
Adaptive Nonlinearity for Collisions in Complex Rod Assemblies

Danny M. Kaufman
Adobe & Columbia University

Rasmus Tamstorf
Walt Disney Animation Studios

Breannan Smith
Columbia University

Jean-Marie Aubry
Weta Digital

Eitan Grinspun
Columbia University

Abstract

We develop an algorithm for the efficient and stable simulation
of large-scale elastic rod assemblies. We observe that the time-
integration step is severely restricted by a strong nonlinearity in the
response of stretching modes to transversal impact, the degree of
this nonlinearity varying greatly with the shape of the rod. Build-
ing on these observations, we propose a collision response algo-
rithm that adapts its degree of nonlinearity. We illustrate the advan-
tages of the resulting algorithm by analyzing simulations involving
elastic rod assemblies of varying density and scale, with up to 1.7
million individual contacts per time step.
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1 Introduction

The physical behavior of a full head of hair is dominated by rod-
rod interactions in a highly dense and complex assembly generally
composed in excess of one hundred thousand individual rods [Rob-
bins 2012]. To date simulations have scaled to roughly one-tenth of
these numbers [Selle et al. 2008; McAdams et al. 2009; Daviet et al.
2011; Iben et al. 2013] and clearly the remaining challenge is not in
simply simulating sufficient rods. Capturing the emergent behav-
iors generated by rod-rod interactions such as locking and tangling
requires modeling contacts at scale. In turn these interactions are
challenging to simulate due to material stiffness and a time-varying
contact graph that couples most of these constitutive rods in each
computational step. Motivated by these observations we focus on
efficient time-integration of complex rod assemblies, and in partic-
ular the critical role that nonlinear response plays in the collision
resolution of thin rods.

t

Consider the collision of a discretized three-
node rod as it hits a wedge. The standard
approach to prevent intersections is to apply
a position-based correction that enforces zero-
displacement along a collision normal [Baraff
1989; Mirtich and Canny 1995; Bridson et al. 2002]. How-
ever, by resolving collisions in this way we ignore changes in
internal energy, effectively applying an instantaneous impulse re-
sponse [Moreau 1988].

We develop an algorithm for the efficient and stable simulation

response of stretching modes to transversal impact, the degree of

I.6.8 [Simulation and Modeling]: Types of

Figure 1: A spinning sphere pulls 32K rods into tightly wound locks.

An impulsive response imposes corrections restricted to just the
stencil of the collision normal—in our example just the collid-
ing vertex—so that the correction produces an unnecessarily large
strain on material elements. Large, highly localized, non-physical
deformations are generated, with their attendant artifacts and insta-
bilities at both large time steps and high speeds.

In turn, notice that stretching is dominant in thin materials. Here
stretching stiffness is generally at least four orders of magnitude
greater than bending stiffness [Landau and Lifshitz 1986], while
in many models, e.g., when used to approximate inextensibility, it
can be even higher. While we expect such materials to potentially
bend a great deal, we clearly do not wish to exercise their stretching
modes unintentionally.

Impulsive models thus resolve collisions but ignore physical re-
sponse at their own peril. To build this missing “physical aware-
ness” into collision response, first-order models have been devel-
oped. Linearly compliant collision response methods [Baraff and
Witkin 1998; Duriez et al. 2004; Duriez et al. 2006; Kaufman
et al. 2008; Otaduy et al. 2009; Allard et al. 2010; Zheng and
James 2011; Bertails-Descoubes et al. 2011; Daviet et al. 2011]
apply compliance (inverse stiffness) to inexpensively communicate
collision-induced strain across force stencils, effectively filtering
collision response to obtain smoother post-collision configurations.
Linearly compliant methods thus can balance between the difficult
tradeoffs of stability and computational efficiency.

Elastic rods are modeled by a range of spatial discretizations that
apply either reduced or maximal coordinate formulations [Ward
et al. 2007; Hadap et al. 2007]. In this work we focus on resolving
collisions in maximal coordinate rod models. To do so, however,
we face a severe limitation: first-order models are not sufficient to
capture physical response for thin elastic materials in maximal co-
ordinates. In particular, the collision response of thin materials such
as rods is strongly nonlinear so that first-order collision modeling
can generate the same problematic localized collision response as
an impulsive model.

http://doi.acm.org/10.1145/2601097.2601100
http://portal.acm.org/ft_gateway.cfm?id=2601100&type=pdf
http://www.cs.columbia.edu/cg/adonis/
http://www.cs.columbia.edu/cg/adonis/adonis.mov
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Figure 2: We plot the magnitude of rod/mass-spring stretching forces modeled by respectively first-, second- and third-order force approx-
imations for expansions about a straight (left) and a bent (middle) configuration and compare against the ground truth stretching force
evaluation. In both cases we observe that first-order modeling with respect to normal displacement δ underestimates the force while, in the
case of straight configurations (left) any expansion less than third-order entirely ignores normal displacement. On the other hand, by plotting
the relative error of these approximations with respect to the ground truth force evaluation at a fixed δ = 1

2
, we see that as bending increases

lower-order models give a correspondingly better approximation (right).

Consider the simple case of two adjacent elements, with little or no
initial bend, colliding with an edge as in Fig. 3. In these config-
urations, when we apply a first-order, linearly compliant collision
method, the resulting initial collision response varies little (to not at
all) from the standard physics-oblivious method:

t

First order response:

Proposed nonlinear response:

Blow up!

