
Coiling of elastic rods on rigid substrates
Mohammad K. Jaweda,1, Fang Dab,1, Jungseock Joob, Eitan Grinspunb,2, and Pedro M. Reisa,c,2

Departments of aMechanical Engineering and cCivil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
and bDepartment of Computer Science, Columbia University, New York, NY 10027

Edited* by Harry L. Swinney, The University of Texas at Austin, Austin, TX, and approved September 2, 2014 (received for review May 16, 2014)

We investigate the deployment of a thin elastic rod onto a rigid
substrate and study the resulting coiling patterns. In our approach,we
combine precisionmodel experiments, scaling analyses, and computer
simulations toward developing predictive understanding of the
coiling process. Both cases of deposition onto static and moving sub-
strates are considered. We construct phase diagrams for the possible
coiling patterns and characterize them as a function of the geometric
and material properties of the rod, as well as the height and relative
speeds of deployment. The modes selected and their characteristic
length scales are found to arise from a complex interplay between
gravitational, bending, and twisting energies of the rod, coupled to
the geometric nonlinearities intrinsic to the large deformations. We
give particular emphasis to the first sinusoidal mode of instability,
which we find to be consistent with a Hopf bifurcation, and analyze
the meandering wavelength and amplitude. Throughout, we system-
atically vary natural curvature of the rodas a control parameter,which
has a qualitative and quantitative effect on the pattern formation,
above a critical value thatwedetermine. Theuniversality conferredby
the prominent role of geometry in the deformation modes of the rod
suggests using the gained understanding as design guidelines, in the
original applications that motivated the study.

thin rods | elasticity

The laying of the first transatlantic telegraph cable (1) opened
the path for fast long-distance communication. Nowadays,

submarine fiber-optic cables, a crucial backbone of the inter-
national communications (e.g., the Internet) infrastructure, are
typically installed from a cable-laying vessel that, as it sails, pays
out the cable from a spool downward onto the seabed. The
portion of suspended cable between the vessel and the contact
point with the seabed takes the form of a catenary (2). Similar
procedures can also be used to deploy pipelines (3), an historical
example of which is the then highly classified Operation PLUTO
(Pipe-Lines Under the Ocean) (4), which provided fuel supplies
across the English Channel at the end of World War II. One of
the major challenges in the laying process of these cables and
pipelines is the accurate control between the translation speed of
the ship, vb, and the pay-out rate of the cable, v. A mismatch
between the two may lead to mechanical failure due to excessive
tension (if vb > v) or buckling (if vb < v), which for the case of
communication cables can cause the formation of loops and tan-
gles, resulting in undesirable signal attenuation (5, 6). At the mi-
croscale, deployment of nanowires onto a substrate has been used
to print stretchable electronic components (7), and both periodic
serpentines and coils have been fabricated by the flow-directed
deposition of carbon nanotubes onto a patterned substrate (8).
The common thread between these engineering systems is the

geometry of deployment of the filamentary structure with a ki-
nematic mismatch between the deposition rate and the trans-
lational speed. Moreover, the suspended catenary can be treated
as a thin rod (9) given that the diameter of the cable, pipe, or
filament can be orders of magnitude smaller than any other
length scales in the system. The process of pattern formation for
an elastic rod coiling on a substrate, also known as the elastic
sewing machine (10), has been previously studied both numerically
(11) and experimentally (10, 12). However, a systematic study and
a predictive understanding of the underlying mechanisms that
determine the coiling modes and set the length scale of the

patterns remain remote. Moreover, there is a need for high-
fidelity numerical tools that can capture the intricate geometric
nonlinearities of the coiling process.
Here, we conduct a hybrid experimental and numerical in-

vestigation of the coiling of a thin elastic rod onto a moving
substrate and characterize the resulting patterns. We perform
precision experiments at the desktop scale (Fig. 1A), where a
custom-fabricated rod is deposited onto a conveyor belt. As the
relative difference between the speeds of the injector and the
belt is varied, we observe a variety of oscillatory coiling patterns
that include sinusoidal meanders (Fig. 1B and Movie S1), al-
ternating loops (Fig. 1C and Movie S2), and translated coiling
(Fig. 1D and Movie S3). Our model experiments explore the
scale invariance of the geometric nonlinearities in the mechanics
of thin elastic rods (9), thereby enabling a systematic exploration
of parameter space. In parallel, we perform numerical simulations,
using the discrete elastic rods (DER) method (9, 13, 14) that is
introduced from computer graphics into the engineering com-
munity, and find good quantitative agreement with experiments.
Our investigation emphasizes (i) geometry, (ii) universality,

