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Abstract

We propose a framework for developing a new class of
imaging systems that are thin and flexible. Such an imaging
sheet can be flexed at will and wrapped around everyday
objects to capture unconventional fields of view. Our ap-
proach is to use a lens array attached to a sheet with a 2D
grid of pixels. A major challenge with this type of a system
is that its sampling of the scene varies with the curvature
of the sheet. To avoid undesirable aliasing effects due to
under-sampling in high curvature regions of the sheet, we
design a deformable lens array with adaptive optical prop-
erties. We show that the material and geometric properties
of the lens array can be optimized so that the object-side
point spread function corresponding to each pixel widens
with the curvature of the sheet at that pixel. This intrinsic
adaptation of focal length is passive (without the use of ac-
tuators or other control mechanisms), and enables a sheet
camera to capture images without aliasing, irrespective of
its shape. We have designed a 33x33 lens array, fabricated
it using silicone rubber, and conducted several experiments
to verify its optical adaptation characteristics. We conclude
with a discussion on the advantages of our proposed ap-
proach as well as future work.

1. Introduction

In the past decade, we have witnessed the miniaturiza-
tion of the camera. This trend has been driven in great part
by the explosive growth of the smartphone market. The
desire of manufacturers to provide customers with thinner
and cheaper camera phones has dramatically driven down
the size and cost of imaging modules. Today, one can find
image sensors in the market with pixels that are close to 1
micron in size. We have also seen imaging lenses become
more compact while maintaining high performance. Owing
to these developments, it is possible today to capture high
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Figure 1. Examples of applications of flexible sheet cameras.

resolution images from a single viewpoint using a compact
and inexpensive device.

In this paper, we pursue a radically different approach to
imaging. Rather than seeking to capture the world from a
single point in space, our goal is to explore the idea of imag-
ing using a thin, large, flexible sheet. If such cameras can be
made at a low cost (ideally, like a roll of plastic sheet), they
can be used to image the world in ways that would be dif-
ficult to achieve using one or more conventional cameras.
In the most general sense, such an imaging system would
enable any surface in the real world to capture visual infor-
mation [9]. While there is significant ongoing work on the
development of flexible image sensors [7, 9], our interest
here is in the design of the optics needed to form images on
such sensors.

In Figure 1(a), the sheet has been wrapped around a vehi-
cle such that it captures a contiguous image of its surround-
ing. In the context of autonomous vehicles, such a system
would provide situational awareness without blind-spots.
Figure 1(b) shows how a sheet camera can be wrapped
around a common urban artifact such as a lamp pole to pro-
vide 360 degree video of a public space.

Figure 1(c) shows how a flexible sheet camera can be
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Figure 2. A fundamental problem with any flexible sheet camera
is that scene sampling depends on the shape of the sheet. With a
conventional (fixed focal length) lens array, this results in aliasing
in regions of high sheet curvature. While the scene is adequately
sampled in (a) where the sheet is flat, it is undersampled in (b)
where the sheet is curved and (c) where the sheet is severely bent.

used in the context of photography. In this case, one side of
the sheet is an imaging system while the other side is a dis-
play that directly shows what is being imaged. In addition
to being thin and easy to carry around (like a credit card),
the field of view of the camera can be adjusted by simply
flexing the sheet. One can imagine several other uses of
sheet cameras. For instance, they can be attached (like pa-
per) to everyday surfaces such as walls and tabletops. In
the case of a tabletop, the camera can provide information
regarding objects sitting on the table that would be difficult
to acquire using one or more conventional cameras looking
down at the table. In the future, sheet cameras may even be
incorporated into clothing, making it easier for a wearable
computer or a visually impaired individual to capture useful
information in an inconspicuous manner.

Our objective is not to develop an end-to-end sheet cam-
era system. Such an endeavor would be overly ambitious as
it requires the use of various fabrication technologies that
are each still in the research stage. Instead, our goal is to in-
vestigate the design of the optics needed to project images
onto a flexible sheet with a regular grid of photosensitive de-
tectors. At first glance one might imagine that a simple lens
array aligned with a flexible detector array would suffice;
its field of view (FOV) can be varied by simply bending it.
What is perhaps less apparent is the fact that, in a curved
state, the FOV can end up being severely under-sampled.