Figure 3: Left to right in time. Top: a collision resolved by first-
order–modeled response remains physics-oblivious; the resulting
correction generates a large, localized, non-physical deformation
leading to instability. Bottom: adaptive nonlinear response obtains
a stable, global response.
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To understand why this occurs reconsider the
collision of our three-node rod in a straight, un-
stretched configuration with edge lengths l̄ and
l at undeformed and current configurations re-
spectively. We now impose a normal displace-
ment of δ due to a collision. Our first observa-
tion is that such displacements in the normal direction are entirely
unaccounted for by expansions of stretching force up to second-
order in this configuration. To see this, note that here Green’s strain
is quadratic in normal displacement εg = l2/l̄2 − 1 = δ2/l̄2 so
that stretching energy with respect to normal displacement is corre-
spondingly the quartic monomial Es(εg) =

1
2
kε2g = 1

2
kδ4/l̄4.

Alternately consider the stretching energy used in rod and mass-
spring models [Spillmann and Teschner 2007; Bergou et al. 2008;
Bergou et al. 2010]. Although the stretching energy Es(l/l̄− 1) =
1
2
k(l/l̄−1)2 = 1

2
k(
√

δ2 + l̄2/l̄−1)2 is no longer a quartic mono-
mial in δ, at an unstretched configuration the force remains oblivi-
ous to normal displacements up to second-order (see Figure 2, left).
Nor is this restricted to collision forces; frictional forces also lead
to the same stretching energy scaling. Moreover, this situation is
not isolated to straight configurations. Even as the rod bends, cor-
responding first- and second-order force approximations continue
to significantly underestimate the collision response of stretching
modes (see Fig. 2, middle) and thus permit too much strain.

Summary Collision response methods using lower-order approx-
imations are effectively physics-oblivious for small-bend collisions.
On the other hand, as bending increases, first-order modeling gives
a correspondingly better approximation (see Fig. 2, right).

We conclude that a full-blown nonlinear solution is overkill, while
restricting ourselves to the linear model is clearly insufficient. Fol-
lowing these observations we seek a simple algorithm that can flexi-
bly balance between these two extremes to enable accurate and sta-
ble progress of simulations by adaptively incorporating sufficient
nonlinearity into collision response. Such an algorithm should cost
no more than standard linearly compliant methods when a first-
order model is sufficient, while it should introduce a minimum of
additional overhead to obtain just enough nonlinearity when higher-
order modeling is required. In the following sections we first de-
velop the necessary background and then show how such an algo-
rithm can be built by small augmentation of existing methods. We
then analyze the resulting algorithm’s behavior and scaling over a
range of benchmark examples.

Contributions We have exposed and analyzed the strongly non-
linear behavior of thin body collision response. We develop a sim-
ple time stepping algorithm that adapts the degree of nonlinearity
in the impact solve (ADONIS). By adapting on the number of con-
strained Newton iterations rather than on the time step size, we en-
able stable progress at time steps several orders of magnitude larger
than previously possible. The final resulting algorithm is a simple
and direct extension of Jourdan et al’s [1998] “Gauss-Seidel–like”
frictional contact algorithm enabling the reuse of robust existing
codes for implementation.

2 Preliminaries

Discrete dynamics We have a number of independent and thus
separable computational domains indexed by x ∈ {1, ..., �}. Con-
figuration for each domain is then qx, velocity q̇x, masses Mx, and
internal energies Vx(qx). We concatenate and sum in the usual
fashion, so that q = (qT1 , ..., q

T
� )

T ∈ Rn, M = diag(M1, ...,M�),
and V (q) =

∑
x Vx(qx). We then let H denote the Hessian of V .

Let δ denote the displacement over each discrete time-interval with
δ = qt+1 − qt.

Implicit Euler is given by the discrete Euler-Lagrange (DEL) update
equation to solve at each time step

Mδ = hMq̇t − h2∇V (qt + δ) (DEL)

with q̇t+1 = 1
h
δ.



Figure 4: A character’s hair is simulated using the ADONIS algorithm.

For didactic purposes we discuss implicit Euler; analysis for other
implicit time-integration methods follows similarly.

Linearly implicit integration Linearizing an implicit DEL gen-
erates a linearly implicit time-integration method [Hairer and Wan-
ner 2004]. Linearizing implicit Euler (see e.g., Baraff and Witkin
[1998]) yields

[
M+h2H(qt)

]
δ = hMq̇t − h2∇V (qt). (LIE)

Inverting the left-hand side matrix in (LIE) gives the discrete com-
pliance matrix

C(q) =
[
M+h2H(q)

]−1
,

which maps given forces to induced displacements.

3 Contact Model

!

"

#$

#%

We focus on discretely sampled contact mod-
els where for each identified contact k between
material point pairs xi and xj ∈ R3 we con-
struct the contact normal, nk and two orthogo-
nal vectors of the tangent-plane, d1k and d2k.

We then set Gk to the contact basis given by the lift of the local
orthonormal contact frame Φk = (n,d1,d2)k ∈ R3×3 to gener-
alized coordinates via the relative deformation gradient Γk(q) =
∇q(xi(q)− xj(q)) so that

Gk(q) = (n, d1, d2)k = Γk(q)
TΦk ∈ Rn×3.

Note that GT
k q̇ then gives the relative velocity magnitudes along

basis directions at contact k.

Contact constraints For m detected contacts we concate-
nate associated generalized contact normals in the basis N =
(n1, ..., nm) ∈ Rn×m. We then enforce zero- or scripted-
displacements s = (s1, ..., sm) along them by requiring

NT δ ≥ s.

