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Abstract the samples, and developing a suitable measurement system, this
. . database is likely to be a very relevant resource for future efforts.

For computer graphics rendering, we generally assume that the ap- gample preparation requires careful control and significant
pearance of surfaces remains static over time. Yet, there are a NUMg(tortfor example, we must apply a heat gun for some of the
ber of natural processes that cause surface appearance ta&ary d pming examples, and use special solutions to assist rusting and
matically, such as burning of wood, wetting and drying of rock - ¢onher patination. Capturing the full TSV-BRDF also necessitates
and fabric, decay of fruit skins, or corrosion and rusting of steel gnecial measurement systems. We use a multi-light-source multi-
and copper. In this paper, we take a significant step towards mea-camera dome, shown in figure 3, to simultaneously acquire time-
suring, modeling and rendering time-varying surface appearance.|gnse images from a variety of lighting and view directions. We
We describe the acquisition of the first time-varying database of q it spatially-varying BRDF models at each time instance, cap-
26 samples, encompassing a variety of natural processes includingjng poth spatial and temporal variation in a variety of real-world
burning, drying, decay and corrosion. Our main technical contribu- processes. Since we acquire the full TSV-BRDF, we can capture

tion is a Space-Time Appearance Factorization (STAF). This model gpatia| patterns as well as changes in the BRDF, such as the sharp
factors space and time-varying effects. We derive an overall tem- e q,,ction in specularities over time when a surface dries.

poral appearance variation characteristic of the specific process, a . - - .

well as space-dependent textures, rates and offsets, that coetrol thSSpace-Tlme Appegrtqnccte Factog!zatt[on (SfTAF)' lerFe-varylr;]g "

different rates at which different spatial locations evolve, causing 2PP€arance Is an intricate combination or many factors, such as the
|static surface texture, temporal variation, and spatial patterns over

spatial patterns on the surface over time. We show that the model? Th red dat b d directly f dering. but i
represents a variety of phenomena accurately. Moreover, it enabled!Me: The acquired data can be used directly for rendering, but is
a number of novel rendering applications, such as transfer of the difficult to understand, or modify for production applications (such
time-varying effect to a new static surface, control to accelerate &S Making wood dry faster in a wet footprint). Linear data-reduction
time evolution in certain areas, extrapolation beyond the acquired Eﬁchnlquels l'k? sn;gular_—v.:;[l_lue decomposition do no(tjeflsny capture
sequence, and texture synthesis of time-varying appearance. € compiex structures in ime-varying appearance data. =

_ We introduce a simple Space-Time Appearance Factorization
1 Introduction (STAF), that is general and data-driven. It separates temporally

Many interesting appearance properties of real-world surfaces are‘éacg'r?g[igffci?vse??r:naspaet;;acréa;“hoar,‘[’ ggt'g%t'sngnﬁ tgrznfhogalr?h;gal
directly related to their evolution with time. Consider the charring pp P y phy

of wood owing to heat or burning; the wetting and drying of stone process, as well as static spatial textures that remain constant over
granite or fabric due to rain or spillage of water; the decay and Frzg?c éﬂtﬂiﬁ:@p\gg decs);liinn?:eee?/cﬁttteio?lndsi)gt?;{s;;t?ér?w\ée;)r/is?eoglé’
ripening of fruit skins like apples or bananas; and the corrosion and . . ; X - - )
rL?stinggof steel or the formgtl?on of oxides on copper. Each of these Cause different points evolve at different rates. STAF is non-linear,
natural processes forms a spatial pattern over time, often CoupledWlth the temporal characteristic curve scaled and shifted by spatial

with a change in reflectance, that gives rise to dramatic effects rate and offset parameters. Our model is intuitive, accurate for the

These processes has been studied in biology, physics and mathe\-/ariety of time-varying phenomena in our database, and allows a

matics [Meinhardt 1992; Cross and Hohenberg 1993]. In computer user to ;eparately mo.dlfy space and time-varying _effects. ]
graphics, Dorsey and collaborators have developed a number ofRendering Time-Varying Effects: ~ One of the chief benefits of
specific models for flows, patina formation and weathering [Dorsey our data-driven STAF model is the ease with which we can gener-
and Hanrahan 1996; Dorsey et al. 1996; Dorsey et al. 1999]. How- alize beyond the acquired data, to render a variety of time-varying
ever, the full generality of pattern formation remains beyond the effects. For example, we cdransfera time-varying process like
reach of any particular mathematical model or physical simulation. rusting to a new static surface, like a steel plate. Weaanirol the

In this paper, we avoid the difficulties with mathematical mod- rate of time variation, such as having wet puddles or footprints on
elling by developing a data-driven approach, conceptually similar to @n otherwise dry wooden floor, with drying happening more at the
recent work on data-driven static reflectance [Matusik et al. 2003] boundaries. We cagxtrapolateto some extent beyond the acquired
or texture [Dana et al. 1999]. We present a complete pipeline from data. Moreover, separation of the spatial and temporal aspects al-
acquisition of the first dense datasets of Time and Spatially-Varying |0ws one to use standard 2D example-basatlire synthesis
appearance of flat samples (the TSV-BRDF) to the first data-driven 2 previous Work
models and novel renderings of time-varying appearance:

Database of Time-Varying Surface Appearance: A major con-
tribution of our work is a database of time-varying appearance mea-
surements, that we will release online upon publication. We have
captured 26 samples, listed in figure 2, some examples of which are
shown in figures 1 and 4. Because of the complexity in preparing

Physical simulation has been applied to specific weathering and
corrosion effects [Dorsey et al. 1996; Dorsey and Hanrahan;1996
Dorsey et al. 1999; Merillou et al. 2001; Chen et al. 2005].
Patina formation has also been modeled based on surface acces-
sibility [Miller 1994], while dust accumulation has been simu-
lated based on surface geometry [Hsu and Wong 1995]. Jensen et
al. [1999] render wet surfaces by combining a reflection model for
surface water with subsurface scattering. Our data-driven agproac
generalizes and complements physical simulation of specific phe-
nomena, much as static data-driven reflectance models complement
and extend specific physically-based analytic BRDFs.

Some recent work has made a first attempt at measuring appear-
ance changes. Koudelka [2004] considers time-varying textures im-
aged with fixed lighting and a single view, and extends static tex-
ture synthesis to time-varying texture synthesis. We generalize this
method with images from multiple light sources and viewpoints, al-
lowing us to fit a true TSV-BRDF model, enabling computer graph-
ics rendering with any lighting and view. More importantly, we de-
velop an intuitive data-driven STAF model to separate spatial and

*e-mail: jwgu@cs.columbia.edu
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Figure 1: Some examples of the 26 samples in our database, shown hireanation across time (in minutes m or hours h) for a siniigét source and
view. We acquire images fror280light and view directions at each time step—some of thesgemare shown for one of the samples in figure 4.



Appearance Time-Varying Appearance Type Sample Time Frames | Average Time Interval
TF (2D Texture Function)] TTF (3D) gﬂaffeg woog ; ;i g-; m
BRDF (4D) TBRDF (5D) Burning Wa?frI;eToa;)t(i)ng 30 6:3 m
SV-BRDF (6D) TSV-BRDF (7D) Bread Toasting 30 59m
BTF (6D) TBTF (7D) Cight Wood 1 14 3im
Light Wood 2 34 23 m
Table 1. Extension of common appearance concepts to time-varying ap  Drying Orange Cloth 33 4.9 m
pearance. We also indicate the dimensionality of the fondibr each cat- (Smooth Surface} ggggr"n%fg:‘h gg 141'83n'1“
egory. In this paper, we focus on TSV-BRDFs. White Felt 28 44 m
temporal effects, allowing a variety of rendering algorithms includ- g:,’)kervv%\’;fel 2 sem
ing transfer, control, extrapolation and synthesis. Brick 32 21 m
For the specific case of drying on stone, [Lu et al. 2005] mea- Pring Rock 1 20m
sure the change in diffuse appearance, and propose a sigmoid mode|(R0ugh Surfaces gf;ﬂﬁgard > Jom
with two spatial parameters. Similar equations can be deduced from Tree Bark 1 34m
the drying literature [Jankowsky and Santos 2004]. We generalize Rusting Steel 1 ) 73m
this work significantly, by acquiring a database of a variety of time- Rusting Steel 2 35 10.8 m
varying phenomena, including specular effects. Our STAF model Corrosion Cast Iron Rusting 30 13.9m
is general and data-driven, capturing many types of time-varying Copper with Patina 34 316m
processes, with intuitive rate and offset parameters at each spatial ﬁgg:: ‘é"l'itgec"re ig g'gm
location. For specific drying scenarios, we essentially reproduce the pecaying Banana 33 1.3 m
results of [Lu et al. 2005], with our temporal characteristic curves Potato 31 83m
being close to sigmoidal in those cases. Leaf under Humid Heaf 30 126m

The STAF model in this paper relates to work in the statis- Figure 2: The 26 samples in our database, grouped into categories. For
tical and speech recognition literature known as dynamic time- each sample, we list the number of time frames acquired, aarhge time
warping [Sakoe and Chiba 1978]. Their goal is to align time- interval between frames (in minutes m).
varying curves for different subjects, in many applications like
speech signals and human growth curves. Their data vary not only
in amplitude, but also with respect to the time axis—different sub-
jects experience events sooner or later. Classical linear methods
like PCA cannot handle this second type of variability well [Wang
and Gasser 1999]. Recently, [Kneip and Engel 1995] proposed the
“shape-invariant” model, with the overall time variation known as
the “structural average curve” (shape and structure are used rathe
differently from their traditional meaning in graphics).

In our application, we seek to align time-varying appearance
curves (representing BRDF parameters like diffuse color and spec-
ular intensity) for different pixels, and we must relate this alignment
to intuitive parameters like the rates and offsets at different spatial
locations, as well as the static initial and final appearance. More-
over, as discussed in section 5, we develop methods to estimate the
time variation of the process across the full range seen by any pixel,
allowing robust extrapolation beyond the observed sequence.

