AsK increases, more and more high

frequencies get attenuated, resulting in a decrease in ringing due to noise. However, note that the amount of blurring increases

with K.

D. Lighting Estimation in Frequency Domain

The top row in figure 4 shows the results (on the synthetic noisy sphere in (a)) of deconvolution

(c)—the “ECCV” text used in the lighting (d) can be recovered fairly clearly. One interesting

point is the effect of noise. In our case, the image in a glossy surface is already low pass filtered

(because of the BRDF), while any noise usually has much higher frequency content, as seen

in the original synthetic image (a). The filter in equation 15 is a low-pass filter, though the

cuttoff can be set high for low-noise. The amplification at very low frequencies is small. Mid

range frequencies are amplified substantially while high frequencies are reduced (because of

the inherent regularization). Hence, we cansimultaneously deconvolve the lighting and suppress

noise(compare the noise in (c) with that in (a) or (b)). Figure 5 shows the lighting estimation for

different values ofK. The ideal inverse Phong filter is very high for large frequencies resulting

in the amplification of noise (K = 0 case). AsK increases, more and more high frequencies

get attenuated, resulting in a decrease in ringing due to noise. However, note that the amount of

blurring increases withK. Figure 12 shows an application of our method with real data and a

geometrically complex object.

It is also interesting to compare our results to previous techniques. Angular-domain approaches

are usually specialized to point lights, use higher-frequency information like shadows (Sato

et al. [SSI99]) or recover large low-frequency lighting distributions (Marschner and Green-

berg [MG97]). Even the more precise dual angular-frequency lighting estimation technique of

Ramamoorthi and Hanrahan [RH01] can obtain only a blurred estimate of the lighting (b). The

result of applying the latter approach is clearly seen in the bottom row of figure 4, where [RH01]

produces a blurred image (e) when trying to synthesize renderings of a new high-frequency

DRAFT



16

material, while we obtain a much sharper result (f).

IV. T HEORETICAL ANALYSIS: SINGLE IMAGE OF ONEOBJECT WITH SPECULARBRDF

We now carry out our theoretical analysis and derive a number of novel identities for image

consistency checking and relighting. We structure the discussion from the simplest case of a

single image of one object in this section, to more complex examples in section VI—two objects

in the same lighting, the same object in two lighting conditions, and finally two (or many) objects

in two (or many) lighting conditions. Deconvolution, discussed in section III is a special single

image case where we know the BRDF of the object but lighting is unknown. In this section we

discuss the converse case, where the lighting is known, but the BRDF is unknown. The objects

are assumed to be purely specular. We then present a general theory for objects with both diffuse

and specular components in the next section.

We show that for radially symmetric specular BRDFs, described using equation 4, we can

eliminatethe BRDF to derive an identity that must hold and can be checkedindependent of the

BRDF. This is the first of a number of frequency domain identities we will derive in a similar

fashion. First, from equation 4, we can write

Al =
Blm

Llm

. (16)

This expression could be used to solve for BRDF coefficients6. However, we will use it in a

different way. Our key insight is that the above expression is independent ofm, and must hold

for all m. Hence, we can eliminate the (unknown) BRDFAl, writing

Bli

Lli

=
Blj

Llj

(17)

for all i and j. Moving terms, we obtain our first identity,

BliLlj −BljLli = 0. (18)

In effect, we have found a redundancy in the structure of the image, that can be used to

detect image tampering or splicing. The lightingL and imageB are functions on a 2D

6Since natural lighting usually includes higher frequencies than the BRDF, we can apply equation 16 directly without

regularization, and do not need to explicitly discuss deconvolution. However, note that we have assumed a purely specular

BRDF. The next section does derive a new robust formula (equation 23) for BRDF estimation whenboth diffuse and specular

components are present.
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Fig. 6. Left: The synthetic images used. These correspond to closeups of specular spheres rendered with “ECCV” and “ICCV”

lighting. To the naked eye, the two images look very similar.Middle and Right: The graphs show that our identity can clearly

distinguish consistent image/lighting pairs (lower line) from those where lighting and image are inconsistent (upper line).

(spherical) domain. However they are related by a 1D radially symmetric BRDF, leading to

a 1D redundancy7, that can be used for consistency checking in equation 18.

To normalize identities in a[0...1] range, we always use an error of the form

Error =
| BliLlj −BljLli |
| BliLlj | + | BljLli | .

