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Figure 1: Vibrant wires. A metal wire model consists of 76,863 elements, simulated using 120 nonlinear modes. The entire precomputation
took 48 seconds, which includes the construction of 495 reduced modes (30 linear inertia modes and 465 first-order inertia derivatives), the
generation of 680 training poses, and the computation of weights of 342 cubature points using nonlinear St. Venant-Kirchhoff material.
Arrows indicate the locations and directions of external forces. Fast precomputation allows us to quickly update the geometry or material, and
simulate the wire’s deformations, vibrations, and, in this case, the sounds (see the supplemental video).

Abstract

Model reduction has popularized itself for simulating elastic de-
formation for graphics applications. While these techniques enjoy
orders-of-magnitude speedups at runtime simulation, the effi-
ciency of precomputing reduced subspaces remains largely over-
looked. We present a complete system of precomputation pipeline
as a faster alternative to the classic linear and nonlinear modal
analysis. We identify three bottlenecks in the traditional model
reduction precomputation, namely modal matrix construction,
cubature training, and training dataset generation, and accelerate
each of them. Even with complex deformable models, our method
has achieved orders-of-magnitude speedups over the traditional
precomputation steps, while retaining comparable runtime simu-
lation quality.

Keywords: Finite element method, Deformable simulation, Pre-
computation, Model reduction

1 Introduction

Model reduction methods have become popular in many graph-
ics applications, ranging from creating and controlling anima-
tions [Barbič and James 2005; An et al. 2008; Barbič et al. 2009],
material and shape design [Xu et al. 2015; Wang et al. 2015] to
realistic sound synthesis [Zheng and James 2011]. In all these
cases, a small number of deformation basis vectors or modes are
computed beforehand. The runtime simulation then constrains
deformations to a subspace spanned by these modes, tremen-
dously reducing simulated degrees of freedom. While enjoying
large runtime performance boost, model reduction methods need
to carefully construct a set of modes that well express possible de-
formations during the simulation. This precomputation, however,
is usually an expensive step that can take a long time.

The conventional wisdom here is to tax the preprocessing step in
exchange for runtime performance. Indeed, if the object geometry
and material properties have been decided, it is worthwhile and
affordable to precompute once for repeated runtime simulations.
However, when the shape or material is frequently altered—for

instance, in the case where a user is exploring different anima-
tion settings, every geometric and material update dictates a
re-computation of the reduced model. Such a long precompu-
tation time would drastically slow down the work flow. In this
paper, we focus on accelerating the entire precomputation step
in a typical reduced deformable simulation pipeline, a problem
that has been largely overlooked.

The standard precomputation of a reduced model undergoes three
expensive sub-steps. First, the reduced modes are typically ex-
tracted using the modal analysis or principle component analysis
(PCA) methods, both of which rely on a generalized eigen anal-
ysis or singular value decomposition. For high-resolution finite
element meshes, this computation is costly. Secondly, when simu-
lating nonlinear deformations, model reduction methods need to
evaluate the object’s nonlinear internal forces at runtime. Such
runtime evaluations are accelerated using cubature schemes [An
et al. 2008; von Tycowicz et al. 2013], but the precompution
of cubature points and their weights remains computationally
expensive. Lastly, to train the cubature scheme, one also needs
to prepare for a set of training poses simulated using a full-space
simulation, a typically expensive process. Additionally, to con-
struct the training dataset, there is always a question of what kind
of training poses to be included. Insufficient training poses lead
to unsatisfactory subspace construction, while excessive poses
unnecessarily increase the cost of data preparation.

In light of these challenges, we propose a comprehensive system
that precomputes reduced deformable models at a significantly
accelerated rate. It features the following technical contributions:

1. We first speed up subspace modal construction. We augment
the linear inertia mode technique [Yang et al. 2013] originally
designed for substructured objects, and thereby sidestep the
expensive eigen decomposition needed in traditional modal
construction. We further propose a reduced Gram-Schmidt
orthogonalization scheme which quickly regularizes resulting
modal vectors, as well as a formula for computing nonlinear
modes up to an arbitrary order. Lastly, to extract a compact set
of modes, we adopt a random projection algorithm originated
in the field of data mining. As a result, our method at this step
is 20-40⇥ faster than standard modal-analysis-based methods.

2. We accelerate the precomputation of cubature points and
weights. Our algorithm is based on the Newton-Cotes rule,
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sampling cubature points uniformly in the solid body and opti-
mizing the cubature weights individually and in parallel across
all reduced modes. This cubature training step can be finished
within milliseconds.

3. We present a new cubature training scheme to effectively
prepare training samples. We extend the idea of training pose
sampling [von Tycowicz et al. 2013] and interpret the training
step as a Monte Carlo process for finding the expected error of
the reduced simulation. From this point of view, we propose
a method that incrementally adds training samples and stops
when no more samples are needed. This method saves us from
generating unnecessary training samples, ultimately reducing
the precomputation cost.

Integrating all these technical components, we are able to sig-
nificantly accelerate the entire precomputation step. Compared
to the standard pipeline, we gain orders-of-magnitude speedups
in preprocessing while retaining comparable runtime simulation
quality. Furthermore, our method is independent from any par-
ticular reduced simulation method, so it works in tandem with
different types of simulators, including single-body and substruc-
tured deformable simulation as well as sound simulation.

2 Related Work

Since the seminal work of [Terzopoulos et al. 1987; Terzopoulos
and Fleischer 1988], finite element method (FEM) has become
one of the primary tools in computer graphics to simulate elastic
deformable objects. The governing dynamic equation and specific
elastic material models are based on well-established theory of
continuum mechanics [Bonet and Wood 2008]; the FEM solves
the equation on a discretized volumetric mesh. We refer the
reader to a comprehensive survey [Nealen et al. 2006] of fast
deformable models developed in graphics.

FEM, especially when used with high-resolution meshes, is compu-
tationally expensive. Therefore, numerous research has been fo-
cusing on improving its simulation efficiency. For example, multi-
resolution [Capell et al. 2002b] and adaptive simulations [Wu
et al. 2001; Grinspun et al. 2002] use hierarchical spatial dis-
cretization of the simulation domain to accelerate the computa-
tion. These types of techniques use high-level bases to represent
coarse deformations and refine them for more detailed local defor-
mations if necessary. Other types of mesh discretizations like em-
bedded meshes, coarsened meshes, cages, and skeletons [Capell
et al. 2002a; Kharevych et al. 2009; Nesme et al. 2009; García
et al. 2013] offer further performance boost or allow deformation
control.