Figure 3: A photograph of the multi light-source multi-camera domecus
for acquisition of our database of time-varying measuretsien

3 Time-Varying Appearance 4.1 Acquisition

Acquisition of time-varying appearance is challenging. While some
atural processes like drying occur over fairly short time scales (a
ew minutes), many others occur over a considerable duration un-

der normal circumstances (several hours to days for decay iof fru

skins, or a few months for corrosion of metals). In the case of burn-
ing and charring, we have used a heat gun to carefully control the

process. At each time interval, we uniformly heat the sample for a

fixed duration of time (typically 30 seconds). For metal corrosion,

we have decided to speed up the process using specially prepared
solutions [Hughes and Rowe 1991]. We spray a chemical solution
before each measurement and wait a few hours. Decay of organic
amples takes several hours, and is fairly difficult to speed up—we
ave decided to measure these processes without alteration.

A second difficulty is designing and building a measurement
system that meets the following resolution requirements: 1) Dy-
namic range—many of the processes (e.g, drying or rusting) in-
4  Acquisition and Database volve significant changes in specularity. 2) Light and view di-

rection resolution—the sampling of the light and view directions

The first step in understanding time-varying surface appearance isShould be sufficiently high to capture specular materials. 3) Tempo-

to acquire datasets representing it—some examples are shown i@l resolution—a complete acquisition at each time step, involving

figure 1. Figure 2 lists all of the 26 samples we have acquired and images with multiple lights, views and exposure settings needs to
processet These samples cover 5 categories—burning and char- be conducted in a few seconds to avoid the sample changing sig-

ring (wood, waffles), drying of smooth surfaces (wood, fabricy; d

ing of rough surfaces (rock, granite), corrosion and rusting (steel,

copper), and decay and ripening (apples, banana).

We first formalize the notion of time-varying appearance. One
can imagine extending common appearance concepts, such as th
BRDF or texture to include an additional time dimension, as shown
in table 1. In this paper, we extend spatially-varying BRDFs (SV-
BRDFs) to time and space-varying BRDFs (TSV-BRDFs). A gen-
eral TSV-BRDF is a function of 7 dimensions—2 each for spatial
location, incident angle and outgoing direction, and 1 for time vari-
ation. For surfaces that are rough, or have relief at a macroscopic
scale, the term Bi-Directional Texture Function or BTF [Dana et al.
1999], and its time-varying extension TBTF is more appropriate,
although it has the same dimensionality. While a small number of
the examples in our database do have some surface relief (and ma)z
therefore not be as well modeled by the approach presented here),
we focus in this paper primarily on flat surfaces or TSV-BRDFs.

1This entire database, and our STAF model fits will be made aleila
online. To request a copy, send e-mail to staf@cs.columhia.ed
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Figure 5: Comparison of (a) barycentric interpolation and (b) parane
spatially-varying reflectance fits, texture-mapped ontplaese. The para-
metric reflectance model is quite accurate, preserving treedetails of the

> wood grain, while eliminating artifacts in the highlighteadboundaries.

) o ) onto a 3D sphere to better make these comparisons.

Figure 4: Acquired images of wood drying. We show two separate  Fortynately, we have enough measurements to effectively fit
views/time instances, and all of the useful lighting di@uts for those. parametric reflectance models, including specular lobes, to each

o g ; : spatial location. We use a simple combination of diffuse Lamber-
P;gicfe{m/ytg\klsg?&@iﬁﬁéuaﬁaﬁg gsg;r); Zﬁlsgelg %/gtgeg S that a0 and simplified Torrance-Sparrow reflectance, with the BRDF

We have decided to use a multi-light-source multi-camera dome, given by
shown in figure 3. The dome skeleton is based on an icosahedron. Ks(x,y.t) cos (-2
We use 16 Basler cameras (resolution 130030 pixels) placedon  p(xY, @, Gh,t) = Kg(xy,t) + 15 sﬁ = A p[ < t > }
the icosahedron vertices and 150 white LED light sources spaced (@ - 1) (¢ 1) alyY)
evenly on the edges (approximately 80 of these lights lie in the vis-
ible hemisphere with respect to the flat sample, and therefore give
useful images). This design is similar to the light stage [Debevec
et al. 2002], but includes multiple cameras as well. The cameras
and light sources are synchronized using a custom-built controller.

The cameras are geometrically calibrated by moving a small
LED diode in the working volume and detecting its 2D location in
all cameras. A bundle adjustment is performed to obtain the precise
geometric location and projection matrices for all cameras. Since
we know the dome’s design specifications, this allows us to register
all light and camera positions to a common coordinate frame. We
also perform a photometric calibration of the system, by capturing
images of a perfectly white diffuse standard (spectralon) from all
camera viewpoints under all light combinations. To obtain normal-
ized BRDF values for each surface point, we divide by the corre-
sponding observation of the white diffuse standard.