Setting α = {α1, ..., αm} to the associated vector of discrete con-
tact force magnitudes, the global discrete contact force fC = hNα
is then added to the right-hand side (rhs) of the DEL.

We then impose discrete Signorini-Fischera [Kikuchi and Oden
1988] conditions between contact constraints and forces as

0 ≤ α ⊥ NT δ − s ≥ 0. (SFC)

Here and henceforth x ⊥ y denotes the complementarity condition
xkyk = 0, ∀k ∈ {1, ...,m}.

Friction We similarly concatenate the generalized tangent bases
as Dk = (d1, d2)k ∈ Rn×2 and D = (D1, ...,Dm) and form
the corresponding vector of discrete frictional force coefficients
as β = (β1, ..., βm)T = ((β1, β2)1, ..., (β1, β2)m)T where each
βk = (β1, β2)k ∈ R2 gives the frictional response coefficients
at contact k along d1k and d2k respectively. The global, discrete
friction force is then fF = hDβ. An implicit discretization of the
maximal dissipation principle [Goyal et al. 1991] requires that dis-
crete friction satisfies the minimization

min
β

{
βTDT q̇t+1 : ‖βk‖ ≤ µkαk, ∀k

}
, (DMD)

where µk is the coefficient of friction for contact k.

Contact force coupling We organize discrete contact force un-
knowns per contact in

λk = (h αk, h βk)
T ∈ R3.

Concatenating the total response in λ ∈ R3m and the response ba-
sis in G = (G1, ...,Gm) ∈ Rn×3m we obtain the total discrete
frictional contact force Gλ.

With the above discretizations the combined satisfaction of (SFC)
and (DMD) per contact k is equivalently determined by seeking a
λk satisfying the inclusion

λk ∈ Rk(δ) ⇐⇒

{
min
βk

{ 1
h
βT
k D

T
k δ : ‖βk‖ ≤ µkαk},

0 ≤ αk ⊥ nTk δ − sk ≥ 0.

Here we use Rk to denote the solution set to the single-point fric-
tional contact problem.

Finally, the stencils of contacts’ generalized friction and normal
bases will overlap. Thus we consider the globally-coupled, joint
satisfaction of (SFC) and (DMD) over all contacts. This is denoted
by a total response λ satisfying the inclusion

λ ∈ R(δ) ⇐⇒ λk ∈ Rk(δ) ∀k ∈ {0, ..,m},

where R is the set of all response solutions globally satisfying fric-
tional contact conditions [Stewart 2011].

Time-integration Adding frictional contact forces and the global
contact conditions discussed above to (DEL) then forms the implicit
frictional contact integrator

Mδ = hMq̇t − h2∇V (qt + δ) + Gλ, λ ∈ R(δ). (CDEL)



Contact groups In the absence of contacts each separable do-
main comprises an independent system that we integrate individu-
ally. In the presence of contacts, at each time step we decompose
the contact graph formed by detected contacts into its connected
components. Each of these maximally connected subgraphs sim-
ilarly forms an independent system, a contact group, that we can
integrate separately, independently, and (when computational re-
sources allow) in parallel.

4 Sufficient Nonlinearity

In analogy to the linearly implicit unconstrained case in (LIE), lin-
earizing the update equation in (CDEL) at start of step generates
the standard linearly compliant frictional contact method

λ ∈ R(δl + C(qt)Gλ), (1)

where δl is the solution to (LIE) and λ is the unknown linear esti-
mate of frictional contact force coefficients.

This system encodes a linearly compliant model of constraint an-
ticipation [Otaduy et al. 2009] in that it models global changes in
position due to constraint and friction forces up to first order. In
many cases this model thus provides a physics-aware, global colli-
sion response. However, for thin materials straight collisions are
largely hidden from this linear analysis, resulting in a response
that is highly localized and instantaneously identical to the standard
zeroth-order response discussed above.

4.1 An Adaptive Algorithm

If we instead linearize (CDEL) about the unconstrained solution of
(DEL), δu, we obtain the linearly compliant update method

λ ∈ R(δu + C(qt + δu)Gλ). (2)

In turn we can then identify this linearly compliant model in (2) as
exactly a single Newton-Raphson iteration:

Lemma The frictional contact, linearly implicit inte-
grator (2) is exactly the first Newton iteration towards
the solution of the nonlinear frictional contact integrator
(CDEL) when initialized by the unconstrained solution
of implicit Euler (DEL) as the starting seed.

(See Appendix B for proof.)

Additional iterations, appropriately computed, applied, and adap-
tively terminated, then provide a natural path towards sufficient
nonlinearity.

A simple algorithm now takes shape: we start by stepping our sys-
tem forward by a full solve of the nonlinear unconstrained time
step (DEL), providing a stable guess as a preconditioner. We then
detect collisions and solve linear compliance in (2). If we have suf-
ficiently approximated collision response we stop. Otherwise, we
proceed with further iterations to obtain an improved estimate of
compliance for frictional contact.

We now elaborate on the requisite details to flesh out this algorithm.
We first show how to construct these additional iterations (§5); we
then describe a simple geometric termination criterion (§5.1); and
then finally show how to construct an algorithm that enables our
opportunistic, just enough nonlinearity to work within the popular
framework of iterative contact algorithms (§6).

Figure 6: Collisions and tangling, as in this combing stress test,
exercise the strongly nonlinear collision response of rods.

5 Iterating Towards Compliant Response

Solving the nonlinear (CDEL) system via Newton iteration amounts
to sequentially solving a sequence of approximations on the com-
bined primal (displacement) and dual (frictional contact force) un-
knowns δ and λ. Each iteration i linearizes (CDEL) about (δi, λi)
and solves the resulting frictional contact problem to find the next
update (dδi, dλi) with δi+1 = δi + dδi.

