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Figure 1: Garbage in, audio out: given an animation of a buckling thin shell, our method uses substructured modal analysis and stochastic
enrichment to synthesize accompanying foley.

Abstract

Crumpling a thin sheet produces a characteristic sound, com-
prised of distinct clicking sounds corresponding to buckling
events. We propose a physically based algorithm that automat-
ically synthesizes crumpling sounds for a given thin shell ani-
mation. The resulting sound is a superposition of individually
synthesized clicking sounds corresponding to visually significant
and insignificant buckling events. We identify visually signifi-
cant buckling events on the dynamically evolving thin surface
mesh, and instantiate visually insignificant buckling events via a
stochastic model that seeks to mimic the power-law distribution
of buckling energies observed in many materials.

In either case, the synthesis of a buckling sound employs linear
modal analysis of the deformed thin shell. Because different buck-
ling events in general occur at different deformed configurations,
the question arises whether the calculation of linear modes can
be reused. We amortize the cost of the linear modal analysis by
dynamically partitioning the mesh into nearly rigid pieces: the
modal analysis of a rigidly moving piece is retained over time,
and the modal analysis of the assembly is obtained via Compo-
nent Mode Synthesis (CMS). We illustrate our approach through
a series of examples and a perceptual user study, demonstrating
the utility of the sound synthesis method in producing realistic
sounds at practical computation times.

Keywords: Sound synthesis, thin shells, buckling, component
modal synthesis

Concepts: •Computing methodologies → Physical simula-
tion; •Applied computing→ Sound and music computing;
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1 Introduction

Whether we ball up a plastic bag to reduce, reuse, or recycle;
open a foil-lined bag of potato chips; step and crush a soda can;
or fiddle with our cellophane candy wrapper to the joy of our
fellow opera-goers; one thing is certain: these activities would
never be the same were it not for the characteristic sound of
crumpling. Crumpling sounds originate primarily from buckling,
in which a thin material bends and gives way under pressure or
strain. The buckling region accelerates rapidly, exciting audible
vibrations throughout the object. Whereas the dynamics and
numerical computation of buckling deformations are relatively
well studied, the numerical synthesis of buckling sounds has not
received significant attention.

We seek to automate the synthesis of crumpling sound to accom-
pany a given crumpling animation. The input to our method is
an animated triangle mesh produced by some external thin shell
simulator. We are charged with detecting buckling events, and
synthesizing corresponding buckling sounds. For this, we target
a physically based approach. Physics-based sound synthesis is
appealing because it essentially leads to an “encoding” of the
physics behind the phenomena as an algorithm, while avoiding
the need of recorded sounds. However, there are two central
challenges that must be overcome to make it practical.

Audible buckling events vary in spatial scale, from highly local-
ized events invisible to the naked eye to visually significant events
involving large deformations. Detecting the entire range of events
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would require that they are first of all adequately captured by the
input mesh animation, which would require a spatiotemporal res-
olution of the mesh animation that is grossly excessive from a
visual perspective. To allow for typical input mesh animations
targeted at visual simulations, we must devise an alternative to
detecting visually imperceptible yet audible buckling events.

The spectrum of a vibrating sound is dependent on the vibration
modes of the shape, but the modes are constantly changing, be-
cause of the dynamically evolving thin shell mesh. Therefore, the
sound of a buckling event depends on the deformed shape at the
time of buckling. Our challenge is that crumpling is a composition
of myriad buckling events, each over a different deformed con-
figuration. Brute force analysis of the vibration modes for each
of the myriad deformed shapes is expensive, while approximat-
ing the analysis over a single representative (e.g., initial) shape
would produce unrealistic sounds.

Our work addresses these central challenges of filling in the buck-
ling events that are missing due to limited spatiotemporal input
mesh resolution, and making the computation tractable by amor-
tizing the modal analysis over a dynamically evolving mesh.

Using an off-the-shelf elastoplastic thin shell simulator [Narain
et al. 2012; Narain et al. 2013], we produce an input anima-
tion of a crumpling scenario. We identify the visually perceptible
buckling events by detecting sudden curvature changes, and use
the velocity of the buckling regions to excite the linear vibration
modes computed at the deformed configuration, thus producing
the corresponding buckling sounds. When assembling the entire
sequence of buckling sounds in this way, the initial “skeleton” of
a crumpling sound emerges.

To fill in this skeleton, we employ a stochastic model to generate
buckling events at visually imperceptible spatiotemporal scales
(§6). The model is driven by “crumpling activity”, so that new
buckling events are added only at times and regions where buck-
ling is likely to occur. The intensity of the generated buckling
events follows a distribution observed empirically by statistical
physicists over various materials [Kramer and Lobkovsky 1996;
Houle and Sethna 1996; Abobaker et al. 2015].

We observe that when an object crumples, parts of the object tend
to move nearly rigidly during portions of the crumpling motion.
Leveraging this observation, we amortize the cost of modal analy-
sis by reusing previously computed modes in nearly rigid regions
(§5). We detect mesh regions that move near-rigidly over spans
of time, and adapt Component Modal Synthesis (CMS) [Craig and
Bampton 1968; Craig 2000] to reuse the modes of such compo-
nents. The result is a speedup up to 8.5× in the computation
time of modal analysis.

We demonstrate the practicality and expressive range of the
method through the synthesis of prosaic sounds such as crushing
soda cans, handling plastic bags, and twisting candy wrappers
(see Figure 1). We show that the computation times are prac-
tical, and that the sound spectra and energy distributions are
comparable to empirical observations.

Further, in a modest perceptual study, we demonstrate that when
human test subjects are asked to associate sound to correspond-
ing visuals, the synthesized and recorded sounds both lead to
similar rates of successful association. We also show that they
are able to establish this association much better with the pro-
posed method compared to existing methods for thin shell sound
synthesis, which do not explicitly focus on crumpling.

2 Related Work

Sound synthesis. Modal vibration models have been used to
synthesize audio for (nearly) rigid objects during impact or fric-
tional contact [Cook 2002; Doel et al. 2001; O’Brien et al. ; Zheng
and James 2011]. Chadwick et al. [2009] focused on nearly rigid
thin shells that vibrate under small deflections. They synthesized
thin-shell impact sounds which usually last long (a few seconds)
in duration. Their method accounts for mode couplings using a
nonlinear vibration model. By contrast, we focus on crumpling,
which involves gross elastic and plastic deformation. Since the
clicking sounds produced by buckling are typically short (50ms)
in duration [Houle and Sethna 1996], we harness time-varying
linear modal synthesis to synthesize crumpling sound.