and (iii) the significance of natural curvature. The patterns
resulting from coiling of an elastic rod in our experiments have
a striking resemblance to those found when deploying a viscous
thread onto a moving belt (14–19) (known as the viscous sewing
machine) and in electrospinning of polystyrene fibers (20). As
such, (i) this similarity across various systems reinforces that
geometry is at the heart of the observed phenomenon, whereas
the constitutive description plays second fiddle. A fundamental
challenge in this class of problems lies in the geometric non-
linearities that arise in the postbuckling regime, even though the
material remains in the linear regime and small-strain elasticity is
maintained (9). Furthermore, (ii) as we investigate the first mode
of instability, from straight to meandering patterns, we observe
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that the onset is consistent with a Hopf bifurcation (21). Finally,
(iii) we find that the natural curvature of the rod is a pivotal
control parameter. This is important given that in the engineering
systems mentioned above, natural curvature may develop from
the spooling of the cables and pipes for storage and transport
(22). Together, the experiments and numerics enable us to
identify the physical ingredients and predictively understand the
characteristic length scales that underlie the coiling process.

Physical and Numerical Experiments
Desktop-Scale Physical Experiments. A photograph of our experi-
mental apparatus is presented in Fig. 1A; an elastomeric rod is
deployed at a controlled injection speed, v, onto a conveyor belt
that is moving with speed vb. The rod is custom fabricated from
a silicone-based rubber [vinylpolysiloxane (VPS)], using a protocol
(22–24) that accurately prescribes the circular cross-sectional
radius, r0 = 1:6 mm; density, ρ= 1:02 g=cm3 or ρ= 1:18 g=cm3;
Young’s modulus, E= 0:18 MPa or E= 1:3 MPa; Poisson’s ratio
ν≈ 0:5; and natural curvature, 0< κn < 0:4 cm−1. A variety of
coiling patterns can be attained when the rod comes in contact
with the belt and the process is imaged by a digital camera. The
possible coiling states include meandering (sinusoidal patterns,
Fig. 1 B1 and Movie S1), alternating loops (Fig. 1 C1 and Movie
S2), translated coiling (coiling only to one side, Fig. 1 D1 and
Movie S3), and stretched coiling (coils separated by a long cate-
nary, see Fig. 3B). SeeMaterials and Methods for additional details
on the experiments.

Numerics from the Graphics Community. Hand in hand with the
physical experiments, we conduct numerical simulations using the
DER method (13, 14), which was originally developed to serve
the visual special effects and animated feature film industries’
pursuit of visually dramatic (i.e., nonlinear, finite deformations)
dynamics of hair, fur, and other rod-like structures. DER is based
on discrete differential geometry (DDG), a budding field of
mathematics that is particularly well suited for the formulation of
robust, efficient, and geometrically nonlinear numerical treatments
of elasticity (25). This method supports arbitrary (i.e., curved) un-
deformed configurations, arbitrary cross sections (i.e., noncircular),
and dynamics. A direct comparison between simulations and
experiments is provided in Movies S1–S3, with no fitting parameter;
all control, geometric, and material parameters are measured
independently.

Physical Ingredients
We assume that due to its slenderness and the geometry of the
setup, the rod is inextensible. The configuration of a Kirchhoff
elastic rod (9, 26) is succinctly represented by an adapted framed
curve fγðsÞ; θðsÞg, where γðsÞ is an arc-length parameterized curve
in R3 describing the rod’s centerline, and θðsÞ describes the an-
gular evolution of the tangent-aligned orthonormal material
directors fγ′ðsÞ;m1ðsÞ;m2ðsÞg relative to a natural, twist-free ref-
erence frame (27). The prime refers to differentiation with re-
spect to arc length; e.g., γ′ðsÞ= dγ=ds. Upon deformation of the

rod, the local strains are captured by the twist, θ′ðsÞ, and cur-
vature, κðsÞ= ��γ″ðsÞ��.
The energy stored in the deformation of the rod is expressed

in terms of inertial, gravitational, and elastic contributions per
unit length,

Etotal = E i + Eg + Ee: [1]

The elastic energy term can itself have bending and twisting
components, Ee = Eb + Et, depending on the specific deformation
mode. The inertial term is Ei = πρr20v

2, and the remaining, geometry-
dependent, terms are elaborated later when needed. Depending
on the relative magnitude of the various energies, the following
coiling regimes can be identified (12): (i) elastic ðEe � Eg ∼ E iÞ,
(ii) gravitational ðEg ∼ Ee � E iÞ, and (iii) inertial ðE i ∼ Ee � EgÞ.
Given the properties of our rod and slow injection speeds,
0:5  cm=s< v< 6:0  cm=s, the ratio between inertial and gravita-
tional energies, yields a Froude number, Fr= v2=½gR� (R is the
typical radius of curvature of deformation of the rod) that lies within
10−4 <Fr< 10−2. Inertial effects can therefore be neglected.