One important type of fast finite element methods is well-known
as model reduction methods. Model reduction is designed to accel-
erate the simulation speed by reducing the numbers of degrees of
freedom (DoFs) of the simulation system. This is achieved by ob-
serving that the displacement of a deformable object can be well
approximated using a small number of basis vectors. With a set
of precomputed basis vectors, a reduced model projects an orig-
inal high-dimensional system onto a low-dimensional subspace
spanned by the bases. While this technique appears straightfor-
ward, it is rather challenging to construct a “good” subspace basis
because the deformation that an elastic body will undergo is un-
known. One of the most widely-used techniques relies on the
vibrational analysis or modal analysis. The basis vectors are calcu-
lated as the vibrational modes at different frequencies. High fre-
quency modes are of higher elastic energies and thus less likely to
occur in the runtime deformation. Therefore, they are discarded
for system reduction. Modal analysis has been used for interac-
tive deformable simulation since the early work of [Pentland and

Williams 1989]. Afterwards, there have been many significant
work sharing this core idea, such as character skinning [Kry et al.
2002; Kim and James 2011], deformable animation control and
editing [Hauser et al. 2003; Barbič and Popović 2008; Huang
et al. 2011; Barbič et al. 2012], as well as subspace collision reso-
lution [James and Pai 2004; Barbič and James 2010; Teng et al.
2014]. It has also been extended to simulate large deformation
based on co-rotational elasticity [Müller et al. 2002; Choi and Ko
2005; Hecht et al. 2012], nonlinear deformable materials [Barbič
and James 2005; An et al. 2008; von Tycowicz et al. 2013], and
multi-domain elasticity [Barbič and Zhao 2011; Kim and James
2011; Yang et al. 2013].

Our work is to complement these work by addressing an orthog-
onal problem, the problem of constructing the subspace bases
rapidly. Consequently, our method can be used with different
model reduction methods, as shown in §7.

Besides modal analysis, other methods have also been used
for constructing subspace bases. Meyer and Anderson [2007]
used pre-selected key points to build the subspace. Kim and
James [2009] used earlier frames in an online simulation to cre-
ate an adaptive and time-varying subspace for subsequent sim-
ulation. Their later work [Kim and James 2011] uses PCA to
prune a pose set to obtain basis vectors. Meanwhile, other re-
cent work constructs the subspace by enriching local deformable
modes [Harmon and Zorin 2013; Hahn et al. 2014].

3 Background and Overview

Reduced Model Simulation. Consider a finite element mesh with
n nodes. Model reduction approximates its deformation using
a linear combination of a set of modal vectors U, or u = Uq ,
resulting in a reduced Euler-Lagrange equation:

Mqq̈ + fdis(q , q̇) + f (q) = fex t , (1)

where Mq = U>MU, fdis and f are the reduced mass matrix,
dissipative force, and internal force, respectively. The reduced
internal force f is a function of the modal displacement q , and
its Jacobian matrix, also referred as the reduced stiffness matrix,
is Kq(q). fdis is often computed as (⇣Mq + ⇠Kq(q))q̇ (known as
Rayleigh damping). q 2 Rr is a low-dimensional vector (i.e.,
r ⌧ 3n). Thus, solving the nonlinear equation (1) is significantly
faster than solving the its unreduced counterpart.

Precomputation Overview. Figure 2 outlines the proposed pre-
computation step. Given an input mesh, we first construct a set of
linear deformation modes, known as linear inertia modes (§4.2).
To further capture nonlinear shape deformations during the run-
time simulation, we also compute asymptotic inertia derivatives
to generate higher-order nonlinear modes. We then condense all
the linear and nonlinear modes into the final mode matrix U using
a random projection method (§4.3). Next, we uniformly sample
a set of cubature points on the object’s mesh. Their cubature
weights are calculated independently for every reduced mode
(§5). The cubature is trained iteratively: in each iteration, we add
a few training poses; we stop the iteration when an error metric
converges (§6). At that point, a reduced deformable model, in-
cluding a set of deformation modes and related cubature weights,
are ready for subsequent runtime simulations.

4 Fast Construction of Reduced Modes

We start by describing our fast algorithm for precomputing re-
duced modes. This algorithm is built on the Krylov subspace
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Figure 2: Precomputation overview. For a given input 3D model, we compute a set of linear (U(m)) and nonlinear (V(k)) inertia modes
using augmented Krylov iterations, and then create the final mode matrix U using random projection. For cubature training, we generate
training poses incrementally. At runtime, the reduced model is simulated using a proposed Jacobian-free Newton-PCG solver.

method, a well-known technique for model reduction in structural
analysis. We propose a method to accelerate the mode construc-
tion (§4.2) and further extend the Krylov iteration to handle
higher-order and nonlinear deformations (§4.3).

4.1 Background on Linear Inertia Mode

Traditionally, reduced modes are constructed using linear modal
analysis, which involves a eigenvalue decomposition, a compu-
tation that is generally expensive and has limited room for an
acceleration. Instead, we use the Krylov subspace method [Craig
and Hale 1988; Craig 2000]. In graphics, this method has been
used for computing substructured modes by [Yang et al. 2013].
The modes, known as linear inertia modes, are computed recur-
sively (up to an order of m):

U(m) = Am�1U(0), where A= K�1M, (2)

where K and M are respectively the rest shape stiffness and mass
matrices, and U(0) is for mode initialization, typically chosen
as the object’s six rigid-body modes (i.e., U(0) = Ur). Conse-
quently, each order of linear modes construction can be in in-
terpreted as generating a new set of inertia deformation. Essen-
tially, Eq. (2) constructs a Krylov subspace of order m, denoted
as K(m) ¨ span(U(1))[ · · ·[ span(U(m)), where span(B) stands for
the column space of a matrix B. We also note that repeated pre-
multiplication of matrix A makes higher-order modes closer to
its dominant eigen vectors. As a result, high-order linear inertia
modes represent subtle localized deformations, similar to the
standard high-frequency modal vibrational modes.

Unconstrained Inertia Mode. Eq. (2) introduced in [Yang et al.
2013] was to construct reduced modes of substructure components
with well-defined boundary conditions. However, when an object
is unconstrained, K is singular, and thus Eq. (2) is unusable. We
notice that a deformable object’s motion is a superposition of its
rigid-body motion u

r 2 span(Ur) and a pure deformation u

d . The
reduced modes approximating u

d should therefore be orthogonal
to Ur . This orthogonality leads to a constrained linear system for
computing unconstrained inertia modes (Figure 3),
ï

K Ur

Ur> 0

òï
U(m)

�

ò
=
ï

MU(m�1)

0

ò
, (3)

where � is a Lagrange multiplier. We note that this formula of
constructing unconstrained modes is new.

Numerical Challenges. In essence, constructing the Krylov sub-
space in Eq. (2) amounts to partially performing a linear modal

Figure 3: Unconstrained inertia modes. First six linear inertia
modes of an unconstrained model (see the supplemental video).
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Figure 4: Performance gain of
rMGS. Time used in regular MGS,
rMGS with only sparse inner prod-
uct and rMGS with both sparse in-
ner product and subtraction reduc-
tion (↵⌧ = 0.001) on the dinosaur
example. Compared to the standard
MGS, our rMGS is ⇠ 75⇥ faster.

analysis, which solves an eigen problem, KU= MUS (or equiva-
lently AU= US�1). Indeed, K(m) is a good approximation of the
subspace spanned by leading eigenvectors [Saad 1981] and has
been widely used in classic eigen solvers such as Arnoldi and Lanc-
zos methods [Saad 2011]. However, Krylov iterations undermine
the linear independence among modal vectors: after a few itera-
tions, the mode matrix quickly becomes ill-conditioned. A com-
mon recipe to address this problem applies regularization such
as a mass Modified Gram-Schmidt (mass-MGS) process [Golub
and van Van Loan 1996] after each iteration.