There are many ways one could turn this error metric into a binary consistency checker or

tamper detector. Instead of arbitrarily defining one particular approach, we will show graphs of

the average normalized error for each spherical harmonic order.

Figure 6 applies our theory to synthetic data of an ideal Phong BRDF, with noise added.

We show closeups of spheres generated with “ECCV” and “ICCV” lighting. To the naked eye,

these look very similar, and it is not easy to determine if a given image is consistent with

the lighting. However, our identity in equation 18 clearly distinguishes between consistent (i.e.,

the image is consistent with the lighting [ECCV or ICCV] it is supposed to be rendered with)

and inconsistent illumination/image pairs. As compared to Johnson and Farid [JF05], we handle

general complex illumination. Moreover, many of the identities in later sections work directly

with image attributes, not even requiring explicit estimation or knowledge of the illumination.

However, all our identities require the explicit knowledge of 3D models/geometry of the object.

Figure 7 shows the results on a synthetic sphere with Blinn-Phong BRDF (specular lobe).

In general, the convolution theorem of equation 4 does not hold for Blinn-Phong because it

7The frequency space identity in this section (equation 18) cannot be derived for the known BRDF case, since the lighting is

not radially symmetric and therefore cannot be eliminated.
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Fig. 7. Left: Grace cathedral lighting environment.Middle: Sphere rendered with Blinn-Phong BRDF,(N.H)s, s = 500.

Right: Single image identity value for the rendered sphere. For low frequencies (shown here), the BRDF filter is essentially

symmetric, and the identity values are small.

is not symmetric about the reflected direction. However, it can be shown that the BRDF filter

is essentially symmetric for low frequenciesl. Equation 18 holds for small frequencies but

breaks down for high frequencies. So the identities in this and later sections are robust to small

dissymmetries in the BRDF (e.g., low frequency symmetry), but with narrower operating range.

Our framework could be used to blindly (without watermarking) detect tampering of images,

making sure a given photograph (containing a homogeneous object of known shape) is consistent

with the illumination it is captured in.8 To the best of our knowledge, ours is the first theoretical

framework to enable these kinds of consistency checks. Example applications of tamper detection

on real objects are shown in figures 11 and 13.

Finally, it should be noted that if we are given the full light field (all views) instead of simply

a single image, a similar identity to equation 18 holds for general BRDFs that need not be

radially symmetric. In particular, based on equation 6, a similar derivation gives

BlipqLlj −BljpqLli = 0. (19)

For the rest of this paper, we will not explicitly write out the form of the identities for general

light fields, but it should be understood that similar properties can be derived for general isotropic

BRDFs and light fields for most of the formulae we discuss here.

8Our identities are “necessary” conditions for image consistency, under our assumptions and in the absence of noise. They

are not theoretically “sufficient”. For example, if an unusual material were to zero out a certain frequency, tampering at that

frequency might go undetected. Also note that noise tends to add high frequencies, while materials tend to filter out high

frequencies, causing the consistency errors to rise (become less reliable) with harmonic order.
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V. SINGLE IMAGE: COMBINING DIFFUSE AND SPECULAR

We now consider the more general case of an unknown glossy BRDF with both specular

and Lambertian (diffuse) reflectance. To our knowledge, this is the first such combined diffuse

plus specular theory of the single image case, and the analysis (such as equations 20 and 23) is

likely to have broader implications for other problems in vision, such as photometric stereo and

lighting-insensitive recognition.

A. Common Parameterization

The major technical difficulty is that while both diffuse (Lambertian) and specular components

are radially symmetric, they are so in different parameterizations (normal vs reflected direction).

An important technical contribution of this paper is to express the diffuse irradiance in the

reflected parameterization,

Blm = KdDlm + Aspec
l Llm. (20)

The parameters of reflectance are the diffuse coefficientKd and the specular BRDF filter

coefficients Al (we drop the superscript from now on).Dlm are the spherical harmonic

coefficients of the irradiance written in the reflected parameterization. They depend linearly

on the lighting coefficientsLlm (assumed known) asDlm ≈ ∑2
n=0 ALamb

n LnmTlmn, with

Tlmn =
∫

S2 Ynm(α
2
, β)Y ∗

lm(α, β) dΩ. The α/2 in the first term converts from normal to reflected

parameterization.9

The coefficientsTlmn can be determined analytically or numerically, since the formulae for