Gravito-Bending Length. We now identify the primary character-
istic length scale of our system. We first consider the case of a
planar, twist-free deformation ðEt = 0Þ of a straight rod ðκn = 0Þ
that is deformed into a configuration with curvature κ. The cor-
responding bending energy is Eb =EIκ2=2, where I = πr40=4 is the
area moment of inertia. Taking the radius of curvature, R= κ−1,
as the relevant length scale for height, the gravitational energy is
Eg = πρgr20R. Balancing the bending and gravitational energies
yields the characteristic length,

Lgb =

 
r20E
8ρg

!1=3

: [2]

This gravito-bending length (28) will be shown to be crucial in
setting the various features of the coiling patterns. Hereafter, an
overbar represents nondimensionalization of length by Lgb and
time by Lgb=v; e.g., κn = κnLgb denotes the dimensionless
natural curvature.

Static Coiling
We start our investigation by deploying the rod onto a steady sub-
strate (belt speed vb = 0), which leads to nearly circular coiling (Fig.
2 A and B, SI Appendix, and Movies S4 and S5).

The Role of Natural Curvature. In Fig. 2C, we plot the dimensionless
coiling radius as a function of the dimensionless natural radius of
the rod, Rn = κ−1n , finding excellent quantitative agreement be-
tween experiments and simulations. For low values of the natural
radius, the coiling radius first scales as RC ∼Rn, but then levels off
and eventually asymptotes to RC ∼ 2, for nearly straight rods.
Above, for a straight rod ðκn = 0Þ, we showed that the bal-

ance between bending and gravitational energies results in the
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Fig. 1. (A) Photograph of the
experimental apparatus. The
thin elastic rod (3) is deposited
by an injector (2) onto a con-
veyor belt (4), which is driven
by a stepper motor (5). The
patterns that form on the belt
are recorded by a digital video
camera (1). (B–D) Represen-
tative coiling patterns at dif-
ferent values of the control
parameters: Upper, from ex-
periments (in green); and
Lower, from DER simulations (in red). (B) Sinusoidal meanders (vb = 2:0  cm=s, v = 2:3  cm=s) (Movie S1). (C) Alternating loops (vb = 1:0  cm=s, v = 2:0  cm=s)
(Movie S2). (D) Translated coils (vb = 0:6  cm=s, v = 2:0  cm=s) (Movie S3). Material properties of the rod are r0 = 0:16  cm, ρ= 1:18  g=cm3, E= 1:3 MPa
(i.e., Lgb = 3:3  cm), with a deployment height of H= 50 cm.
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characteristic length scale Lgb, which we now find to set the
coiling radius. Toward interpreting the results in Fig. 2C, we
extend the previous scaling analysis to consider a rod with nat-
ural curvature: When deformed to coil at radius RC = κ−1C , the
bending energy scales as Eb ∼ ðEI=2ÞðκC − κnÞ2. Balancing this
with the gravitational energy, Eb ∼ Eg yields

κCðκC − κnÞ2 = c3: [3]

The constant c can be estimated by noting that, for a straight rod,
the radius of curvature of its suspended portion at the contact
point with the substrate (Fig. 2C, Inset) is of order Lgb, because it
is also set by the balance Eb ∼ Eg. By inspection, the dashed circle
in Fig. 2C, Inset has radius Lgb, and together with the above
observation that the normalized radius of coiling for κn = 0 is
RC = 2, we deduce that c= 0:5. Replacing this value of c in
Eq. 3 yields the solid line in Fig. 2C, which is in good agreement
with both experiments and simulations.

