
FontCode: Embedding Information in Text Documents using Glyph
Perturbation
CHANG XIAO, CHENG ZHANG, and CHANGXI ZHENG, Columbia University

!"#!$

"%&'()*)+,)

-!$$

.!/"01#&$

!"#!$!"#!$!

"%&'()*)+,)

-!$$

.!.!. /"01#&$/"01#&$/

3

3

4 4
3

3

2

3 4
4 3

!"#$!"

Fig. 1. Augmented poster. Among many applications enabled by our FontCode method, here we create a poster embedded with an unobtrusive optical
barcode (le�). The poster uses text fonts that look almost identical from the standard Times New Roman, and has no traditional black-and-white barcode
pa�ern. But our smartphone application allows the user to take a snapshot (right) and decode the hidden message, in this case, a Youtube link (middle).

We introduce FontCode, an information embedding technique for text docu-
ments. Provided a text document with speci�c fonts, our method embeds
user-speci�ed information in the text by perturbing the glyphs of text char-
acters while preserving the text content. We devise an algorithm to choose
unobtrusive yet machine-recognizable glyph perturbations, leveraging a
recently developed generative model that alters the glyphs of each charac-
ter continuously on a font manifold. We then introduce an algorithm that
embeds a user-provided message in the text document and produces an en-
coded document whose appearance is minimally perturbed from the original
document. We also present a glyph recognition method that recovers the
embedded information from an encoded document stored as a vector graphic
or pixel image, or even on a printed paper. In addition, we introduce a new
error-correction coding scheme that recti�es a certain number of recognition
errors. Lastly, we demonstrate that our technique enables a wide array of
applications, using it as a text document metadata holder, an unobtrusive
optical barcode, a cryptographic message embedding scheme, and a text
document signature.

CCS Concepts: • Computing methodologies → Image processing; • Ap-
plied computing→ Text editing; Document metadata;

ACM acknowledges that this contribution was authored or co-authored by an employee,
or contractor of the national government. As such, the Government retains a nonexclu-
sive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only. Permission to make digital or hard copies for personal
or classroom use is granted. Copies must bear this notice and the full citation on the
�rst page. Copyrights for components of this work owned by others than ACM must
be honored. To copy otherwise, distribute, republish, or post, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
0730-0301/2017/12-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Additional Key Words and Phrases: Font manifold, glyph perturbation, error
correction coding, text document signature

ACM Reference format:
Chang Xiao, Cheng Zhang, and Changxi Zheng. 2017. FontCode: Embedding
Information in Text Documents using Glyph Perturbation.ACMTrans. Graph.
1, 1, Article 1 (December 2017), 16 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Information embedding, the technique of embedding a message into
host data, has numerous applications: Digital photographs have
metadata embedded to record such information as capture date,
exposure time, focal length, and camera’s GPS location. Watermarks
embedded in images, videos, and audios have been one of the most
important means in digital production to claim copyright against
piracies [Bloom et al. 1999]. And indeed, the idea of embedding
information in light signals has grown into an emerging �eld of
visual light communication (e.g., see [Jo et al. 2016]).

In all these areas, information embedding techniques meet two
desiderata: (i) the host medium is minimally perturbed, implying
that the embedded message must be minimally intrusive; and (ii)
the embedded message can be robustly recovered by the intended
decoder even in the presence of some decoding errors.

Remaining reclusive is the information embedding technique for
text documents, in both digital and physical form. While explored
by many previous works on digital text steganography, information
embedding for text documents is considered more challenging to

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

1:2 • Xiao, C. et al

meet the aforementioned desiderata than its counterparts for im-
ages, videos, and audios [Agarwal 2013]. This is because the “pixel”
of a text document is individual letters, which, unlike an image pixel,
cannot be changed into other letters without causing noticeable
di�erences. Consequently, existing techniques have limited infor-
mation capacity or work only for speci�c digital �le formats (such
as PDF or Microsoft Word).
We propose FontCode, a new information embedding technique

for text documents. Instead of changing text letters into di�erent
ones, we alter the glyphs (i.e., the particular shape designs) of their
fonts to encode information, leveraging the recently developed con-
cept of font manifold [Campbell and Kautz 2014] in computer graph-
ics. Thereby, the readability of the original document is fully re-
tained. We carefully choose the glyph perturbation such that it has
a minimal e�ect on the typeface appearance of the text document,
while ensuring that glyph perturbation can be recognized through
Convolutional Neural Networks (CNNs). To recover the embedded
information, we develop a decoding algorithm that recovers the
information from an input encoded document—whether it is repre-
sented as a vector graphics �le (such as a PDF) or a rasterized pixel
image (such as a photograph).
Exploiting the features speci�c to our message embedding and

retrieval problems, we further devise an error-correction coding
scheme that is able to fully recover embedded information up to a
certain number of recognition errors, making a smartphone into a
robust FontCode reader (see Fig. 1).

Applications. As a result, FontCode is not only an information
embedding technique for text documents but also an unobtrusive
tagging mechanism, �nding a wide array of applications. We demon-
strate four of them. (i) It serves as a metadata holder in a text doc-
ument, which can be freely converted to di�erent �le formats or
printed on paper without loss of the metadata—across various dig-
ital and physical forms, the metadata is always preserved. (ii) It
enables to embed in a text unobtrusive optical codes, ones that can
replace optical barcodes (such as QR codes) in artistic designs such
as posters and �yers to minimize visual distraction caused by the
barcodes. (iii) By construction, it o�ers a basic cryptographic scheme
that not only embeds but also encrypts messages, without resorting
to any additional cryptosystem. And (iv) it o�ers a new text signa-
ture mechanism, one that allows to verify document authentication
and integrity, regardless of its digital format or physical form.

Technical contributions. We propose an algorithm to construct a
glyph codebook, a lookup table that maps a message into perturbed
glyphs and ensures the perturbation is unobtrusive to our eyes. We
then devise a recognition method that recovers the embedded mes-
sage from an encoded document. Both the codebook construction
and glyph recognition leverage CNNs. Additionally, we propose an
error-correction coding scheme that recti�es recognition errors due
to factors such as camera distortion. Built on a 1700-year old num-
ber theorem, the Chinese Remainder Theorem, and a probabilistic
decoding model, our coding scheme is able to correct more errors
than what block codes based on Hamming distance can correct,
outperforming their theoretical error-correction upper bound.

2 RELATED WORK
We begin by clarifying a few typographic terminologies [Campbell
and Kautz 2014]: the typeface of a character refers to a set of fonts
each composed of glyphs that represent the speci�c design and
features of the character. With this terminology, our method embeds
messages by perturbing the glyphs of the fonts of text letters.

Font manipulation. While our method perturbs glyphs using the
generative model by Campbell and Kautz [2014], other methods
create fonts and glyphs with either computer-aided tools [Rugglcs
1983] or automatic generation. The early system by [Knuth 1986]
creates parametric fonts and was used to create most of the Com-
puter Modern typeface family. Later, Shamir and Rappoport [1998]
proposed a system that generate fonts using high-level parametric
features and constraints to adjust glyphs. This idea was extended to
parameterize glyph shape components [Hu and Hersch 2001]. Other
approaches generate fonts by deriving from examples and tem-
plates [Lau 2009; Suveeranont and Igarashi 2010], similarity [Lovis-
cach 2010] or crowdsourced attributes [O’Donovan et al. 2014]. Re-
cently, Phan et al. [2015] utilize a machine learning method trained
through a small set of glyphs in order to synthesize typefaces that
have a consistent style.

Font recognition. Automatic font recognition from a photo or
image has been studied [Avilés-Cruz et al. 2005; Jung et al. 1999;
Ramanathan et al. 2009]. These methods identify fonts by extracting
statistical and/or typographical features of the document. Recently
in [Chen et al. 2014], the authors proposed a scalable solution lever-
aging supervised learning. Then, Wang et al. [2015] improved font
recognition using Convolutional Neural Networks. Their algorithm
can run without resorting to character segmentation and optical
character recognition methods. In our work, we use existing algo-
rithms to recognize text fonts of the input document, but further
devise an algorithm to recognize glyph perturbation for recovering
the embedded information. Unlike existing font recognition meth-
ods that identify fonts from a text of many letters, our algorithm
aims to identify glyph perturbation for individual letters.

Text steganography. Our work is related to digital steganography
(such as digital watermarks for copyright protection), which has
been studied for decades, mostly focusing on videos, images, and
audios—for example, we refer to [Cheddad et al. 2010] for a compre-
hensive overview of digital imaging steganography. However, digital
text steganography is much more challenging [Agarwal 2013], and
thus much less developed. We categorize existing methods based
on their features (see Table 1):
Methods based on cover text generation (CTG) hide a secret

message by generating an ad-hoc cover text which looks lexically
and syntactically convincing [Wayner 1992, 2009]. However, this
type of steganography is unable to embed messages in existing text
documents. Thus, they fail to meet the attribute that we call cover
text preservation (CP), and have limited applications.
The second type of methods exploits format-speci�c features

(FSF). For example, speci�cally forMicrosoftWord document, Bhaya
et al. [2013] assign each text character a di�erent but visually similar
font available in Word to conceal messages. Others hide messages
by changing the character scale and color or adding underline styles

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

FontCode: Embedding Information in Text Documents using Glyph Perturbation • 1:3

Category Previous work Attribute
CP FGC FI PP

CTG [Agarwal 2013;
Wayner 2009]

X X X

SP

[Alattar and Alattar
2004; Brassil et al. 1995;
Gutub and Fattani 2007;
Kim et al. 2003]

X X X

FSF

[Bhaya et al. 2013;
Chaudhary et al. 2016;
Panda et al. 2015; Rizzo
et al. 2016]

X X

Our work X X X X
Table 1. A summary of related text steganographic methods. CP indicates
cover text preservation; FGC indicates fine granularity coding; FI indicates
format-independent; PP indicates printed paper.

in a document [Panda et al. 2015; Stojanov et al. 2014], although
those changes are generally noticeable. More recent methods exploit
special ASCII codes and Unicodes that are displayed as an empty
space in a PDF viewer [Chaudhary et al. 2016; Rizzo et al. 2016].
These methods are not format independent (FI); they are bounded
to a speci�c �le format (such as Word or PDF) and text viewer. The
concealed messages would be lost if the document was converted
in a di�erent format or even opened with a di�erent version of the
same viewer. If also fails to preserve the concealed message when
the document is printed on paper (PP) and photographed later.
More relevant to our work is the family of methods that embed

messages via what we call structural perturbations (SP). Line-shift
methods [Alattar and Alattar 2004; Brassil et al. 1995] hide infor-
mation by perturbing the space between text lines: reducing or
increasing the space represents a 0 or 1 bit. Similarly, word-shift
methods [Brassil et al. 1995; Kim et al. 2003] perturb the spaces be-
tween words. Others perturb the shape of speci�c characters, such
as raising or dropping the positions of the dots of “i” and “j” [Brassil
et al. 1995]. These methods cannot support �ne granularity cod-
ing (FGC), in the sense that they encode 1 bit in every line break,
word break or special character that appears sparsely. Our method
provides �ne granularity coding by embedding information in indi-
vidual letters, and thereby has a much larger information capacity.
In addition, all these methods demonstrate retrieval of hidden mes-
sages from digital document �les only. It is unclear to what extent
they can decode from real photos of text.