Ynm and Y ∗
lm are well known. Plots forDlm and Tlmn are shown in figure 8 for a particular

complex natural lighting environment. Sincen ranges from0 to 2 for Lambertian reflectance,

m varies from−2 to +2, so we can safely neglect terms with|m| > 2 or |n| > 2. Moreover,

for l ≥ 2, we find thatTlmn either vanishes or falls off rapidly asl−3/2 or l−5/2. Hence, though

somewhat more complex, Lambertian effects in the reflected parameterization are still relatively

simple and low frequency. Please see Appendix B for a more detailed derivation.

9We would like to emphasize that the reflected parameterization is not directly related to Rusinkiewicz’s half-angle

parameterization [Rus98]. In fact, the convolution theorem does not hold for the half-angle parameterization.
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Fig. 8. (a),(b): Dlm plots for low and high frequencies. Note thatDlm coefficients are small for|m| > 2 and hence can be

safely neglected.(c): Tlmn plot. Tlmn falls off rapidly asl−3/2 or l−5/2 for l ≥ 2.

B. DeterminingKd and Image Consistency:

We now seek to eliminateAl from equation 20 to directly estimateKd for inverse rendering

and reflectance estimation.

As before,Al can be eliminated by considering different values ofm,

Bli −KdDli

Lli

=
Blj −KdDlj

Llj

=⇒ Kd =
BliLlj −BljLli

DliLlj −DljLli

. (21)

Since the above equation is true for alll,i,j, we also get an identity that must hold for anyl,

i and j, and can be used for image consistency checking,

Bl1iLl1j −Bl1jLl1i

Dl1iLl1j −Dl1jLl1i

=
Bl2mLl2n −Bl2nLl2m

Dl2mLl2n −Dl2nLl2m

. (22)

C. DeterminingAl and Image Consistency:

Equivalently, we can eliminateKd,

Bli − AlLli

Dli

=
Blj − AlLlj

Dlj

=⇒ Al =
BliDlj −BljDli

LliDlj − LljDli

. (23)

This can be used to directly estimate the specular BRDF coefficients, irrespective of the diffuse

coefficientKd. As a sanity check, consider the case whenKd = 0. In this case,Bli = AlLli, so

the expression above clearly reduces toAl. Hence, equation 23 can be considered a new robust

form of reflectance estimation that works for both purely specular and general glossy materials.

Further note that we estimate an accuratenon-parametricBRDF representation specified by

general filter coefficientsAl.
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Fig. 9. Left: Synthetic sphere image with both diffuse (Kd set to 1) and specular (taken from measurements of a real material)

components.Middle: Image consistency checks (equation 24) can distinguish small inconsistencies between illumination and

image (“ECCV” vs “ICCV” lighting). Right: For estimation ofAl, our approach gives accurate results, outperforming a

parametric estimation technique.

Since the formula above is true for alli, j, we get an identity for image consistency,

BliDlj −BljDli

LliDlj − LljDli

=
BlmDln −BlnDlm

LlmDln − LlnDlm

. (24)

Figure 9 shows these ideas applied to a synthetic sphere with both diffuse and specular

components. In this case, we used as inputAl from measurements of a real material, and they

do notcorrespond exactly to a Phong BRDF. Hence, our technique recovers the specular BRDF

somewhat more accurately than a comparison method that simply does nonlinear estimation

of Phong parameters. We also show image consistency checks similar to those in the previous

section, using equation 24. As in the previous section, we can distinguish small inconsistencies

between lighting and image. An application to detect splicing for a real object is shown in the

left graph of figure 13.

VI. T HEORETICAL ANALYSIS: TWO MATERIALS AND /OR L IGHTING CONDITIONS

Section IV analyzed the single object, single image case. In this section10, we first consider

two different objects (with different materials) in the same lighting. Next, we consider one object

imaged in two different lighting conditions. Then, we consider the two lighting/two BRDF case

corresponding to two images (in different lighting conditions), each of two objects with distinct

BRDFs. In the next section, we will discuss some broader implications.