The Interplay Between Natural Curvature and Twist. In Fig. 2 A and
B we present snapshots of static coiling, using both a straight rod
(Fig. 2A, κn = 0) and a naturally curved rod (Fig. 2B, κn = 0:69),
finding that, in both experiments and simulations, the two cases
are qualitatively distinct. For straight rods, the coiling orienta-
tion is set once by the breaking of symmetry during the initial
contact, whereas for naturally curved rods, the orientation reverses
periodically. The scenario can be contrasted with the perversion in
helix handedness exhibited by naturally curved tendrils in climbing
plants (29). In Fig. 2D, we plot the normalized inversion length, Linv
(i.e., the length of rod deployed between subsequent reversals), as a
function of normalized deployment height, H, and find the in-
version length to scale as Linv ∼H, with a slope monotonic in Rn.
Given the good agreement between experiments and simu-

lations found thus far, we now use the DER simulations to access
quantities numerically that are challenging or impossible to ob-
tain from the experiments. In Fig. 2E we plot simulated data for
the time series (time is normalized by Lgb=v) of the normalized
distribution of twist, θ′= θ′Lgb, along the suspended heel (between
the injector, at s= 0, and the contact point with the substrate,
at s= sc). Both the minimum and maximum values of θ′ (thin
solid lines) and the average values (dashed line) are reported for
different natural curvatures. The relatively narrow band that
includes all values of θ′ (between the minima and maxima;
shaded region of each curve), demonstrates that twist is nearly
uniform along the heel. For rods with significant natural curva-
ture (e.g., κn = f0:43; 0:69g), the twist increases monotonically
over time until a critical value, θc′. At this moment, an inversion

event occurs as a result of torsional buckling of the rod. After
this coiling reversal, twist decreases and builds up again in the
opposite direction until −θc′ is reached, and the process repeats
periodically. By contrast, for rods with small or no natural cur-
vature (e.g., κn = f0; 0:17g), the twist asymptotes to a constant,
lower than θc′, and no inversions occur.
To gain further insight into the nature of these two regimes we

note that, by geometry, every deposited loop introduces a total
twist of 2π that must be distributed along the rod (SI Appendix).
Naturally curved rods prefer to twist along their heel; twisting
along the deposited loop is costly in bending energy, due to the
attendant misalignment between natural and actual curvature ori-
entations. Rods with low or no natural curvature also begin by
twisting along their heel (similar to their curved counterparts).
Eventually, however, the accumulated twisting force along the heel
overcomes the bending resistance along the deposited loop. As
a result, twist begins to accumulate continuously in the deposited
loop, rather than in the suspended heel (SI Appendix, Fig. S3).

Coiling Inversion and the Critical Value of Twist. We now seek to
understand the finding that the coiling inversion occurs at a
critical twist, θc′. For this, in addition to the gravitational and
bending contributions in Eq. 1, we also need to include the twist
energy per unit length, Et = ðGπr40=4Þθ′ðsÞ2=2, where G=E=3 is
the shear modulus of the incompressible material ðν= 0:5Þ. There
is a stationary energetic cost (in gravity and elasticity) for inversion
to occur; to overcome this cost, a critical amount of twisting en-
ergy ðGπr40=4Þθ′2c H must accumulate in the heel. In the case of
naturally curved rods, the twisting energy of the heel increases at
a nearly constant rate (SI Appendix, Fig. S1B), and after a length
Linv is deposited, the critical value is reached, as shown in Fig.
2E, leading to a coiling inversion.
The dependence of the inversion length on H and κn (Fig. 2D)

can now be understood as follows. If N loops are deposited be-
tween inversion events, this increases the mean dimensionless twist
by θc′=N2π=H (SI Appendix), while consuming a rod segment
of length Linv =N2πRC. Eliminating N gives Linv = θc′RCH. This is
consistent with the linear dependence of Linv on deposition height
(and the coiling radius in the RC ∼Rn regime) shown in Fig. 2D.

Dynamic Coiling
We proceed by investigating the dynamic coiling regime, where the
rod is deployed at a controlled injection speed, v, onto a substrate
that is now made to move, by switching on the conveyor belt in our
apparatus with a speed, vb. We focus on the regime where the in-
jection speed is larger than the belt speed, v> vb, because sliding
and stick-slip dynamics are observed for v< vb, which is beyond the