Table 1 summarizes these related work and their main attributes.
Like most of these work, our method aims to perturb the appearance
of the text in an unobtrusive, albeit not fully imperceptible, way. But
our method is advantageous by providing more desired attributes.

3 OVERVIEW
Our FontCode system embeds in a text document any type of infor-
mation as a bit string. For example, an arbitrary text message can be

Times New Roman

Perturbed Glyphs

Co
nc

ea
lm

en
t

Ex
tra

cti
on

Extracted Glyph

Pr
ob

ab
ility

Font Manifold

0

1 2

34

0 1 2 3 4

Fig. 2. Embedding and extraction. Here we sample 5 points around the
Times New Roman on the manifold (le�), generating the perturbed glyphs
to embed integers (top-right). We embed “1” in le�er “a” using the second
glyph (in orange) in the perturbation list. In the retrieval step, we evaluate
a probability value (inverse of distance) by our CNNs (bo�om-right), and
extract the integer whose glyph results in the highest probability.

coded into a bit string using the standard ASCII code or Unicode1.
We refer to such a bit string as a plain message.

In a text document, the basic elements of embedding a plain
message are the letters, appearing in a particular font. Our idea is
to perturb the glyph of each letter to embed a plain message. To
this end, we leverage the concept of font manifold proposed by
Campbell and Kautz [2014]. Taking as input a collection of existing
font �les, their method creates a low-dimensional font manifold
for every character—including both alphabets and digits—such that
every location on this manifold generates a particular glyph of that
character. This novel generative model is precomputed once for
each character. Then, it allows us to alter the glyph of each text
letter in a subtle yet systematic way, and thereby embed messages.

It is worth noting that our method does not depend on speci�cally
the method of [Campbell and Kautz 2014], and other font generative
models can also be used to generate glyph perturbations in our work.
In this paper, when there is no confusion, we refer to a location u
on a font manifold and its resulting glyph interchangeably.

3.1 Message Embedding
Our message embedding method consists of two steps, (i) precompu-
tation of a codebook for processing all documents and (ii) runtime
embedding of a plain message in a given document.
During precomputation, we construct a codebook of perturbed

glyphs for typically used fonts. Consider a font such as Times New
Roman. Each character in this font corresponds to a speci�c location,
ū, on the font manifold. We identify a set of locations on the man-
ifold as the perturbed glyphs of ū and denote them as {u0,u1, . . .}
(see Fig. 2). Our goal in this step is to select the perturbed glyphs
such that their di�erences from the glyph ū of the original font is
almost unnoticeable to our naked eyes but recognizable to a com-
puter algorithm (detailed in §4). The sets of perturbed glyphs for all
characters with typically used fonts form our codebook.
At runtime, provided a text document (or a text region or para-

graphs), we perturb the glyph of the letter in the document to embed
a given plain message. Consider a letter in an original glyph ū in the
given document. Suppose in the precomputed codebook, this letter
has N perturbed glyphs, namely {u0,u1, . . . ,uN�1}. We embed in
the letter an integer i in the range of [0,N) by changing its glyph
from ū to ui (see Fig. 2-top). A key algorithmic component of this

1See the character set coding standards by the Internet Assigned Numbers Authority
(http://www.iana.org/assignments/character-sets/character-sets.xhtml)

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

1:4 • Xiao, C. et al

126 73 85 47 96 ...
Scanning
Screenshot

Photo

Hello World

Message

Original Document

Concealment

Steganographic Document

126 73 85 47 96 ... Hello World

MessageConceal

Re
co

ve
r

7 3 4 8 5

...

,

,

.

,

,

.
Bi i

i
i i
i i

i

,

,

.

Fig. 3. Overview. (le�) Our embedding method takes an input message and a text document. It encodes the message into a series of integers and divides
the le�ers into blocks. The integers are assigned to each block and embedded in individual le�ers. (right) To recover the message, we extract integers by
recognizing the glyphs of individual le�ers. Then, the integers are decoded into the original plain message.

step is to determine the embedded integers for all letters such that
together they encode the plain message.
In addition, we propose a new error-correcting coding scheme

to encode the plain message. This coding scheme adds certain re-
dundancy (i.e., some extra data) to the coded message, which, at
decoding time, can be used to check for consistency of the coded
message and recover it from errors (see §5).

3.2 Message Retrieval
To retrieve information from a coded text document, the �rst step
is to recover an integer from each letter. For each letter in the
document, suppose again this letter has N perturbed glyphs in
the codebook, whose manifold locations are {u0,u1, . . . ,uN�1}. We
recognize its glyph u 0 in the current document as one of the N

perturbed glyphs. We extract an integer i if u 0 is recognized as
ui (see Fig. 2-bottom). Our recognition algorithm works with not
only vector graphics documents (such as those stored as PDFs) but
also rasterized documents stored as pixel images. For the latter, the
recognition leverages convolutional neural networks.

The retrieved integers are then fed into our error correction cod-
ing scheme to reconstruct the plain message. Because of the data
redundancy, even if some glyphs are mistakenly recognized (e.g.,
due to poor image quality), those errors will be recti�ed and we will
still be able to recover the message correctly (see §5). The embedding
and retrieval process is summarized in Fig. 3.

4 GLYPH RECOGNITION
We start by focusing on our basic message embedding blocks: in-
dividual letters in a text document. Our goal in this section is to
embed an integer number in a single letter by perturbing its glyph,
and later retrieve that integer from a vector graphics or pixel image
of that letter. In the next section, we will address what integers to
assign to the letters in order to encode a message.
As introduced in §3.1, we embed an integer in a letter through

glyph perturbation, by looking up a precomputed codebook. Later,
when extracting an integer from a letter, we compute a “distance”
metric between the extracted glyph and each perturbed glyph in
{u0, . . . ,uN�1} in the codebook; we obtain integer i if the “distance”
of glyph ui is the smallest one.
Our recognition algorithm supports input documents stored as

vector graphics and pixel images. While it is straightforward to

recognize vector graphic glyphs, pixel images pose signi�cant chal-
lenges due to camera perspectives, rasterization noise, blurriness,
and so forth. Our initial attempt used various template matching
methods (e.g., [Dogan et al. 2015]), but they easily become error-
prone when image quality and camera perspective are not ideal.

In this section, we �rst describe our algorithm that decodes inte-
gers from rasterized (pixel) glyphs. This algorithm leverages convo-
lutional neural networks (CNNs), which also allow us to systemati-
cally construct the codebook of perturbed glyphs. Next, we describe
the details of embedding and extracting integers, as well as a simple
algorithm for recognizing vector graphic glyphs.

4.1 Pixel Image Preprocessing
When a text document is provided as a pixel image, we use the
o�-the-shelf optical character recognition (OCR) library to detect
individual letters. Our approach does not depend on any particular
OCR library. In practice, we choose to use Tesseract [Smith 2007],
one of the most popular open source OCR engines. In addition to
detecting letters, OCR also identi�es a bounding box of every letter
on the pixel image.
To recognize the glyph perturbation of each letter using CNNs,

we �rst preprocess the image. We crop the region of each letter
using its bounding box detected by the OCR. We then binarize the
image region using the classic algorithm by Otsu [1975]. This step
helps to eliminate the in�uence caused by the variations of lighting
conditions and background colors. Lastly, we resize the image region
to have 200⇥200 pixels. This 200⇥200, black-and-white image for
each letter is the input to our CNNs (Fig. 4-left).

4.2 Network Structure
We treat glyph recognition as an image classi�cation problem: pro-
vided an image region of a letter which has a list of perturbed glyphs
{u0,u1, . . .} in the codebook, our goal is to classify the input glyph
of that letter as one from the list. Therefore, we train a CNN for
each letter in a particular font.
Thanks to the image preprocessing, we propose to use a simple

CNN structure (as illustrated in Fig. 4), which can be quickly trained
and evaluated. The input is a 200⇥200, black-and-white image con-
taining a letter. The CNN consists of three convolutional layers, each
followed by a ReLU activation layer (i.e., f : x 2 R 7! max(0,x))
and a 2⇥2 max pooling layer. The kernel size of the three convo-
lutional layers are 8⇥8⇥32, 5⇥5⇥64, and 3⇥3⇥32, respectively. The

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

FontCode: Embedding Information in Text Documents using Glyph Perturbation • 1:5

200

200
1

100

100
32

50

50 64

25
25 32

128 dropout 12 dropout

4
predicted label

Decode Order

Input Layer

Conv1 Conv2 Conv3
8x8 5x5 3x3

Binarize

Input

Convolutional Layers Fully Connected Layers

Fig. 4. Network architecture. Our CNN takes as input a 200⇥200, black-and-white image containing a single le�er (le�). It consists 3 convolutional layers
(middle) and 2 fully connected layers (right). It outputs a vector, in which each element is the estimated probability of recognizing the glyph in the input
image as a perturbed glyph in the codebook.

convolutional layers are connected with two fully connected (FC)
layers, arranged in the following form (see Fig. 4):

! FC(128) ! Dropout! FC(N) ! Softmax! output.

Here “Dropout” indicates a 0.5-dropout layer, and FC(m) is an m-
dimensional FC layer. In the second FC layer, N is the number of
perturbed glyphs in the codebook for the letter in a certain font. Af-
ter passing through a softmax layer, the output is an N -dimensional
vector indicating the probabilities (or the inverse of “distance”) of
classifying the glyph of the input letter as one of the perturbed
glyphs in the list. The glyph of the letter is recognized as ui if its
corresponding probability in the output vector is the largest one.

4.3 Network Training
Training data. Our CNNs will be used for recognizing text doc-

ument images that are either directly synthesized or captured by
digital cameras. Correspondingly, the training data of the CNNs
consist of synthetic images and real photos. Consider a letter whose
perturbed glyphs from a standard font are {u0, . . . ,uN�1}. We print
all the N glyphs on a paper and take 10 photos with di�erent light-
ing conditions and slightly di�erent camera angle. While taking the
photos, the camera is almost front facing the paper, mimicking the
scenarios of how the embedded information in a document would
be read by a camera. In addition, we include synthetic images by
rasterizing each glyph (whose vector graphics path is generated
using [Campbell and Kautz 2014]) into a 200⇥200 image.