10This section will primarily discuss the purely specular case. For consistency checking, we have seen that in the reflective

reparameterization, the diffuse component mainly affects frequenciesDlm with |m| ≤ 2. Therefore, it is simple to check the

identities for|m| > 2. Diffuse relighting is actually done in the spatial domain, as discussed in section VII. Section VIII provides

experimental validation with objects containing both diffuse and specular components.
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A. Two Objects/BRDFs: Same Lighting

We consider a single image (hence in the same lighting environment) of two objects, with

different BRDFs. Let us denote by superscripts1 or 2 the two objects,

B1
lm = A1

l Llm B2
lm = A2

l Llm. (25)

From these, it is possible to eliminate the lighting by dividing,

B2
lm

B1
lm

=
A2

l

A1
l

= γl. (26)

We refer toγl as theBRDF transfer function. Given the appearance of one object in complex

lighting, multiplication of spherical harmonic coefficients by this function gives the appearance

of an object with a different material.γl is independentof the lighting condition, and can be

used in any (unknown) natural illumination. Also note that this function isindependent ofm,

so we can average over allm, which makes it very robust to noise—in our experiments, we

have not needed any explicit regularization for the frequencies of interest. Moreover, we do

not need to know or estimate the individual BRDFs. It is not clear that one can derive such a

simple formula, or bypass explicit lighting/reflectance estimation, in the spatial/angular domain.

Section VI-C will explore applications to rendering.

It is also possible to use these results to derive a frequency space identity thatdepends only

on the final images, and does not require explicit knowledge of either the lighting condition or

the BRDFs.We know that equation 26 should hold for allm, so

B2
li

B1
li

=
B2

lj

B1
lj

=⇒ B2
liB

1
lj −B1

liB
2
lj = 0. (27)

This identity can be used for consistency checking, making sure that two objects in an image

are shaded in consistent lighting. This enables detection of inconsistencies, where one object

is spliced into an image from another image with inaccurate lighting. Also note that the single

image identity (equation 18) is just a special case of equation 27, where one of the objects is

simply a mirror sphere (so, for instance,B1 = L).

B. Two Lighting Environments: Same Object/BRDF

We now consider imaging the same object in two different lighting environments. Let us again

denote by superscripts1 or 2 the two images, so that,

B1
lm = AlL

1
lm B2

lm = AlL
2
lm. (28)
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Again, it is possible to eliminate the BRDF by dividing,

B2
lm

B1
lm

=
L2

lm

L1
lm

= L
′
lm. (29)

We refer to L
′
lm as the lighting transfer function.Given the appearance of an object in

lighting condition 1, multiplication of spherical harmonic coefficients by this function gives the

appearance in lighting condition 2.L
′
lm is independentof the reflectance or BRDF of the object.

Hence, the lighting transfer function obtained from one object can be applied to a different object

observed in lighting condition 1. Moreover, we never need to explicitly compute the material

properties of any of the objects, nor recover the individual lighting conditions.

The relighting application does not require explicit knowledge of either lighting condition.

However, if we assume the lighting conditions are known (unlike the previous subsection, we

need the lighting known here since we cannot exploit radial symmetry to eliminate it), equation 29

can be expanded in the form of an identity,

B2
lmL1

lm −B1
lmL2

lm = 0. (30)

This identity can be used for consistency checking, making sure that two photographs of an

object in different lighting conditions are consistent, and neither has been tampered.

C. Two MaterialsandTwo Lighting Conditions

Finally, we consider the most conceptually complex case, where both the lighting and materials

vary. This effectively corresponds to two images (in different lighting conditions), each containing

two objects of different materials. We will now use two superscripts, the first for the lighting

and the second for the material.

Lighting 1 Lighting 2

BRDF 1 B1,1
lm = A1

l L
1
lm B2,1

lm = A1
l L

2
lm

BRDF 2 B1,2
lm = A2

l L
1
lm B2,2

lm = A2
l L

2
lm

Simply by multiplying out and substituting the relations above, we can verify the basic identity

discussed in the introduction to this paper,

B1,1
lm B2,2

lm = B1,2
lm B2,1

lm = A1
l A

2
l L

1
lmL2

lm, (31)
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or for the purposes of consistency checking,

B1,1
lm B2,2

lm −B1,2
lm B2,1

lm = 0. (32)

An interesting feature of this identity is that we have completely eliminated all lighting and

BRDF information. Consistency can be checked based simply on the final images, without

estimating any illuminations or reflectances. Note that if the second object is a mirror sphere,

this case reduces to the two lightings, same BRDF case in equation 30.