At each iteration, i, we then compute the tangent compliance

Ci = C(qt + δi)

to obtain the linear-estimated displacement from (CDEL)

dδi = Ci
[
hMq̇t − h2∇V (qt + δi) + Gdλi + Gλi −Mδi

]
.

Noting from (CDEL) that the residual at iteration i is given by

ri = hMq̇t − h2∇V (qt + δi) + Gλi −Mδi

and that the dual unknown is the contact force update quantity dλi

we equivalently have displacement given by dδi = Ciri +CiGdλi.
Observe then that the first quantity on the rhs simply gives the de-
fault full Newton step. Roughly, this describes the local, first-order
approximation of displacement due to imbalance between response
and force approximations in the previous iterate. The second term is
simply the local, first-order estimate of displacement due to changes
in frictional contact forces required after the last iteration’s state
update. Thus each iterate locally improves its compliance estimate,
updates contact forces, and obtains an improved response estimate.

The unconstrained displacement estimate is then

dδiu = Ci
[
hMq̇t − h2∇V (qt + δi)−Mδi

]
,

so that it remains to solve for unknown λi+1 in

λi+1 ∈ R(δi + dδiu + CiGλi+1) (3)

as we will describe in §6 below.



Figure 5: We simulate 16K rods affixed to a sphere scripted through a series of rapid rotations.

5.1 Termination

Motivated by our observations in §1 we focus on the geometric ob-
jective of reducing non-physical stretch. For close to inextensible
materials such as hair, we thus judge sufficient nonlinearity by con-
sidering axial strain. At iteration i we compute a geometric ∞-
norm measure of the maximum stretch-factor over all edges ex,j

belonging to rods indexed by x

sf i = max
x,j

|ei
x,j |/|ēx,j | − 1,

where ē indicates edge rest length. We adaptively stop each time
step solve when a sufficient reduction in stretch indicates that colli-
sion response has been communicated across the domain. Note that
standard practice [Bridson et al. 2002] suggests sf i < 10−1.

6 Solution of R
At each iteration we require the solution of the implicit contact
system in (3). A direct solve of this nonlinear optimization is re-
served for future work; we found a direct solve to be intractable
for practical-size systems given current available solvers. Instead,
we focus on how to solve these systems within the popular frame-
work of iterative contact-collision methods, specifically Gauss-
Seidel methods.

We extend the standard contact iteration approach by observing that
we can iterate through the full contacting system (3) in multiple
Gauss-Seidel passes, while updating the discrete compliance matrix
until the stretch tolerance is sufficiently small.

For convenience we designate Ḡk and λ̄k as respectively the com-
plement matrix and vector formed by zeroing out the three columns
in G and the three entries in λ corresponding to the frame basis vec-
tors of contact k. We then overload addition for complement pairs
to ensure consistent block-vector addition so that λ = λk + λ̄k.

To begin we then first note that displacement at the next Newton
iterate is equivalently given by

δi+1 = δi+1
u + Ci[Gkλ

i+1
k + Ḡkλ̄

i+1
k ],

where

δi+1
u = Ci[hMq̇t − h2∇V (qt + δi) + h2H(qt + δi)δi]

can be precomputed at the beginning of each Newton iteration.

To solve (3) at each Newton iteration i we then iterate Gauss-Seidel
fashion per contact k, computing directly for λi+1

k (and thus im-
plicitly for δi+1

k ) by solving

λi+1
k ∈ Rk(δ

i+1
u + Ci[Gkλ

i+1
k + Ḡkλ̄

i+1
k ]) (4)

and then setting λi+1 ← λ̄i+1
k + λi+1

k .

Each such iteration subproblem can then be most usefully viewed
as simply solving a single point frictional contact problem where
δi+1
u + Ḡkλ̄

i+1
k is the predicted displacement and λi+1

k is the con-
tact’s unknown response force. As such (4) can then be solved or
approximated by a plethora of available numerical methods [Alart
and Curnier 1991; Stewart 2001; Duriez et al. 2006; Bonnefon and
Daviet 2011; Bertails-Descoubes et al. 2011; Stewart 2011] cus-
tomized for the resolution of systems subject to a single contact.
In our implementation, discussed below in §7, we employ the ro-
bust hybrid solver of Daviet et al. [2011], for which code has been
publicly released.

Our approach thus applies a simple extension of the standard con-
tact iteration [Jean and Moreau 1992] by observing that we can it-
erate through the full contacting system in multiple Gauss-Seidel
passes while updating the discrete compliance matrix until the
stretch tolerance is sufficiently small.

After each Gauss-Seidel solve we then update

δi+1 ← δi+1
u + CiGλi+1.

The stretch measure (§5.1) is tested and, if too large, we update the
nonlinear terms as described below and proceed to solve the next
Newton iteration by multiple Gauss-Seidel passes. The resulting
ADONIS method is summarized in Algorithm 1 below. Additional
details are included in the supplemental material.

Finally, it follows directly from §4 that the Gauss-Seidel solve of
the first Newton iteration retains our guarantee that it corresponds
to the exact solution of the linearly compliant contact problem.

A localized modified-Newton strategy Consider that each of
the above Newton iterations is applied with the specified goal of
building a better distribution of contact responses to reduce stretch.
At the start of each such Newton iteration we thus restrict our up-
date of Hessian terms to rods within each contacting system whose
stretch is larger than the requested tolerance. All other Hessians are
left unchanged from the prior iteration. This localized modified-
Newton step allows us to focus computation on improving nonlin-
ear terms of domains that are poorly modeled while the following
Gauss-Seidel iterations then redistribute forces and displacements
over the whole contacting system via the improved model.