Data augmentation. To train the CNNs, each training iteration
randomly draws a certain number of images from the training data.
We ensure that half of the images are synthetic and the other half
are from real photos—empirically we found that the mix of real
and synthetic data leads to better CNN recognition performance.
To reduce over�tting and improve the robustness, we augment the
selected images before feeding them into the training process. Each
image is processed by the following operations:
• Adding a small Gaussian noise with zero mean and standard
deviation 3.
• Applying a Gaussian blur whose standard deviation is uniformly
distributed between 0 (no blur) and 3px.
• Applying a randomly-parameterized perspective transformation.
• Adding a constant border with a width randomly chosen between
0 and 30px.

We note that similar data augmentations have been used in [Chen
et al. 2014; Wang et al. 2015] to enrich their training data. We there-
fore refer to those papers for more details of data augmentation.

Lastly, we apply the preprocessing routine described in §4.1, obtain-
ing a binary image whose pixel values are either 0 or 1.

Implementation details. In practice, our CNNs are optimized using
the Adam algorithm [Kingma and Ba 2015] with the parameters
�1 = 0.9, �2 = 0.999 and a mini-batch size of 15. The network was
trained with 105 update iterations at a learning rate of 10�3. Our
implementation also leverages existing libraries, Tensor�ow [Abadi
et al. 2015] and Keras [Chollet et al. 2015].

4.4 Constructing The Glyph Codebook
The CNNs not only help to recognize glyphs at runtime, but also
enable us to systematically construct the glyph codebook, a lookup
table that includes a set of perturbed glyphs for every character in
commonly used fonts (such as Times New Roman, Helvetica, and
Calibri). Our codebook construction aims to satisfy three criteria: (i)
The included glyph perturbation must be perceptually similar; their
di�erences from the original fonts should be hardly noticeable to our
eyes. (ii) The CNNs must be able to distinguish the perturbed glyphs
reliably. (iii) Meanwhile, we wish to include as many perturbed
glyphs as possible in the codebook for each character, in order to
increase the capacity of embedding information (see §5).

To illustrate our algorithm, consider a single character in a given
font. We use its location ū on the character’s font manifold to refer
to the original glyph of the font. Our construction algorithm �rst
�nds a large set of glyph candidates that are perceptually similar
to ū. This step uses crowdsourced perceptual studies following a
standard user-study protocol. We therefore defer its details until
§6, while in this section we denote the resulting set of glyphs as C,
which typically has hundreds of glyphs. Next, we reduce the size of
C by discarding glyphs that may confuse our CNNs in recognition
tests. This is an iterative process, wherein each iteration takes the
following two steps (see Algorithm 1 in Appendix):

Confusion test. We randomly select M pairs of glyphs in C
(M =100 in practice). For each pair, we check if our CNN structure
(introduced in §4.2) can reliably distinguish the two glyphs. In this
case, since only two glyphs are considered, the last FC layer (recall
§4.2) has two dimensions. We train this network with only synthetic
images processed by the data augmentations. We use synthetic
images generated by di�erent augmentations to test the accuracy of
the resulting CNN. If the accuracy is less than 95%, then we record
this pair of glyphs in a set D, one that contains glyph pairs that
cannot be distinguished by our CNN.

Updating glyph candidate set. Next, we update the glyph can-
didates in C to avoid the recorded glyph pairs that may confuse the

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

1:6 • Xiao, C. et al

CNNs while retaining as many glyph candidates as possible in C.
To this end, we construct a graph where every node i represents a
glyph in C. Initially, this graph is completely connected. Then, the
edge between node i and j is removed if the glyph pair i j is listed
in D, meaning that i and j are hardly distinguishable by our CNN.
With this graph, we �nd the maximum set of glyph that can be dis-
tinguished from each other. This amounts to the classic maximum
clique problem on graphs. Although the maximum clique problem
has been proven NP-hard (see page 97 of [Karp 1972]), our graph
size is small (with up to 200 nodes), and the edges are sparse. Con-
sequently, many existing algorithms su�ce to �nd the maximum
clique e�ciently. In practice, we choose to use the method of [Konc
and Janezic 2007]. Lastly, the glyphs corresponding to the maximum
clique nodes form the updated glyph candidate set C, and we move
on to the next iteration.

This iterative process stops when there is no change of C. In our
experiments, this takes up to 5 iterations. Because only synthetic
images are used as training data, this process is fully automatic and
fast. But it narrows down the glyph candidates conservatively—two
glyphs in C might still be hardly distinguishable in real photos.
Therefore, in the last step, we train a CNN (as described in §4.3)
using both synthetic images and real photos to verify if the CNN can
reliably recognize all glyphs in C. Here the last FC layer of CNN has
a dimension of |C| (i.e., the size of C). At this point, |C| is small (typ-
ically around 25). Thus, the CNN can be easily trained. Afterwards,
we evaluate the recognition accuracy of the CNN for each glyph
in C, and discard the glyphs whose recognition accuracy is below
90%. The remaining glyphs in C are added to the codebook as the
perturbed glyphs of the character. A fragment of our codebook for
Times New Roman is shown in Fig. 5. Note that di�erent characters
have a di�erent number of perturbed glyphs in the codebook. This
di�erence poses a technical challenge when designing the message
decoding algorithm in §5.

4.5 Embedding and Retrieving Integers
Embedding. Now we can embed integers into a text document

in either vector graphic or pixel image format. First, we extract
from the input document the text content and the layout of the
letters. Our method also needs to know the original font ū of the
text. This can be speci�ed by the user or automatically obtained
from the metadata of a vector graphic document (such as a PDF). If
the document is provided as a pixel image, recent methods [Chen
et al. 2014; Wang et al. 2015] can be used to recognize the text font.

In order to embed an integer i in a letter of font ū, we look up its
perturbed glyph list {u0, . . . ,uN�1} in the precomputed codebook,
and generate the letter shaped by the glyphui [Campbell and Kautz
2014]. We then scale the glyph to �t it into the bounding box of the
original letter (which is detected by theOCR library for pixel images),
and use it to replace the original letter of the input document.

Retrieval. To retrieve integers from a pixel image, we extract the
text content and identify regions of individual letters using the OCR
tool. After we crop the regions of the letters, they are processed in
parallel by the recognition algorithm: they are preprocessed as de-
scribed in §4.1 and then fed into the CNNs. An integer i is extracted

Fig. 5. A fragment of codebook. A complete codebook for all alphabetic
characters in lower case for Times New Roman can be found in the supple-
mental document.

from a letter if the output vector from its CNN has the i-th element
as the largest (recall §4.2).

If the input document is provided as a vector graphics image (e.g.,
as a PDF �le), glyph recognition of a letter is straightforward. In our
codebook, we store the outlines of the perturbed glyphs as polylines.
In the integer embedding stage, these polylines are scaled to replace
the paths of the original glyphs. In the retrieval stage, we compute
the “distance” between the letter’s glyph polyline, denoted as f , in
the document and every glyph ui in the perturbed glyph list of the
codebook: we �rst scale the polylines of ui to match the bounding
box of f , and then compute the L2 distance between the polyline
vertices of ui and f . We recognize f as uj (and thus extract the
integer j) if the distance between f and uj is the minimum.

5 ERROR CORRECTION CODING
After presenting the embedding and retrieval of integer values over
individual letters, we now focus on a plain message represented as
a bit string and describe our coding scheme that encodes the bit
string into a series of integers, which will be in turn embedded in
individual letters. We also introduce an error-correction decoding
algorithm that decodes the bit string from a series of integers, even
when some integers are incorrect.

Algorithms presented in this section are built on the coding theory
for noise channels, founded by Shannon’s landmark work [Shan-
non 1948]. We refer the reader to the textbook [Lin and Costello
2004] for a comprehensive introduction. Here, we start with a brief
introduction of traditional error-correcting codes, to point out their
fundamental di�erences from our coding problem.

5.1 Challenges of the Coding Problem
Themost common error-correction coding scheme is block coding, in
which an information sequence is divided into blocks of k symbols
each. We denote a block using a k-tuple, r = (r1, r2, ..., rk). For
example, a 128-bit binary string can be divided into 16 blocks of 8-bit
binary strings. In this case, k = 8, and ri is either 0 or 1. In general,
ri can vary in other ranges of discrete symbols. A fundamental
requirement of error-correction coding is that (i) the number of
possible symbols for each ri must be the same, and (ii) this number
must be a prime power pm , where p is a prime number andm is a
positive integer. In abstract algebraic language, it requires the blocks
to be in a Galois Field, GF(pm). For example, the aforementioned 8-
bit strings are in GF(2). Most of the current error-correction coding
schemes (e.g., Reed-Solomon codes [Reed and Solomon 1960]) are
built on the algebraic operations in the polynomial ring of GF(pm).
At encoding time, they transform k-tuple blocks into n-tuple blocks
in the sameGalois �eld GF(pm), wheren is larger thank . At decoding

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

FontCode: Embedding Information in Text Documents using Glyph Perturbation • 1:7

time, some symbols in the n-tuple blocks can be incorrect. But as
long as the total number of incorrect symbols in a block is no more
than

h
n�k
2

i
regardless of the locations of incorrections, the coding

scheme can fully recover the original k-tuple block.
In our problem, a text document consists of a sequence of letters.

At �rst glance, we can divide the letter sequence into blocks of k
letters each. Unfortunately, these blocks are ill-suited for traditional
block coding schemes. For example, consider a �ve-letter block,
(C1,C2, ...,C5), with an original font ū. Every letter has a di�erent
capacity for embedding integers: in the codebook, Ci has si glyphs,
so it can embed integers in the range [0, si). However, in order to
use block coding, we need to �nd a prime power pm that is no more
than any si , i = 1...5 (to construct a Galois �eld GF(pm)). Then every
letter can only embedpm integers, which can be signi�cantly smaller
than si . Perhaps a seemingly better approach is to �nd ti =

⌅
log2 si

⇧

for every si , and use the 5-letter block to represent a T -bit binary
string, whereT =

P5
i=1 ti . In this case, this binary string is in GF(2),

valid for block coding. Still, this approach wastes much of the letters’
embedding capacity. For example, if a letter has 30 perturbed glyphs,
this approach can only embed integers in [0, 16). As experimentally
shown in §8.2, it signi�cantly reduces the amount of information
that can be embedded. In addition, traditional block coding method
is often concerned with a noisy communication channel, where an
error occurs at individual bits. In contrast, our recognition error
occurs at individual letters. When the glyph of a letter is mistakenly
recognized, a chunk of bits becomes incorrect, and the number of
incorrect bits depends on speci�c letters. Thus, it is harder to set
a proper relative redundancy (i.e., (n � k)/n in block coding) to
guarantee successful error correction.