For acquisition, we place a prepared sample in the center of the
dome. At each time step, we capture a high dynamic range data
set—we take images at two different exposures (typically 2 and 82
msec) for each light-camera pair. This results in 4,800 photographs
captured in 22 seconds. It takes about 90 seconds to save the dat
to the hard disk (therefore, the minimum time between two con-
secutive measurements is about 2 minutes). We typically capture
appearance data sets at 30 time frames.

Once a complete time-varying appearance data set is captured
we resample the data on a uniform grid (typically 4@®0 pixels)
for each light and view direction. Some of our data, showing time
variation for a single light source and view has already been seen in

figure 1. Figure 4 shows all of the 80 useful images (lighting direc- locations. As seen in figures 5 and 6, we capture the important

tions in the visible hemisphere) for two time instances/viewpoints. o ; g ; o
) i ) i qualitative aspects of the specularity, without artifacts. Quantitative

4.2 Time and Spatially-Varying Parametric Reflectance analysis is difficult, since some spatial locations have only a sparse
Initially we attempted to take a straightforward non-parametric ap- set of BRDF samples in the specular lobe.
proach to represent the BRDF at every point directly by the acquired
raw data. For rendering (i.e. to create images under novel view 4-3 Summary and Results
and lighting), we used the algorithm in [Vlasic et al. 2003] and From now on, we will use the notatigmx, y,t) for the parametric
did barycentric interpolation twice, once over view and then over fits to the TSV-BRDF.p can be thought of as a vector of 5 space
lighting. A similar algorithm is used in [Vasilescu and Terzopoulos and time-varying parameters, the diffuse RGB cdlg(x,y,t) and
2004]. However, as shown in figure 5, since the light-view sampling the speculaKs(x,y,t) ando(x,y,t). The angular dependence is im-
of our samples is not dense enough, direct interpolation producesplicit in the form of the specular term controlled Ky ando. Note
artifacts. In figure 5, we have “texture-mappédhe TSV-BRDF that although the BRDF representation is parametric, the estimated
parameterp(x,y,t) capture the space and time-variation of surface

2When we refer to “texture mapping” throughout this paper, wermea ~ @Ppearance in a non-parametric way (i.e., directly from the acquired
mapping the complete TSV-BRDF, i.e. all 5 BRDF parametersyitiog raw data).
diffuse RGB color and speculats and o, and including time variation. Even without the analysis and modeling in the rest of this paper,
These BRDF parameters at each point in space and time can thesetbe ~ our database of TSV-BRDFs can be texture-mapped onto arbitrary
with any lighting model and rendering computation. 3D objects and used directly for rendering with general lighting

All 80 Lights

(1)
whered andd, are incident and outgoing directiorsis the sur-
face normal andy, is the half-angle vector. The BRDF parameters
are the diffuse intensiti(y, the specular intensiti{s and the sur-
face roughnese. SinceKy is an RGB color, we have a total of 5
parameters for each spatial locationy) and timet.

Note that the BRDF model used to fit the raw data is independent
of the STAF model in the remaining sections. Other kinds of para-
metric BRDF models(e.g. Lafortune model) could also be used.

The diffuse and specular parameters are estimated separately in
two steps, since for some materials there are only a few samples in
the specular lobe. To fit the diffuse coldy, we consider a frontal
view, which gives the highest-resolution image. At each spatial
location, we optimize over only those light source directions where
specular highlights are not present (conservatively, we require the
light source and the reflected view direction to be separated by at
least 30 which works well for most of the samples in the database).
We consider each time instance separately for the fits.

We fit the specular intensitl{s and roughnese separately for
each spatial location. To do so, we consider all light source di-
ctions and views. Since is the only non-linear parameter, we
ave found it most robust to do a linear exhaustive search to deter-

mine it. For a giveno, we solve a linear system fa¢qy andKs,
choosing thes (andKsg) that has minimum error. Although we do
estimate the diffusky in this process again, we prefer to use ke
described earlier, which is determined from the highest-resolution
frontal view, and with specularity completely absent. To make the
two estimates oKy consistent, we scale the earlier estimat&gf

by the average value of the latter estimatekgfover all spatial
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Figure 6: Drying wood TSV-BRDF, texture-mapped onto a sphere. Thisple demonstrates the power of our database, which enablés render with
simultaneous changes in lighting and evolution with timeteNthe diffuse spatial drying patterns, and the early dimgrand diffusing of specularities. The
elevation angle of the light with respect to the center istfiae9(L) = 30°, while the azimuthal lighting angle varies as the sampleslri

direction, viewing angle, and time variation. Indeed, our use of R(x,y) and O(x,y) — Spatial Rate and Offset : Different spatial
standard parametric models allows time-varying effects to be easily locations evolve differently. We capture these effects with spatially
incorporated in almost any interactive or off-line rendering system. varying rateR(x,y) and offsetO(x,y) parameters. IR s large, the