7 Implementation

As discussed above we have engineered our implementation so that
we run, by construction, exactly a single Gauss-Seidel–based lin-
early compliant solve for the first iteration of our method. The
overhead beyond a linearly compliant solve for all time steps where
a single iteration is sufficient to satisfy tolerances is one query per
edge to compute the stretch-factor. As a starting point, we adapt an
implementation of Daviet et al.’s [2011] contact solver applied to
Discrete Elastic Rods [Bergou et al. 2008; Bergou et al. 2010]. We
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Figure 7: Whip-it stability test. Left: To test the relative stability of response methods we rotate a scripted handle connected to a rod
so that it repeatedly whips the rod against the edge of a thin wall obstacle. At a time step size of 3 ms this results in, from left to right,
a smoothly varying collision response from ADONIS, while the linearly compliant and impulse methods both obtain large, localized, non-
physical deformations. Right: To understand the overall stability behavior of these algorithms we plot their respective stability regions as we
vary time step (x-axis) in log-scale from 5 µs to 100 ms and rotational whipping speeds (y-axis). For each successful simulation we plot a
corresponding grey marker for ADONIS; transparent blue for linearly compliant response; and red for impulse response. Here we observe a
generally two orders of magnitude gain in maximum stable time step size for ADONIS.

Algorithm 1 ADONIS(qt, q̇t, h)

1: δ ← solve DEL(qt, q̇t, h)
2: K ← collision detection(δ, qt)
3: while sf > stretch tol do
4: C ← [M+h2H(qt + δ)]−1

5: δu ← C[hMq̇t − h2∇V (qt + δ) + h2H(qt + δ)δ]
6: gs itr ← 0
7: while contact err > contact tol& gs itr < gs max do
8: for k in K do
9: λk ← solve : λk ∈ Rk(δu + C[Gkλk + Ḡkλ̄k])

10: λ ← λ̄k + λk

11: end for
12: gs itr ← gs itr+ 1
13: end while
14: δ ← δu + CGλ.
15: end while
16: q̇t+1 ← 1

h
δ

17: qt+1 ← qt + δ
18: return (qt+1, q̇t+1)

do not explicitly compute the inverses required for discrete compli-
ance matrices in our implementation; rather we factor terms block-
wise and back solve as updates and solves require.

For collision detection we employ a bounding volume hierarchy
for broad-phase pruning combined with continuous collision detec-
tion (CCD) for narrow-phase collision determination [Provot 1997;
Bridson et al. 2002]. We also utilize a second collision detection
system employing a spatial hash for broad-phase with proximity
queries for narrow-phase. Throughout our implementation we use
the former CCD based algorithm for all rod-mesh collision checks
while we experiment with both the CCD and proximity approach
for rod-rod collision detection as detailed per-example below.

A number of steps in our algorithm are parallelized. Unconstrained
predictor solutions (DEL) are computed trivially in parallel per
rod. Broad-phase updates, collision detection queries, and con-
tact point processing are performed in parallel to determine contact
constraints. The resulting contact graph is then subdivided into its
contact groups with each group solved as an independent contact
problem. Finally, each Gauss-Seidel loop is likewise parallelized
by graph-color partitioning.

Importantly, Gauss-Seidel iteration applied to frictional contact
problems converges slowly or not at all as problem size grows. In

order to balance the tradeoff between cost and accuracy we have
set a hard upper limit on the number of Gauss-Seidel iterations in
our code. We specify this limit, gs max, per problem below with an
∞-norm convergence tolerance set to contact tol = 10−6.

8 Evaluation

Road map To understand the performance and behavior of our
proposed algorithm we run a range of benchmark examples, de-
scribed in detail below, over a variety of collision scenarios. As
we also wish to better understand how the behavior of ADONIS
compares with that of both standard zeroth-order, impulse response
(obtained by setting Ci = M−1) and linearly compliant response
we consider these methods below as well.

We first consider and quantify stability gains obtained by adaptive
nonlinearity (Fig. 7). This leads us to an analysis of our runtime
performance where we observe that contact solves, which scale in
the number of contacts, dominate the cost of our simulations so
that, in turn, our algorithm likewise scales in the number of contacts
processed (Fig. 9).

However, this is only the beginning of the story—the number of
contacts processed in each scene clearly affect the simulation out-
put. We thus explore the tradeoff between the final cost and quality
of simulations, via the number of contacts processed, by consider-
ing variations in both the seeding density of rooted rods (rods/cm2),
and the number of contacts sampled by collision detection.

In the following we vary seeding density by increasing the number
of rods rooted over a fixed surface area. As we do so we see that the
number of contacts resolved grows in a superlinear fashion (Fig. 12,
middle) suggesting that we face a severe computational challenge
as we scale towards contacting rod assemblies at reported human
hair densities.

Likewise for a fixed seeding density we can increase the number
of contacts sampled at the cost of lengthening runtime. What are
the advantages to increasing contact sampling? We investigate this
below and observe that increased contact sampling leads to the cap-
ture of more local features in our simulations.