5.2 Chinese Remainder Codes
To address these challenges, we introduce a new coding scheme
based on a 1700-year old number theorem, the Chinese remainder
theorem (CRT) [Katz and Imhausen 2007]. Error-correction coding
based on Chinese remainder theorem has been studied in the �eld
of theoretical computing [Boneh 2000; Goldreich et al. 1999], known
as the Chinese Remainder Codes (CRC). We adopt CRC and further
extend it to improve its error-correction ability (§5.3).

Problem de�nition. Given a text document, we divide its letter
sequence into blocks of n letters each. Consider a block, denoted
as C = (C1,C2, ...,Cn) in an original font ū. Our goal for now is to
embed an integerm in this n-letter block, wherem is in the range
[0,M). We will map the plain message into a series of integers later
in this section. Formally, we seek an encoding function � :m ! r ,
where r = (r1, ..., rn) is ann-vector of integers. Following the coding
theory terminology, we refer r as a codeword. The function � needs
to ensure that every ri can be embedded in the letterCi . Meanwhile,
� must be injective, so r can be uniquely mapped tom through a
decoding function �

+ : r !m. Additionally, the computation of �
and �+ must be fast, to encode and decode in a timely fashion.

5.2.1 Hamming Distance Decoding. We now introduceHamming
Distance decoding, a general decoding framework for block codes,
to pave the way for our coding scheme.

Fig. 6. Analogy of Euclidean distance on 2D plane to gain intuition of
Theorem 5.2. Here r0 and r1 represent two codewords having the minimum
Hamming distance Hm . Suppose r0 is recognized as a code vector r . If the
distance |r � r0 | < Hm/2 (e.g., ra), it is safe to decode r into r0, as no
other codeword is closer to r . If |r � r0 | > Hm/2, there might be multiple
codewords having the same distance to r (e.g., when r is rb), and r may
be mistakenly decoded as r1 (e.g., when r is rc).

De�nition 5.1 (Hamming Distance). Given two codewordsu andv ,
the Hamming Distance H (u,v) measures the number of pair-wise
elements in which they di�er.
For example, given two codewords, u = (2, 3, 1, 0, 6) and v =

(2, 0, 1, 0, 7), H (u,v) = 2.
Now we consider glyph recognition errors. If the integer retrieval

from a letter’s glyph is incorrect, then the input r̃ of the decoding
function �

+ may not be a valid codeword. In other words, because
of the recognition errors, it is possible that nom satis�es � (m) = r̃ .
To distinguish from a codeword, we refer to r̃ as a code vector.

The Hamming distance decoding uses a decoding function �
+

based on the Hamming distance: �+ (r̃) returns an integerm such
that the Hamming distance H (� (m), r̃) is minimized over allm 2
[0,M). Intuitively, although r̃ may not be a valid codeword, we
decode it as the integer whose codeword is closest to r̃ under the
measure of Hamming distance. Let Hm denote the minimum Ham-
ming distance among all pairs of valid codewords, namely,

Hm = min
i, j 2[0,M�1]

i,j

H (� (i),� (j)). (1)

The error-correction ability of Hamming distance decoding is bounded
by the following theorem [Lin and Costello 2004],

T������ 5.2. Let E denote the number of incorrect symbols in a
code vector r̃ . Then, the Hamming distance decoding can correctly
recover the integerm if E

hHm�1
2

i
; it can detect errors in r̄ but not

recover the integer correctly if
hHm�1

2
i
< E < Hm .

An illustrative understanding of this theorem using an analogy of
Euclidean distance is shown in Fig. 6. This theorem holds regardless
of the encoding function �, as long as it is a valid injective function.

5.2.2 Chinese Remainder Codes. We now introduce the follow-
ing version of the Chinese Remainder Theorem, whose proof can
be found in [Rosen 2011].

T������ 5.3 (C������ R�������� T������). Let p1,p2, ...pk
denote positive integers which are mutually prime andM =

Qk
i=1 pi .

Then, there exists an injective function,

� : [0,M) ! [0,p1) ⇥ [0,p2) ⇥ ...[0,pk),

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

1:8 • Xiao, C. et al

de�ned as � (m) = (r1, r2, ..., rn), such that for allm 2 [0,M), ri =
m mod pi .

This theorem indicates that given k pairs of integers (ri ,pi) with
all pi being mutually prime, there exists a unique non-negative
integer m <

Qk
i=1 pi satisfying ri = m mod pi for all i = 1...k .

Indeed,m can be computed using the formula,

m = CRT (r ,p) = r1b1
P

p1
+ ... + rnbn

P

pn
, (2)

where P =
Qk

i=1 pi , and bi is computed by solving a system of
modular equations,

bi
P

pi
⌘ 1 (mod pi), i = 1...k, (3)

using the classic Euclidean algorithm [Rosen 2011].
If we extend the list of pi to n mutually prime numbers (n > k)

such that the n � k additional numbers are all larger than pi up to
i = k (i.e., pj > pi for any j = k+1...n and i = 1...k), then we have
an encoding function � for non-negative integerm <

Qk
i=1 pi :

� (m) = (m mod p1,m mod p2, ...,m mod pn). (4)

This encoding function already adds redundancy: because m is
smaller than the product of any k numbers chosen from pi , we
can computem from any k of the n pairs of (ri ,pi), according to the
Chinese Remainder Theorem. Indeed, as proved in [Goldreich et al.
1999], the minimum Hamming distance of the encoding function (4)
for all 0 m <

Qk
i=1 pi is n � k + 1. Thus, the Hamming decoding

function of � can correct up to
h
n�k
2

i
errors by Theorem 5.2.

Encoding. We now describe our encoding algorithm based on the
encoding function � (m) in (4).
• Computing pi . Suppose that the letter sequence of a document
has been divided into N blocks, denoted as C1, ...,CN , each with
n letters. Consider a block Ct = (C1, ...,Cn), whereCi indicates a
letter with its original fontui , whose integer embedding capacity
is si (i.e., Ci ’s font ui has si perturbed glyphs in the codebook).
We depth-�rst search n mutually prime numbers pi , i = 1...n,
such that pi si and the product of k minimal pi is maximized.
At the end, we obtain pi , i = 1...n and the product of k minimal
pi denoted as Mt for each block Ct . Note that if we could not
�nd mutually prime numbers pi for block Ct , we simply ignore
the letter whose embedding capacity is smallest among all si and
includeCn+1 to this block. We repeat this process until we �nd a
valid set of mutually prime numbers.
• Determiningmt . Given the plain message represented as a bit
stringM, we now split the bits into a sequence of chunks, each
of which is converted into an integer and assigned to a block Ct .
We assign to each block Ct an integermt with

⌅
log2Mt

⇧
bits,

which is sequentially cut from the bit stringM (see Fig. 7).
• Embedding. For every block Ct , we compute the codeword
using the CRT encoding function (4), obtaining r = (r1, ..., rn).
Each ri is then embedded in the glyph of the letterCi in the block
Ct as described in §4.5.

Decoding. At decoding time, we recognize the glyphs of the letters
in a document and extract integers from them, as detailed in §4.5.
Next, we divide the letter sequence into blocks, and repeat the

23 186 738
010111 10111010 1001001 1000Bit stream

 Integer
sequence
Letter seq. ...

Fig. 7. An example of determiningmt : (top) The bit string representation
of the plain message; (bo�om) Each block of le�ers is highlighted by a color;
(middle)mt values assigned to each block.

algorithm of computing pi andMt as in the encoding step, for every
block. Given a blockCt , the extracted integers from its letters form a
code vector r̃t = (r̃1, ..., r̃n). We refer to it as a code vector because
some of the r̃i may be incorrectly recognized. To decode r̃t , we
�rst compute m̃t = CRT (r̃t ,pt) where pt stacks all pi in the block.
If m̃t < Mt , then m̃t is the decoding result �+ (r̃t), because the
Hamming distance H (� (m̃t), r̃) = 0. Otherwise, we decode r̃t using
the Hamming decoding function: concretely, since we know the
current block can encode an integer in the range [0,Mt), we decode
r̃t into the integermt by �nding

mt = �
+ (r̃) = arg min

m2[0,Mt)
H (� (m), r̃). (5)

As discussed above, this decoding function can correct up to
h
n�k
2

i
incorrectly recognized glyphs in each block. Lastly, we convertmt
into a bit string and concatenatemt from all blocks sequentially to
recover the plain message.

Implementation details. A few implementation details are worth
noting. First, oftentimes letters in a document can carry a bit string
much longer than the given plain message. To indicate the end of
the message, we attach a special chunk of bits (end-of-message bits)
at the end of each plain message, very much akin to the end-of-line
(newline) character used in digital text systems. Second, in practice,
blocks should be relatively short (i.e., n is small). If n is large, it
becomes much harder to �nd n mutually prime numbers that are no
more than each letter’s embedding capacity. In practice, we choose
n = 5 and k = 3 which allows one mistaken letter in every 5-letter
block. The small n and k also enable brute-force search ofmt in (5)
su�ciently fast, although there also exists a method solving (5) in
polynomial time [Boneh 2000; Goldreich et al. 1999].

5.3 Improved Error Correction Capability
Using the Chinese Remainder Codes, the error-correction capacity
is upper bounded. Theorem 5.2 indicates that at most

h
n�k
2

i
mistak-

enly recognized glyphs are allowed in every letter block. We now
break this theoretical upper bound to further improve our error-
correction ability, by exploiting speci�c properties of our coding
problem. To this end, we propose a new algorithm based on the
maximum likelihood decoding [Lin and Costello 2004].
In coding theory, maximum likelihood decoding is not an algo-

rithm. Rather, it is a decoding philosophy, a framework that models
the decoding process from a probabilistic rather than an algebraic
point of view. Consider a letter blockC and the code vector r̃ formed
by the extracted integers from C. We treat the true codeword r en-
coded by C as a latent variable (in statistic language), and model the
probability of r given the extracted code vector r̃ , namely P(r |r̃).
With this likelihood model, our decoding process �nds a codeword r

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

FontCode: Embedding Information in Text Documents using Glyph Perturbation • 1:9

that maximizes the probability P(r |r̃), and decodes r into an integer
using the Chinese Remainder Theorem formula (2).
When there are at most

h
n�k
2

i
errors in a block, the Hamming

decoding function (5) is able to decode. In fact, it can be proved
that when the number of errors is under this bound, there exists
a uniquem 2 [0,Mt) that minimizes H (� (m), r̃) [Lin and Costello
2004], and that when the number of errors becomes

h
n�k
2

i
+1, there

may be multiplem 2 [0,Mt] reaching the minimum (see Fig. 6 for
an intuitive explanation). The key idea of breaking this bound is to
use a likelihood model to choose anm when ambiguity occurs for
the Hamming decoding function (5).