As one example, figure 6 shows drying wood texture-mapped onto rate of change will be rapid. IO is positive, the point will start

a sphere. We show a sequence of frames, where we simultaneouslyrom an earlier state. Theffective time’tfor a given point is given
change the lighting, and evolve the sample over time. Note the spa-byt’ = R(x,y)t — O(x,y), where we refer t¢ as theglobal time

tial drying patterns, as well as BRDF changes, wherein the initial A(x,y) and D(x,y) — Static SV-BRDFs : A(x,y) andD(x,y) are

sharp specularity quickly diffuses and dims over time. static over time. The diffuse components correspond to standard
5 Modeli d Analvsis of Ti Variati spatial textures like wood-grain that remain fixed throughout the
odeling and Analysis of Time Variation time variation. Consider the special case wh#®,y) = 1 and

While our TSV-BRDF database can often be used directly, there are O(x,y) = 0 so all points evolve in the same way. Equation 2 simply
many rendering applications where the user desires more control.becomesA(x,y)@(t) + D(x,y). In this case, we simply interpolate
For example, he may want to control the spatial drying patterns on from one texture (or more generally, SV-BRDF) to another. The
awooden floor to dry slower near recent wet footprints. Or she may initial and final appearance are simghp(0) + D andAg(1) + D.

want to remove the spatial drying patterns altogether allowing the 5 5 piscussion

surface to dry uniformly. The user might also want to change the _ . . N

underlying spatial texture, to create a different appearance for the Separating Spatial and Temporal Variation: ~ The STAF model
wood grain. These effects are difficult to create, because space and €quation 2 has factored spatial and temporal variation in a com-
time variation are deeply coupled in the TSV-BRDF, while we seek Pactrepresentation. We now have quantit®e®(R,0), that depend

to separately modify or edit intuitive spatial or temporal functions ©nly on spatial locatiorix,y), and a temporal characteristic curve
(like overall spatial fexture or rate of variation). @(t) that controls time variation. Unlike linear decompositions, the

We present a Space-Time Appearance Factorization (STAF) thatS TAF m_ocljel isnon(-jlin]:efar, because(sz(t) is stretc_he_tlj and offset by

separates effects because of space and time-variation, showing ho/4'€ SPatial rate and offs&(x,y) andO(x,y). A similar separation

they interact. In this section, we introduce the STAF model, and ©f SPatial and temporal effects could not be accurately achieved by
linear data reduction methods like PCA, nor would the terms in a

show how to estimate it from the TSV-BRDF. We present results . X S .
indicating its accuracy for the large variety of time-varying phe- linear model correspond to physically intuitive and editable factors.

nomena in our database. In section 6, we will show the power and Extrapolation:  Another interesting aspect of the model is its
flexibility of the STAF model in creating novel rendering effects. ~ power to extrapolate beyond the acquired sequence. Let us nor-

. o malize the global time in the range of0...1]. Now, consider
5.1 Space-Time Appearance Factorization (STAF) the effective timet’ = R(x,y)t — O(x,y), which lies in the range

Our approach is based on the idea that most physical processes havg(x, y) = [-O(x,y),R(x,y) — O(x,y)]. If either R and/orO is large,
an overall temporal behavior associated with them. For example, thjs range can extend considerably beyond the glfthal 1] time.
drying wood may get lighter over time. For a given parameter of The valid domain of effective times for the full curgst’) is now
the BRDF, like the diffuse red channel, this time variation can be

expressed by a curve(x,y,t) for each spatial location. However, _ _Nming .

different points dry at different rates. Moreover, in situations like I= U Ixy) = ?X"y?( O0y)), ms)x(R(x,y) ot))|» ()
a puddle, some parts start out wetter than others. Intuitively, we (x)
seek to align the time variation for different spatial locations, by de- which considers the minimum and maximum effective tifhever
forming a single “temporal characteristic curvg(t) according to all points(x,y). By definition, the overall range dfis a superset

spatially-varying parameters for “rat&(x,y) and “offset"O(x,y), of that for each point, enabling individual pixels to be backed up
/ or extended beyond the sequence captured, allowing time extrapo-
p(x y,t), AY)@(t) +D(xy) lation. This is reasonable because early-starting points can provide

t = RXyt-0(Xxy). (2 information for other similar points which start later by some offset.

In this equation, we consider each of thg 5 parameters of the TSV-5.3  Estimating the STAF model
BRDF separately. For example, for the diffuse component, one canyye e 4 simple iterative optimization to estimate the factors in

think of all quantities as being RGB colors. The model is data- o4 ation 2. Each iteration consists of two steps. In the first step,

g_riveg, ?ince ttrl:e factors (;)rdtetrmS [Z:i RO andt(p dal_'e estimalte((jj 1a. V€ fix the spatial paramete#s D, RandO to update our estimate
irectly from the acquired data, and represented In a purely data- ,, /) - |f the other terms are fixed, we can solve directly pmn