8.1 Case Study 1: Single Rod Collisions

We begin with a simple example to consider how the stability be-
havior of an isolated colliding rod varies as we change collision re-
sponse method. We designed this example to specifically exercise
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the worst-case scenario of repeated small-bend collisions to better
understand the extremity of nonlinear collision response behavior.
We rotate a scripted handle connected to an elastic rod so that it
repeatedly and vigorously whips the rod against the edge of a thin
wall obstacle. See Fig. 7, left, for set-up and simulation snapshots.
The physical parameters for the rod used in this example are: mate-
rial density ρ = 1.3 g/cm3, elastic modulus Y = 1010 g/(cm · s2),
shear modulus S = 3.4× 109 g/(cm · s2), and radius r = 60 µm.

To understand stability gains we plot the stability regions of all
three response algorithms over varying time step size and rotational
whipping speed. To determine stability we stipulate success as a
completed run over a time-period of five seconds during which ax-
ial extension does not exceed an unusually forgiving tolerance of
50% rest length (our usual tolerance for simulation examples is 1%
rest length). Fig. 7, right, depicts the stable regions. Observe the
gain of two orders of magnitude in maximum stable time step size
for ADONIS. The stability regions of the linear and impulse re-
sponse algorithms largely overlap, confirming that in practice for
small-bend collisions linear compliance obtains the same effective
response as that of an unfiltered impulse.

8.2 Case Study 2: Hair Balls

We now shift our focus from a single to a dense assembly of rods.
Starting with a sphere of roughly human head proportions (18 cm
diameter), we uniformly seed curly rods over 50% of the surface,
and script the sphere through a sequence of rotations about three
orthogonal axes, alternating rotations with rest phases (see Fig. 10,
bottom, for scripting details). This scenario exercises the rod as-
sembly through a full range of tossing, tumbling, and spinning.
Fast collisions are initiated at both the start and end of each ro-
tation phase, and the pauses in between are sufficient for settling
into slower contacting behavior.

We run our simulations in geometrically increasing sequences rang-
ing from 1K up to 64K rods in our largest example. This cor-
responds to a maximum seeding density of ∼ 125 rods/cm2.
In comparison the average full head of human hair has 175 −
300 hairs/cm2 [Robbins 2012]. We select reported human hair
parameters: material density ρ = 1.32 g/cm3, viscosity µv =
5 × 107 g/(cm · s), gravity g = 981 cm/s2, elastic modulus
Y= 3.9×109 g/(cm·s2), shear modulus S = 3.4×109 g/(cm·s2),
rod-rod frictional coefficient µ = 0.2, rod-sphere frictional coeffi-
cient µ = 0.1, and rod radius r = 37 µm.

In the following hair ball examples each rod is discretized to 119
DoFs total, 30 vertices and an additional 29 twist DoFs per rod.
Except where otherwise noted, we apply proximity based collision
detection for rod-rod contact sampling and employ a time step of

h = 10 ms. To better understand the effects of increased contact
sampling we have applied two different proximity radii, 2.5 µm
and 25 µm respectively. As we explore below, varying proxim-
ity radii has some clear tradeoffs. In the following sections, based
on the resulting behaviors we obtain we distinguish between these
two simulation types as respectively smooth and tangled. For the
smooth and tangled simulations we set gs max to 1050 and 150 re-
spectively. Here and in the following the convergence criterion for
ADONIS limits stretching to sf < 1%.

Statistics for the smooth and tangled simulations were obtained
respectively with Intel Xeon E5-4650 @ 2.7GHz (8 core Sandy
Bridge-EP, 4 sockets) and Intel Xeon E5-2680v2 @ 2.8GHz (10
core Ivy Bridge-EP, 2 sockets) systems, with the exception of the
32K tangled simulation, which ran on an Intel Xeon E5-2650 @
2GHz (8 core Sandy Bridge-EP, 2 sockets).

Timing breakdown and scaling Fig. 8, middle, shows the
breakdown of CPU time for these simulations. The cost of colli-
sion resolution becomes dominant as we move towards increased
contact sampling and higher rod densities. Indeed, for the most
complex scenarios collision resolution is dominant at every time
step. See Fig. 8, right. Recall that at each time step we can have
multiple contact problems, each corresponding to the resolution of
an independent contact group. In turn, the total cost of contact res-
olution at each time step depends on the number and size of these
groups. In Fig. 9 we plot the time required to solve individual con-
tact groups as a function of the number of contacts in the group,
across all groups encountered in the smooth (top) and tangled (bot-
tom) simulation sequences, and observe close to linear scaling.

At each Newton iteration we attempt to solve the contact problem
in (3). A solution for this optimization should be expected to scale
nonlinearly in the number of contact variables so that it is initially
surprising that we observe linear scaling overall. However, recall
that to solve (3) we employ the Gauss-Seidel solver which regu-
larly saturates at its upper iteration limit. We conjecture that this
saturation is the source of the observed linear scaling.

Sufficient nonlinearity We return to the question of exactly how
much additional work is required when linear compliance is insuffi-
cient to better understand the role this plays in our algorithm’s per-
formance. Across our simulations we find that the average number
of constrained Newton iterations, per contact solve, remains close
to one. However, this does not offer a sufficiently detailed view of
how our algorithm adapts to nonlinearity over time. Nor does it
help us to understand the potential cost of the resulting additional
Newton iterations. In Fig. 10 we instead plot the average number of
constrained Newton iterations required by our algorithm weighted
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for reference.

by contact problem size per time step since, as we have seen above,
larger contact problems are more costly. We correspondingly ob-
serve here and in Fig. 12, left, that the vast majority of contact
problems encountered require small numbers of iterations.

Turning the contact numbers knob Observing that our algo-
rithm scales well in the number of contacts we next explore the
tradeoffs between final runtime cost and the resulting simulation by
considering variations in seeding density and contact sampling.