Code Vector 2 3 1 7 6

Codeword 1 2 3 4

5 6

Codeword 2 4 3 5 7 6

Consider a blockwith
h
n�k
2

i
+

1 errors, and suppose in (5) we
�nd Nc di�erent integers mi ,
all of which lead to the same
minimal Hamming distance to
the code vector r̃ . Let ri =
� (mi), i = 1...Nc , denote the cor-
responding codewords. We use
another subscript j to index the
integer elements in code vectors and codewords. For every ri , some
of its integer elements ri j di�ers from the corresponding integer
elements r̃ j . Here ri j can be interpreted as the index of the per-
turbed glyphs of the j-th letter. We denote this glyph as ui j and the
letter’s glyph extracted from the input image as f . If ri j is indeed
the embedded integer, then f is mistakenly recognized, resulting in
a di�erent glyph number r̃ j .
We �rst model the probability of this occurrence, denoted as
P(r̃ j |ri j), using our “distance” metric. Intuitively, the closer the two
glyphs are, the more likely one is mistakenly recognized as the other.
Then the probability of recognizing a codeword ri as a code vector
r̃ accounts for all inconsistent element pairs in ri and r̃ , namely,

P(r̃ |ri) =
Y

j,ri j,r̃ j

�(ui j , f)
Psj
k=1 �(ū

k
j , f)

. (6)

Here �(·, ·) is (inversely) related to our distance metric between two
glyphs: for pixel images, �(ui j , f) is the probability of recognizing
f asui j , which is the ri j -th softmax output from the CNN of the i-th
letter, given the input glyph image f (recall §4.2); for vector graphics,
�(ui j , f) = 1/d (ui j , f), the inverse of the vector graphic glyph
distance (de�ned in §4.5). The denominator is for normalization,
where ūkj iterates through all perturbed glyphs of the j-th letter
in the codebook. For pixel images, the denominator is always 1
because of the unitary property of the softmax function. Lastly,
the likelihood P(ri |r̃) needed for decoding is computed by Bayes
Theorem,

P(ri |r̃) =
P(r̃ |ri)P(ri)
P(r̃)

. (7)

Here, P(r̃) is �xed, and so is P(ri) as all codewords are equally likely
to be used. As a result, we �nd ri that maximizes (7) among all Nc
ambiguous codewords, and decode r̃ using ri .
In our experiments (§8.3), we show that the proposed decoding

scheme indeed improves the error-correction ability. For our imple-
mentation wherein n = 5 and k = 3, in each block we are able to

2

1

0

-1

-2
-2 -1 0 1 2

!"#$%&'$(&)*#+,

 1 .80 .60 .40 .20 0

Fig. 8. MTurk result. (le�) The font manifold of the le�er “a” color-mapped
using the perceptual similarity value of each point to the standard Time New
Roman font. (right) Sampled glyphs that correspond to the manifold loca-
tions indicated by red circles. The colors indicate their perceptual similarity
to the Times New Roman.

correct up to 2 errors, as opposed to 1 indicated by Theorem 5.2,
thereby increasing the error tolerance from 20% to 40%.

6 PERCEPTUAL EVALUTATION
We now describe our crowd-sourced perceptual studies on Mechan-
ical Turk (MTurk). The goal of the studies is, for each character in a
particular font, to �nd a set of glyphs that are perceptually similar
to its original glyph ū. When constructing the glyph codebook, we
use these sets of glyphs to initialize the candidates of perturbed
glyphs (recall §4.4).
The user studies adopt a well-established protocol: we present

the MTurk raters multiple questions, and each question uses a two-
alternative forced choice (2AFC) scheme, i.e., the MTurk raters must
choose one from two options. We model the rater’s response us-
ing a logistic function (known as the Bradley-Terry model [1952]),
which allows us to learn a perceptual metric (in this case the per-
ceptual similarity of glyphs) from the raters’ response. We note that
this protocol has been used previously in other perceptual studies
(e.g., [O’Donovan et al. 2014; Um et al. 2017]), and that we will later
refer back to this protocol in §8.3 when we evaluate the perceptual
quality of our results. Next, we describe the details of the studies.

Setup. We �rst choose on the fontmanifold a large region centered
at ū, and sample locations densely in this region. In practice, all
font manifolds are in 2D, and we choose 400 locations uniformly
in a squared region centered at ū. Let F denote the set of glyphs
corresponding to the sampled manifold locations. Then, in each
MTurk question, we present the rater a pair of glyphs randomly
selected from F , and ask which one of the two glyphs looks closer
to the glyph of the original font ū. An example is shown in Fig. 9. We
assign 20 questions to each MTurk rater. Four of them are control
questions, which are designed to detect untrustworthy raters. The
four questions ask the rater to compare the same pair of glyphs
presented in di�erent order. We reject raters whose answers have
more than one inconsistencies among the control questions. At the
end, about 200 raters participated the studies for each character.

Instructions:
Your task is to select the most similar font pair from
the two pairs of font images.
The two images on the left column are always
identifcal fonts.

Question1

Fig. 9. MTurk user interface.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

1:10 • Xiao, C. et al

Analysis. From the raters’ response, we estimate a scalar value
si = s (ui ; ū), the perceptual similarity value of the glyph ui to
the original glyph ū, for every glyph ui 2 F . Let a set of tuples
D = {(ui ,uj ,u,q)} record the user study responses, where ui and
uj are randomly selected glyphs being compared, u is the MTurk
rater’s ID, and the binary valueq is the rater’s choice: q = 1 indicates
the rater judgesui perceptually closer to ū, and q = 0 otherwise. We
model the likelihood of the rater’s choice using a logistic function,

p (q = 1|ui ,uj ,u) =
1

1 + exp
⇣
ru (si � sj)

⌘ , (8)

where the scalar ru indicates the rater’s reliability. With this model,
all the similarity values si and user reliability values ru are obtained
by minimizing a negative log-likelihood objective function,

E (s,r) = �
X

k

f
q
k lnp (q = 1|uki ,ukj ,uk) +

(1 � qk) lnp (q = 0|uki ,ukj ,uk)
g
,

(9)

where k indices the MTurk response in D, r stacks the raters’ relia-
bility values, and s stacks the similarity values for all ui 2 F . The
si values are then normalized in the range of [0, 1].

We learn the similarity values for the glyphs of every character
with a font ū independently. Fig. 8 visualizes the perceptual similar-
ity of glyphs near the standard Times New Roman for the character
“a”. Lastly, We iterate through all the pre-sampled glyphs ui 2 F ,
and add those whose similarity value si is larger than a threshold
(0.85 in practice) into a set C, forming the set of perceptually similar
glyphs for constructing the codebook (in §4.4).

7 APPLICATIONS
Our method �nds many applications. In this section, we discuss
four of them, while referring to the supplemental video for their
demonstrations and to §8.1 for implementation summaries.

7.1 Application I: Format-Independent Metadata
Many digital productions carry metadata that provide additional
information, resources, and digital identi�cation [Greenberg 2005].
Perhapsmost well-known is themetadata embedded in photographs,
providing information such as camera parameters and copyright.
PDF �les can also contain metadata2. In fact, metadata has been
widely used by numerous tools to edit and organize digital �les.

Currently, the storage of metadata is ad hoc, depending on speci�c
�le format. For instance, a JPEG image stores metadata in its EXIF
header, while an Adobe PDF stores its metadata in XML format with
Adobe’s XMP framework [Adobe 2001]. Consequently, metadata is
lost whenever one converts an image from JPEG to PNG format, or
rasterizes a vector graphic document into a pixel image. Although
it is possible to develop a careful converter that painstakingly pre-
serves the metadata across all �le formats, the metadata is still lost
whenever the image or document is printed on paper.

Our FontCode technique can serve as a means to host text doc-
ument metadata. More remarkably, the metadata storage in our
2If you are reading this paper with Adobe Acrobat Reader, you can view its meta-
data by choosing “File!Properties” and clicking the “Additional Metadata” under the
“Description” tab.

technique is format-independent. Once information is embedded in
a document, one can freely convert it to a di�erent �le format, or
rasterize it into a pixel image (as long as the image is not severely
downsampled), or print it on a piece of paper. Throughout, the
glyphs of letters are preserved, and thereby metadata is retained
(see video).

7.2 Application II: Imperceptible Optical Codes
Our FontCode technique can also be used as optical barcodes em-
bedded in a text document, akin to QR codes [Denso 2011]. Barcodes
have numerous applications in advertising, sales, inventory track-
ing, robotics, augmented reality, and so forth. Similar to QR codes
that embed certain level of redundancy to correct decoding error,
FontCode also supports error-correction decoding. However, all
existing barcodes require to print black-and-white blocks and bars,
which can be visually distracting and aesthetically imperfect. Our
technique, in contrast, enables not only an optical code but an unob-
trusive optical code, as it only introduces subtle changes to the text
appearance. Our retrieval algorithm is su�ciently fast to provide
point-and-shoot kind of message decoding. It can be particularly
suitable for use as a replacement of QR codes in an artistic work
such as a poster or �yer design, where visual distraction needs to be
minimized. As a demonstration, we have implemented an iPhone
application to read a hidden message from coded text (see video).

7.3 Application III: Encrypted Message Embedding
Our technique can further encrypt a message when embedding it in
a document, even if the entire embedding and retrieval algorithms
are made public. Recall that when embedding an integer i in a letter
c of a glyph ū, we replace ū with a glyph chosen from a list of
perturbed glyphs in the codebook. Let Lc = {u0, . . . ,uNc�1} denote
this list. Even though the perturbed glyphs for every character in a
particular font are precomputed, the order of the glyphs in each list
Lc can be arbitrarily user-speci�ed. The particular orders of all Lc
together can serve as an encryption key.

For example, when Alice and Bob3 communicate through encoded
documents, they can use a publicly available codebook, but agree
on a private key, which speci�es the glyph permutation of each
list Lc . If an original list {u0,u1,u2, . . .} of a letter is permuted into
{up0 ,up1 ,up2 , . . .} by the key, then Alice uses the glyph upi , rather
than ui , to embed an integer i in the letter, and Bob deciphers the
message using the same permuted codebook. For a codebook that
we precomputed for Times New Roman (see the supplemental doc-
ument), if we only consider lowercase English alphabet, there exist
1.39⇥10252 di�erent glyph permutations in the codebook; if we also
include uppercase English alphabet, there exist 5.73 ⇥ 10442 glyph
permutations. Thus, without resorting to any existing cryptographic
algorithm, our method already o�ers a basic encryption scheme.
Even if others can carefully examine the text glyphs and discover
that a document is indeed embedding a message, the message can
still be protected from leaking.