Consider the scenarios illustrated in Figure 2. When the
sheet is perfectly flat, as in (a), all the sensing elements
point in the same direction and, beyond a certain distance
ze, their fields of view are guaranteed to overlap. Now con-
sider the case shown in (b), where the sheet is curved. Since
the same number of sensing elements is used to sample a
wider FOV, for some curvature of the sheet, the FOVs of
adjacent elements will never overlap. In this setting, an ob-
ject would be under-sampled irrespective of its depth. This
under-sampling leads to a captured image that is not band-
limited. Thus, the Nyquist sampling criterion is violated
and the image will suffer from aliasing artifacts when recon-
structed. An even more severe case is shown in (c), where
the sheet has a sharp bend. At and around the bend, the

captured image will have severe aliasing artifacts. It is im-
portant to note that these artifacts cannot be removed via
post-processing since scene information is lost during im-
age formation.

One way to avoid aliasing in cases like Figure 2 (b) and
(c) is by ensuring that each lens in the array has a fixed
but large field of view (FOV) that leaves no gaps between
the FOVs of adjacent lens even when the array is curved.
However, this approach will result in the lens array captur-
ing highly blurred images when it is flat. Thus, with fixed
FOV lenses, the image suffers from either alaising artifacts
or excessive blurring no matter what FOV is choosen.

To avoid aliasing and blurring over all curvatures, we
propose the design of a deformable lens array. We show
that, if designed carefully, the deformable lenses of the ar-
ray will change shape (and hence focal length) under bend-
ing forces in a way that mitigates aliasing and blurring. A
remarkable feature of our design is that the lens array can
achieve aliasing compensation without the use of any per-
pixel actuation or control.

After summarizing related work, we describe the prin-
ciple of passive optical adaptation. We present the desired
adaptation curve which describes how the field of view of a
lens must vary with local curvature to avoid aliasing. Next,
we show how the geometry and material of the lens array
can be chosen to achieve the desired adaptation curve. We
use finite element analysis to simulate the deformation of
our lens array and simulate images captured by it. These
simulations demonstrate the anti-aliasing property of the
lens array. Finally, we fabricate a lens array using silicone
and attach it to an aperture array to emulate a sheet cam-
era. We show image sequences of various scenes captured
by flexing the sheet camera. We conclude the paper with a
discussion on future work.

2. Related Work

To our knowledge, ours is the first attempt at developing
a deformable lens array with intrinsic optical adaptation for
anti-aliasing. Here, we describe several related works.

Two popular technologies used to actively control the
shapes of deformable lenses are electrowetting [16, 23] and
the use of electroactive polymers [14]. Another approach
is to use fluid chambers with controlled pressure encased
by flexible membranes [4, 5, 6]. There has also been previ-
ous work on the fabrication of flexible lens arrays for use in
bendable displays. These include the use of polydimethyl-
siloxane (PDMS) droplets [24] and polymer-based lens ar-
rays where focal length can be controlled using the polariza-
tion of incident light [17, 18]. Stretchable lens arrays have
also been developed for low-cost solar energy concentration
on spacecrafts [13].

In the context of imaging, there are two previous works
that address the problem of capturing flexible fields of view.
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Figure 3. The lens array of the sheet camera in (a) planar and (b)
curved states.

The first uses a conventional camera to image the world via
a flexible mirror [10]. The second uses a flexible camera
array where the captured images are stitched together to
create a collage of the scene [11]. While the latter has a
similar goal to ours - adjusting field of view using a flexible
sheet - it differs in terms of the form factor and the geomet-
ric structure of the captured image. Our approach is geared
towards the creation of imaging systems that are ultra-thin
(like cloth and paper), a feature that is difficult to achieve
using a collection of discrete cameras. Furthermore, while
our sheet cameras capture contiguous fields of view, camera
arrays produce images that are piece-wise perspective.