Varying seeding density in the hair ball examples while keeping
seed area fixed we see in Fig. 12, middle, that the total number of
contacts in the system grows superlinearly with the number of rods.
Correspondingly in our supplemental video we show a comparison
sequence to illustrate how simulation quality of the hair ball exam-
ples shifts with increased seeding density.

Simply counting hairs, however, is insufficient to determine the
number of contacts we must process and the quality of the result-
ing simulation. We can also vary the amount of contacts we detect
by changing our rod discretization, our collision detection method,
or even parameters within our collision detection method. Here
we consider the latter and look at the change in behavior and con-
tact numbers for the two applied proximity radii we use in rod-
rod collision detection. As we see in a side by side comparison
of tangled (left) and smooth (right) simulations of the 32K scene
in Fig. 11, increased contact sampling leads to the capture of local
features, e.g., lock and ringlet-like structures. See also our supple-
mental video. However, due to the extremely tight confines of these
twists, this comes at the cost of a 10-fold and greater increase in the
number of contacts we process as we scale to denser systems and
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Figure 11: Differing contact numbers and resulting simulated be-
haviors are obtained by changing the proximity radii we use in rod-
rod collision detection from 25 µm (left) to 2.5 µm (right).

a corresponding increase in the total run time and memory usage.
See Fig. 12, right. We have documented both simulation types in
our supplemental video, where we see that the level of contact com-
plexity we reach begins to involve large portions (often the entire
assembly) of constituent rods tightly intertwined together in locks.

Robustness against jitters: choice of unconstrained guess
It is tempting to try initializing each of our contact solves with the
inexpensive solution to (LIE) rather than the more expensive, fully
nonlinear guess we generate from solving (DEL). However, doing
so introduces large jitters and popping to the simulation, as docu-
mented in the accompanying video. These are especially distracting
as simulations try to come to a rest. Moreover, as discussed above,
the unconstrained solutions to (DEL) are not a bottleneck to com-
pute, as each rod can be solved independently in parallel.
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Stability in rod assemblies We have seen above in §8.1 that
when stressed by high-speed collisions ADONIS enables progress
at stable time steps orders of magnitude larger than existing meth-
ods. Is this stability advantage maintained when we consider less
violent motions in rod assemblies? To answer this question we re-
visit the scripted hair ball example, instrumenting it to examine the
stability behavior of all three resolution methods as we vary both
time step and seeding density. Since we wish to compare stability
and performance across time step sizes we employ CCD for rod-
rod contact sampling. This ensures that larger time step simulations
do not gain the unfair advantage of smaller contact groups due to
missed collisions, or “tunneling.”

We observe in Figure 15 that ADONIS is consistently stable at
larger time step sizes in these examples, at a minimum an order
of magnitude larger than linear compliance and two orders of mag-
nitude larger than impulsive response. Furthermore this increased
stability does not impose additional cost. Rather we see that non-
linear adaptivity maintains the fastest runtimes across simulations
when allowed to take large, stable time steps.

8.3 Combing, Flinging and Tangling

In the hair ball tests we consider rod assemblies at slower speeds.
Here we start to stress ADONIS with a trio of examples where the
simulation of combing, flinging, and tangling behaviors are made
possible by adaptive nonlinearity. In all of the following examples
we once again employ rod-rod CCD.

Comb out : A combing stress test subjects thin rods to collisions
and tangling that exercise the strongly nonlinear collision response
of rods. We comb through rods as they are tightly rotated and coiled
about two rotors. See Fig. 6. Simulation details: h = 4 ms; 5,200
rods, 119 DoFs each; runtime: 24h28m on a Xeon E7-8870.

Debris fling Dropped debris is entrained and thrown by rapidly
rotating stiff bristles. See Fig. 13. Simulation details: h = 8 ms;
1040 bristle rods, 399 DoFs each; 26 dropped rods, 79 DoFs each;
runtime: 44m on a MacBook Pro 2011, Intel Core i7 @ 2GHz.

Rod catch Thin rods are caught and pulled into two separate
hanks by stiff, rotating elastic bristles. The rods are then wound
about each other so that when pulled back out of the rotating bris-
tles they are braided together. See Fig. 14. Simulation details:

h = 8 ms; 1040 bristle rods, 399 DoFs each; 1000 thin rods, 239
DoFs each; runtime: 30h14m on a Xeon E7-8870.

Figure 13: Debris is entrained and thrown by rotating bristles.

rods method 100ms 10ms 5ms 1ms 0.1ms
1K ADONIS x 3h42m 3h28m 4h09m 10h58m
1K Linear x x x 6h38m 11h09m
1K Impulse x x x x 13h27m
2K ADONIS x 6h29m 3h46m 5h11m 23h49m
2K Linear x x x 8h30m 23h35m
2K Impulse x x x x 28h51m
4K ADONIS x 43h55m 21h47m 19h40m 55h19m
4K Linear x x x x 55h37m
4K Impulse x x x x 76h34m

Figure 15: A comparison of stable time step sizes and runtimes for
response methods on the hair ball example. As we scale to larger
seeding densities we see a stability gain for ADONIS of one to two
orders of magnitude. Entries in the table give either the runtime
to completion or an x to indicate a failed simulation. These sim-
ulations were all run on an Intel Xeon X5650 @ 2.67GHz (4 core
Westmere-EP, 1 socket).