The standard mass-MGS utilizes a mass inner product between
two modes ui and u j (i.e., hui , u jiM ¨ u

>
i Mu j), to prune the i-th

mode ui using previously regularized ones u j , j < i:

ui  ui �
i�1X

j=1

hui , u jiM
hu j , u jiM

u j . (4)

This regularization is applied to every single mode ui , i = 1..n,
resulting in a time complexity of O(nr2). For a high-resolution
mesh with a moderate number of reduced modes, this greatly
increases the precomputation cost.

4.2 Reduced Mass-MGS

We propose a reduced mass-MGS (rMGS) to regularize modal vec-
tors. We first accelerate the mass inner product, which effectively
reduces the O(n) factor in the O(nr2) complexity. We then reduce
the cost of repeated subtraction in Eq. (4), lowering the O(r2)
factor. Figure 4 illustrates the efficacy of our method.
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Sparse Inner Product. The mass inner product of two modes ui
and u j is in the continuous setting a numerical discretization of a
volume integral,

hui , u jiM ⇡
Z

⌦

⇢(x )ui(x )u j(x )dV, (5)

where ui(x ) is the continuous displacement counterpart of the
displacement vector ui . This integral can be numerically evalu-
ated using the Newton-Cotes rule [Atkinson 1989], which sums
up the integrand values at a set of sample points S over ⌦,

hui , u jiM ⇡ hui , u jiS ¨
X

p2S
wp[ui(p) · u j(p)], (6)

where p indicates a sample point; wp is its nonnegative weight
for numerical integration. In the rest of this section, we use h·, ·iS
to denote this sparse inner product.

The Newton-Cotes rule requires sample points be evenly placed
over the object volume ⌦. We therefore create an axis-aligned
bounding box of the mesh and subdivide it along three axes into
cubic boxes. If a box B intersects with the input mesh, we add
the finite element node nearest to the center of B into S and
compute its weight as the total mass inside B, wp =

R
B\⌦⇢(x )dV .

Appendix A provides an error analysis of this scheme. In our
implementation, we find that setting |S| / log(n) provides a
good balance between efficiency and accuracy (Figure 5).

Subtraction Reduction. Next, we reduce the cost of O(r2) sub-
traction in the mass-MGS. Our key observation is that among all
pairs of linear inertia modes, a considerable portion is already
almost orthogonal even without applying mass-MGS. In other
words, hui , u jiM is small for many pairs of ui and u j (see statistics
in Figure 7).

This observation inspires us to cull unnecessary subtractions in (4)
using a sparse cosine metric,

↵=
hui , u jiS∆

hui , uiiShu j , u jiS
,

which approximates the cosine value of the angle between ui
and u j using the sparse inner product (6). This metric is fast to
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Figure 5: Sparse inner product. The approximation error of
sparse inner products w.r.t. the full-size mass inner products, i.e.,��� hui ,u j iS�hui ,u j iM
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���. ui and u j are from 240 linear inertia modes, and
the error is the average of all 57,360 sparse inner products.
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Figure 7: Statistics of modal pair orthogonality. The histogram
statistics and the fitted normal distributions (red curve) for 28,680
direction cosines computed using all pairs of 240 inertia modes. (a)
Bunny, (b) Armadillo, (c) Stay-Puft and (d) Dragon.

compute owing to the sparse inner product, and is normalized by
the (approximated) lengths of ui and u j so that it is insensitive
to the length of reduced displacement vector. If |↵| is smaller
than a threshold ↵⌧, the corresponding subtraction in Eq. (4) is
skipped. We present an pseudo-code of this subtraction reduction
in Appendix B, where some critical implementation details are also
highlighted. Meanwhile, a visualization of the mass-orthogonality
of the resulting mode matrix processed with our method is shown
in Figure 6.

In sum, the speedup offered by our modal construction algo-
rithm is twofold: first, the Krylov iteration is just part of the
computation in standard eigen solvers such as Lanczos methods,
wherein, in addition to constructing the Krylov subspace, extra
computation of Ritz vectors/values are needed to approximate
eigen-vectors/values at each iteration. Since the Ritz vector com-
putation only orthogonalizes basis vectors but not change the
spanned subspace, it is not needed for our purpose of construct-
ing subspace basis. Second, our algorithm further accelerates the
Krylov iterations by reducing the mass-MGS cost, which is a major
performance bottleneck of this step.

4.3 Nonlinear Inertia Derivatives

Linear modes are insufficient to capture nonlinear deformations.
To address this limitation, Barbič and James [2005] introduced a
method of computing modal derivatives to expand the subspace.
While their method is based on linear modal analysis, we show
that our Krylov-type modes can also be extended to capture non-
linear deformations (§4.3.1). We call those nonlinear modes the
inertia derivatives, for which we derive an asymptotic formula up
to an arbitrary order. Additionally, as a faster alternative to the
classic PCA for condensing the modal basis, we adopt the random
projection method from the field of data mining (§4.3.2).

4.3.1 Generation of Nonlinear Inertia Derivatives

When nonlinear deformations are considered, the stiffness matrix
K depends on the current displacement u. Consider a small
perturbation of K = K(0), that is, K(�u) = K+�K. We expand
the inverse of K(�u) using a Taylor series [Miller 1981]:

K(�u)�1 = (K+�K)�1 = K�1 � K�1�KK�1 +O(k�u k2). (7)

Applying Eq. (7) to the computation of inertia modes yields an
asymptotic expansion of nonlinear modes:

K�1MU(m�1) �K�1�KK�1MU(m�1) + · · ·= U(m) �K�1�KU(m) + · · · .

To compute the first-order nonlinear modes, we approximate �K
using the directional derivative of K along a direction u,

K�1�KU(m) = K�1(H : u)U(m),
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Figure 6: Mass-orthogonality using rMGS. We plot Mq = U>MU as a height field for the Stay-Puft model with 30 modes, when different
culling thresholds ↵⌧ are used. The rightmost plot shows a perfect mass-orthogonal mode matrix, wherein Mq is an identity matrix; the
leftmost plot shows Mq calculated with an un-regularized mode matrix (↵⌧ =1). We use ↵⌧ = 0.001 in all of our examples.

where H=rK is the stiffness Hessian, a third-order tensor.

When u is chosen as individual linear modes, we obtain the
formula of computing the first-order nonlinear inertia derivatives,

v

(1)
i j = K�1(H : ui)u j , (8)

where both ui and u j are linear inertia modes, and the super-
script of v

(1)
i j indicates a first-order nonlinear mode. We note that

Eq. (8) is identical to the modal derivative formula [Barbič and
James 2005] suggesting that our Krylov-subspace-based modes
are indeed a good approximation of the standard eigen modes.