driven way. We now descrit_)e_the meanings of the Vafious terms. equation 2. The second step of the iteration figég) and solves
@(t") — Temporal Characteristic Curve: The overall time varia-  for the spatial parametess D, R andO. This requires non-linear
tion characteristic of the physical process is captured by the curve gptimization, but can be carried out separately for each spatial lo-
@(t’). The form ofg will vary with the specific phenomenon. Itcan  cation (x,y). We have found that only 5 iterations are needed to
be exponential for some decays, sigmoidal for drying and burning, gpain accurate estimates of all parameters. This algorithm is very
a more complex polynomial form for rusting, or any other type of easy to implement, requiring fewer than 50 lines of Matlab code,
curve. Since our representation is fully data-driven, we can handle ypjje being robust and effective for the entire variety of samples
a variety of effects. is a function oft’, that we call theeffective iy our database. We describe the technical details below. Some
time, as described below. readers may wish to skip to our results in section 5.4.
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Figure 7: Estimating the factored representatiofop: A range of different phenomena, with 3 spatial locations kadron each sampleiddle: Time-

varying curves fx,y,t) (for the red diffuse component) for spatial locations A, B & The curves are quite different for different points An €.Bottom:
We align these time-varying curves using our model. The aetarately matches the temporal characteristic cup(®) computed from all the points on the
sample. The overall RMS image reconstruction error (acedstemporal frames and spatial locations) is very low. Tindicates the generality of our model.

Preprocessing:  Our inputs are discrete fits of the parameters
p at pixelsi and timesj, which we denotep;(tj). The pixeli
corresponds to spatial locatid®;,y;). It is simpler to work with
continuous functions of time. For each pixel, we construct a con-
tinuous curvep;(t) using the kernel-based method [Gasser et al.
1985]. Splines or local polynomial fitting can also be used. We are
now ready to begin our iterative optimization. To initialize, we set
Ai=1,D;j=0andR =1, O; =0 for all pixelsi.

Step 1 — Estimatingg(t’) :  We first fix the spatial parametefs
D, R Oin order to estimatep(t’). For estimation, we re-arrange
equation 2, writing = (t’ + O;)/R; to derive for point,

Apt)+D; = pi(t/;Oi)

Ai )
fort’ € Jj, whereJ; is the range of effective times. For robustness,
and to consider the full effective time range, we add multiple points,
(p(t/) _ zi:t’GJi p|((t/ +O|)/R|) B zi:t/GJi Di ) (5)
Yired A
Step 2 — EstimatingA, D, R, O:  We now keep our value for the

overall time curvep(t’) fixed, and estimate the spatial parameters.
This is a separate optimization problem for each spatial location

N
min 3 [pi(tj) —Aig (Ritj — O;) —Di]%. (6)
=

Note that this expression uses the discrete observapién$, find-

Normalization: ~ We are now almost ready to start a new iteration

in the optimization, returning to step 1. One final detail is that the
STAF model involves a product, and requires normalization of the
factors for uniqueness. We use the following normalization,

<A >=1 <Dj>=0 <R>=1 <0 >=0, (7)

where< - > stands for the average over all spatial locations. This
simply says that the overall spatial textures are normalized, and that
the average rate is 1, while the average offset is 0.

. Letus call the un-normalized results at the end of steﬁ Di,
Ri andG;. To normalizeA; andR;, we simply divide by the average
values forA; andR;. Then, we normaliz®; andQ; as follows,

Dizlﬁi—Aj<|5j>, Oi:éi—Ri<éj>. (8)

We can now start the next iteration of the optimization, returning to
step 1. In general, we find five iterations enough for convergence.

Efficiency and Robustness: For efficiency, instead of using all

the points on the sample, we randomly select 400 points as input

to the algorithm. Therefore, the iterative optimization itself takes

only a few minutes. Once the fingl(t’) is known, we use step

2 (equation 6) to directly estimat® D,R O for all points on the

original sample. Since the sample resolution is large (4@00),

and we must solve a nonlinear optimization for each pixel, the total

time can be a few hours, but the process is completely automated.
One final issue is that we want to estimaig’) in the full range

J, while the iterative optimization uses only part of the data. The

kernel-based curvpg;(t) cannot extrapolate well, and therefore nei-

ing spatial parameters that best match our input data. This is a non-ther cang(t’) from step 1 of the optimization. Therefore, in step 2

linear least-squares optimization problem, and we uskstimnlin
function in Matlab, with Levenberg-Marquardt minimization.

of the algorithm, instead of using(t’) in equation 6, we fitp(t')
by a smooth polynomiai(t’) and usey(t’) to estimateA, D, R, O.
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Figure 8: Factored representation for drying wood. The panel abovagares STAF to the original sample for one light and view makquired dataset.
Our model is seen to be quite accurate, and can also be usetihfernormalization, wherein we keep the overall appearasi@nges but eliminate the
spatial drying patterns. The panel below shows the estidhate) for both diffuse and specular parameters. We also show lisuns of the spatial diffuse
“textures” A,D, R, O. In particular, we show the normalized initial framepf0) + D, and final frame 4p(1) + D. We show R,y) that controls the drying rate,
and is responsible for the spatial patterns. Finally, thisef Qx,y) is mostly uniform, but indicates a slightly faster start tyidg in the left region.