Earlier work on sound synthesis for thin shells focused on
small time step explicit integration of volumetric finite ele-
ments [O’Brien et al. 2001] or real-time synthesis based on heuris-
tic selection of pitch frequency and decay time [Fontana and
Bresin 2003]. There are also data-driven approaches specifically
tailored for cloth [An et al. 2012] and paper [Schreck et al. 2016]
sound synthesis, which perform friction and buckling event de-
tection to guide a synthesis step that relies on real sound record-
ings. Among methods that build on physical principles rather
than stored recordings, our approach is positioned to offer prac-
tical runtimes and richer, more recognizable crumpling sounds
than what was previously possible.

Thin shell simulation. Graphical simulation of thin shells has
been studied for nearly three decades [Terzopoulos et al. 1987;
Baraff and Witkin 1998]. Most modern approaches rely on dis-
crete shell models well suited for computational efficiency; these
formulate simple bending energies while allowing non-flat rest-
shapes [Grinspun et al. 2003; Bridson et al. 2003]. Plasticity can
be incorporated [Gingold et al. 2004; Narain et al. 2013], allow-
ing crumpling simulations with fine creases. Some investigations
have focused specifically on efficient simulation of cloth buck-
ling [Choi and Ko 2002; Zhou et al. 2008]. Narain et al. [2012;
2013], whose software we use to produce our input animations,
focused on adaptive remeshing of cloth and shell simulations. By
locally refining or coarsening the triangle mesh as needed, their
approach is able to resolve the sharp creases formed when a thin
shell buckles.

Component Mode Synthesis (CMS). CMS has been used to com-
pute the modal analysis of complex structures since the pioneer-
ing work of Hurty [1965]. In CMS, a structure is subdivided
into substructures, reduced-order models are computed or mea-
sured for each substructure, and a reduced-order model is com-
puted for the entire structure by assembling the substructure
models [Craig 2000]. CMS has been widely adopted in engineer-
ing to study large assembled systems [Bathe and Dong 2014].
Other use cases of CMS include the study of fluid-solid coupled
vibrations [Stammberger and Voss 2008], wind turbine dynam-
ics [Holm-Jorgensen and Nielsen 2009], or the analysis of systems
by mixing measured and analytical vibration responses [De Klerk
et al. 2008]. To our knowledge, CMS has not been applied to
sound synthesis, or indeed in the field of computer graphics with
the only notable exception of the work of Yang et al. [2013]
where boundary modes are computed using a CMS formulation.
We apply CMS to sound synthesis in order to amortize the cost
of modal analysis over a sequence of meshes sharing similar sub-
structures.

3 Method Overview

Input mesh animation. The input to our algorithm is a visually
plausible triangle mesh animation of crumpling behavior. Our
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Figure 2: Method overview

method does not require us to modify the numerical method that
produces this input animation. Instead, we estimate velocities
and deformation energies directly from the animated mesh. In
our examples, we used the off-the-shelf thin shell simulator ARC-
Sim [Narain et al. 2012; Narain et al. 2013].

As depicted in Figure 2, we synthesize crumpling sound in four
steps:

Buckling detection. First, we detect mesh buckling events at
each animation frame (see Figure 9). From a kinematic perspec-
tive, buckling is characterized by a sudden brief localized deflec-
tion, with attendant rapid local change in surface curvature. We
therefore use a curvature-based metric to perform the detection.
Contiguous buckling vertices are grouped into buckling patches
(Figure 3), each representing a distinct buckling event. Assuming
the elastic energy of a patch is converted into vibrational energy,
we estimate the post-buckling velocity of the patch, which will be
used as an initial condition to drive a standard modal vibration
model (§4.3). The implementation of buckling patch computa-
tions is postponed to Section 7.

Modal vibrations (§5). The modal vibration model is formulated
in terms of a generalized eigenvalue decomposition (GED) of the
material stiffness matrix K. Because a shell is largely deformed
by crumpling, the stiffness matrix K varies significantly over the
dynamic evolution. This necessitates the updating of K—and
crucially the recomputation of the GED—at the instant of each
buckling event. Actually carrying out such frequent recomputa-
tion would be prohibitively expensive. To address this problem,
we amortize the construction of the linear modal vibration model
by judiciously reusing local vibrational modes of near-rigid re-
gions using Component Mode Synthesis, as detailed later in §5.
These vibration modes are excited by the velocity of the detected
bucklings, producing a “clicking” sound [Kramer and Lobkovsky
1996].

Sound enrichment (§6). Detecting visually evident buckling
events produces a sound “skeleton” of audible clicks, but lacks the
fullness, or density of clicks, arising from visually imperceptible
buckling events. We enrich the skeleton by exploiting the physical
studies on acoustic emission statistics of crumpled sheets [Kramer
and Lobkovsky 1996; Houle and Sethna 1996; Abobaker et al.

Figure 3: We group every contiguous neighborhood of buckling
vertices into a buckling patch.

2015], in a way similar to the turbulence enrichment for fluid
simulation [Kim et al. 2008]. Without resort to expensive high-
resolution simulation, we stochastically inject small-scale buck-
ling events such that the overall energy distribution of both the
simulated and stochastically generated buckling sounds satisfies
a universal power law.

Sound propagation. Lastly, we estimate the modal sound prop-
agation, following the standard far-field acoustic transfer approx-
imation [Chadwick et al. 2009; Zheng and James 2010]. We use
the fast multipole boundary element method [Shen and Liu 2006]
to solve the Helmholtz equation for every vibrational mode and
synthesize the final sound [James et al. 2006].

4 Challenges to Crumpling Sound Synthesis

Thin shells have been called the prima donna of mechanical struc-
tures [Ramm and Wall 2003]. On the one hand, they offer the op-
portunity for exceptionally efficient construction of load bearing
structures. On the other hand, such structures have the potential
to dramatically fail, because of a shell’s fickle tendency to buckle.