Recently, several lensless and thin imaging systems have
been proposed. Koppelhuber et al. [8, 9] have developed a
flexible image sensor using a transparent luminescent film.
Abouraddy et al. [1] have developed a fiber that can be
weaved to form a flexible image sensor that can measure the
irradiance incident upon each point on it. Sorin et al. [21]
use a similar approach to measure the direction and wave-
length of incident light. Stork et al. [22] use a phase grating
and a traditional CMOS sensor to capture a coded image
that is processed to obtain a scene image. Finally, Asif et al.
[2] have developed a flat imaging device by placing a coded
aperture directly against a traditional image sensor. In our
work, we are interested in the design of an optical system
than can form a high-quality image on a flexible image sen-
sor. Such an optical system can be used in conjunction with
any flexible sensor such as the one developed by Kim et al.
[7].

3. Lens Array with Passive Optical Adaptation
We first describe the property of a flexible lens array that

is needed for it to exhibit passive optical adaptation. We
model our array as a grid of identical plano-convex lenses,
as shown in Figure 3(a). We refer to the convex side of each
lens as the front surface and the planar side as the base sur-
face. The detector grid of the sheet camera is attached to
the base surface. For now, we assume the detector associ-
ated with each lens to be a single point.

The back surface of the sheet camera is assumed to be
a deformable, developable surface, possibly with spatially
varying curvatures and principal directions. Locally, any
developable surface can be approximated as a cylinder with
one of the principal curvatures equal to zero. Therefore,
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Figure 4. Lenses with the desired optical adaptation property in (a)
the undeformed case and (b) the deformed case.

despite the fact that the sheet camera can be deformed in
complex ways, the analysis of the mechanical and optical
properties of any lens in the array can be done by assuming
the deformation to be cylindrical.

As shown in Figure 3, a single lens projects rays of light
from a scene segment of size s at distance z onto its detector.
We define the field of view (FOV) of the lens as the angle
subtended by the segment s from the center of curvature o
of the base surface. While for the flat array in Figure 3(a)
the FOV is zero (the center of curvature is at infinity), for
the deformed array in Figure 3(b) it is:

FOV =
s

z + 1/κ
=

sκ

zκ+ 1
. (1)

Irrespective of the shape of the lens array, to avoid alias-
ing, adjacent lenses should image adjacent segments in the
scene without a gap between them. Furthermore, to avoid
blurring in the captured image, the adjacent imaged seg-
ments should not overlap. For these conditions to be satis-
fied, the FOV must equal the angle subtended by the lens
pitch w from the center of curvature o of the base surface:

FOVdes = wκ. (2)

In short, irrespective of the shape of the sheet camera, the
desired FOV of each lens is simply the product of the lens
pitch w and the local curvature κ of the base surface.

4. Adaptation in Terms of Focal Length
We now relate the above expression for FOV adaptation

to the focal length of the lens. This relationship is essential
for understanding how each lens should deform in order to
avoid aliasing and blurring in the captured image.

Whether the lens is undeformed (Figure 4(a)) or de-
formed (Figure 4(b)), any ray of light incident upon its front
surface traveling towards the center of curvature o of the
base surface, should be refracted by the lens towards the
detector. Note that in the undeformed case the incident ray
must be parallel to the lens’s optical axis as the center of
curvature is at infinity.

In the undeformed case, the focal length f of the lens
should equal the thickness T , measured from the apex of
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Figure 5. Ideal, incompressible deformation of a flexible lens ar-
ray. (a) Undeformed array. (b) Deformed array. (c) Geometric
parameters of lens deformation.

the lens to the base surface. However, this does not hold true
when the lens is deformed. Hence, we derive an expression
for focal length in terms of the radiusR of the front surface,
which is valid when the lens is undeformed and deformed.