Equation 31 also leads to a simple framework for estimation. The conceptual setup is that we

can estimate the appearance of the fourth lighting/BRDF image (without loss of generality, say

this isB2,2
lm ), given the other three,without explicitly computing any illumination or reflectances.

Clearly, this is useful to insert the second object into a photograph where it wasn’t present

originally, assuming we’ve seen both objects together under another lighting condition. From

equation 31, we have

B2,2
lm =

B1,2
lm B2,1

lm

B1,1
lm

(33)

= B1,2
lm (

B2,1
lm

B1,1
lm

) = B1,2
lm L

′
lm (34)

= B2,1
lm (

B1,2
lm

B1,1
lm

) = B2,1
lm γl. (35)

This makes it clear that we can visualize the process of creatingB2,2
lm in two different ways.

Figure 10 further illustrates the two approaches. One way (a) is to start withanotherobject in the

samelighting condition, i.e.B2,1
lm and apply the BRDF transfer functionγl. The BRDF transfer

function is found from the image of both objects in lighting condition2. Alternatively (b), we

start with thesameobject in another lighting conditionB1,2
lm and apply the lighting transfer

function L
′
lm obtained fromanother object. In practice, we prefer using the BRDF transfer

function (equation 35), sinceγl is more robust to noise. This is because,γl is independent of

m. Hence for a givenl, we can average over different values ofm, thus reducing the noise in

the coefficients. In contrast, the lighting transfer functions are more sensitive to noise. Certain

frequency modes in the source image might be suppressed, leading to division by zero in the

lighting transfer function. Hence, the image (e), obtained using lighting transfer functionL
′
lm
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Fig. 10. Top Row: Shows two different approaches for image relighting. We can either use BRDF Transfer function (a) or

Lighting Transfer function (b). All the spheres are synthetic, with Lighting 1 being St. Peters environment map and Lighting 2

Grace Cathedral. We have used Phong BRDF, with Phong exponents = 500 for object 1 ands = 100 for object 2. Bottom

Row: Comparison of spheres generated using two approaches with actual sphere. Sphere (e) generated using Lighting Transfer

has artifacts (note the ringing) whereas the sphere (c) generated using BRDF Transfer matches closely with the acutal sphere

(d).

has artifacts, whereas the one (c), obtained by using BRDF transfer functionγl is consistent

with actual image (d) due to robustness ofγl to noise.

The idea of estimating the fourth light/BRDF image, given the other three, has some conceptual

similarity to learning image analogies [HJO+01]. However, we are considering a convolution of

lighting and BRDF, while image analogies try to synthesize images by rearranging input pixels,

irrespective of the physics, and cannot achieve the desired result in general. Sincenoneof the

lightings or BRDFs are known, it would also be very difficult to renderB2,2
lm with alternative

physics-based inverse rendering methods.

VII. I MPLICATIONS AND DISCUSSION

We now briefly discuss some of the broader implications of our theory. First, we extend

the two BRDF/two lighting case to multiple lighting conditions and BRDFs. Then, we discuss

spatial domain setups and identities analogous to our frequency domain analysis. Finally, we
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show how many previous spatial domain algorithms and invariants can be considered special

cases, extensions or variants of this general class of identities.

A. Multiple lighting conditions and BRDFs

Let us considerp lighting conditions andq BRDFs, instead of assumingp = q = 2, with

superscriptsi ≤ p and j ≤ q, so that

Bi,j
lm = Aj

l L
i
lm =⇒ Blm = LlmAT

l , (36)

where in the last part, for a given spherical harmonic index(l, m), we regardBlm as anp ×
q matrix obtained by multiplying column vectorsLlm (p × 1), corresponding to the lighting

conditions, and the transpose ofAl (q × 1), corresponding to the BRDFs.

Equation 36 makes it clear that there is arank 1 constrainton thep×q matrixBlm. Section VI-

C has considered the special casep = q = 2, corresponding to a2× 2 matrix, where the rank 1

constraint leads to a single basic identity (equation 32). In fact, equation 32 simply states that

the determinant of the singular2× 2 matrix Blm is zero.

B. Spatial Domain Analog

Equation 36 expresses the image of a homogeneous glossy material in thefrequency domainas

aproductof lighting and BRDF. Analogously, a difficult to analyze frequency domain convolution

corresponds to a simple spatial domain product. For example, the image of a textured Lambertian

surface in thespatial domainis a productof albedoρk and irradianceEk, wherek denotes the

pixel.