4.1 Rationalizing the Sound of Buckling

The propensity to buckle is best understood by examining shell
geometry, which contrasts one exceptionally thin length scale—
the thickness—against a much larger length scale (shell diameter,
radius of curvature, or “characteristic length”) [Balankin et al.
2015; Sethna et al. 2001; Wood 2002; Vliegenthart and Gomp-
per 2006]. A remarkable consequence of the contrasting length
scales is that the membrane stiffness is several orders of magni-
tude greater than the bending stiffness, leading to a preference
of bending (normal deflection) over membrane (in plane com-
pression) modes.

Except under very special circumstances (e.g., standing on
eggshells), general attempts (e.g., via forcing or boundary con-
ditions) to store energy in a compressive membrane state are
typically foiled by a rapid (<50ms) and violent normal deflection
in which energy is transferred into stored elastic bending, plastic
dissipation, and kinetic energy [Houle and Sethna 1996; Pandey
et al. 2014]. The sound produced by a buckling event can be ratio-
nalized via this violent transition: the local buckling introduces
local accelerations that excite global, audible vibrations [Kramer
and Lobkovsky 1996].

The specifics of the buckling process depend on the energy distri-
bution, geometrical and material properties of the shell [Sun et al.
1995]. For certain geometries, a rapid cascade of buckling events
leads to crumpling [Cerda et al. 1999]. At first glance appearing
to be absolutely unorganized, the geometry of crumpling is in
fact statistically reproducible [Balankin et al. 2015].

4.2 Thin Shell Dynamics

To synthesize buckling sound we must first lay down the founda-
tions for numerical treatment of shell dynamics. We discretize
the spatial domain of the thin shell with a triangle mesh. The dy-
namics of the spatially discretized shell are governed by Newton’s
second law of motion,

Mü+Du̇+ fint(u) = fex t , (1)

where u is the vector of nodal displacements, M and D are the
mass and damping matrices, respectively, fex t is the vector of
external nodal forces, such as gravity and contact, and fint(u)
is the vector of internal nodal forces, which typically includes
Green membrane stress and discrete bending model [Bridson
et al. 2003; Grinspun et al. 2003]. Plasticity and non-flat rest
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Figure 4: The evolution of near-rigid thin shell regions of two ex-
amples: each block indicates a time frame interval, in which the
near-rigid mesh regions are color-mapped.

angles may be treated via explicit embedding of the plastic con-
figuration [Narain et al. 2013].

4.3 Linear Modal Analysis (LMA) for Sound Synthesis

Having established the dynamics, we turn to modal sound syn-
thesis to produce audio from shell vibrations [Chadwick et al.
2009]. Assume for the moment that a thin shell is nearly rigid:
deformations are limited to visually imperceptible vibrations. Un-
der this assumption, we may analyze vibrational deformations
at some configuration of interest (i.e., an animation frame) by
linearizing (1),

Mü+Du̇+Ku= fex t , (2)

where K= ∂ufint(u) is the stiffness matrix at the deformed config-
uration u. Linear modal analysis (LMA) then seeks a decoupled
basis for the linear system by solving the generalized eigenvalue
problem [Shabana 2012]

KU=MUS (3)

to compute the modal shape matrix U and a (diagonal) eigen-
value matrix S. Each column of U encodes the vibration (oscil-
latory displacement) of a mode, while the corresponding diag-
onal entry of S encodes the mode’s squared undamped natural
frequency (i.e., Si,i =ω

2
i
). Substituting u = Uq rewrites the dis-

placements u as a vector of modal amplitudes q. Premultiplying U
on both sides of (2) then yields the decoupled family of ordinary
differential equations, each univariate equation

q̈i + di q̇i +ω
2
i
qi = UT

i
fex t (4)

describing temporal evolution of a single complex-valued ampli-
tude qi , where di is the damping coefficient of mode i, and Ui is
the i-th column of U.

The amortization challenge. Crumpling, comprised of a com-
plex cascade of buckling events, introduces drastic deformations,
with attendant alterations of the modal frequency and shape ma-
trices (U,S). Each alteration of the matrices induces a correspond-
ing change to the solution of the generalized eigenvalue problem
(3). Efficient, high-quality synthesis of crumpling sound there-
fore hinges on accurate amortization of the computation (3) over
a sequence of shapes

�
(U(1),S(1)), (U(2),S(2)), . . .

�
that are related

by temporal, dynamic evolution.

5 Amortized Modal Analysis

When a thin shell crumples, alternating parts of the shell tend
to move almost rigidly across multiple simulation frames, while

boundary DoFs

interior DoFs

Figure 5: Substructures in CMS: each colored region represents
a substructure (or mesh component) of the thin shell. They are
coupled through boundary vertices.

others are deformed (refer to Figure 4). The segmentation of the
geometry into rigid and deformable parts itself varies over time:
a region that has held near-rigid for a duration may crumple
before returning to near-rigid motion. Since LMA is applicable
to near-rigid materials, amortizing the cost of LMA requires a
method to reuse modal information for near-rigid parts, while
incorporating updated modal frequency and shape matrices for
deforming parts.

Component Mode Synthesis (CMS) [Bathe and Dong 2014; Craig
and Kurdila 2006] offers a natural solution for partial recompu-
tation of LMA. Given a segmentation of a shape into parts, CMS
first performs LMA on individual parts and then combines the
analyses to model the vibrational mode of the entire shape. We
propose to identify parts of the thin shell that evolve near-rigidly
over spans of time, computing the LMA for such parts just once.
We can then harness CMS to combine the LMAs of different parts
to discover the global vibration modes. To exploit this idea, we
must decompose the mesh animation in time and then space to
maximize (LMA reuse of) near-rigid regions.

After introducing CMS (§5.1), we will analyze its complexity for
our application (§5.2) and then apply dynamic programming and
clustering to decompose the mesh animation in time and space,
respectively (§5.3).

5.1 Component Mode Synthesis

Component Mode Synthesis (CMS), which breaks down the analy-
sis of complex structures via analysis of substructures [Craig 2000;
De Klerk et al. 2008], comes in fixed- and free-interface vari-
ants. We adopt the fixed-interface approach, which assumes fixed
boundaries between substructures when computing the LMA, and
then adds those boundaries directly as degrees of freedom during
assembly [Craig and Bampton 1968].