A1 A2 B2B1

C D E

Fig. 2. Static coiling (belt is stopped, vb = 0, and speed
of injection is v = 2cm=s). (A) Coiling of a straight rod
(κn = 0, Lgb = 3:3 cm) (Movie S4). (B) Coiling of a curved
rod (κn = 0:69, Lgb = 3:3 cm) with an imminent reversal
in coiling direction (Movie S5). A1 and B1 are from
experiments. A2 and B2 are from simulations. (C) Nor-
malized radius of coiling, RC , vs. the normalized natural
radius of the rod, Rn = 1=κn. Solid line is the scaling
prediction from Eq. 3. Deployment height is fixed at
H = 15. (Inset) Top view of the coil from DER simu-
lations. For reference, the dashed circle has diameter
2Lgb. (D) Normalized inversion length, Linv, as a function
of normalized deployment height, H, at different val-
ues of κn. (E) Time series of twist, θ′ðtÞ, of the sus-
pended heel ð0< s< scÞ. The dashed line represents the
average value within 0< s< sc and the thin solid lines
correspond to the minima and maxima within this in-
terval. All other values of θ′ are within the shaded re-
gion. The curves with κn = f0,  0:17g correspond to the
regime in A. The curves with κn = f0:43,  0:69g correspond
to the regime in B, exhibiting torsional buckling and coil-
ing inversions.
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scope of this study. Depending on the relative difference between
v and vb, we observe a variety of nonlinear patterns.

Phase Diagrams. In Fig. 3A we present the phase diagram con-
structed from a systematic exploration of the ðv; vbÞ parameter
space for the case of a naturally straight rod, both experimentally
(data points) and numerically (shaded regions). The phase
boundaries delineating each of the regions with different pat-
terns can be approximated by straight lines that pass through the
origin. This suggests that the pattern formation process is gov-
erned by the dimensionless speed mismatch between the injector
and the belt, e= ðv− vbÞ=v, a geometric control parameter that
can also be regarded as the dimensionless length of excess rod
injected onto the belt. When e= 0 (i.e., v= vb), the deployment
results in a straight-line pattern on the belt, and the suspended
heel acquires a steady catenary shape. In the limit of e→ 1 (i.e.,
vb → 0), we recover the static coiling scenario studied above.
Nonlinear patterns are observed within the range 0< e< 1. Some
of the regions of parameters space exhibit multistability. As such,
to ensure that every possible pattern in the simulations is realized,
we approached each ðv; vbÞ point from two directions. First, keeping
v constant, we stepped up vb in increments of Δvb ≤ v=20 from
vb = 0 to vb = v. Then, we stepped down vb along the same range
and with the same increment.
We have also constructed the ðκn; eÞ phase diagram (SI Appendix,

Fig. S5A) and found that the meandering regime can be expanded
significantly with increasing κn. In the discussion of the pattern
formation process, thus far, we have neglected the effect of the
height of the injector. This is motivated by a more detailed analysis
that is presented in SI Appendix, where we also constructed the
ðH; eÞ phase diagram for a straight rod (SI Appendix, Fig. S5B),
finding that H has a negligible (logarithmic) effect on the patterns.

The Straight-to-Meandering Transition. We now give special focus
to the first mode of instability above e= 0, the meandering pattern
(Fig. 1B and Movie S1), where the rod prescribes a sinusoidal
trajectory on the belt. In Fig. 4 A and B (for 0< x < 60) we
present two representative examples of simulated steady states of
the trace of the rod on the belt at e= 0:04 and e= 0:38, respectively.
The dimensionless steady-state peak-to-peak amplitude, A, and
wavelength, λ are plotted in Fig. 4 C and D, as a function of
the control parameter «, for two rods with Lgb = f3:3; 1:8g cm
deployed from different heights, H = f110; 50g cm. In both
experiments and simulations, the dimensionless amplitude is
found to scale as

A=A0e
1=2; [4]

and the dimensionless wavelength λðeÞ scales linearly with «, with
a finite value at the onset of the instability, λ0 = λð0Þ. We show

below that A0 and λ0 can be directly related to the physical prop-
erties of the rod and the geometry of the system.
We now investigate these dependences of the amplitude and

wavelength of the sinusoidal meandering patterns, on the dimen-
sionless speed mismatch, «. We start by assuming that the rod is
inextensible, such that the arc length of a single period, l, can then
be related to its wavelength by e= ðl− λÞ=l, which combined with
Eq. 4 yields