Consider the undeformed case shown in Figure 4(a).
From Snell’s law, we have sinα = η sinβ, where α, β and
η are the incident angle, refraction angle and the refractive
index of the lens, respectively. We assume that in our set-
ting the angles α and β are small and hence sinα ≈ α
and sinβ ≈ β. As a result, α ≈ ηβ. Likewise, we have
f τ ≈ Rφ, where τ is the angle between the optical axis
and the refracted ray, and φ is the angle between the optical
axis and the normal n of the front surface at the point of re-
fraction p. Because the ray incident is parallel to the optical
axis, we have α = φ. This gives us τ = φ− β = α− α/η.
From the above relations, we get:

1

f
≈ 1

R
·
(
1− 1

η

)
. (3)

Next, we determine how the focal length should vary
with the curvature κ = 1/r of the base surface. We first
start with the desired relationship between the thickness T ′

and the radius R′ when the array is deformed. In Appendix
A, we show this relationship to be:

1

R′

(
1− 1

η

)
≈ 1

T ′
− 1

η

κ

1 + κT ′
. (4)

The above relation is what we need to achieve the desired
optical adaptation. From (3) and (4), we get an expression
for the desired focal length of the lens under any deforma-
tion as:

1

fdes
≈ 1

T ′
− 1

η

κ

1 + κT ′
. (5)

5. Deformation in Ideal Incompressible Case
We now assume the deformation of our lens array to be

ideal (uniform over the array) and incompressible (volume
preserving). With this assumption, we can determine how
the thickness T ′ varies with curvature κ. We can then sub-
stitute for T ′ in (5) to obtain an expression for focal length

adaptation that only depends on the initial shape of the lens
and the curvature due to deformation.

As shown in Figure 5, we assume the base of the de-
formed array is a cylinder with curvature κ = 1/r, such
that the base width L of the array remains unchanged and
its side faces remain normal to the surface of the cylinder.

We first estimate the thickness T ′ and the radiusR′ of the
front surface of a single lens of the deformed array, noting
that all lenses are subject to the same deformation. From
Figure 5(b), we can estimate the outer arc length L′ of the
entire array as:

L′ = L · (1 + κT ′). (6)

Since the incompressibility condition requires that the vol-
ume of the array remain constant, we have T L = T ′ (L +
L′)/2, where T is the thickness of the lens when unde-
formed. Substituting in (6) and solving for T ′, we get:

κT ′ =
√
1 + 2κT − 1. (7)

Now that we have estimated the thickness of a deformed
lens, we get the final expression for the desired focal length
fdes by substituting (7) into (5):

fdes
T

=
2η
√
1 + 2κT

η(1 + 2κT +
√
1 + 2κT )− 2κT

. (8)

Here, we have normalized the focal length fdes by the un-
deformed thickness T to make both sides of the equation
dimensionless. This normalized focal length is scale invari-
ant: the thickness and the desired focal length increase lin-
early with the scale of the array.

The above expression tells us how we would like the lens
to adapt to deformation. In Appendix B, for comparison,
we have derived the actual focal length of the lens under
deformation:

fact
T

=
(1 + 2κT )(1 +

√
1 + 2κT )a2

2(a2 + b2)
+

(
√
1 + 2κT − 1)b2

κT (a2 + b2)
.

(9)

Using this expression for the actual focal length of the
deformed lens array, we can determine the maximum field
of view FOVmax (bounded by the two extreme rays inci-
dent at the edges of the lens) as a function of the normalized
curvature κT of the base surface. For the refractive index
η we use 1.41, which is the index of the silicone rubber
we used (Section 8). The maximum field of view FOVmax

is shown (dotted blue plot) in Figure 6, and can be com-
pared with the desired field of view FOVdes (black plot).
These plots suggest that the adaptation of the actual lens
is stronger than the desired adaptation. It must be noted,
however, that FOVmax is determined using the limiting
rays and the actual field of view obtained in practice is a



F
ie

ld
 o

f 
v
ie

w

κTDeformation (      )

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0 0.02 0.04 0.06 0.08 

FOVmax

FOVdes

FOVact

FOVfix

Figure 6. The desired field of view FOVdes, the maximum field of
view FOVmax, the actual field of view FOVact and the fixed field
of view FOVfix, plotted as a function of the normalized curvature
κT of the lens array. See Section 5 for details.

truncated version of FOVmax, where the truncation results
from a physical aperture of finite thickness between the de-
tector and lens. Such an aperture is also useful in ensuring
that each detector only receives light from the lens above
it and not adjacent ones. If we use an aperture that limits
the maximum field of view by 50%, we get the actual field
of view FOVact (solid blue plot), which is very close in
adaptation to the desired field of view FOVdes. If the lens
array were made of a chain of rigid lenses (with fixed fo-
cal length), the array would not be able to optically adapt to
curvature (red plot).