Concretely, we are concerned with the procedure of solving the
generalized eigenvalue problem (3). Suppose the mesh is de-
composed into a number of mesh components incident at their
boundaries (Figure 5). CMS essentially amounts to an algebraic
substructuring method, in which we first permute the rows and
columns of the (symmetric) mass and stiffness matrices, M and
K so that they can be partitioned as

M=

�
Mbb Mbi

MT
bi

Mii

�
and K=

�
Kbb Kbi

KT
bi

Kii

�
,

where the submatrices Kbb and Mbb correspond to the mesh de-
grees of freedom (DoFs) at all component boundaries; Kii and
Mii correspond to the mesh DoFs interior to all the components.
We further structure each submatrix into components: both Kii

and Mii are block diagonal matrices, each block corresponding to



a mesh component. Finally, the components are coupled together
at the boundaries through the submatrices Mbi and Kbi .

CMS begins by analyzing each component in isolation to obtain
a matrix of “internal” modes Uii , which has the same block di-
agonal structure as Mii and Kii . To determine each block of Uii ,
we solve an LMA over the corresponding blocks of Mii and Kii .
Here, the assumption of fixed boundary positions is invoked when
performing the LMA only over nodes internal to a component.

Next, the modes Uii are augmented with constraint modes Uc =
−K−1

ii
Ki b that account for the displacement of the interior of com-

ponents due to displacements of component boundaries. CMS
then constructs the Craig-Bampton transformation

Ψ =

�
I 0

Uc Uii

�
, (5)

which yields a new matrix pair

bK= ΨT KΨ and ÒM= ΨT MΨ. (6)

The eigenvalues of (ÒM, bK) are identical to those of (M,K), and the
transformed and original eigenvectors are related by ΨbU= U.

However, from a computational point of view, solving the trans-
formed problem appears less desirable: while (M,K) are sparse,
their transformed counterparts are typically dense.

To offset the advantage of sparsity, when we work with the dense
system we must reduce it to a manageable size. We do this by
discarding less significant vibration modes (columns) from Uii ,
which (originally square) becomes rectangular. In truncating
modes from Uii we must strike a balance between making the
dense eigenvalue problem manageable but keeping the solution
accurate.

Propagating the truncation to (5) and (6) gives a rectangular
matrix Ψr, and in turn square but smaller mass and stiffness ma-
trices (Mr ,Kr). Following the standard Rayleigh-Ritz theory [Par-
lett 1980], the eigenvalues of (Mr ,Kr) are good approximants
to those of (M,K), and original eigenvectors are approximately
recovered by U≈ ΨUr .

In short, component modal synthesis sacrifices accuracy in the
solution of the global linear modal analysis in exchange for the
freedom to solve independently (and potentially in parallel), or
in our application reuse, the solution of component subproblems.

5.2 CMS Complexity Analysis

In order to optimize the spatiotemporal mesh decomposition for
CMS, we first analyze the computational complexity of CMS as
applied to crumpling sound synthesis. For the sake of this analysis,
consider L consecutive frames. Without loss of generality, assume
that the mesh animation is dense in buckling events, i.e., each of
the L frames includes a buckling event. To lift this assumption, we
may consider the subsequence of animation frames that represent
buckling events.

Suppose that the mesh is decomposed into R near-rigid compo-
nents (denoted as G) and D deforming components (denoted as
D), and this composition holds for all L consecutive frames. The
cost of CMS-based sound synthesis can be broken down qualita-
tively into three actions:

(i) for each rigid component, solve the truncated LMA just once

(ii) for each deformable component i ∈ D, recompute the trun-
cated LMA every frame,

(iii) coalesce by solving the reduced LMA (Mr ,Kr) every frame.

cost

10 20

predicted by complexity analysis

actual (measured)

sample ID

20

10

Figure 6: We compare the cost of CMS (vertical axis, in minutes),
as predicted by (7) (red) versus actual measurements (blue), over
an arbitrary sequence of 25 different decompositions of increasing
complexity. The decompositions are sorted (horizontal axis) based
on the actual cost of CMS; a perfect predictor would therefore also
be monotonically increasing. Our estimate, (7), has relative error
of mean 15% and standard deviation 10%.

Therefore, the overall computational complexity is

C =
∑

i∈G

Γ (di , mi)

rigid

+ L
∑

i∈D

Γ (di , mi)

deformable

+ LΓ (dT , S)

reduced

, (7)

where dT denotes the total DoFs of the entire mesh, S =
∑

mi

denotes the total number of truncated modes over all compo-
nents, and Γ (d, m) denotes the cost of LMA for a mesh with d
DoFs and m modes. The form of Γ (d, m) depends on the spe-
cific numerical algorithm (e.g., whether it is a Lanczos method
or Arnoldi method) [Golub and Van Loan 2012]. For example,
through experimental analysis, we have observed that the Mat-
lab’s eigs implementation has a complexity of O(dm2).

This cost estimation does not include the construction of Ψ, Mr ,
and Kr , via (5) and (6); that cost is relatively negligible. For
purposes of selecting a decomposition well suited to CMS, (7)
serves as a good predictor of actual cost (see Figure 6).

5.3 Optimizing CMS Sequence

Having modeled the complexity of CMS, we can now seek a good
temporal and spatial decomposition of the given mesh animation,
one that reduces the aggregate cost of CMS over the complete
input animation. Searching the entire space of spacetime decom-
positions appears to be a challenging combinatorial problem; by
adding additional structure and focusing our attention on time-
then-space decompositions, we can formulate a polynomial time
algorithm that can be better characterized in terms of its optimal-
ity.

Time-then-space decomposition. We partition a timeline of N
frames into a list of frame intervals, whose concatenation spans
the timeline (see Figure 4). For every interval, we partition the
mesh combinatorics into (non-overlapping) submeshes, whose
union forms the complete mesh; the mesh partition is invariant
over that interval. Such decompositions, which partition first in
time and then in space, define our search space.

Temporal decomposition via dynamic programming. Tempo-
rally partitioning the sequence of N frames into non-overlapping
intervals, and seeking to minimize the aggregate cost of CMS, is a
combinatorial optimization problem. However, our problem can
be solved efficiently and optimally using dynamic programming.