λ=A0ðC1e+C2Þ; [5]

where C1 =−2:48 and C2 = 3:20 are known numerical coefficients
that can be calculated exactly (SI Appendix). Eq. 5 recovers the
finite value λ0 =A0C2 at the onset of instability and the predicted
linear dependence is in excellent agreement with experiments and
simulations (Fig. 4D). In SI Appendix, the accuracy of this com-
parison is quantified further against the simulated data.
Our DER simulation tool also supports dynamics and can

therefore capture transients caused by step variations of the con-
trol parameter, «. These are, however, challenging to be system-
atically studied experimentally due to the excessive length of rod
required. As such, and ensured by the excellent agreement be-
tween the experiments and numerics presented in Fig. 4 C and D,
we use DER to quantify these transient dynamics. For example,
in Fig. 4 A and B, the control parameter was instantaneously
switched from the meandering states, e= 0:04 and e= 0:38, re-
spectively, down to e= 0, at which we expect a catenary straight-line
pattern with A= 0. The decay length between the oscillatory
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Fig. 3. Dynamic coiling. (A) Phase diagram of coiling patterns in the ðv,vbÞ
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points correspond to experiments. Shaded regions correspond to DER simu-
lations (only the data for the phase boundaries are shown for the numerics). The
study is focused in v > vb, the region where nonlinear coiling patterns are ob-
served. (B) Representative snapshots (from simulations) of the trace left on the
belt for the various coiling regimes: I, meandering, ðv,vbÞ= ð2:3, 2:0Þ  cm=s; II,
stretched coiling, ðv,vbÞ= ð4:5,  3:0Þ cm=s; III, alternating loops, ðv,vbÞ=
ð2:0, 1:0Þ  cm=s; and IV, translated coiling, ðv,vbÞ= ð2:0,  0:6Þ  cm=s.
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Fig. 4. Quantification of the sinusoidal meandering regime. (A and B) Simu-
lated traces of the meandering patterns for (A) e= 0:04 and (B) e=0:38. At
x = 60 (x oriented along the direction of travel of the belt), the speedmismatch is
instantaneously switched to e= 0 in both cases, resulting in a decay to a straight
pattern. (C) Dimensionless meandering amplitude, A, vs. «. (D) Dimensionless
meandering wavelength, λ, vs. «. Both experimental (data points) and simulated
(dashed line) data are shown for the values of Lgb and H presented in Inset. (E)
Dimensionless decay length, τ, as a function of «, obtained from the DER
simulations. The solid lines are fits to τ∼ e−a with exponents a= f0:49±
0:05,0:47±0:06, and 0:47± 0:05g for the datasets with ðLgb,HÞ= fð3:3  cm, 
33Þ,ð3:3  cm,  15Þ, and ð1:8  cm,  28Þg, respectively. (F) Simulated data for di-
mensionless onset wavelength, λ0, as a function of Lgb. To vary Lgb, we start
with the parameters of an experimental rod (r0 = 0:16  cm, ρ=1:18  g=cm3,
E= 1:3 MPa). Then, while keeping two of the three parameters (E, ρ, and r0)
fixed, the third is varied over a range spanning up to three orders of mag-
nitude. Inset shows simulated λ0 as a function of H, at fixed Lgb =3:3 cm.
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and the steady states is considerably slower for the case with a
step decrease e= 0:04→ 0 than that for e= 0:38→ 0. We fit the
local maxima and minima of the trace of the rod on the belt
with jyj=Aexpð−x′=τÞ, where A is the dimensionless amplitude
before the switch, and x′= x− 60 is the dimensionless distance
along the belt from the location at which the switch to e= 0 is
performed. This enables quantification of the dimensionless
characteristic decay length of the transient, τ, between the two
steady states. In Fig. 4C, we plot τ as a function of the initial value
of «, before the switch to e= 0, finding a behavior consistent with
the power-law dependence τ∼ e−1=2, which is significant of the
“critical slowing down” (30) that is commonly found in dynamical
systems near bifurcations.
Together, these observations on the meandering patterns

combined—square root dependence of the amplitude on the con-
trol parameter, a finite onset wavelength, and critical slowing down
at the onset of the instability—suggest that the meandering in-
stability in our rod deployment pattern formation process is con-
sistent with a Hopf bifurcation, which marks the transition from
a stable to an oscillatory state in many other nonlinear systems.
Moreover, it is interesting to note that the meandering instability for
a viscous thread falling onto a moving belt has been shown to also
arise through a Hopf bifurcation (17, 18), pointing to universality
features and emphasizing the prominence of geometry in these
two systems.