Bi,j
k = ρj

kE
i
k =⇒ Bk = Ekρ

T
k . (37)

Equation 37 has the same product form as the basic convolution equation (Blm = AlLlm).

Hence an identity similar to equation 32 holds in the angular domain for textured Lambertian

objects.

B1,1
diffuse(θ, φ)B2,2

diffuse(θ, φ) = B1,2
diffuse(θ, φ)B2,1

diffuse(θ, φ) (38)

The BRDF transfer functionγ(θ, φ) is just the ratio of diffuse albedos and is constant for

homogeneous objects.

These identities enable spatial domain techniques for re-rendering the diffuse component

(which in our case has constant albedo since the material is homogeneous), while still using
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the frequency domain for the specular component. In order to separate the diffuse and specular

components from the images, we observe that in a parameterization by surface normals,Blm

will have essentially all of its diffuse energy forl ≤ 2, while the specular energy falls away

much more slowly [RH02], and therefore mostly resides inl > 2. So we assume that

Bdiffuse(θ, φ) ≈
2∑

l=0

l∑

m=−l

BlmYlm(θ, φ) (39)

But a single image gives information only for a hemisphere of surface normals, so we cannot

directly calculateBlm for the normal parameterization. Spherical harmonics do not form a linearly

independent basis for the hemisphere. We pose the diffuse computation as a fitting problem where

we want to findBlm, l ≤ 2 that best fits the hemisphere. We solve a system of equationsAX = B

corresponding to equation 39, whereA is anN × 9 matrix of Ylm computed atN sample points

on the hemisphere,X is a 9 × 1 matrix of the corresponding 9Blm coefficients andB is an

N × 1 matrix of irradiance at sample points. The specular component can then be handled as

discussed in the previous section and the diffuse component can be computed using equation 38.

The diffuse computation is more stable in the angular domain than in the spherical harmonics

domain. This method is used in all our rendering examples. As expected, our practical results

work less well for the extremes when the specular intensity is very small relative to the diffuse

component (in the limit, a purely Lambertian surface) or vice versa (a purely specular object).

C. Analogies with Previous Spatial Domain Results

While the exact form of, and rank 1 constraint on, equation 37 is not common in previous work,

many earlier spatial domain invariants and algorithms can be seen as using special cases and

extensions thereof. We briefly discuss some prominent results in our framework, also describing

our analogous frequency domain results. In this way, we provide a unified view of many spatial

and frequency domain identities, that we believe confers significant insight.

Reflectance ratios [NB96] are widely used for recognition. The main observation is that at

adjacent pixels, the irradiance is essentially the same, so that the ratio of image intensities

corresponds to the ratio of albedos. Using superscripts for the different pixels as usual (we do

not need multiple super- or any subscripts in this case), we haveB2/B1 = ρ2/ρ1. The analogous

frequency domain result is equation 26, corresponding to the two BRDFs, same lighting case.
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In both cases, by dividing the image intensities or spherical harmonic coefficients, we obtain a

result independent of the illumination.

Similarly, a simple version of the recent BRDF-invariant stereo work of Davis et al. [DYW05]

can be seen as the two lighting, same BRDF case. For fixed view and point source lighting,

a variant of equation 37 still holds, where we interpretρj
k as the (spatially varying) BRDF for

pixel k and fixed view, andEi
k as the (spatially varying) light intensity at pixelk. If the light

intensity changes (for the same pixel/BRDF), we haveB2/B1 = E2/E1. The frequency domain

analog is equation 29. In both cases, we haveeliminated the BRDFby dividing image intensities

or spherical harmonic coefficients.

Narasimhan et al. [NRN03] also assume point source lighting to derive photometric invariants

in the spatial domain—note that our frequency domain framework, by contrast, easily handles

general complex lighting. Narasimhan et al. [NRN03] consider a variant of equation 37 with

a summation of multiple terms (such as diffuse plus specular). For each term,ρ encodes a

material property such as the diffuse albedo, whileE encodes the illumination intensity and

geometric attributes (such as a cosine term for diffuse or a cosine lobe for specular). Their

work can be seen as effectively deriving a rank constraint onB, corresponding to the number

of terms summed. For diffuse objects, this is a rank 1 constraint, analogous to that in the

frequency domain for equation 36. For diffuse plus specular, this is a rank 2 constraint. They

then effectively use the rank constraint to form appropriate determinants that eliminate either

material or geometry/lighting attributes, as in our frequency domain work. Jin et al. [JSY03]

employ a similar rank 2 constraint for multi-view stereo with both Lambertian and specular

reflectance.