Let S(t) denote the minimal aggregate cost of CMS up to the
frame t. Let C(a, b) denote the cost of CMS over a single inter-
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Figure 7: Depiction of the t’th dynamic programming iteration:
prior to this iteration, we have already computed the optimal de-
composition for the t − 1 intervals 1 . . . i, and their associated costs
S(i), 1 ≤ i < t. In this iteration we are tasked with computing
S(t). We consider the t −1 possibilities of concatenating a previous
decomposition 1 . . . i with a new interval i + 1 . . . t, and select the
least expensive among these.

val spanning frames a . . . b. The dynamic program follows the
causality condition (see Figure 7)

S(t) = min
i=1...t−1

[S(i) + C(i + 1, t)].

The causality condition leads to a pair of nested iterations each of
complexity O(N); as we shall see below, C(i+1, t) ∈ O(N); there-
fore, the overall complexity is O(N 3). In addition, this process can
be made even more efficient thanks to multi-core parallelization.

Spatial decomposition in a frame interval. The temporal decom-
position makes reference to C(a, b), the cost of CMS over a given
frame interval a . . . b. We evaluate C(a, b) by first spatially de-
composing the mesh and then evaluating CMS complexity (7).

The complexity of CMS is reduced by identifying components
that evolve near-rigidly. We adopt the Mean-Shift clustering of
per-triangle rotations proposed by James and Twigg [2005], and
refer the reader to details therein. In short, for each triangle j
we compute via polar decomposition the rotations Ra+1

j
. . . Rb

j
∈

SO(3) that best map its position in frame a to its positions at
frames a < i ≤ b. We concatenate the (b−a+1) rotation matrices
of the triangle into a vector z j ∈ R

9(b−a+1). We then perform mean
shift clustering of the {z j} rotation vectors. This yields a set of
triangle clusters that are labeled as moving near-rigidly.

We further split these clusters into connected mesh components.
All the remaining triangles not belonging to near-rigid regions are
labeled as deformable and grouped into deformable components.

Observe that the length of z j is O(N); the complexity of the spatial
partitioning is therefore linear in the number of frames (b−a+1).

Having identified a good spatial partition for the given interval,
we use (7) to compute C(a, b), the complexity of CMS over the
interval a . . . b.

5.4 Implementation Details

We highlight a few notable implementation details.

Both for spatial decomposition of the mesh and the CMS, it is
fundamental to have a sequence of meshes with a fixed mesh
topology throughout the entire timeline. While our thin-shell sim-
ulation remeshes adaptively, we remesh again the output meshes
by uniformly resampling the material space. As a side effect, this
step also improves the mesh quality for LMA, eliminating large
coarse regions which would impair the mode shapes. We enforce

that the resampled number of vertices is enough to produce vibra-
tions within the entire audible range (20Hz - 20kHz). In practice,
we remesh to get approximately 10K nodes.

To construct Ψ in (5), we compute Uc = −K−1
ii

Ki b by solving the
linear problem KiiUc = −Ki b. We use the standard Preconditioned
Conjugate Gradient solver with an incomplete Cholesky factoriza-
tion as preconditioner. The amount of linear system solves, one
per column of Uc , is equal to the number of boundary DoFs, and
they can easily be run in parallel on a multi-core CPU.

The modes of near-rigid regions are reused within a frame inter-
val, but they must be rotated to account for rigid region rotations
introduced by plastic deformations. We compute the rotation of
each region following [James and Twigg 2005], i.e., we compute
the area-weighted average triangle rotation of the region, and
then perform a polar decomposition [Moakher 2002].

A final notable detail is the policy for mode truncation after LMA
is executed on each mesh component. In practice, we set a target
number of modes mt for all components combined, and each
component retains a portion proportional to the number of DoFs
of that component. With this policy, the size of the CMS subspace
is S = mt +mc , with more modes assigned to larger components.

6 Power-Law Buckling Sound Enrichment

The acoustic energy emitted from buckling events varies over six
orders of magnitude [Kramer and Lobkovsky 1996; Houle and
Sethna 1996; Abobaker et al. 2015]. This variation is mainly due
to the extremely inhomogeneous distribution of elastic stresses in
a crumpled configuration. As such, the variation is not specific to
one material; the aforementioned works report this observation
for diverse materials such as paper, plastic, and aluminum.

Even a tiny buckling event, which can be hardly visible, produces
audible sounds. Yet, any crumpling simulation has limited spa-
tial and temporal resolution. Increasing the resolution would
allow capturing smaller buckling events, but would also result in
a prohibitive increase of simulation cost.

Fortunately, only the buckling events that are visible need to have
perfectly synchronized and perceptually matching acoustic coun-
terparts. We therefore propose an algorithm that generates small-
scale buckling sounds procedurally, thereby enriching the simu-
lated buckling sounds without increasing the simulation cost.

Universal power law. Crumpling of a thin shell has been exten-
sively studied in statistical physics. An important discovery is
a universal power law distribution of the buckling acoustic en-
ergies (i.e., p(E) ∼ E−α); one power law holds for a variety of
shell sizes and materials [Houle and Sethna 1996]. The emer-
gence of the power law is attributed to the quenched curvature
disorder (or random, stationary network of creases and ridges)
produced during the crumpling process and the attendant com-
plex energy landscape [Kramer and Lobkovsky 1996]. We make
the assumption that this power law applies throughout the crum-
pling process.

Method in brief. Adopting the power law distribution as our
ansatz, our method extends the buckling energy spectrum:
whereas mechanical simulation (§5) populates the higher-energy
infrequent tail of the spectrum, our stochastic process fills in the
low-energy frequent events. Referring to Figure 8, suppose that
the mechanical simulation produces acoustic energies [Ew, Es]
following a power law distribution. We aim to fill in those less
energetic buckling events [Emin, Ew] that complete the spectrum.

We first trigger stochastic buckling events as a function of crum-
pling activity, and assign their buckling energies that are smaller
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Figure 8: Stochastic sound enrichment: the simulated buckling
events have a band-limited buckling energy spectrum, which, based
on statistical physics, should satisfy a power law [Houle and Sethna
1996]. We extend the energy spectrum by sampling small-scale
low-energy buckling events following the power law.

than Ew and follow the same power-law distribution as the sim-
ulated bucklings. Lastly, like the simulated buckling events, the
stochastically generated buckling events also excite the modal
vibration and produce sound details.