Meandering Length Scales. It remains to establish how the me-
andering amplitude and wavelength depend on the physical
parameters of the problem: the gravito-bending length, Lgb, and
the height of deployment, H. For this purpose, we have performed
a series of DER simulations in the meandering regime for rods
with gravito-bending lengths in the range 1:0 cm<Lgb < 10:0  cm
(set by varying the density 0:05  g=cm3 < ρ< 25  g=cm3, radius of rod
0:07  cm< r0 < 0:6  cm, and Young’s modulus 0:05 MPa<E<
30 MPa) from the deployment heights H = f15; 61; 121g.
In Fig. 4F we plot the values of dimensionless onset wavelength,

λ0, as a function of Lgb, finding λ0 to stay constant against Lgb,
and an increase in λ0 with increasing H. Furthermore, Fig. 4F,
Inset shows that λ0 scales logarithmically with H for H � 1. Com-
bined, these two findings indicate that λ0 =D1 logðHÞ+ β, where D1
and β are numerical constants (derivation in SI Appendix), and using
Eq. 5 we find

λ=
C1e+C2

C2

�
D1 log

�
H
�
+ β
�
: [6]

Note that the ability of Eq. 6 to describe the λðHÞ data breaks
down when the deployment height is of the same order as or
lower than Lgb, as seen in Fig. 4F, Inset for HK 8. The reason for
this discrepancy is that in this limit, bending dominates over gravity,
and our initial assumption of a balance between the two is no longer
valid. Fitting the simulation data to Eq. 6 yields D1 = 1:22± 0:01
and β= 7:14± 0:02. Finally, combining Eq. 6 with Eqs. 4 and 5
allows us to predict the amplitude and wavelength, over arbitrary
values of « in the meandering regime, for rods with a wide range
of mechanical properties and deployment heights. This predic-
tion agrees with our observations from experiments and simula-
tions, summarized in Fig. 4 C, D, and F.

The Effect of Natural Curvature. In the dynamic coiling regime
ðvb > 0Þ thus far, we have considered only a naturally straight rod.
We return to the effect of natural curvature κn, which was found to
qualitatively and quantitatively affect static coiling ðvb = 0Þ. In
Fig. 5 A and B, we plot the normalized meandering length
scales, A0 and λ0, respectively (from which all other quantities
including the dependence on « can be calculated), as a function of
Rn = 1=κn, for both experiments and simulations. In this section, we
fix both H = 15 and Lgb = 3:3 cm, unless stated otherwise, and
consider rods with Rn > 1, given that below this limit (highly curved

rods) the coiling patterns can be 3D, which go beyond the scope of
our study.
Whereas the amplitude and wavelength are left unmodified for

lower values of κn, for high values of curvature, A0 and λ0 decrease
linearly with κn. This points to a threshold critical curvature, κc,
below which the effect of curvature can be neglected. The de-
pendence of λ0 on κn can therefore be described as

λ0ðκnÞ=
(
λ0ð0Þ; for κn < κc
−B2

1κn +B2; for κn > κc;
[7]

where λ0ð0Þ is the dimensionless onset wavelength for a naturally
straight rod, and B1 and B2 are two numerical constants. Owing to
continuity between the two piecewise regimes of λ0ðκnÞ in Eq. 7,
we require λ0ð0Þ=−B1

2
κc +B2 and obtain the critical curvature

κc =
B2 − λ0ð0Þ

B
2
1

: [8]

Following a similar procedure to that used above to produce Fig.
4F, in Fig. 5C we find that at a fixed dimensionless height H = 15,
the parameters fB1;B2; κcg stay constant against Lgb with fitted
values of B1 = 1:76± 0:01, B2 = 11:2± 0:01, and κc = 0:189±
0:004. We have numerically evaluated fB1;B2; κcg as functions
of Lgb at different heights and observed similar trends (data for
H = f61; 121g is shown in SI Appendix). Even if κc is constant
with Lgb, it does, however, have a weak dependence on the di-
mensionless deployment height, H, as shown in the results of Fig.
5D (DER simulations with Lgb = 3:3 cm). Combined, Eqs. 7 and
8, along with the data in Fig. 5 C and D, allow us to estimate the
critical natural curvature of rods over a wide range of physical
parameters and deployment conditions.

Conclusions
We have explored a rescaled analog system to study the geo-
metrically nonlinear coiling during deployment of a thin elastic
rod onto a substrate. We combined precision model experiments,
computer simulations, and scaling analyses to predictively under-
stand the physical parameters that determine the coiling patterns.
We focused on static coiling; established the radius of coiling as