5.4 Results However, it does indicate small non-uniformities and the slightly
The top row of figure 7 shows five samples, with three spatial lo- faster start to drying in the top left region. We also show the canon-
cations marked on each. The middle row shows curves for the redical diffuse and speculap(t’) curves. The speculdfs decreases
diffuse component over time (similar results are obtained for other exponentially, changing more rapidly than diffuse color.

parameters). As can be seen, the curves from different points onthe - one of the principal benefits of our factored representation is
sample are quite different. In the bottom row, we show alignment 5t it enables a variety of rendering applications, as discussed in
of these separate time-varying curves by estimating our factoredthe next section. Figure 8 indicates one way in which we can
representation (the(t’) curve is plotted in black). Specifically,  separate space and time-varying effects by “time-normalization”,
the x-axis is theeffective timet’ while the y-axis is the normalized  making all points on the surface evolve at the same rate. For this
function valug(p(x,y,t) —D(x.y))/A(x.y). The green/red/blue dots  ypose, we leavA(x,y), D(x,y) and @(t) unchanged. However,
overlayed on the black curves show which portions of the black e setO(x,y) = 0 to eliminate offsets anR(x,y) = 1 to eliminate
curvesg(t’) correspond to each of the three original curves in the gifferences in rates. The third row of figure 8 compares the time-
second row. Note that thg(t’) curves extrapolate beyond the data, normalized results with the original, showing that all pixels now

having a larger range of effective times than. . 1]. . change at the same rate, removing the spatial patterns. For render-
If the model in equation 2 is perfect, the curves from different jng in the next section, we can now mod®andO, to create the
spatial locations should now all be aligned, exactly fit(g). In- spatial patterns and variations we desire, while still preserving the

deed, the time-aligned data in the bottom row of figure 7 matches essence of the acquired time-varying phenomenon.
very well to the canonical curve. The overall RMS image recon-
struction errors are computed across all temporal frames and spatia
locations. The range of the image intensity is general[@;a], ex-
cept for samples with strong specular components, such as the ste
for which the intensity of the specular pixels is[ly30]. Note that

Figure 9 uses the rusting steel sample to compare renderings
lfrom the STAF model with the original TSV-BRDF. This example
dp particularly challenging, because tipét) red curve is not even
monotonic (since rust forms, reddening the material, but also dark-

figure 7 shows a variety of phenomena, with a number of different ening its base color). Nevertheless, our factored data-driven model

data-driven forms and mathematical curve-types for the canonical IS @ccurate. We capture the dimming of the specular highlight, and
(). the intricate spreading of the spatial rust patterns over time.

The accuracy of our factored model is evaluated in figure 8. We  In terms of compression, the average size of the raw data (high
accurately capture drying patterns over time. We also show the dynamic range images) of one sample is about 30 GB. Fitting para-
estimated diffuse “textures”. Instead AfandD, that are some- metric BRDF models for each time step reduces the size to about
what harder to interpret, we show the normalized initial frame, 80 MB. The STAF model can further reduce the size of one sam-
A(X,Y)@(0) +D(x,y) and final frameA(x,y) (1) + D(x,y). We also ple to about 6 MB on average — we only need to store four texture
show R(x,y) that controls the rate at which different points dry. imagesA,D,R, O and the curvep(t) for each of the five parameters
It corresponds closely with the spatial patterns observed at laterin the BRDF model. Using other image compression techniques
frames. Finally, we show the offs€(x,y). It is mostly close to (e.g., JPEG), we can reduce the size even further to about 1-2 MB
0, since we wet our sample uniformly before starting acquisition. without producing noticeable artifacts.
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Figure 9: Comparison of original rust TSV-BRDF (texture mapped onsplaere and rendered) with our STAF model for several timaés

6 Rendering corresponding 10 initial frames only for this figure. We show a sig-

Itis possible to use the TSV-BRDF database directly for rendering, Nificant backing up of the process for many pixels upto—20m,

even without the STAF model. However, the types of appearance t0 the point where the apple is much greener. We can also decay the
we could create are limited, since one cannot control or modify 2Pple beyond the end-point of the acquisition.

the TSV-BRDF. On the other hand, the STAF model completely Figure 12 shows how the drying wood can be controlled to create
factors space and time-varying effects, allowing either or both to be the appearance of drying footprints on a wooden floor. The offsets
manipulated and edited separately. O(x,y) ensure the floor starts out di & —1), while the lower left
Extrapolation:  The temporal characteristic curggt’) extends ~ footprint dries earlier (has a smaller off$et= 0, compared t® =
beyond the actual global time range over which the data is acquired, 0-3 for the upper right footprint). We s&(x,y) to control the rate

allowing us to back up or extend the process beyond the acquiredof drying, depending on the distance from the edge of the footprint.
data for many pixels. Motivated by observation, the rate is set higher towards the edges

Control: By changing rate and offset paramet&ti,y) and and decreases towards the center. We compute a distance transform
O(x,y), we can control the rate at which different points on the d(x,y) for points inside the footprint, and sB(x,y) ~ d~(x,y).
surface change, while still preserving the characteristic features of Finally, we use a % 7 Gaussian filter on the resulting maR&, y)

the time-varying process. We could $2andO according to phys- andO(x,y) to ensure smooth transitions, especially at the edges.
ical principles like the amount of light or humidity. In practice, we In figure 13, wetransferthe rusting steel time-varying process
use simple procedural ideas—for example, a wet puddle dries fasterto a new (unrusted) steel plate, using only a single image of its
near the edges, so we increase the rates in those regions. initial condition. The ratio of the new photograjpw to frame 0