3Here we follow the convention in cryptography, using Alice and Bob as placeholder
names for the convenience of presenting algorithms.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

FontCode: Embedding Information in Text Documents using Glyph Perturbation • 1:11

7.4 Application IV: Text Document Signature
Leveraging existing cryptographic techniques, we augment Font-
Code to propose a new digital signature technique, one that can
authenticate the source of a text document and guarantee its in-
tegrity (thereby protecting from tampering). This technique has two
variations, working as follows:

Scheme I. When Alice creates a digital document, she maps the
document content (e.g., including letters, digits, and punctuation)
into a bit string through a cryptographic hash function such as
the MD5 [Rivest 1992] and SHA [Eastlake and Jones 2001]. We
call this bit string the document’s hash string. Alice then chooses
a private key to permute the codebook as described in §7.3, and
uses the permuted codebook to embed the hash string into her
document. When Bob tries to tamper this document, any change
leads to a di�erent hash string. Without knowing Alice’s private key,
he cannot embed the new hash string in the document, and thus
cannot tamper the document successfully. Later, Alice can check the
integrity of her document, by extracting the embedded hash string
and comparing it against the hash string of the current document.

Scheme II. The above algorithm allows only Alice to check the
integrity of her document, as only she knows her private key. By
combining with asymmetric cryptography such as the RSA algo-
rithm [Rivest et al. 1978], we allow everyone to check the integrity
of a document but not to tamper it. Now, the codebook is public but
not permuted. After Alice generates the hash string of her document,
she encrypts the hash string using her private key by an asymmetric
cryptosystem, and obtains an encrypted string. Then, she embeds
the encrypted string in the document using the FontCode method,
while making her public key available to everyone. In this case, Bob
cannot tamper the document, as he does not have Alice’s private
key to encrypt the hash string of an altered document. But everyone
in the world can extract the encrypted string using the FontCode
method, and decipher the hash string using Alice’s public key. If
the deciphered hash string matches the hash string of the current
document, it proves that (i) the document is indeed sourced from
Alice, and (ii) the document has not been modi�ed by others.

Advantages. In comparison to existing digital signatures such as
those in Adobe PDFs, our method is format-independent. In contrast
to PDF �les whose signatures are lost when the �les are rasterized
or printed on physical papers, our FontCode signature is preserved
regardless of �le format conversion, rasterization, and physical
printing.

Further extension. In digital text forensics, it is often desired to
not only detect tampering but also locate where the tampering oc-
curs. In this regard, our method can be extended for more detailed
tampering detection. As shown in our analysis (§8.2), in a typical
English document, we only need about 80 letters to embed (with
error correction) a string of 128 bits, which is the length of a hash
string resulted from a typical cryptographic hash function (e.g.,
MD5). Given a document, we divide its text into a set of segments,
each with at least 80 letters. We then compute a hash string for each
segment and embed the encrypted strings in individual segments.
This creates a �ne granularity of text signatures, allowing the user

! "
!

!

"
"

"
!

!

!

"

"
"

"

Fig. 10. (top) an input text document. (bottom) the output document that
embeds a randomly generated message.

to check which text segment is modi�ed, and thereby locating tam-
pering occurrences more precisely. For example, in the current text
format of this paper, every two-column line consists of around 100
letters, meaning that our method can identify tampering locations
up to two-column lines in this paper. To our knowledge, digital text
protection with such a �ne granularity has not been realized.

Discussion about the storage. We close this section with a remark
on the memory footprint of the documents carrying messages. If a
document is stored as a pixel image, then it consumes no additional
memory. If it is in vector graphics format, our current implementa-
tion stores the glyph contour polylines of all letters. A document
with 376 letters with 639 bits encoded will consume 1.2Mmemory in
a compressed SVG form and 371K in a compressed JPEG format. PDF
�les can embed glyph shapes in the �le and refer to those glyphs
in the text. Using this feature, we can also embed the entire code-
book in a PDF, introducing about 1.3M storage overhead, regardless
of the text length. In the future, if all glyphs in the codebook are
pre-installed on the operating system, like the current standardized
fonts, then the memory footprint of vector graphic documents can
be further reduced, as the PDF and other vector graphic �le format
are able to directly refer to those pre-installed fonts.

8 RESULTS AND VALIDATION
We now present the results and experiments to analyze the perfor-
mance of our technique and validate our algorithmic choices. Here
we consider text documents with English alphabet, including both
lower- and upper-case letters, while the exact method can be directly
applied to digits and other special characters. We �rst present our
main results (§8.1), followed by the numerical (§8.2) and perceptual
(§8.3) evaluation of our method.

8.1 Main Results
We implemented the core coding scheme on an Intel Xeon E5-1620
8 core 3.60GHz CPU with 32GB of memory. The CNNs are trained
with anNVidia Geforce TITANXGPU. Please see our accompanying
video for the main results. A side-by-side comparison of an original
document with a coded document is shown in Fig. 10.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

1:12 • Xiao, C. et al

2001601208040

Characters

0 0.2 0.4 0.6 0.8 1

with MLD
without MLD

15 20 25 30 35 40 45

0.6

0.8

1.0

50

0.4

Ac
cu

ra
cy

Font Size (pt)
12108

Resolution (px)

A
cc

ur
ac

y

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

Fig. 11. (left) The accuracy of our CNN decoder changes as the resolution
in height of the le�ers increases. (middle) Theoretical improvement of
maximum likelihood decoding (green) over the Chinese Remainder coding
(orange). Please see the main text for the definition of P1 and P2. (right)
The accuracy of our CNN decoder trained with two di�erent font sizes
(green curve for 15pt fonts and orange curve for 30pt fonts) printed on paper.
Please see the main text for the details of experiment setup.

Metadata viewer. We implemented a simple text document viewer
that loads a coded document in vector graphics or pixel image
format. The viewer displays the document. Meanwhile, it extracts
the embedded metadata with our decoding algorithm and presents
it in a side panel.

Unobtrusive optical codes. We also implemented an iPhone appli-
cation (see Fig. 1), by which the user can take a photo of an encoded
text displayed on a computer screen or printed on paper. The iPhone
application interface allows the user to select a text region to cap-
ture. The captured image is sent through the network to a decoding
server, which recovers the embedded message and sends it back to
the smartphone.

Embedding encrypted message. Our implementation allows the
user to load an encryption key �le that speci�es the permutation for
all the lists of perturbed glyphs in the codebook. The permutation
can be manually edited, or randomly generated—given a glyph
list of length n, one can randomly sample a permutation from the
permutation group Sn [Seress 2003] and attach it to the key.

Text document signature. We use our technique to generate a MD5
signature as described in §7. Since the MD5 checksum has only 128
bits, we always embed it in letters from the beginning of the text.
Our text document viewer can check the signature and alert the
user if the document shows as tampered.

8.2 Validation
Information capacity. As described in §5, we use n = 5 and k = 3

in our error-correction coding scheme. In every 5-letter block, if
the mutually prime numbers are pi , i = 1...5, then this block can
encode integers in [0,p1p2p3), where p1, p2, and p3 are the smallest
three numbers among pi , i = 1...5. Thus, this block can encode at
most

⌅
log2 (p1p2p3)

⇧
bits of information.

To estimate the information capacity of our scheme for English
text, we randomly sample 5 characters from the alphabet to forming
a block. The characters are sampled based on the widely known
English letter frequencies (e.g., “e” is the most frequently used while
“z” is the least used) [Ferguson and Schneier 2003]. We compute the
average number of bits that can be encoded by a character. The result
is 1.77, suggesting that on average we need 73 letters to encode a
128-bit MD5 checksum for the application of digital signature (§7).

0 1 2 3 4
Characters × 104

0

1

2

3

4

5

6

7

Bit
s

× 104

Simple Binary Code
Our Coding Scheme

Next, we compare our coding schemewith
the simple approach discussed in §5.1. Re-
call that our method can correct at least
one error in a block of 5 letters, which
amounts to correcting log2 (max si) bits out
of the total

P5
i=1 log2 si bits. The simple ap-

proach in §5.1 can store
P5
i=1
⌅
log2 si

⇧
bits

of information. But in order to correct one
recognition error of the letter with the stan-
dard linear block codes, it needs to spend
2
⌃
log2 (max si)

⌥
bits for adding redundancy,

leaving
P5
i=1
⌅
log2 si

⇧�2 ⌃log2 (max si)
⌥
bits

to store information. We compare it with our
method using The Lord of The Rings, Chapter 1 as our input text,
which contains in total 41682 useful letters (9851 words). As shown
in the adjacent �gure, as the number of letters increases, our method
can embed signi�cantly more information.

Decoding accuracy. We �rst evaluate the glyph recognition accu-
racy of our CNNs. For every character, we print it repeatedly on a
paper with randomly chosen glyphs from the codebook and take
�ve photos under di�erent lighting conditions. Each photo has re-
gions of around 220px⇥220px containing a character. We use these
photos to test CNN recognition accuracy, and for all characters, the
accuracy is above 90%.
We also evaluate the decoding accuracy of our method. We ob-

served that decoding errors aremainly caused by image rasterization.
If the input document is in vector graphics format, the decoding
result is fully accurate, as we know the glyph outlines precisely.
Thus, we evaluate the decoding accuracy with pixel images. We
again use The Lord of The Rings, Chapter 1 to encode a random bit
string. We rasterize the resulting document into images with di�er-
ent resolutions, and measure how many letters and blocks can be
decoded correctly. Figure 11-left shows the testing result.
We also theoretically estimate the decoding robustness of our

maximum likelihood decoding method (§5.3). Suppose the probabil-
ity of correctly recognizing the glyph of a single letter is a constant
P1. The probability P2 of correctly decoding a single 5-letter block
can be derived analytically: if we only use Chinese Remainder De-
coding algorithm (§5.2), P2 is

⇣5
1
⌘
P
4
1 (1 � P1). With the maximum

likelihood decoding (§5.3), P2 becomes
⇣5
2
⌘
P
3
1 (1�P1)2. The improve-

ment is visualized in Fig. 11-middle.
The construction of the codebook (recall Fig. 5) needs to tradeo�

recognition accuracy for the embedded information capacity. This is
validated and illustrated in Fig. 11-right, where we show the recog-
nition accuracy of a text document printed on a paper with �xed
600dpi. The orange and green curve correspond to two recognizers
trained with di�erent setups: for the orange curve, the recognizer
is trained using characters printed with 30pt size on paper, and
each character in the training data is captured with a resolution of
200px⇥200px; for the green curve, the recognizer is trained using
characters printed with 15pt size, and each character is captured
with a resolution of 100px⇥100px. Not surprisingly, the recognition
accuracy drops as we reduce the printing font size. The latter recog-
nizer (green curve) has higher accuracy in comparison to the former

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

FontCode: Embedding Information in Text Documents using Glyph Perturbation • 1:13

!