6.1 Triggering Stochastic Buckling Events

We first trigger buckling events stochastically on the simulated
mesh. This process is guided by the crumpling activity of the
material. Intuitively, the more the material deforms in a given
period of time, the more likely it is to buckle during that time.
We measure crumpling activity for triangle i from frame t − 1
to frame t by computing the variation of its elastic energy, ∆Ei ,
during the frame interval. We then estimate a probability pi for
every triangle i becoming buckled following

pi(t) = C∆Ei , (8)

where the constant C is a scaling constant, introduced to con-
trol the overall number of stochastic buckling events that are
triggered. The value of C is determined automatically such that
simulated and stochastic energy distributions match, as explained
later in §6.3. After computing pi , we randomly assign each trian-
gle as buckling triangle with the probability pi .

6.2 Stochastic Buckling Energy

Next, we assign each buckling triangle a buckling energy value fol-
lowing the power law distribution. Formally, we use a power-law
Pareto distribution [Feller 2008], whose cumulative distribution
function P is

P(E) = 1−
�

Emin

E

�α
, (9)

which describes the probability of a buckling energy less than or
equal to E. Observed in many studies [Kramer and Lobkovsky
1996; Houle and Sethna 1996], the power-law coefficient α is in
the range of [1,1.3], depending on the type of material. We fit the
α value based on the energy distribution of simulated buckling
events. Emin is the minimal energy level that can be generated by
the power law. Kramer [1996] observed six orders of magnitude
in the energy spectrum. Thus, we set Emin as 1× 10−6 times the
highest energy released by simulated buckling events. In practice,
energy values are relative since the sound, when stored in a wave
form file, is normalized with respect to the highest amplitude.

The cumulative distribution function allows us to use importance
sampling to assign energy values satisfying the power law dis-
tribution (9) [Rubinstein and Kroese 2011]. For each buckling
triangle i, we assign an energy value Ei = Emin(1−χ)

− 1
α , where

χ is a random variable uniformly distributed in (0,1].

With the sampled buckling energy Ei at the triangle i, we grow a
region as the buckling patch. Adopting the same idea of energy-
based sound excitation for simulated buckling events (§3), we
grow a patch starting from the triangle i and incrementally in-
cluding the 1-ring neighbors of the triangles in the region. We
stop growing the patch when the sum of the elastic energy of
all the triangles inside the patch is above Ei . This results in a
weak coupling between buckling energy and the size of the buck-
ling patch, coherent with observations in previous work [Kramer
and Lobkovsky 1996; Houle and Sethna 1996]. Once a stochastic
buckling event is fully defined by its location, size, and energy, we
compute its effective vibrational velocity and produce the modal
vibration, following the sound excitation step described in §3.

Energy buildup and release. Every buckling event releases en-
ergy locally, preventing other events from triggering in the neigh-
borhood until enough elastic energy builds up again. Since our
stochastic model runs as a post-process after the crumpling simu-
lation, we approximate this behavior by introducing a cooldown
period. This draws inspiration from the work of DiDonna [2002],
who observed that, after initial ridge formation, the buckling
threshold energy of the ridge is an approximately constant scal-
ing s of its initial energy. Theoretical derivation and experimental
simulation lead to an s value around 1.2.

We model the energy buildup that leads to a buckling event by
leveraging this constant scaling s, with s = 1.2. In practice, once
a region has buckled, its triangles are not allowed to trigger a
new stochastic event until their energy has been scaled by s. We
use as reference energy for each triangle the lowest energy since
it last buckled. We note that simulated bucklings automatically
contribute to the cooldown effect by naturally releasing energy: a
stochastic buckling is less likely to happen in a region that buckled
recently in the simulation.

6.3 Continuity of Energy Distributions

We expect the combination of simulated and stochastically gen-
erated bucklings to satisfy the power-law energy distribution.
The scaling constant C in (8) allows us to control the amount
of stochastic buckling events, and thereby enforce continuity of
the simulated and stochastic energy distributions.

Suppose there exist Nsim simulated buckling events, among which
the strongest and weakest have the energies Es and Ew, respec-
tively. Then, the cumulative distribution of buckling energy dis-
tributed in [Ew, Es] is

F([Ew, Es]) = P(Es)− P(Ew) =

�
Emin

Ew

�α
−
�

Emin

Es

�α
. (10)

Since we know the distribution F([Ew, Es]) yields Nsim simulated
bucklings, the total cumulative distribution (which is equal to 1)
must yield an expectation of Ntot = Nsim/F([Ew, Es]) bucklings.
The scaling constant C is therefore iteratively adjusted (using a
binary search in practice) until the stochastic model produces
Ntot − Nsim bucklings up to an acceptable margin of error. Our
experience shows that starting at C = 1, up to 3 iterations are
required when using a margin of error of 10%.

7 Implementation

Our approach requires knowledge of vertex positions and veloci-
ties, the global stiffness and mass matrices, and the elastic energy
of each triangle, for each simulated frame. Open-source simula-
tors can be slightly modified to output this data. Black-box simu-
lators may output simply vertex positions, from which velocities
can be estimated by finite differences, and the remaining quan-
tities can be estimated from positions and velocities. We lightly



Avg. # Length Sim. Full LMA CMS Clust. CMS Speed Sound Eq. (4)
triangles (s) time (hr) cost (hr) cost (hr) cost (hr) ε up modes cost (s)

SODA CAN 9350 1 1.2 15.9 2.5 0.02 0.06 6.3× 2500 62
PLASTIC BAG 8660 5 2.9 40.3 5.1 0.24 0.09 7.9× 2000 584

CANDY WRAPPER 7433 6 7.2 21.9 2.6 0.38 0.11 8.4× 2500 105
PLASTIC BOTTLE 12036 6 3.5 35 6 0.47 0.06 5.8× 2100 302

PLASTIC BOTTLE FAST 12925 1.5 1.4 9.3 1.8 0.05 0.06 5.2× 2100 123
ALUMINUM FOIL 8452 5 2.5 11.3 1.8 0.23 0.05 6.3× 2500 136

Table 1: Representative timings and parameters for every example.