Transfer: By changing the texture&(x,y) andD(x,y), to those of the original sampldg is used to modulate both static textures
obtained from a new static photograph, we can transfer the time- Anew(X,Y) = A(X,Y) * Inew/lo @ndDpew(X,¥) = D(X,Y) * Inew/lo. We
varying effect, such as burning or rusting, to a new object, while then texture-map the time-varying pattern onto a 3D teapot. Note
still preserving the essence of the data-driven appearance change. that both diffuse and specular effects, and their time variations are
Time-Varying Texture Synthesis:  Our database is acquired on  preserved. We also use control to increase the rate of rusting in high
small flat samples. Of course, we can texture map these onto arbi-curvature regions. In addition, we do edge detection on our static
trary 3D objects, but we also seek to use texture synthesis to create2D image of the steel plate, to increase the rate near edges. The
larger spatial patterns. With our factored form, we simply synthe- net rateR(x,y) = K(x,y)H(x,y) wherep is an edge map ankl is

size the spatial textures using standard 2D methods. the average curvature. The insets in the bottom row clearly show

We now use these ideas to render a variety of examples, thatthat different parts of the object rust at different rates. We have
showcase the full power of our method. The 3D renderings were full 3D rendering capabilities, and can see the teapot from different
done using the PBRT package [Pharr and Humphreys 2004]. viewpoints while the appearance is evolving.

Figure 10 shows a texture synthesis of the drying rock example,  Figure 14 shows how user-specified patterns can be created in
to create a much larger spatial pattern. To maintain temporal co- the otherwise natural time-varying processes, with implications for
herence from initial to final frame, we treat the spatial textukes  special effects and animations. We texture-mapped the burning
andD together. We first synthesidg = A@(0) + D using image wood onto a bowl model; the table cover is from our drying orange
quilting [Efros and Freeman 2001], and then use the same patchesloth dataset. Control is effected through a virtual heat source, for
to synthesizd; = A@(1) +D. Given the synthesized “initial” and  both burning and drying. In addition, we manually modify the rate

“final” textureslp andly, it is easy to find the nevi andD. It is R(x,y) to resemble the Siggraph logo, for both the bowl and the
possible to also apply texture synthesis to the rate and offset inde-cloth. For the initial frame, the samples have their normal static ap-
pendently, in a similar fashion. However, in this c&e,y) and pearance. As time progresses, the patterns gradually appear on the

O(x,y) are not textures in the conventional sense, but encode anbowl! and table. With further progression, charring on the bowl and
overall variation over the surface, where the rock dries from left to drying of cloth is complete, and the patterns disappear.
right. In this example, we choose to preserve this overall effect,
simply enlargingR andO with standard image processing. .
Figure 11 shows how standard static texture-mapping may be /  Conclusions and Future Work
combined with TSV-BRDFs. In this case, we use a photograph of We have presented a complete pipeline from acquisition to render-
an Apple Records logo from a Beatles album, to modulate the TSV- ing for time and space-varying appearance or TSV-BRDFs. This
BRDF in the mapping region (with an alpha blend near the edges). leads to a new capability for computer graphics imagery, to include
Thus, we create the effect of the cut apple logo decaying. the dynamic evolution of surfaces and scenes. Our contributions in-
Figure 11 also demonstrates extrapolation on the apple slice clude a newly acquired dataset of time-lapse images for many nat-
dataset, to obtain virtual frames even before the actual start of ac-ural processes from multiple light source and viewing directions,
quisition. For extrapolation, we simply use our factored represen- along with estimated parametric TSV-BRDFs. Our main techni-
tation, evaluatingp(t’), and clamping’ at its overall minimum and cal contribution is a compact intuitive factored representation that
maximum value as per equation 3. In this dataset, most of the decayseparates spatially varying aspects from temporal variation, being
actually happens in the first 30 minutes, and we use input from the accurate for a variety of natural phenomena. With this representa-
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Figure 10: Time-varying texture synthesis can be reduced to 2D syistbéstatic spatial textures A and D with our model. We chdog@eserve the overall
drying pattern from left to right in the original sample.
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Figure 11: Decaying Apple Records logo, using our apple slice dataset,modulating by a static texture map of the logo from a Bsattcord. This example
demonstrates extrapolation, wherein we back up the decageps to considerably before actual start of acquisitiome-decay is mostly complete at +30
minutes, and we back up to -20 minutes, getting a much gréeoleion the apple (we are also able to extrapolate beyond iz iime frame).
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Figure 12: Footprints drying on a wooden floor. We use the drying wooasktt controlling the rate and offset of drying as shown m ithaps on the far
right. Specifically, the prints dry faster towards the edge®l the left footprint has a lower offset (higher effectinee) and so dries earlier.

tion, we can generalize to a number of novel rendering tasks suching non-linear factorizations of BRDFs. This work was supported
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