More importantly, such derivation facilitates the computation
of arbitrarily high-order nonlinear modes. Higher-order ex-
pansion of Eq. (7) shows that K(�u)�1 = K�1 � K�1�KK�1 +
K�1�KK�1�KK�1 + · · · , from which we can compute the k-th
order inertia derivatives recursively,

V(k) = K�1(H : u)V(k�1), (9)

With high-order nonlinear inertia derivatives, one can carefully
choose the initial Krylov vectors (i.e., U(0)) to construct a fine-
tuned yet compact subspace, and nonlinear deformations even at
some extreme cases can be captured (Figure 8).

(a) (b) (c) (d)

Figure 8: Bending comparison. The highlighted head part of the
dinosaur undergoes a circular external forces. (a) 2 linear inertia
modes are used, where U(0) contains only vertical and horizontal
translations. (b) 2 linear inertia modes + 3 first-order inertia
derivatives. (c) 20 first-order modal derivatives (generated from 8
linear modal modes and 36 first-order modal derivatives with mass-
PCA). (d) 20 high-order inertia modes (2 linear inertia modes + 3
first-order inertia derivatives + 15 second-order inertia derivatives).

4.3.2 Random Projection

As one chooses to use increasingly higher-order modes, the total
number of modes increases exponentially (i.e., the column size
of V(k) increases exponentially with respect to k). Thus, the re-
duced simulation slows down. Most existing work [Barbič and

James 2005; Kim and James 2011; von Tycowicz et al. 2013;
Harmon and Zorin 2013] use PCA to select the most prominent
modes out of the constructed ones. PCA has a time complex-
ity of O(min(r6, n3)) [Johnstone and Lu 2009]1. In traditional
modal-analysis-based precomputation, this is hardly a bottle-
neck, as the eigen-decomposition step is usually more expensive.
However, our subspace construction method has no use of eigen-
decomposition, leaving PCA indeed a performance bottleneck.

As a faster alternative of PCA, we propose to use Random Projection
(RP), a method that has been used in data mining [Bingham and
Mannila 2001; Halko et al. 2011]. This method is based on a
key observation by Hecht-Nielsen [1994]: in a high-dimensional
vector space, it is very likely that two random vectors are almost
orthogonal to each other. This suggests that we can simply use a
random thin matrix to condense the constructed modes.

Concretely, we first follow the same strategy used in existing
literatures [Barbič and James 2005; von Tycowicz et al. 2013]
to weight the modes according to their generalized Rayleigh
quotients [Parlett 1987]: for every constructed mode ui , i =
1...m, we normalize it using ui  ui(u>i Kui)/(u>i Mui). We then
concatenate all the ui into a superset matrix eU, and compute the
final modal matrix U for runtime simulation using U = eUR, where
R is a m⇥ r matrix to condense the number of modes from m to
r. The entry of R is randomly generated as in [Achlioptas 2001]:

Ri, j =
p

3 ·

8
<
:
+1 with probability of 1

6
0 with probability of 2

3
�1 with probability of 1

6

. (10)

As noted in [Bingham and Mannila 2001], when m � r, the
column vectors of R are always nearly orthogonal to each other.
Thus, eUR can be considered as a pseudo projection of span(eU) to
a smaller space, span(R). Since R is sparse, this matrix multipli-
cation is much faster than running PCA. However, unlike PCA,
random projection can not guarantee to choose the most salient
subspace indicated by eigenvalues nor yield an optimal subspace
in that sense.

5 Fast Precomputation of Modal Cubature

For nonlinear deformable simulation, model reduction needs to
compute at runtime the internal elastic force and its Jacobian. To
improve the computation efficiency, An et al. [2008] introduced
a fast method based on the numerical cubature scheme. This
method selects in the precomputation step a set of cubature ele-
ments E on the mesh, and computes a weight we for each element

1Here, we assume that first-order nonlinear inertia derivatives are
used. Therefore, the number of constructed modes is O(r2).
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e 2 E . At runtime, the reduced internal force f (q) and its Jaco-
bian @ f /@ q are respectively computed as weighted summations
over all the cubature elements:

f (q)⇡
X

e2E
wege(q) and

@ f

@ q

⇡
X

e2E
we
@ ge(q)
@ q

,

where ge(q) is the reduced internal force induced by a modal
displacement q at a cubature element e. While this scheme is fast
at runtime, the precomputation remains expensive: it iteratively
adds cubature elements and updates their weights; each iteration
solves an expensive nonnegative least-squares (NNLS) problem.

Rationale. We seek to also accelerate the cubature precomputa-
tion. One straightforward attempt is again to exploit the Newton-
Cotes rule: using evenly spaced cubature points to avoid repeated
NNLS solves. However, to maintain sufficient approximation ac-
curacy using the Newton-Cotes rule, there need to be densely
sampled cubature points, which in turn burden the NNLS in pre-
computation and the runtime evaluation. We propose a simple
solution to address this dilemma: instead of using a single weight
at each cubature point, we prepare multiple weights, each for an
individual reduced coordinate. Our experiments (see Figure 15
and the video) show that such a simple extension largely accel-
erates cubature training while retaining a comparable accuracy
as the standard training scheme [An et al. 2008]. In addition,
this extension also lays out an important foundation to enable a
faster computation of training data, which will be elaborated in
the next section.

Method. Concretely, for every component f j of the reduced
internal force f , we precompute a set of cubature weights wj

e,
and approximate the reduced internal force as

f (q)⇡
rX

j=1

ÇX

e2E
wj

e g j
e(q)

å
e

j ,

where e

j is the canonical unit basis vector of Rr (e.g., e

1 =
[1,0, · · · ]>); g j

e is the j-th component of ge, the internal force
at a cubature element e. We stack wj

e for all e 2 E into a vector
w

j and precompute it by solving a NNLS problem, A j
w

j = b

j ,
where A j and b

j are constructed based on a training set T with
T samples. Specifically,

A j =

2
6664

g j,1
1
k f

1k · · ·
g j,1
|E|
k f

1k
...

. . .
...

g j,T
1
k f

T k · · ·
g j,T
|E|
k f

T k

3
7775 , b

j =

2
664

f j,1

k f

1k
...

f j,T

k f

T k

3
775 ,

where f j,i denotes the j-th component of a reduced internal force
f

i in the i-th training example.

In the rest of this paper, to distinguish from the standard cubature
training, to which we refer as Optimized Cubature (OC), we refer
to our cubature scheme as Modal Cubature (MC). Using MC, the
reduced internal force Jacobian can be written as

Kq =
@ f

@ q

⇡
rX

j=1

X

e2E
wj

e

✓
e

j ⌦
@ g j

e

@ q

◆
. (11)

We also sample the positions of cubature points evenly using axis-
aligned voxels, as used in the sparse inner product step (§4.2).
While we need to solve a NNLS problem for every single compo-
nent of the reduced coordinate, the size of each NNLS problem
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Figure 9: Observations in cubature training. Left: the NNLS
fitting error during cubature weights calculation. Right: the MC
simulation error w.r.t 50K full-space random simulations. Four
models (Armadillo, bunny, Stay-Puft and dragon) are tested under
the same cubature sampling resolution.

is much smaller, and all the solves can be performed in paral-
lel, yielding 1000-5000⇥ speedups (see the video and detailed
benchmarks in Table 3).