"

#

$%&

&%&
$%&

&%&

&%&

&%&

&%&

&%&

&%&

&%&

$%&

$%&

$%&

$%&

$%&

$%&

'
(
)

*

)

Fig. 12. Decoding Probability. (top) A small region of photo to be de-
coded, where red boxes indicate recognition errors. (bottom) Each row
visualizes the probabilities of recognizing input glyphs (from the image) as
the perturbed glyphs. Along the x-axis, every bar corresponds to a perturbed
glyph in the codebook. The values on the y-axis are the output from our
CNNs. When an error occurs, the blue and red bars indicate the discrepancy
between the correctly and incorrectly recognized glyphs.

(orange curve). But this accuracy improvement comes with a price
of the decreased codebook size. For example, for character “g”, its
number of perturbed glyphs in the codebook drops from 23 to 14.
This indicates that if one needs to embed messages in a document
that is expected to print in small fonts, then they needs to construct
codebook more conservatively in order to retain the recognition
accuracy.

Performance. We use tensor�ow[Abadi et al. 2015] with GPU
support to train and decode the input. It takes 0.89 seconds to decode
a text sequence with 176 letters (30 blocks). Our encoding algorithm
is running in a single thread CPU, taking 7.28 seconds for the same
length of letters.

Error correction improvement. In §5.3, we hypothesize that the
probability of recognizing an input pixel glyph f as a glyph u in
the codebook is proportional to the softmax output of the CNNs.
We validated this hypothesis experimentally. Let �(u, f) denote the
softmax output value of recognizing f as a perturbed glyph u. As
an example shown in Fig. 12, when f is mistakenly recognized as
u as opposed to its true glyph u⇤, the probability values �(u, f)
and �(u⇤, f) are both high (although d (u, f) is higher) and close
to each other, indicating that f may be recognized as u or u⇤ with
close probabilities. Thus, we conclude that using a likelihood model
proportional to �(u⇤, f) is reasonable.
We also extensively tested our decoding algorithm using text

document photos under di�erent lighting conditions and various
camera perspectives. We veri�ed that it can successfully decode all
5-letter blocks that have at most 2 errors. A small snapshot of our
tests is shown in Fig. 13.

Fig. 13. Error correction. We decode information from an input photo.
Red boxes indicate where recognition errors occur. While there exist one
block contains two errors, our decoding algorithm still successfully decodes.

8.3 Perceptual Evaluation
To evaluate the subjective distortion introduced by perturbing the
glyphs of a document, we conducted two user studies on MTurk.
Both studies follow the standard 2AFC protocol which is described
in §6 and has been used in other contexts.
Study A assesses the perceptual distortion of a perturbed glyph

with respect to a standard font. We prepare a set of paragraphs, and
the glyphs of each paragraph are from one of the six categories: (1)
the standard Times New Roman; (2-5) the perturbed glyphs from
four glyph codebooks, in which the thresholds used to select the
perceptually similar glyph candidates are 0.95, 0.85 (i.e., the value
we use in §6), 0.75, and 0.65, respectively; and (6) a di�erent font
(Helvetica). The font size of each paragraph ranges from 25pt to
60pt, so the number of letters in the paragraphs varies. In each 2AFC
question, we present the MTurk rater three short paragraphs: one is
in standard Times New Roman, the other two are randomly chosen
from two of the six categories. We ask the rater to select from the
latter two paragraphs the onewhose font is closest to standard Times
New Roman (shown in the �rst paragraph). We assign 16 questions
of this type to each rater, and there were 169 raters participated. An
example question is included in the supplemental document.

After collecting the response, we use the same model (8) to quan-
tify the perceptual di�erence of the paragraphs in each of the six
categories with respect to the one in standard Times New Roman.
In this case, si in Eq. (8) is the perceptual di�erence of a category of
paragraphs to the paragraphs in standard Times New Roman. As
shown in Fig. 14, the results suggest that the glyphs in our code-
book (generated with a threshold of 0.85) lead to paragraphs that
are perceptually close to the paragraphs in original glyphs—much
closer than the glyphs selected by a lower threshold but almost as
close as the glyphs selected by a higher threshold (i.e., 0.95).
Study B assesses how much the use of perturbed glyphs in a

paragraph a�ects the aesthetics of its typeface. We prepare a set
of paragraphs whose glyphs are from one of the 12 categories: We
consider four di�erent fonts (see Fig. 15). For each font, we generate
the glyphs in three ways, including (1) the unperturbed standard
glyph; (2) the perturbed glyphs from our codebook using a percep-
tual threshold of 0.85; and (3) the perturbed glyphs from a codebook
using a threshold of 0.7. In each 2AFC question, we present the
MTurk rater two short paragraphs randomly chosen from two of
the 12 categories, and ask the rater to select the paragraph whose
typeface is aesthetically more pleasing to them. We assign 16 ques-
tions of this type to each rater, and there were 135 participants. An
example question is also included in the supplemental document.

Again, using the logistic model (8), we quantify the aesthetics of
the typeface for paragraphs in the aforementioned three categories

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

1:14 • Xiao, C. et al

3

4

5

6

Original 0.95 0.85 0.75 0.65 Helvetica

Fig. 14. User Study A. From le� to right, the bars correspond to the user
study result (see main text for details) for original font glyphs, 0.95, 0.85
(used in our examples), 0.75, 0.65, another di�erent font, respectively.

of glyphs. Fig. 15 shows the results, indicating that, while the aes-
thetics are di�erent across the four fonts, paragraphs using glyphs
from our codebook (a threshold of 0.85) are aesthetically compa-
rable to the paragraphs in standard glyphs, whereas using glyphs
selected by a lower perceptual threshold signi�cantly depreciates
the typeface aesthetics.
We note that in order to identify untrustworthy raters, in both

user studies we include four control questions in each task assigned
to the raters, in a way similar to those described in §6.

9 LIMITATIONS AND FUTURE WORK
We have introduced a new technique for embedding additional in-
formation in text documents. Provided a user-speci�ed message, our
method assigns each text letter an integer and embeds the integer by
perturbing the glyph of each letter according to a precomputed code-
book. Our method is able to correct a certain number of errors in the
decoding stage, through a new error-correction coding scheme built
on two algorithmic components: the Chinese Remainder coding
and the maximum likelihood decoding. We have demonstrated our
method with four applications, including text document metadata
storage, unobtrusive optical codes on text, symmetric-key encryp-
tion, and format-independent digital signatures.

Limitations. Currently we only consider standard fonts such as
regular Times New Roman, but not their variants such as Times New
Roman Bold Italic. But we can treat those variants as independent
standard fonts and include their perturbed glyphs in the codebook.
Then, our method will work with those font variants.

When extracting messages from a rasterized text document (e.g., a
photograph), letters in the document must have su�cient resolution.
When printed on paper, the text document must have su�cient large
font size (recall Fig. 11) for reliable message retrieval. We rely on
the OCR library to detect and recognize characters. However, we
cannot recover any OCR detection error. If a character is mistakenly
recognized by the OCR, the integer embedded in that character is
lost, and our error-correction scheme may not be able to recover
the plain message since di�erent characters may have di�erent
embedding capacities. Nevertheless, in our experiments the OCR
library always recognizes characters correctly.
If a part of the text is completely occluded from the camera or

contaminated by other inks, the embedded message is lost, as our
decoding algorithm needs to know how the text is split into blocks.
Similarly, if the document paper is heavily crumpled or attached to a
highly curved surface, ourmethodwill fail, because our training data

4

5

6

!"#$%
&$'()*#+,

Helvetica

7

Fig. 15. User Study B. We conduct user studies for four di�erent fonts
simultaneously, and learn the scores of aesthetics when di�erent types
of glyphs are used: Green bars indicate the original glyphs, orange bars
indicate the perturbed glyphs from our codebook, and purple bars indicate
the perturbed glyphs chosen by a lower perceptual threshold (i.e., 0.7).

was collected on �at surface. Fig. 16 illustrates two cases wherein
our method cannot recover the embedded message. In the future,
we hope to improve our coding scheme so that it is able to recover
from missing letters in the text as well.

In general, the idea of perturbing the glyphs for embedding mes-
sages can be applied to any symbolic system, such as other lan-
guages, mathematical equations, and music notes. It would be inter-
esting to explore similar embedding methods and their applications
for di�erent languages and symbols. Particularly interesting is the
extension to logographic languages (such as Chinese), in which the
basic element for message embedding is a logogram (i.e., a written
character). The number of logograms in a logographic language is
much more than the size of English alphabet. For example, the num-
ber of commonly used Chinese characters is about 3500. Therefore,
it would be expensive to straightforwardly extend our approach to
build a codebook of thousands of characters.
Currently, our approach is not optimized to reduce the storage

overhead introduced by embedding a hidden message and the code-
book. How to compress a vector graphic document with embedded
messages is an interesting venue for future work.
Lastly, while our method is robust to format conversion, rasteri-

zation, as well as photograph and scan of printed papers, it su�ers
from the same drawback that almost all text steganographic meth-
ods have: if a text document is completely retyped, the embedded
information is destroyed.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback.
We are grateful to Julie Dorsey for her suggestions of paper re-
vision, Klint Qinami and Michael Falkenstein for video narration.

Fig. 16. Failure cases. If a printed text document is heavily crumpled (le�)
or contaminated by other colors (right), our method will fail to recover the
embedded message.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

FontCode: Embedding Information in Text Documents using Glyph Perturbation • 1:15

This work was supported in part by the National Science Founda-
tion (CAREER-1453101 and 1717178) and generous donations from
SoftBank and Adobe. Any opinions, �ndings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily re�ect the views of the funding agencies or
others.

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, PeteWarden,MartinWattenberg,Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. (2015). http://tensor�ow.org/ Software
available from tensor�ow.org.

A Adobe. 2001. Manager’s Introduction to Adobe eXtensible Metadata Platform. The
Adobe XML Metadata Framework (2001).

Monika Agarwal. 2013. Text steganographic approaches: a comparison. International
Journal of Network Security & Its Applications (IJNSA) 5, 1 (2013).