MATERIAL
Elastic Density Thick. Damping

mod.(Pa) (kg/m3) (m) α β

ALUM. (CAN) 7e10 2.8e3 1e-4 1e-8 200
ALUM. (FOIL) 7e10 2.8e3 1.6e-5 1e-8 500

PET 2.8e 1.4e3 1.3e-5 3e-7 700
CELLOPHANE 3e8 1.5e3 2e-5 4e-8 900

HDPE 8e8 9.7e2 2.4e-4 5e-7 500

Table 2: Material parameters used in all our examples.

modifies ARCSim to output the requisite quantities. For damping,
we use the Rayleigh model with mass and stiffness-proportional
terms controlled by α and β respectively.

Buckling detection. We use a curvature rate metric in order to
detect buckling events. Compared to the simple heuristics pro-
posed in [An et al. 2012] where buckling events are detected
by checking the sign change of the mean curvature across two
consecutive frames, our metric does not miss the buckling events
where only one of the two principal curvatures changes without
overall sign inversion. We label the vertex i as a buckling vertex

when its mean curvature rate dκi

d t
is above a threshold τ. We cali-

brate τ by choosing a value that closely captures all the buckling
events detected by the curvature sign change metric. In practice,
we estimate dκi

d t
using finite difference and use τ = 500m−1s−1 for

all our examples. Figure 9 shows that our metric yields a cleaner
buckling event detection compared to the sign metric (see orange
boxes of Figure 9), while also detecting entire bucklings that did
not undergo sign inversion (see green boxes of Figure 9).

Sound excitation. The detected buckling events are used to ex-
cite the modal vibration (2) of the thin shell. While the shell
is deformed by an external load, the work done to strain the
shell is stored as elastic energy. When the elastic energy in a
local region suffices to overcome the potential barrier to a neigh-
boring energy-minimum state, the shell buckles, and the stored
energy is released as vibrations [Kramer and Lobkovsky 1996].
This physical picture motivates us to use an energy-based model
to excite buckling sound: We first construct a graph consisting
of the detected buckling vertices and their incident edges. We
then find all connected component of this graph and consider
each component C as a buckling patch (Figure 3). Suppose that
the vibrational energy of C is converted from the release of its
elastic energy E, estimated by summing up the stretching and
bending energies at every vertex of C. We estimate the effective
post-buckling velocity vC of the patch C using E = 1

2

∑
i∈Cmi v

2
C

where mi is the mass of vertex i. This effective velocity excites
the patch C along its averaged surface normal direction nC. This
process is also reminiscent of the acoustic emissions from micro-
fracturing [Petri et al. 1994; Zheng and James 2010]. Note that
when having different crumpling objects in the same scene, using
an energy-based excitation naturally takes care of the relative
loudness balance between the different objects.

(a) (b)
Figure 9: Buckling detection: Using one crumpling frame, we com-
pare (a) the method of An et al. [2012] with (b) our buckling
detection method. Every blue region is a detected buckling patch.

8 Results

We used our pipeline on a variety of crumpling simulations involv-
ing different objects and materials (see Figure 1). All our exam-
ples were simulated on a 3.33 GHz Quad-core Intel Core i7-975
CPU with 6GB of memory. The parameter values for the materi-
als used in these examples are listed in Table 2. Representative
timings are summarized in Table 1. Please see our accompanying
video for all our animation and audio results.

8.1 Crumpling examples

We test the wide expressive range of our approach through a
set of examples designed around different objects, materials and
crumpling motions.

Soda can. We simulated a 12cm×6cm aluminum can being
rapidly crushed downwards. Notice the initial loud and lower
frequency burst, corresponding to the sudden formation of large
bucklings across the surface.

Plastic bag. We animate a plastic bag by grabbing it from its
rim and executing vertical and lateral motions. The bag is 32cm
high, made of PET, and its bottom is fixed to the ground. We are
able to synthesize the characteristic and continuous rustling of a
plastic bag being manipulated, naturally synchronized with the
motion of the bag.

Candy wrapper. We slowly wrap and unwrap a cellophane
candy wrapper around a candy. The resulting sound is a charac-
teristic sequence of clicky pulses.

Aluminum foil. We gently fold the flaps of a 40cm×50cm sheet
of aluminum foil wrapped around a box. The sheet produces
metallic crinkles as it crumples.

Plastic bottle. We crush a small High-density Polyethylene
(HDPE) plastic bottle in two different ways: rapidly downwards
in a vertical motion, and in a discontinuous sequence of motions
that involve vertical as well as lateral deformation. The synthe-
sized sounds are seamlessly synchronized with their respective
crumpling motions.
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Figure 10: Power law distributions for simulated and recorded
soda can sounds. Power law coefficients are α = 1.02 and α = 0.79
respectively.

8.2 Validation

Buckling energy distribution. We compare the energy distribu-
tions of buckling events between simulated and recorded sounds.
To this end, we recorded the sound emitted by a soda can being
slowly crushed by a vice clamp. We then manually identified
and extracted each individual buckling event and computed its
energy (amplitude squared). Figure 10 shows the log scale plot
of recorded (red) and simulated (blue) energy distributions for
the soda can. Both plots follow a power law with coefficients of
0.79 and 1.02 respectively. The value discrepancy is possibly due
to our manual buckling identification process, or the approxima-
tions inherent to a graphics-oriented thin-shell simulator.

Comparison to real recordings. We show that our synthesized
sounds exhibit similar overall characteristics to their recorded
counterparts by looking at their corresponding spectrograms. Fig-
ure 11 compares the spectrograms of our simulated sounds (left)
and of real recordings (right) for the candy wrapper (top), the
aluminum foil (middle), and the plastic bag (bottom). Our simu-
lated sounds convey a similar structural distribution of events as
well as similar frequency ranges compared to recordings. This is
further illustrated in the supplementary video where the reader
can listen to both simulated and recorded sounds.

CMS acceleration. Table 1 reports the speed-up due to our amor-
tized modal analysis approach for all of our examples. As shown
in the supplementary video, these sounds have no perceptually
significant difference compared to the brute-force approach.