Extension. It is noteworthy that the Jacobian matrix Kq resulted
from Eq. (11) is not necessarily symmetric. One can approxi-
mately symmetrize it as Kq  1

2 (Kq + K>q ). On the other hand,
we present a new Newton-PCG solver, which requires no runtime
evaluation of the Jacobian matrix, and thus completely sidesteps
the asymmetry problem. On the down side, the proposed solver
requires additional implementation efforts and a change of the
runtime integrator. We describe this runtime solver in Appendix C,
as an extension of our proposed pipeline.

6 Incremental Generation of Training Data

Most reduced simulation methods compute the cubature weight
from a training data T , which is often taken for granted. When
there does not exist a prior training set, one reasonable strategy
is to blindly sample a deformation subspace. For instance, von
Tycowicz et al. [2013] randomly sampled reduced displacements
following a normal distribution. The sampled displacements are
used in a full-space simulation to evaluate corresponding internal
forces and assemble the training dataset. Since our goal is to
expedite the entire precomputation pipeline, we wish to carefully
generate the training samples to avoid full-space simulation as
much as possible. To the best of our knowledge, this problem has
been largely unexplored.

Our modal cubature scheme (§5) allows us to reduce the cost
of training sample generation by incrementally expanding the
training dataset. This differs from the traditional optimized cuba-
ture scheme [An et al. 2008; von Tycowicz et al. 2013], wherein
the training data is given, and their goal is to find the best set of
cubature points. In contrast, with a fixed set of cubature points,
we seek for a compact training dataset.

6.1 Observations and Rationale

Our algorithm of training data generation is inspired by two key
observations:

First, it is known that the accuracy of approximating a force
integral using the Newton-Cotes rules is bounded by the sam-
pling interval (see Appendix A). This implies that the increase
of training samples has a diminishing return on the accuracy im-
provement as shown in Figure 9 (right), where we incrementally
add randomly generated training samples and evaluate the Modal
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Algorithm 1 Incremental training data generation.

1: �e 1
2: NI  3

2 |E |; . the size of the initial training set
3: for each mode vector ui , i = 1 . . . r do

4: Qi  
u

>
i Kui

u

>
i Mui

; Ei  0; �i  1p
Qi

5: end for
6: while �e > e⌧ do
7: for t = 1 : NI do
8: generate qt

i following N (Ei ,�i) for all i = 1 . . . r
9: compute internal force f (q)

10: T  T [ {q , f }
11: end for
12: NNLS fitting over T
13: update 4e
14: update Te . stores poses with top 20% fitting error
15: q avg(Te) . recenter samples
16: for i = 1 : r do

17: Ei  qi; �i  
( 1p

Qi�Ei
, Ei � 0

1p
Qi+Ei

, Ei < 0

18: end for
19: NI  1

3 |E |
20: end while

Cubature simulation error2. Initially, when the training data is
insufficient, the error is large. However, as we expand the training
dataset, the error is eventually bounded from below.

Our second observation looks at the change of the normalized
NNLS fitting error (Figure 9 (left)). The error is computed as

e =
1
T

rX

j=1

kA j
w

j � b

jk
kb jk . (12)

Initially, when T is small, the NNLS problem is under-constrained,
and thus the fitting error is low. As more samples are added in the
cubature training, the fitting error grows, but eventually becomes
bounded from above. One interpretation of this observation is
from the Monte Carlo integration point of view [Baraff and Witkin
1992]. The error defined in Eq. (12) computes the averaged
fitting error across all training samples. As the number of samples
increases, it is equivalent to evaluating, using a Monte Carlo
process, the expected fitting error in the deformation subspace.
Since the number of cubature points is fixed, the expected fitting
error is bounded.

6.2 Incremental Training Samples

The above interpretation from a Monte Carlo point of view sug-
gests that the error metric defined in Eq. (12) can be a natural
indicator for when to stop adding training samples. One simple
algorithm is as follows: we incrementally add samples into the
training dataset. Every time when generating a training sample,
we follow the way in [von Tycowicz et al. 2013] to sample a
reduced modal displacement whose component qi follows a Gaus-
sian distribution of qi ⇠N (0,�i), where �i = 1/

p
Qi , and Qi is

the generalized Rayleigh quotient of the modal vector ui . Here
Qi estimates the effective eigenvalue of ui , so the low-frequency
mode will produce samples with larger variance. Corresponding
to the reduced displacement sample, a full-space displacement
vector is used in a full-space simulation to compute the internal

2The MC simulation error is calculated as the average deviation from
50K random full-space simulation.
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Figure 10: Effectiveness of expec-
tation adjustment. We plot the MC
simulation error with respect to 50K
randomly generated full-space results
using the incremental training. The
Armadillo model is tested with NI =
35. The error converges faster with
the expectation adjustment (i.e., Al-
gorithm 1).

force, which, together with the reduced displacement sample,
forms a training sample. After adding a few samples, we update
the fitting error Eq. (12), and evaluate its change �e. We stop
generating new training samples, if�e is smaller than a threshold
e⌧ (e⌧ = 0.005 in all of our examples).

We further improve our sampling algorithm by adding more poses
in under-sampled regions in the reduced deformation space. As
detailed in Algorithm 1, we start by generating 3

2 |E | samples
using the Gaussian distribution described above (line 7-11 of
Algorithm 1), so the resulting NNLS problem is over-constrained.
We then iteratively add more samples. In each iteration, we add
1
3 |E | samples. At the end of each iteration, we adjust Ei and
�i for subsequent samples (line 14-18 of Algorithm 1) based
on the training poses that have large fitting errors. To this end,
we maintain a set of training poses Te that have the top 20%
fitting error among currently assembled training poses. For the
next sample generation, we set Ei as the averaged modal pose of
Te, and adjust �i such that Te are in the radius of the Gaussian
distribution (line 17 of Algorithm 1). The iteration process stops
if the error change �e is below a threshold. The efficacy of this
improved algorithm is shown in Figure 10.

In every iteration, we generate 1
3 |E | training samples in parallel.

With our incremental training generation, we are able to stop
computing training samples when they become unnecessary, so
the training process is accelerated. Even for large-scale models,
the entire precomputation, including the generation of training
data, can be completed within tens of seconds. Of course, if T
is given a priori in certain cases, (or not required, for instance
one may choose to use geometrical warping to produce nonlinear
deformation [Choi and Ko 2005; Huang et al. 2011] as in the
example shown in Figure 18), the precomputation can be even
faster (finish within seconds/milliseconds).