Finally, we note that while there are many analogies between previous spatial domain identities

and those we derive in the spherical/angular frequency domain,some of our frequency domain

results have no simple spatial domain analog.For example, the concept of angular radial

symmetry does not transfer to the spatial domain, and there is no known spatial analog of

the identities in equations 18, 19, 22, 24, and 27.

VIII. E XPERIMENTAL VALIDATION AND RESULTS

We now present some experiments to validate the theory, and show potential applications. We

start with diffuse plus specular spheres in figure 11, since they correspond most closely with
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our theory. We then describe results with a complex cat geometry (figures 1, 12 and 13). All of

these results show that the theory can be applied in practice with real data, where objects are not

perfectly homogeneous, there is noise in measurement and calibration, and specular reflectance

is not perfectly radially symmetric.

Experimental Setup

We ordered spheres from http://www.mcmaster.com. The cat model was obtained at a local

craft sale. All objects were painted to have various specular finishes and diffuse undercoats.

While homogeneous overall, small geometric and photometric imperfections on the objects were

visible at pixel scale and contributed “reflection noise” to the input images. To control lighting,

we projected patterns onto two walls in the corner of a room. We placed a Canon EOS 10D

camera in the corner and photographed the objects at a distance of 2-3m from the corner (see

top left of figure 11). This setup has the advantage of more detailed frontal reflections, which

are less compressed than those at grazing angles. However, frontal lighting also gives us little

information at grazing angles, where the BRDF might violate the assumption of radial symmetry

due to Fresnel effects; we hope to address this limitation in future experiments. To measure the

lighting, we photographed a mirror sphere. To measure BRDFs (only for deconvolution), we

imaged a sphere under a point source close to the camera, determiningAl by simply reading

off the profile of the highlight, andKd by fitting to the diffuse intensity. For all experiments,

we assembled high-dynamic range images.

Glossy Spheres

Figure 11 shows the two lighting, two materials case. The top right shows a relighting

application. We assume (b1) is unknown, and we want to synthesize it from the other 3

lighting/BRDF images (a1,a2,b2). We also do the same for rendering (b2) assuming we know

(a1,a2,b1). The results are visually quite accurate, and in fact reduce much of the noise in the

input. Quantitatively, theL1 norm of the errors for (b1) and (b2) are9.5% and6.5% respectively.

In the bottom row, we tamper (b2) by using image processing to squash the highlight slightly.

With the naked eye, it is difficult to detect that image (c) is not consistent with lighting 2 or the

other spheres. However, all three identities discussed in the previous section correctly detect the

tampering.
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Fig. 11. Top Left: Experimental setup.Top Middle: Two lightings (shown only for reference) and images of two glossy

(diffuse plus specular) spheres in that lighting.Top Right: We can accurately render (b1), given (a1,a2,b2), and render (b2),

given (a1,a2,b1).Bottom: We tamper (b2) to generate (c) by squashing the specular highlights slightly in photoshop. While

plausible to the naked eye, all three identities in section VI clearly indicate the tampering (red graphs).

Complex Geometry

For complex (mostly convex) known geometry, we can map object points to points on

the sphere with the same surface normal, and then operate on the resulting spherical image.

Deconvolution is shown in figure 12. We used a sphere painted with the same material as the

cat to aquire both the cat geometry, using example-based photometric stereo [HS05] for the

normals, and the BRDF (needed only for deconvolution). Errors (unrelated to our algorithm)

in the estimated geometry lead to some noise in the mapping to the sphere. Our deconvolution

method for lighting estimation substantially sharpens the reflections, while removing much of the

input noise. Moreover, our results are consistent with taking the actual lighting and convolving

it with the product of the BRDF and Wiener spherical harmonic filters.

The cat can also be used directly as an object for relighting/rendering and consistency checking.