A B

C D

Fig. 5. Effect of natural curvature of the rod on meandering. (A and B) Nor-
malized characteristic amplitude, A0 (defined in Eq. 4) (A), and normalized onset
wavelength, λ0 (B), as a function of Rn. In A and B, the rod has gravito-bending
length, Lgb = 3:3 cm, and is deployed from a height of H= 15. (C) Simulation
data for the dependence of the parameters B1, B2, and κc , defined in Eq. 7, as
a function of Lgb (varied in the same way as in Fig. 4F) at H= 15. (D) Variation in
the normalized critical curvature, κc , as a function of H at a fixed Lgb = 3:3 cm.
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a function of the gravito-bending length, Lgb, and natural curvature;
and studied the meandering mode of instability in the dynamic
regime. The amplitude and wavelength of the meandering patterns
were found to be set directly by Lgb. We gave particular emphasis
to the natural curvature of the rod, which both qualitatively and
quantitatively affects the coiling patterns. The preponderance of Lgb
is further emphasized by the fact that it also sets the value of critical
natural curvature, κc, below which a rod can be considered naturally
straight. We have also effectively identified the conditions under
which twist does and does not affect the coiling behavior. In the
static coiling regime, for example, twist is an important ingredient
for inversions, but only when it interacts with sufficient natural
curvature. On the other hand, twist does not play a role in the
meandering patterns.
Our dimensionless formulation suggests that the problem is

geometry dominated, conferring a universality of our findings
across engineering applications of diverse spatial scales, from the
microscopic (e.g., serpentine nanotubes) to the macroscopic (e.g.,
transoceanic cables and pipelines). Having generated phase dia-
grams for the control parameters, it becomes possible to target
specific patterns. For example, meandering modes could be ex-
cited during the deployment of wires in a textile or pipelines onto
the seabed, thereby conferring resilience under strain due to
stretching of fabric or seismic activity, respectively. Because wires,
cables, and pipelines are often manufactured, stored, and trans-
ported in spools that impart permanent curvature, our quantita-
tive analysis could help predict the threshold spool radius beyond
which these rodlike structures cannot be considered naturally
straight. Understanding the participation of twist in static coiling
and meandering could inform the design of application-specific
rodlike structures, whose elastic response to twist and bending
could be tuned separately; e.g., rotating joints could reduce twist
effects, allowing small radii spools to deposit without static coiling
inversion. Finally, considering additional practical ingredients
such as fluid loading and complex topographies is a possible di-
rection of future study that can now be readily tackled by further
augmenting the framework that we have introduced.

Materials and Methods
Rapid Prototyping of Rod Samples. The rods used in the experiments were cast
with silicone-based rubber (vinylpolysiloxane, EliteDouble 8 and 32; Zhermack),

using PVC tubes as molds. To impart natural curvature to the rod, the tubes
were first wrapped around cylindrical objects with the desired radii. The fluid
mixture of polymer and catalyst was injected into each tube, which was
carefully cut after the curing process to extract the soft elastic rod. For the
fabrication of a straight rod, themoldwas attached to a rigid straight bar. Two
types of rodswere used. The first had radius r0 = 0:16 cm, density ρ= 1:18  g=cm3,
and Young’s modulus E= 1:3 MPa. This gives a gravito-bending length,
Lgb = 3:3  cm. The second type had r0 = 0:16  cm, ρ= 1:02  g=cm3, and E=
0:18 MPa, resulting in Lgb = 1:8  cm.

Experimental Setup. The apparatus was composed of a conveyor belt with
a vinyl surface and an injection system to deploy the rod, both of which
were driven using stepper motors (MDrive). For consistency, we ensured
that the rod was aligned at the injector ðs= 0Þ in a way that the orien-
tation of its natural curvature was fixed throughout injection. A digital
video camera was used to capture the motion of the rod on the belt. One
column of pixels from each frame was retained, and a stack of such
columns was processed to obtain the pattern formed by the rod on
the belt.

Discrete Elastic Rods Simulation. Our DER code represents the rod by
a piecewise linear centerline, along with a per-segment material frame
represented by its angular deviation from a reference frame (13, 14). See
SI Appendix for more details. We implemented a simple contact model by
applying Dirichlet boundary conditions (pinned nodes) at the points of rod–
substrate contact. However, the edges (an edge connects two consecutive
nodes) on the deposited rod that are within a certain arc length from the
contact point can rotate about the rod centerline. We take this distance to
be αLgb and observe that as long as 5≤ α≤ 50, it has negligible influence on
our quantities of interest, e.g., the coiling radius, the meandering ampli-
tude, and the wavelength. In our numerical experiments, we used α= 5. We
neglect self-contact of the rod on the substrate. The quantitative agree-
ments between experiments and numerics throughout the paper support
this assumption. The source code of our numerical tool is available for
download (more details in SI Appendix).
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