7 Validation and Applications

We have tested the proposed precomputation pipeline and evalu-
ated its performance, scalability, quality, and versatility. We im-
plement our method on a machine with an Intel i7-5960 3.0GHz
8-core CPU and 32GB RAM. We use pThread to parallelize
the computation for modal cubature training and training data
generation. Most proposed numerical algorithms (e.g., sparse
inner product, pMGS, nonnegative least square and Jacobian-
free Newton-PCG solver) are implemented with the help of the
Intel MKL libraries. We also refer the reader to the accompany-
ing executable (.exe file for 64-bit Windows systems). Table 1
reports detailed statistics of the 3D models we tested and their
precomputation time benchmarks.

7.1 Validation

Random Projection. As a validation of our random projection
scheme introduced in §4.3.2, we plot in Figure 11 the average
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Model #Ele. #DoF |T | Time
Bunny 50,000 32,103 217 4.2s

Armadillo 65,496 52,443 225 4.8s
Stay-Puft 77,337 68,427 228 6.6s
Dragon 100,000 79,308 198 7.2s

Dinosaur 193,700 491,370 150 9.7s

Table 1: Precomputation benchmarks. The size of the subspace
is 30 (i.e., r = 30), which are constructed from 12 linear modes
and 78 first-order inertia derivatives. #Ele.: number of elements;
#DoF: number DoFs; |T |: the size of training set; Time: total
precomputation time including the generation of training poses.

# Extracted modes
5 10 15 20 25 30

LS
 e

rr
or

10-4

10-3

10-2

10-1

100

PCA
RP

Figure 11: Quality compar-
ison between PCA and RP.
We plot the average least-
squares error of how well the
extracted mode matrix U can
express the original 324 can-
didates (24 linear + 300 non-
linear modes). Note that the
least-squares error axis is log-
arithmic.

Figure 12: Multi-resolution meshing by voxelization. The gar-
goyle model is voxelized at different resolutions to generate tetrahe-
dral meshes from 50K to 1M elements.

least-squares error when using U, extracted with either PCA or
RP, to fit the entire mode pool eU. When r is a very small number,
U computed with RP yields a higher error due to its randomness
in picking low-dimensional bases. Fortunately, their difference
becomes quite subtle when the subspace size is moderately big
(e.g., r = 30). This result also matches the performance analy-
sis of RP in existing literatures [Dasgupta 2000; Bingham and
Mannila 2001; Halko et al. 2011].

Scalability Test. We test the scalability of our modal construc-
tion algorithm using the gargoyle model. To ease the control of
number of elements, we voxelize the model, so we can generate
tetrahedral meshes whose sizes range from 50K to 1M (Figure 12).
The computation time for generating linear inertia modes (our
method) and linear eigen modes (previous method) are reported
in Table 2. The linear inertia modes are computed using the
PARDISO solver shipped with MKL. The modal analysis-based
modes are computed using Matlab 2015a’s built-in eigs func-
tion with multi-threading enabled3. This test shows that with the
help of rMGS, the construction of inertia modes is 20-30⇥ faster
than linear modal analysis on average. Under such circumstance,
mode refinement with PCA becomes a performance bottleneck. As
plotted in Figure 13, the computation time for PCA quickly scales
up with increased mesh resolution, while random projection is
much faster and more scalable.

3eigs calls MKL and ARPACK++ at background, which gives a good
performance on our hardware platform (Intel CPU).

# Ele. r = 30 r = 60 r = 120 r = 240
50K 9.8s 0.7s 14.4s 1.0s 28.7s 2.1s 68.7s 4.2s

100K 12.4s 1.2s 20.1s 2.0s 50.9s 3.7s 132.8s 3.7s
200K 41.2s 2.8s 59.7s 4.9s 131.7s 9.2s 290.7s 19.1s
400K 96.2s 5.8s 140.6s 10.2s 284.8s 17.7s 579.3s 33.6s
600K 164.6s 8.6s 249.0s 15.5s 575.0s 29.7s 1496.8s 65.5s
800K 235.7s 11.8s 341.1s 18.3s 883.2s 30.0s 1894.3s 56.9s
1M 260.0s 16.2s 568.1s 27.3s 1042.2s 44.9s 2238.8s 64.9s

Table 2: Scalability tests. Performance benchmark of modal con-
struction using linear modal analysis (left columns) and rMGS
augmented Krylov iteration (right columns, bold).

Simulation Quality. Figure 14 gives a quantitative comparison
between two deformable animations produced with standard
modal derivatives and our method. The time series of magnitudes
of the displacement at the dragon’s horn is also plotted. Here we
use St. Venant-Kirchhoff material. This figure (and also the video)
shows that while a set of approximation and acceleration meth-
ods have been employed, the proposed precomputation pipeline
produces results that are visually comparable to the standard
modal analysis/derivative-based precomputation approach. Yet,
our approach enjoys a much faster precomputation time.

Modal Cubature. We compare the performance of the modal
cubature with the standard optimized cubature on a training
set T , T = 1000. Here we use the lazy cubature optimization
strategy [An et al. 2008], wherein the new seed element is picked
from a subset of 1,000 elements. Both cubature schemes are
tested on the Armadillo model. We choose multiple NNLS fitting
error levels. For each error level, we examine the number of
cubature elements needed to reach the error level, and compare
the cubature training costs of both schemes. Table 3 lists the
benchmarks. For an error of about 1%, MC is about 1500⇥ faster
than OC. An improved greedy cubature training strategy was also
reported in [von Tycowicz et al. 2013], which is roughly 4⇥ faster
than the standard OC scheme, but is still significantly slower than
our method. Figure 15 (a) presents snapshots of the animation
produced respectively with MC and OC.

Training Pose Generation. We test our incremental training pose
generation using the Armadillo with an St. Venant-Kirchhoff mate-
rial (Figure 15). Our tests show that we only need a few hundred
training poses to produce deformable animations of similar qual-
ity to the ones generated using a larger training set (Figure 15
(b) and also the video). Because of the per-mode weight storage
in MC training, MC consumes r times more memory than OC
does. One drawback of MC is associated with the asymmetry of
the resulting Jacobian matrix, which can result in a larger nu-
merical error than OC when used to compute the force gradient.
Fortunately, the proposed Jacobian-free PCG solver in Appendix C
addresses this issue. In all our examples, our inner PCG solver
is able to converge within 3 to 5 iterations (when setting the
convergence threshold to be 0.001).
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Figure 13: Scalable test of PCA
and RP. The same gargoyle models
as in Figure 12 are tested in this ex-
ample. We record the time used to
construct a 30-dimension modal ma-
trix out of 189 mode candidates (18
linear inertia modes + 171 nonlinear
inertia derivatives) using both PCA
and RP.
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Figure 15: Comparative animations with different training strategies. (a) Animation snapshots using OC training and MC training
with (T = 1000), and (b) animation snapshots using incremental training (T = 225) and regular random training (T = 5000).
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Figure 14: Quantitative comparison. The first row of snap-
shots are from an animation produced using classic modal analy-
sis/derivative. The second row are snapshots produced using our pre-
computation method. The magnitude of displacements at dragon’s
horn (highlighted as green spheres) is also plotted. Our method is
20⇥ faster than traditional methods for modal construction.