An example of rendering is shown in figure 1. TheL1 norm of the error is somewhat higher than
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Fig. 12. Deconvolution on a real cat image.Left: Geometry estimation, using example-based photometric stereo (we take a

number of images with the cat and example sphere; the sphere is also used to find the BRDF).Middle: Input image under

unknown lighting, and mapping to a sphere using the surface normals.Right: Closeups, showing the original sphere map, and

our deconvolved lighting estimate on top. This considerably sharpens the original, while removing noise, and resembles the

BRDF*Wiener filter applied to the actual lighting (bottom row).

Fig. 13. Image consistency checking for cat (labels are consistent with figure 1). The tampered image (c) is obtained by

splicing the top half (b1) under lighting 1 and the bottom half (b2) under lighting 2. Image (c) looks quite plausible, but the

splicing is clearly detected by our identities.

in figure 11, at12%, primarily because this is a much more challenging example. We are using

the BRDF transfer function from a much lower-frequency material to a higher-frequency one—

the blue sphere has a much broader specular lobe than the green cat. Moreover, inaccuracies in

the normal estimation (not part of our algorithm) lead to some visible contouring in the results.

Nevertheless, we see that the results are visually plausible. Note that, even though our theory

requires the full range of normals in the image in order to calculate the spherical harmonics

transform, in practice it works well even when the estimated normals are noisy or some of the

normals are missing.

Figure 13 illustrates photomontage image tampering, in which the top half under lighting 1
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(b1 in figure 1) is spliced with the bottom half under lighting 2 (b2 in figure 1). While the image

(c) looks plausible in itself, the identities for both single and multiple images clearly detect the

tampering.

For image consistency checking, our identities require explicit knowledge of 3D geometry,

as well as a homogeneous object. However, increasingly good methods exist to acquire this

geometry from a single image, both without and with minimal user assistance [ZPSS02],

[OCDD01]. Moreover, diffuse and specular components can be separated automatically with

modern techniques to handle textured objects [MZB06]. Finally, many of the applications of

image consistency checking are focused on changes and inconsistencies to the appearance of

known objects like human faces, where it is easy to find generic 3D models—or with the

increasing popularity of 3D scanners, even an actual 3D model and appearance model of the

subject. Famous recent examples of digital forgeries or touchups are the darkening of the OJ

Simpson photograph on the Time magazine cover11, and a recent forged image of John Kerry

and Jane Fonda appearing together12(their faces were composited with inconsistent lighting).

Our theoretical framework provides a solid foundation for applying practical image consistency

checks to determine consistency of lighting and shading in these scenarios.

IX. CONCLUSIONS ANDFUTURE WORK

In this paper, we have introduced a new theoretical framework for using spherical convolution

and deconvolution in inverse rendering, BRDF/lighting transfer and image consistency checking.

The main contribution is the set of new frequency domain invariants, which represent fundamental

identities following from the convolution theorem. These identities often eliminate the lighting

and/or BRDF, enabling a new class of inverse rendering algorithms that can relight or change

materials by using BRDF/lighting transfer functions, without explicit illumination or BRDF

estimation. In the future, similar ideas may be applied to other problems, such as BRDF-invariant

stereo and photometric stereo, or lighting-insensitive recognition. The theoretical framework also

makes a contribution to the relatively new area of image consistency checking, describing a

suite of frequency domain identities to detect tampering and other undesirable image processing

11http://www.authentichistory.com/diversity/african/images/1994OJ SimpsonTime Magazine.html

12http://www.snopes.com/photos/politics/kerry2.asp
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operations. We have also presented a new unified view of spatial and frequency domain identities

and rank constraints, that can give insight for developing future algorithms in either, or even a

combination of both domains.

In the future, from a theoretical perspective, we want to develop a framework for operating on

local subsets of the entire image, corresponding to small portions of the full sphere of directions.

From a practical perspective, we want to better understand the sensitivity of our identities—

initial tests indicate they are fairly robust, but more work needs to be done. We wish to apply

our algorithms in more complex cases like faces where the geometry is not known accurately,

and where objects may not be perfectly convex. We would also like to handle textured objects

by automatic diffuse/specular separation methods [MZB06]. We believe that the theory may also

lead to the construction of better light probes where we can replace the mirror sphere by a

sphere of general material and hence bypass the serious issues like dynamic range associated

with current light probes.

In summary, we see this paper as introducing the basic theory, that can lead to much future

theoretical and practical work in inverse rendering and image consistency checking.
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