A sheet camera with a thickness T of 20mm, under the
maximum deformation of κT = 0.085 used in Figure 6, has
a cylindrical base surface of radius 23.5cm. If the width of
this camera is 74cm, the entire lens array will have a field
of view of 180◦. This design can be scaled up or down.
For example, a sheet camera with a thickness of 2mm and a
width of 7.4cm (the size of a credit card) can be deformed
into a half-cylinder of radius 2.35cm to capture a 180◦ field
of view. These examples suggest that sheet cameras can be
deformed to capture aliasing-free images of very wide fields
of view. It is also worth noting that the resolution of the
camera can be increased by simply reducing the lens array
pitch w without changing the thickness T and the radius R.

6. Choosing the Right Material
We have seen that if the lens array is made of an incom-

pressible material, it will exhibit the type of adaptation we
need to achieve optical anti-aliasing. It is known in contin-
uum mechanics [20] that an elastic material is more or less
incompressible if its Poisson’s ratio is close to 0.5. Fortu-
nately for us, there are several transparent elastic polymers
that have Poisson’s ratios in the range 0.48 to 0.49 [12].

Another consideration while choosing the material is its
hardness, which is often measured on the Shore A scale
[15]. The optically clear elastomers that are commercially
available and suitable for our application have Shore A

(a) PR = 0.48, Hard = 5 (b) PR = 0.49, Hard = 5 

(c) PR = 0.48, Hard = 90 (d) PR = 0.49, Hard = 90 

Stress 
+5.8e+05 
+4.3e+05 
+2.9e+05 
+1.4e+05 
+3.7e+03 

Figure 7. Abaqus simulations of a deformed lens array based on
our design and made of materials with different Poisson’s ratio
and hardness values.

(a) Simulated Lens Array Deformation 

(b) Simulated PSF of Center Lens 

κΤ = 0 κΤ = 0.04 κΤ = 0.059 κΤ = 0.074 κΤ = 0.087

Figure 8. Object-side PSF of the center lens of the adaptive array
for different array curvatures.

hardness values between 5 (soft) and 90 (hard). It is in-
teresting to note that, regardless of the hardness of the ma-
terial, its deformation properties are nearly constant as long
as the Poisson’s ratio is within the incompressible range.

In Figure 7 we show four deformed lens arrays simu-
lated using the finite element analysis package Abaqus [3].
We used Poisson’s ratio values of 0.48 and 0.49 and Shore
A hardness values of 5 and 90, which represent the limits
of the ranges mentioned above. The color map is used to
convey the mechanical stress within the array, where stress
increases from blue to red. As expected, the stresses are
higher in the harder materials. However, the four arrays are
virtually identical in shape. The prototype lens we have fab-
ricated (Section 8) uses a silicone rubber with a Poisson’s
ratio of 0.49, a Shore A hardness of 5 and a refractive index
of 1.41. We chose a low hardness as it is easier to flex.

7. Verification of Optical Anti-Aliasing

To verify the efficacy of our deformable lens array, we
compare its optical performance to that of a non-adaptive
array, which consists of a grid of identical rigid lenses with
equal and fixed focal length. For the geometry of the de-
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Figure 9. The field of view adaptation FOVsim of the simulated de-
formable lens array is very close to the desired adaptation FOVdes.

formable array we used the Abaqus model in Figure 7(b),
which has the following parameters: pitch w = 7mm, ra-
dius R = 7.5mm and thickness T = 23mm. Figure 8(a)
shows the lens array under various deformations. We as-
sume that the array was attached to an aperture sheet of
thickness 2mm with a grid of apertures of diameter 0.5mm.
The aperture parameters were chosen to achieve a field of
view adaptation that is close to the desired one. For each
curvature, we used the simulated shape of the center lens of
the array to ray-trace its object-side point spread function
(PSF). The resulting PSFs are shown in Figure 8(b). As
expected, they get wider with the curvature of the array.