Free-moving deformable bodies can be well accommodated within
our framework. Figure 16 shows the results of simulating 15 drag-
ons falling. Each dragon model has 18 unconstrained nonlinear
inertia modes. The reduced deformation is coupled with its rigid
body motion, and the dynamics is integrated using the general-
ized Newton-Euler equation [Shabana 2005]. Because all the
dragons have the same rest shape geometry, the precomputation
takes only 4.2 seconds.

7.2 Applications

Application I: Multi-domain Simulation with High-order Nonlin-
ear Modes. Our precomputation pipeline can work in tandem
with different types of simulation methods and hyperplastic ma-
terials. Beside the typical single-domain solid deformable simu-
lation, here we illustrate the application of our precomputation
in a substructured simulation. Following the state-of-the-art do-
main decomposition methods [Barbič and Zhao 2011; Kim and
James 2011; Yang et al. 2013], precomputation is localized in
small domains. Figure 17 shows animation snapshots of a maple
tree model, simulated with a tetrahedra mesh of 1102K elements
grouped into 513 domains, and a Mooney-Rivlin material model.
In this example, domains have different geometries from each
other, which means the local precomputation at domains cannot
be reused. The second order inertia modes corresponding to
translational motions are computed at leaf domains. The precom-
putation of all the domains took less than a minute.

NNLS fitting err. 60% 25% 10% 3% 1% 0.5% 0.1%
#Cubature ele. (OC) 2 7 21 50 110 141 374
#Cubature ele. (MC) 1 8 17 28 59 65 113
Training time (OC) 9.2s 29.7s 74.5s 128.9s 206.0s 273.7s 2.2h
Training time (MC) 0.02s 0.02s 0.03s 0.05s 0.13s 0.15s 0.36s

Table 3: Comparative benchmarks between OC and MC. We
report the number of cubature elements and the computation time
for given error levels using both lazy optimized cubature and modal
cubature training strategies. The Armadillo is tested with 30 nonlin-
ear inertia modes. 1000 training examples are used, and the listed
timing information does not include the time for the training data
generation.

Figure 16: Free-floating deformable simulation. 15 dragon
models fall onto the staircase. Each model has 18 nonlinear uncon-
strained modes. The precomputation time including the generation
of training poses took 4.2 seconds.

Application II: Simulation-in-the-loop Character Animation.
The proposed precomputation pipeline allows a fast preview of
physics-based animation on top of the classic skeleton-driven char-
acter animations. In this application, the user is able to tweak
material parameters of the character. Owing to the proposed
fast precomputation, we are able to update the reduced model
and rerun the simulation quickly. Figure 18 is the snapshots of
applying the deformable skinning to the animation of a walking
Stay-Puft. The deformation of Stay-Puft is simulated using 30
unconstrained linear inertia modes with geometric warping [Choi
and Ko 2005], triggered by the inertia forces from the rigid-body
motion as formulated in [Kim and James 2011]. In this example,
only the linear material model is used, so the training data and
cubature optimization are not required, and the precomputation
took only 0.8 second.

Application III: Nonlinear Sound Synthesis. Lastly, fast de-
formable precomputation also allows a quick forelook for vibra-
tional sound synthesis. As shown in Figure 1, the finite element
mesh of a metal wire model consists of 76,863 elements. We sim-
ulate its nonlinear surface vibrations using 120 nonlinear inertia
modes and the St. Venant-Kirchhoff material model. Then the
sound is synthesized using the method [O’Brien et al. 2001]. The
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Figure 17: Domain decomposition with high-order nonlinear
modes. We show the simulation results of the maple tree model con-
sisting of 1102K elements and 513 domains. Mooney-Rivlin material
model is adopted, and second-order nonlinear inertia derivatives
are used at the leaf domains where rlea f = 35. The precomputation
time is less than 1 min.

Figure 18: Simulation-in-the-loop character animation. We
apply physics-based character skinning using 30 unconstrained lin-
ear inertia modes with geometric warping. The resulting animation
is almost instantly available with a 0.8 second precomputation.

precomputation time took 48 seconds with 680 training poses
and 342 cubature elements. The fast precomputation enables us
to quickly update the reduced model whenever the user changes
its geometry or material and re-simulate the surface vibration for
physics-based sound synthesis.

8 Conclusion and Limitation

In this paper, we present a complete system to accelerate the pre-
computation of nonlinear elastic deformable models. We optimize
three performance bottlenecks in the standard precomputation
pipeline: the mode construction, the cubature training, and the
generation of the training poses. Eventually, the deformable pre-
computation is made orders-of-magnitude faster.

This work remains a few limitations, and there are many oppor-
tunities for future work. Our modal cubature scheme requires
r times more memory than the standard cubature scheme. The
resulting subspace basis has less elegant properties that the modal-
analysis-based basis has: the basis vectors are not perfectly mass-
orthogonal to each other; the random projection can not choose
the most salient subspace that PCA is able to produce; and the
asymmetry of the Jacobian matrix requires extra efforts in the
runtime simulation. While the Jacibian-free Newton-PCG solver
provides a fix, in the future we would like to produce a symmetric
matrix in the first place. In addition, When a large number of
modes are needed, the current bottleneck of the precomputation

become the matrix-vector production in the Krylov iteration. We
will explore to accelerate this operation.

It is also interesting to investigate the levels-of-detail simulation
for large-scale complex scenes based on the fast construction of
subspace modes, where the modal matrix can be dynamically
adapted according to the moving camera. Finally, expediting
the construction of other reduced models such as reduced fluid
simulation is an interesting potential direction.

Acknowledgements

We thank anonymous reviewers for their feedback. This research
was supported in part by the National Science Foundation (CRII-
1464306, CAREER-1453101), National Science Foundation China
(No. 61272392, No. 61322204), UNM RAC & OVPR research
grants, and generous gifts from Intel and DJI. Any opinions, find-
ings and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the
views of funding agencies or others.

References

ACHLIOPTAS, D. 2001. Database-friendly random projections.
In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, ACM, 274–281.

AN, S. S., KIM, T., AND JAMES, D. L. 2008. Optimizing cubature
for efficient integration of subspace deformations. ACM Trans.
Graph. 27, 5 (Dec.), 165:1–165:10.

ATKINSON, K. 1989. An Introduction to Numerical Analysis, 2
edition ed. Wiley, New York, Jan.

BARAFF, D., AND WITKIN, A. 1992. Dynamic simulation of non-
penetrating flexible bodies. SIGGRAPH Comput. Graph. 26, 2
(July), 303–308.
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A Error Analysis of the Sparse Inner Product

Eq. (6) is essentially an open-type Newton-Cotes formula4,
wherein the midpoint rule with a constant-value interpolating
function is used. In an illustrative 1D case shown in Figure 19, the
error of the numerical integration can be analytically expressed
based on Lagrange Interpolation Theorem [Berrut and Trefethen
2004]:

e =
Z b

a

f (x)dx � H f (
H
2
)

=
H3

24
f (2)(�) +

H5

1920
f (4)(�) + ...,

(13)

ba

( )f a

( )f b
2
( )a bf +

1( )2 a b+

(
)

f
x H Figure 19: 1D Newton-

Cotes integration. An
illustrative example of 1D
open-type Newton-Cotes
integration with midpoint
rule.

where H = b � a is the size of the integration interval. f (k) de-
notes the k-th order derivative function of f (x). � is some value
between [a, b]. It is noteworthy that Eq. (13) gives the approxi-
mation error of adopting sparse inner product w.r.t Eq. (5), the

4Eq. (6) corresponds to the open-type formula because we do not use
values of target function at end points of an interval. Instead, the value
at the midpoint is used.