Adnan M Alattar and Osama M Alattar. 2004. Watermarking electronic text documents
containing justi�ed paragraphs and irregular line spacing. In Electronic Imaging
2004. International Society for Optics and Photonics, 685–695.

Carlos Avilés-Cruz, Risto Rangel-Kuoppa, Mario Reyes-Ayala, A Andrade-Gonzalez, and
Rafael Escarela-Perez. 2005. High-order statistical texture analysis—-font recognition
applied. Pattern Recognition Letters 26, 2 (2005), 135–145.

Wesam Bhaya, Abdul Monem Rahma, and AL-Nasrawi Dhamyaa. 2013. Text steganog-
raphy based on font type in ms-word documents. Journal of Computer Science 9, 7
(2013), 898.

Je�rey A Bloom, Ingemar J Cox, Ton Kalker, J-PMG Linnartz, Matthew L Miller, and
C Brendan S Traw. 1999. Copy protection for DVD video. Proc. IEEE 87, 7 (1999),
1267–1276.

Dan Boneh. 2000. Finding smooth integers in short intervals using CRT decoding. In
Proceedings of the 32nd ACM symposium on Theory of computing. 265–272.

Ralph Allan Bradley and Milton E Terry. 1952. Rank analysis of incomplete block
designs: I. The method of paired comparisons. Biometrika 39, 3/4 (1952), 324–345.

Jack T Brassil, Steven Low, Nicholas F. Maxemchuk, and Lawrence O’Gorman. 1995.
Electronic marking and identi�cation techniques to discourage document copying.
IEEE Journal on Selected Areas in Communications 13, 8 (1995), 1495–1504.

Neill D. F. Campbell and Jan Kautz. 2014. Learning a Manifold of Fonts. ACM Trans.
Graph. 33, 4 (July 2014), 91:1–91:11.

Sunita Chaudhary, Meenu Dave, and Amit Sanghi. 2016. Text Steganography Based on
Feature Coding Method. In Proceedings of the International Conference on Advances
in Information Communication Technology & Computing. ACM, 7.

Abbas Cheddad, Joan Condell, Kevin Curran, and Paul Mc Kevitt. 2010. Digital image
steganography: Survey and analysis of current methods. Signal processing 90, 3
(2010), 727–752.

Guang Chen, Jianchao Yang, Hailin Jin, Jonathan Brandt, Eli Shechtman, Aseem Agar-
wala, and Tony X Han. 2014. Large-scale visual font recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 3598–3605.

François Chollet et al. 2015. Keras. https://github.com/fchollet/keras. (2015).
ADC Denso. 2011. Qr code essentials. Denso Wave 900 (2011).
Günay Dogan, Javier Bernal, and Charles R Hagwood. 2015. FFT-based Alignment of

2d Closed Curves with Application to Elastic Shape Analysis. In Proceedings of the
1st International Workshop on Di�erential Geometry in Computer Vision for Analysis
of Shape, Images and Trajectories. 4222–4230.

D. Eastlake, 3rd and P. Jones. 2001. US Secure Hash Algorithm 1 (SHA1). (2001).
Niels Ferguson and Bruce Schneier. 2003. Practical cryptography. Vol. 23. Wiley New

York.
Oded Goldreich, Dana Ron, and Madhu Sudan. 1999. Chinese remaindering with errors.

In Proceedings of the 31st ACM symposium on Theory of computing. 225–234.
Jane Greenberg. 2005. Understanding metadata and metadata schemes. Cataloging &

classi�cation quarterly 40, 3-4 (2005), 17–36.
Adnan Gutub and Manal Fattani. 2007. A novel Arabic text steganography method

using letter points and extensions. World Academy of Science, Engineering and
Technology 27 (2007), 28–31.

Changyuan Hu and Roger D Hersch. 2001. Parameterizable fonts based on shape
components. IEEE Computer Graphics and Applications 21, 3 (2001), 70–85.

Kensei Jo, Mohit Gupta, and Shree K. Nayar. 2016. DisCo: Display-Camera Communi-
cation Using Rolling Shutter Sensors. ACM Trans. Graph. 35, 5 (July 2016).

Min-Chul Jung, Yong-Chul Shin, and Sargur N Srihari. 1999. Multifont classi�cation us-
ing typographical attributes. In Document Analysis and Recognition, 1999. ICDAR’99.
Proceedings of the Fifth International Conference on. IEEE, 353–356.

Richard M Karp. 1972. Reducibility among combinatorial problems. In Complexity of
computer computations. Springer, 85–103.

Victor J Katz and Annette Imhausen. 2007. The Mathematics of Egypt, Mesopotamia,
China, India, and Islam: A Sourcebook. Princeton University Press.

Young-Won Kim, Kyung-Ae Moon, and Il-Seok Oh. 2003. A Text Watermarking Al-
gorithm based on Word Classi�cation and Inter-word Space Statistics.. In ICDAR.
775–779.

Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR) (2015).

DE Knuth. 1986. The METAFONT book. Addison-Welsey. Reading Mass (1986).
Janez Konc and Dušanka Janezic. 2007. An improved branch and bound algorithm for

the maximum clique problem. proteins 4, 5 (2007).
Vincent M. K. Lau. 2009. Learning by Example for Parametric Font Design. In ACM

SIGGRAPH ASIA 2009 Posters (SIGGRAPH ASIA ’09). 5:1–5:1.
Shu Lin and Daniel J Costello. 2004. Error control coding. Pearson Education India.
Jörn Loviscach. 2010. The universe of fonts, charted by machine. In ACM SIGGRAPH

2010 Talks. ACM, 27.
Peter O’Donovan, Jānis Lı̄beks, Aseem Agarwala, and Aaron Hertzmann. 2014. Ex-

ploratory Font Selection Using Crowdsourced Attributes. ACM Trans. Graph. 33, 4
(July 2014), 92:1–92:9.

Nobuyuki Otsu. 1975. A threshold selection method from gray-level histograms. Auto-
matica 11, 285-296 (1975), 23–27.

Jeebananda Panda, Nishant Gupta, Parag Saxena, Shubham Agrawal, Surabhi Jain,
and Asok Bhattacharyya. 2015. Text Watermarking using Sinusoidal Greyscale
Variations of Font based on Alphabet Count. (2015).

Huy Quoc Phan, Hongbo Fu, and Antoni B Chan. 2015. Flexyfont: Learning transferring
rules for �exible typeface synthesis. In Computer Graphics Forum, Vol. 34. Wiley
Online Library, 245–256.

R Ramanathan, KP Soman, L Thaneshwaran, V Viknesh, T Arunkumar, and P Yuvaraj.
2009. A novel technique for english font recognition using support vector ma-
chines. In Advances in Recent Technologies in Communication and Computing, 2009.
ARTCom’09. International Conference on. IEEE, 766–769.

Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain �nite �elds.
Journal of the society for industrial and applied mathematics 8, 2 (1960), 300–304.

R. Rivest. 1992. The MD5 Message-Digest Algorithm. (1992).
Ronald L Rivest, Adi Shamir, and Leonard Adleman. 1978. Amethod for obtaining digital

signatures and public-key cryptosystems. Commun. ACM 21, 2 (1978), 120–126.
Stefano Giovanni Rizzo, Flavio Bertini, and Danilo Montesi. 2016. Content-preserving

Text Watermarking through Unicode Homoglyph Substitution. In Proceedings of the
20th International Database Engineering & Applications Symposium. ACM, 97–104.

Kenneth H Rosen. 2011. Elementary number theory. Pearson Education.
Lynn Rugglcs. 1983. Letterform design systems. Technical Report. Stanford University.
Ákos Seress. 2003. Permutation group algorithms. Vol. 152. Cambridge University Press.
Ariel Shamir and Ari Rappoport. 1998. Feature-based design of fonts using constraints.

In Electronic Publishing, Artistic Imaging, and Digital Typography. Springer, 93–108.
Claude Elwood Shannon. 1948. A mathematical theory of communication. The Bell

System Technical Journal 27 (1948), 379–423, 623–656.
R. Smith. 2007. An Overview of the Tesseract OCR Engine. In Proceedings of the Ninth

International Conference on Document Analysis and Recognition - Volume 02 (ICDAR
’07). IEEE Computer Society, Washington, DC, USA, 629–633.

Ivan Stojanov, Aleksandra Mileva, and Igor Stojanovic. 2014. A New Property Coding
in Text Steganography of Microsoft Word Documents. (2014).

Rapee Suveeranont and Takeo Igarashi. 2010. Example-based automatic font generation.
In International Symposium on Smart Graphics. Springer, 127–138.

Kiwon Um, Xiangyu Hu, and Nils Thuerey. 2017. Perceptual Evaluation of Liquid
Simulation Methods. ACM Trans. Graph. 36, 4 (2017).

ZhangyangWang, Jianchao Yang, Hailin Jin, Eli Shechtman, Aseem Agarwala, Jonathan
Brandt, and Thomas S. Huang. 2015. DeepFont: Identify Your Font from An Image.
In Proceedings of the 23rd ACM International Conference on Multimedia (MM ’15).
ACM, New York, NY, USA, 451–459. https://doi.org/10.1145/2733373.2806219

Peter Wayner. 1992. Mimic functions. Cryptologia 16, 3 (1992), 193–214.
Peter Wayner. 2009. Disappearing cryptography: information hiding: steganography &

watermarking. Morgan Kaufmann.

Received July 2017

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

1:16 • Xiao, C. et al

ALGORITHM 1: Confusion Test
1 Initialize glyph candidates C ; . §6

2 G A complete graph whose nodes represent the elements of C;
3 while true do
4 Q Random select M di�erent pairs of nodes from C;
5 foreach pair (ui , uj) in Q do
6 a Training accuracy of CNN described using (ui , uj) ; . §4.4

7 if a < 0.95 then
8 remove edge (ui , uj) from G ;
9 end

10 end
11 G Maximum Clique(G);
12 C glyphs corresponding to nodes in G ;
13 if No change to C then
14 break;
15 end
16 end
17 Train CNN using all elements in C;
18 Remove elements whose recognition test accuracy is lower than 0.9;
19 return C;

ALGORITHM 2: Decoding
Input :code vector r̄ = (r̄1, ...r̄n), mutually prime integers

p = (p1, ...pn), and M
Output :Decoded integerm

1 m̃ CRT (r̄ , p);
2 if m̃ < M then
3 m m̃;
4 return success;
5 else
6 Find codeword r̂ , where r̂ = minr̂ H (r̂ , r̄);
7 if r̂ is not unique then
8 return fail;
9 else

10 m CRT (r̂ , p);
11 return success;
12 end
13 end

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: December 2017.