As in Section 5, instead of using the limiting rays to de-
fine the field of view, we can use the angle that contains a
percentage of the energy within the PSF. If we choose this
to be 85%, we obtain the adaptation curve FOVsim shown
in Figure 9, which is very close to the desired adaptation
FOVdes.

Figure 10 shows the model we used for the non-adaptive
lens array, where the focal lengths (and hence the PSFs)
of all the lenses are the same and remain unchanged when
the array is flexed. In this case, the PSF is assumed to be
the first one shown in Figure 8(b), which corresponds to
the undeformed (flat) state. As shown in Figure 10, when
the lens array is curved, there are gaps between the FOVs
of adjacent lenses, the size of the gap increasing with the
curvature of the array.

Using our models for the adaptive and non-adaptive lens
arrays, we generated the aliasing results shown in Figure
11. At the top is shown the scene texture which is the sum
of two sinusoids, one low and one high in frequency. Using
the known optical properties (PSFs and sampling period)
of the two arrays, we rendered images captured by the two
systems. For each curvature (κT ) of the arrays, we assumed
that the scene surface is also curved with the same center of
curvature as the array. Since the FOV of the sheet cam-
era increases with curvature, we interpolated the captured
images in the horizontal direction to obtained stretched im-

Gap Gap
Gap Gap

Gap
Gap

Gap
Gap

Gap

Figure 10. A non-adaptive lens array, where all the lenses are rigid
with fixed and equal focal length. In this case, when the sheet
camera is curved to be convex, there are gaps between the FOVs
of adjacent lenses. Furthermore, since the lenses are rigid, the
camera cannot be physically curved to be concave.

Scene Texture

kT   = 0.0

kT   = 0.089

kT   = 0.127

kT   = 0.155

kT   = 0.222

kT   = 0.261

kT   = 0.203

kT   = 0.181

kT   = 0.278

(a) Adaptive Focal Length Array (b) Fixed Focal Length Array

Figure 11. Images of a scene texture produced by the adaptive and
non-adaptive arrays for increasing (top to bottom) deformations.
While the adaptive array only blurs the scene texture for high cur-
vatures, the non-adaptive array produces strong aliasing artifacts.

ages that depict the increasing horizontal FOV of the array.
For the adaptive system, due to blurring, the high frequency
sinusoid decreases in magnitude with curvature, while the
low frequency sinusoid is faithfully reproduced over the
entire range of deformations. In contrast, due to the nar-
row and fixed FOV of the lenses in the non-adaptive case,
the scene texture is under-sampled for the higher curvatures
which results in undesirable aliasing artifacts.

8. Fabrication of Flexible Lens Array
To test the concept of a sheet camera, we fabricated a

33x33 lens array using a liquid silicone rubber. The ma-
terial properties and geometric parameters of the array are



(b) Peeling Off Lens 
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(c) Deformable Lens Array  (d) Lens Array Attached
 to Aperture Sheet 

(a) Pouring Liquid Silicone 
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Figure 12. Fabrication of the deformable lens array. (a) An aluminum mold for a 33x33 lens array was machined. A liquid silicone rubber
solution was degassed to remove air bubbles and poured into the mold. (b) The solution was cured at 80◦ for 5 hours to solidify and the
lens array was then peeled off. The array was glued to a flexible plastic sheet with a 2D aperture grid. A diffuser sheet is attached to bottom
of the aperture sheet to form 33x33 images of the scene.

the same as those used in our simulations: Poisson’s ra-
tio = 0.49, Shore A hardness = 5, refractive index = 1.41,
lens pitch w = 7mm, radius R = 7.5mm and thickness
T = 23mm. We chose large values for the geometric pa-
rameters as it is easier to prototype a large scale system in
the laboratory setting. By using a more advanced fabrica-
tion facility, however, the parameters can be significantly
scaled down. As discussed in Section 5, it is possible to
fabricate a lens array of the size of a credit card that has
millions of lenses.