Algorithm 2 Reduced mass MGS

1: for each mode vector ui 2 U, i = 1...r do
2: ui  uip

hui ,ui i
3: end for
4: v0 u0; U⇤  [v0] . U⇤ hosts the regularized modes
5: for i = 2 : r do
6: vi  ui; l  1.0
7: for j = 1 : i � 1 do
8: ↵ hvi ,v j iS

l . ↵ is the sparse cosine
9: if |↵|< ↵⌧ then

10: vi  vi �↵lv j
11: end if
12: if 1�↵2 < 0.01 then
13: vi  vip

hvi ,vi i
;l  1.0 . re normalize vi

14: else
15: l  

p
1�↵2 l . incremental norm evaluation

16: end if
17: end for
18: U⇤  
⇥
U⇤| vi

l

⇤
19: end for

inner product between two vector-valued functions, while our real
approximating target is the full-size mass inner products. There-
fore, the numerical error induced by adopting the sparse inner
product is bounded by O((H � He)3), where He is the maximum
size of the element on the mesh.

B Implementation Details of rMGS

The pseudo-code outlining the proposed rMGS is given in Algo-
rithm 2. It can be seen that rMGS needs to update the sparse-
norm of vi (i.e., variable l in the pseudo-code) immediately, after
a projection-subtraction is executed in order to evaluate ↵ for the
next loop. This subroutine sits in the innermost loop of rMGS and
can be sped up by updating its sparse norm incrementally:

kvi � hvi , v jiv jkS =
∆
(hvi � hvi , v jiS v j), (vi � hvi , v jiS v j)

=
q
hvi , viiS + hvi , v ji2S � 2hvi , v ji2S

=
p

1�↵2 l.

This equation (line 15 of Algorithm 2) however, could accumulate
roundoff error and lead to negative square rooting when ↵ goes
large and l gets smaller. To maintain the numerical stability, the
values of 1 � ↵2 and l are regularly checked (line 12 of Algo-
rithm 2). If necessary, we fresh evaluate l directly using sparse
inner product and re sparse-normalize vi (line 13 of Algorithm 2).

C Jacobian-free Newton-PCG Solver

The Newton’s method is a common choice for online subspace
integration. At each time step, Newton’s method seeks for an
incremental displacement 4q as the residual minimizer itera-
tively. It typically requires the explicit formulation of the current
tangent stiffness matrix, which is an O(|E |r2) procedure. Besides,
an accurate force gradient may not be available with MC scheme,
recalling that Eq. (11) does not even preserve its the symmetry.
To tackle this limitation associated with MC training, we do not
use any direct solvers (e.g., LU, Cholesky) to calculate4q within
a Newton iteration. Instead, a preconditioned conjugate gradient
(PCG) solver is adopted, which only needs the evaluation of the
matrix-vector product. We approximate these matrix-vector prod-
ucts numerically instead of resorting to the analytical evaluation
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of the force Jacobian. Suppose that the implicit Newmark time
integration [Hughes 2000] is used. Each Newton iteration needs
to solve a r-dimension linear system of A4q = �e, where

A = (↵1 + ⇣↵4)Mq + (1+ ⇠↵4)
@ f

@ q

���
qi

,

e = Mq((↵1 + ⇣↵4)�qi + (⇣↵5 �↵2)q̇i + (⇣↵6 �↵3)q̈i)
+⇠ @ f

@ q

���
qi
(↵4�qi +↵5q̇i +↵6q̈i) + f (qi)� fex t .

Here �qi = qi+1�qi is the displacement deviation at current time
step. q̇i and q̈i are the known reduced velocity and acceleration
at the previous step. ⇣ and ⇠ are damping coefficients. fex t is
the reduced external force. ↵1,↵2, ...↵6 are constant coefficients
computed as: ↵1 =

1
�h2 , ↵2 =

1
�h , ↵3 =

1�2�
2� , ↵4 =

�
�h , ↵5 =

���
� ,

↵6 =
(2���)h

2� , where � = 1
2 , � = 1 are two parameters of the

Newmark integrator. h is the size of each time step.

Matrix-vector product between the system matrix A and a certain
vector p in the PCG solver can be written as the summation of
two items according to the formulation of A:

Ap = (↵1 + ⇣↵4)Mq p + (1+ ⇠↵4)
@ f

@ q

���
qi

p

= (↵1 + ⇣↵4)Mq p + (1+ ⇠↵4) ·D f (qi)[p].
(14)

The first term on the r.h.s can be directly evaluated as Mq is a con-
stant matrix. The second term is essentially the scaled directional
derivative of the reduced internal force, where the notation of
D⇧(x )[u] stands for the directional derivative of a function ⇧ at
x in the direction of u. Understanding this important fact allows
us to use the numerical directional derivative [Chan and Jackson
1984; Brown and Saad 1990] to approximate the matrix-vector
product associated with the reduced tangent stiffness matrix:

Kq(qi)p =
@ f

@ q

����
qi

p = D f (qi)[p]⇡
f (qi + ✏p)� f (qi)

✏
. (15)

The choice of ✏ in Eq. (15) is not trivial: if ✏ is too large, the
derivative is poorly approximated and if it is too small the result
of the finite difference is contaminated by floating-point roundoff
error. We follow the choice used in NITSOL package [Pernice and
Walker 1998]:

✏=
p

1+ k qi k2

k p k2
✏machine, (16)

where ✏machine is the machine epsilon. It is typically set as 10�6 for
64-bit double precision and is regard as the a most suitable small
number of perform an idea finite difference. The coefficient ofp

1+kqik2
kpk2 makes sure that the final adopted ✏ is not impaired by

an over-scaled p.

Preconditioning. The preconditioner plays a critical role for
the PCG solver. Unfortunately, there does not yet exist a well-
established theory finding the best preconditioner for every
case [Shewchuk 1994]. Most preconditioning methods such as
Jacobi, Gauss-Seidel, or SOR preconditioning require the informa-
tion of the system matrix A, which is not available in our case as
the tangent stiffness matrix is unknown. Alternatively, we design
the preconditioner P as the largest invariant portion of A:

P= (↵1 + ⇣↵4)Mq + (1+ ⇠↵4)Kq(0). (17)

We find that using the preconditioner defined in Eq. 17 is able to
double the convergence rate. The initial guess of the PCG is set as

�qi at the very beginning of each time step and as a zero vector
for the rest Newton iterations following the logic that the current
4q should be similar to the previous one at the first the Newton
iteration, while it should quickly converge to a zero vector as
Newton iteration moves forward.
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