8.4 Limitations

Capturing the full range of rod assembly behavior requires con-
sideration of both rapid impact between slender bodies—our fo-
cus here—as well as stable, persistent contact. In these latter,



Figure 14: Thin rods are caught and pulled into two separate hanks by stiff, rotating elastic bristles. The rods are wound about each other
so that when pulled out they are braided together.

slow moving contact phases, we have shown that ADONIS retains
comparable computational advantages of existing contact resolu-
tion methods. However, it also retains the same weaknesses: the
Gauss-Seidel solver typically does not converge. We conjecture
that this lack of convergence is responsible for a notable artifact.
We observe that locks formed in our simulations may fall apart on
their own, over time (refer to supplemental video). The simulation
of stable frictional contact assemblies depends on the accurate reso-
lution of the underlying contact problem [Kaufman et al. 2008]. We
conjecture that the unraveling we observe could be addressed in fu-
ture work by replacing the current Gauss-Seidel solver employed in
steps 7-13 of ADONIS with a convergent solver for (3).

To resolve and store contact graphs during solves we utilize a large
amount of memory that grows linearly in the number of contacts
and thus superlinearly in seeding density; see Fig. 12, right. Our
method offers robust stability for low cost. We have been able to
run our simulations at large time steps relative to existing methods;
but of course, even the Newton method can be unstable, or require
too many iterations, if the time step applied is too large.

Thus far, our focus has been on identifying challenging contact sce-
narios, giving us confidence that our method is robust enough to
perform well within a broad range of parameters. As we begin to
work with hair scenarios there are many complexities that need to
be accounted for. Already, those examples that are hair-like in ap-
pearance were configured with rods of typical human hair diameter
(as opposed to the diameter of a wisp of hair). Achieving a realistic
look for human hairs will likely involve tuning parameters such as
the friction coefficient, plasticity, and damping, and possibly intro-
ducing physics for adhesion, lubrication, and electrostatic forces.

9 Discussion

Considering the geometry of thin body collisions we have observed
that the degree of nonlinearity in collision response for stretch-
ing modes varies greatly with configuration. Noting that captur-
ing this nonlinearity is essential for the stable progress of simula-
tions at practical time step sizes, we have constructed a simple yet
parsimonious algorithm that applies first-order modeling in most
solves. When linearity is sufficient our proposed method incurs
marginal cost over existing linearly compliant methods. It identi-
fies instances where a frugal application of additional computation
is most needed, enabling us to take time steps several orders of mag-
nitude larger than previously possible. Importantly, this does not
mean that every response is resolved with a small number of New-
ton iterations: as we have seen above in §8.2, in a small but critical
subset of collision events, large numbers of iterations are necessary,
without which the time step restriction is severe. The crucial point
is that these instances are infrequent, and so when amortized across
a simulation we incur minimal additional cost.

In our development we have focused on implicit Euler for didactic
purposes and noted that our algorithm can be based on other im-
plicit time-integration methods in a similar fashion. There is one
caveat in that not all methods are guaranteed to generate an inelas-
tic impact without modification. We cover the necessary details in
Appendix A. Likewise, we have so far considered close to inex-
tensible materials. For stiff materials further from the inextensible
limit we can instead apply a bound on a discrete strain-rate measure
sr i = maxx,j (|ei

x,j | − |et
x,j |)/h as a termination criterion.

Looking forward this work illuminates a number of potential future
research directions. Most immediately we note that our analysis
in §1 of the geometry of nonlinear collision response for stretch-
ing modes applies directly to shells and thus to improving collision
resolution in cloth simulation. We also note that it is tempting to
consider how adaptive nonlinearity can be formulated as a pairwise-
iteration method [Bridson et al. 2002]; however, in our experience
so far this approach is subject to highly challenging convergence
issues. We have also observed that the primary source of nonlinear
scaling in our solves comes from the size of the largest connected
components in the contact graph. On the other hand, decompos-
ing the graph by simply omitting contacts leads to entanglement
and visual artifacts. Research towards an adequate decomposition
of the contact graph is an exciting and impactful future avenue of
exploration.
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A Implicit restitution in time-integration

Lemma A fully inelastic impact will only be ob-
tained by one-step numerical integrators that satisfy an
implicit-Euler–type velocity update of the form q̇t+1 =
aδ, a ∈ R.

Proof. Recall that we have qt+1 = qt + δ and that imposing a
linearized non-negative displacement constraint requires 0 ≤ αk ⊥
nTk δ ≥ 0. Whenever a contact force is applied we have αk > 0
and thus nTk δ = 0. A fully inelastic impact is given by a response
satisfying the velocity-level condition nTk q̇t+1 = 0. By substitution
this can only be satisfied by an implicit-Euler–type update where
q̇t+1 is given by a scaling of δ.

As concrete examples consider that the implicit Euler and implicit
midpoint velocity updates are respectively q̇t+1

E = 1/h δ and
q̇t+1
M = 2/h δ− q̇t. Then, by substitution, we have a fully inelastic

impact for for implicit Euler since nTk q̇t+1
E = 0 and, on the other

hand, a fully elastic impact for implicit Midpoint, corresponding to
a coefficient of restitution equal to one, since nTk q̇t+1

M = −nTk q̇t.

B First iterate equivalence

Proof. Recall that each Newton iteration is given by

λi+1 ∈ R(δi + dδiu + CiGλi+1).

Or equivalently

λi+1 ∈ R(δi + Ci[hMq̇t − h2∇V (qt + δi)−Mδi] + CiGλi+1).

If the initial seed guess is the solution of the unconstrained time
step problem (DEL) we have

hMq̇t − h2∇V (qt + δ0)−Mδ0 = 0,

so that substitution into the iteration gives

λ1 ∈ R(δ0 + C0Gλ1).