Figure 12 shows the process we used to fabricate our ar-
ray. The mold, shown in Figure 12(a), was made of 6061
Aluminum by Contour Metrological and Manufacturing,
Inc. with a maximum deviation from the prescribed shape
of ±0.05mm. The liquid silicone rubber we used is Mo-
mentive Silopren 7005. It consists of two components that
are mixed in a beaker and placed in a vacuum chamber to
remove air bubbles. Before pouring the liquid silicone into
the mold, we cleaned the mold with soap and water, and
then with acetone. Next, we sprayed the mold with a re-
lease agent to ensure that the lens array can be easily re-
moved after curing. The liquid silicone was then poured
into the mold, degassed to remove air bubbles, and cured in
an oven at 80◦C for 5 hours. Figure 12 (b) shows the cured
lens being removed from the mold.

9. Prototype of Flexible Sheet Camera

In a complete implementation, the base surface of the
lens array would be attached to a flexible 2D array of de-
tectors. Since the development of such a detector array is a
project unto itself, we have instead emulated the complete
imaging system by glueing the lens array to a flexible plas-
tic sheet of thickness 2mm with a rectangular grid of aper-
tures of diameter 0.5mm. The pitch of the grid is 7mm to
match the pitch of the lens array. Note that due to the fi-
nite thickness of the aperture sheet, each aperture limits the
field of view of its lens to FOVsim, as discussed in Section

camera 

deformation 
mechanism 

flexible lens array 

aperture  
sheet 

display 

Figure 13. Experimental apparatus. The deformation of the flex-
ible sheet camera is controlled using a vise-like mechanism. Im-
ages formed on the diffuser attached to the bottom of the sheet
camera are captured using a digital camera and processed to pro-
duce 33x33 images of scenes shown on the display.

7. An OptigrafixTM DFMM diffusing sheet is attached to
the bottom of the aperture sheet to form a 33x33 optical im-
age of the scene. The diffusing sheet is imaged by an digital
camera to obtain a final image of the scene. As seen in Fig-
ure 12(d), the sheet camera can be flexed in various ways to
control the field of view of the imaging system.

Figure 13 shows the experimental apparatus we have
used to conduct our experiments. The deformation of the



(a) Sheet Camera Deformation 

(b) PSF of Center Lens 

κΤ = 0 κΤ = 0.040 κΤ = 0.059 κΤ = 0.074 κΤ = 0.087

Figure 14. For each deformation of the lens array shown in (a), the measured object-side PSF of the center lens is shown in (b). Compare
this adaptation of the PSF with the one shown in Figure 8.

(a) (b) (c) 

Figure 15. The process of converting an image of the diffuser sheet
into an image of the scene. (a) A small part of an image of the dif-
fuser taken with a high resolution digital camera. (b) Finding the
locations and colors of the 33x33 spots in the image. (c) The final
264x264 image of the scene obtained by bicubic interpolation.

sheet camera is controlled using a vise-like mechanism - the
parallel jaws of the vise push against two sides of the imag-
ing sheet so that the distance between the jaws determines
the curvature of the sheet. A Nikon D90 digital camera is
used to capture images of the diffuser. These images have
33x33 dots that are detected and processed to construct the
final image. Finally, to freely control the scenes shown to
the imaging system, we have placed an LCD display above
the flexible sheet.

10. Experimental Results

We have conducted several experiments to verify the
ability of our sheet camera to optically adapt to deforma-
tions. First, we measured the object-side point spread func-
tion (PSF) of the center lens of the array as a function of
local curvature. We varied the deformation of the lens array
as shown in Figure 14(a). For each deformation we calcu-
lated the normalized local curvature κT of the center lens.
For each setting, we raster scanned a small bright dot on
the display and measured the brightness of the image on the
diffuser produced by the center lens. Since this process in-
volves a large number of high-resolution measurements, we

used a video camera with a high-magnification lens in place
of the SLR camera shown Figure 13. As seen in Figure
14(b), the measured PSF increases in width with curvature
in accordance with our simulation results shown in Figure 8,
demonstrating that the FOV of the lens does indeed increase
with curvature to mitigate image aliasing.