By adjusting the tolerance ε of the mean-shift clustering
(see [James and Twigg 2005] for details), we can control the ag-
gressiveness of the near-rigid clustering step. A more aggressive
clustering usually leads to a higher speedup during the CMS step,
but might often be at the expense of sound quality. In the sup-
plementary video, we compare the sounds generated for the alu-
minum foil using 4 different ε values: 0.05 (6.3× speedup), 0.08
(8.3× speedup), 0.13 (9.8× speedup) and 0.2 (10.1× speedup).
The candy wrapper and the plastic bag, two objects that exhibit
shorter buckling pulses, seem to support a more aggressive clus-
tering without quality loss, as shown in Table 1.

8.3 Perceptual User Study

To evaluate the subjective expressiveness of the sounds gener-
ated with our approach, we conducted two user studies. In both
studies, we evaluate three conditions:

(S) sounds synthesized with our approach,

(R) recorded sounds, and

(D) sounds synthesized without stochastic enrichment and using
the curvature sign buckling criterion [An et al. 2012].
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Figure 11: Spectrograms of simulated (left) and recorded (right)
sounds for the candy wrapper (top), the aluminum foil (middle),
and the plastic bag (bottom). Each clip is around 1 second long.

Study A assesses how recognizable the sounds are. We adopted
the protocol from [Winnemöller et al. 2006] where recognition
rate is also evaluated. Study B seeks to provide further insight by
asking for a subjective rating for each sound. We emphasize that
the studies do not measure realism, nor correspondence of two
sounds to each other. The studies measure human opinion of the
correspondence of a sound to an image. Critically, we ensured
that subjects were unaware that this study relates to or includes
computer-generated sounds. 31 subjects (21 male, 10 female,
aged 20 to 39) participated in these studies.

Materials. We designed the studies around the five examples
presented in Figure 1. For condition R, we recorded the sounds
made by the five objects when crumpled. We selected a represen-
tative photograph for each of the five objects, which conveyed
the correct type of object, material, and crumpling motion. No
video was used in this study. We used high quality headphones.

Procedure. In study A, each trial presented one sound and the
five images with text labels. Subjects were asked to select which
image best matched the sound. In study B, each trial consisted of
an image and one of the sounds that corresponded to that image.
Subjects were asked if the sound they heard corresponded to
the object in the image. Subjects answered using a Likert scale
(1:Not at all, 7:Definitely yes). In both studies, trial order was
randomized and trials were repeated four times. Subjects could
listen to the sound in each trial an unlimited number of times.

Results and Discussion. Results were analyzed using standard
tests well suited for each study, namely a one-way Analysis of
Variance (ANOVA) test for study A and a Friedman test for study
B, and are reported in Figure 12. In both cases, statistical sig-
nificance can be claimed if the reported p-value is less than a
significance level of 0.05. For Post-hoc analysis (in our case, pair-
wise comparisons between conditions), a standard approach is to
use the Bonferroni method and Wilcoxon signed-rank tests respec-
tively, with a significance level adjusted for multiple comparisons
(0.016 since three comparisons are made).

There was a statistically significant difference for both studies (A
and B) among the three conditions (p = 5e-14, p = 2e-10 re-
spectively). Post-hoc analysis showed as well similar conclusions
for both studies: a statistically significant difference between
recorded and simplified sound (p = 2e-13, p = 3e-9), and be-
tween simulated and simplified sounds (p = 7e-10, p = 4e-7).
In both studies, there was no statistically significant difference
between recorded and simulated sounds (p = 0.29, p = 0.64).
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These results suggest that, by outperforming the simplified ap-
proach, our contributions have a clear impact in the subjective
appreciation of sounds by users. More importantly, for these
five different examples taken together our approach conveys as
much expressiveness as recorded sounds. It is interesting to note
that while subjects recognized and rated the recorded plastic bag
sound higher than the simulated sound, it is the exact opposite
for the soda can, where recognition rate for simulated sounds is
almost twice than for the recorded ones.

9 Conclusion

We have presented a physically based approach for the synthesis
of crumpling sounds from thin shell buckling phenomena, using
linear modal analysis of the deformed thin shell to generate the
sound of buckling events. For buckling events that cannot be
captured by the simulation but that would still produce audible
sound, we propose an enrichment algorithm that stochastically
instantiates events following a power-law distribution of ener-
gies, mimicking real world crumpling behavior. To speed-up the
LMA step, and observing that regions of a crumpled object tend
to move nearly rigidly over spans of time, we amortize the over-
all computational cost of LMA by only computing the modes of
near-rigid regions once and reusing them many times through
Component Mode Synthesis. As a result, we are able to produce
fully synthetic high-quality sounds in practical time, seamlessly
synchronized with the crumpling motion and conveying as much
expressiveness as recorded sounds.

Our approach and implementation are not without limitations,
and there are many opportunities for future work. By using lin-
ear modal analysis we are limited to modeling phenomena in
the linear regime. Yet, thin shells can exhibit mode coupling
nonlinear effects [Chadwick et al. 2009]. These nonlinearities
could account for the remaining differences between our simu-
lated sounds and their recordings, and it would be interesting to
explore the incorporation of mode coupling into our approach
while keeping tractable computation times. Friction sounds can
also account for an important part of the sound emitted during
some crumpling motions. Although friction is less important for
our examples, a wider range of motions and materials can be
addressed if our method is extended to account for friction.

We chose to use the fixed-interface approach to Component Mode
Synthesis, due to its simplicity of implementation and widespread
use in engineering. The alternative free-interface method com-
putes the free vibration modes of each component under free
boundaries [MacNeal 1971; Rubin 1975]. The resulting modal
space is smaller than for the fixed-interface variant, but it re-
quires the computation of additional sets of modes. It would be
interesting to evaluate the advantages and disadvantages of the
free-interface variant in the context of sound synthesis.

We make the assumption that the same power law distribution ap-

plies throughout the crumpling process. However, since the emer-
gence of the power law is attributed to the quenched curvature
disorder—random, stationary network of creases and ridges—it
would be interesting to investigate whether a modified stochastic
model would better serve the beginning of a crumpling process
prior to formation of an extensive crease network.

Sound produced by crumpling can easily be confused with crum-
bling sounds, such as stepping on dry leafs or gravel. Although
the source of the sound is not the same, it could be interesting
to address crumbling sounds using a similar approach, capturing
both visually significant and insignificant sounds.
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