In Figure 15 we show the image processing steps we use
to convert a high resolution image of the sheet camera’s dif-
fuser into a 33x33 image of the scene. Figure 15(a) shows
a small portion of an image captured by the digital cam-
era. Each spot in this image is the image formed by a sin-
gle lens of the array. First, the known shape of the sheet
camera is used to estimate where the spots should show up
in the digital image. These locations are represented by the
green boxes shown in Figure 15(b). Next, within each green
box, the centroid of the brightness distribution is used to lo-
cate the spot. Then, the average color within a smaller box
around the centroid is computed to obtain the final color
value for the corresponding lens. Using the principal ray
of each lens, we project the corresponding color value onto
a chosen surface (plane, cylinder, or sphere). These pro-
jected color values are then spatially interpolated, with the
sampling frequency depending on the local curvature of the
lens array, to obtain the final image. In the case of Figure
15(c), the color values obtained from 15(b) have been pro-
jected onto a plane and interpolated using a bicubic kernel
to obtain a 264x264 image.

Figure 16 shows two image sequences captured using the
prototype sheet camera. In the first column we show the de-
formation of the sheet, starting from the flat state where the
angular field of view of the entire lens array is very small
(the optical axes of all the lenses are parallel), to a highly
curved state where the field of view of the lens array is 52◦

along the direction of deformation. The scenes shown to the
sheet camera (second and third columns) are static and we
see how the field of view increases in each case with sheet
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Figure 16. Scenes captured by deforming the sheet camera. The first column shows the deformation of the sheet. The second column
(colored dots scene) and third column (boy and horse scene) show images captured using the sheet camera and stretched using interpolation
to account for the varying field of view of the deforming sheet. Due to the passive optical adaptation of the lens array, as the field of view
of the sheet camera is increased (top to bottom), the captured images remain free of aliasing artifacts.



curvature. For any given sheet deformation, we know the
directions of the optical axes of all the lenses of the array.
This information is used to project the 264x264 captured
image onto an plane of chosen distance from the sheet cam-
era. This projection results in a stretching of each captured
image based on the shape of the lens array. Due to the inher-
ent optical adaptation of our design, the projected images,
while blurred due to stretching, are free of aliasing effects.
This is consistent with the anti-aliasing simulation results
shown in Figure 11.

11. Future Work

We have presented the design of a lens array that enables
a new class of flexible sheet cameras. We demonstrated via
experiments that our lens array can be used to vary field
of view while avoiding undesirable aliasing artifacts. The
next step is to develop a high resolution version of the lens
array and couple it with a large format image sensor of the
type proposed in [8, 9]. A second approach is to develop
an array of organic detectors that can be printed on a plastic
sheet [19, 25].

Since the deformations used in our experiments were
simple and controlled, we were able to easily determine
the geometry of the sheet. In more advanced applications,
such as wearable sheet cameras, the deformations would be
complex and must be known so we can apply the appropri-
ate geometric mappings to the captured images for either
presentation to a human or for scene understanding by a
machine. To this end, we plan to explore the idea of embed-
ding a small number of stress sensors and/or accelerometers
in the sheet and using the measurements from these sensors
to compute the geometry of the sheet.

Finally, the sheet camera concept alleviates many issues
faced by the conventional camera model. First, since the
sheet is meant to be large enough to cover some meaningful
area, it is inherently a large format camera. One way to
think about such a camera is by imagining the millions of
pixels of a phone camera to be distributed over a large area.
In doing so, each sensing element of the sheet camera ends
up being orders of magnitude larger than in the case of a
conventional camera. This significant increase in pixel pitch
has several advantages. First, the sensing area of each pixel
can be made larger resulting in greater dynamic range and
signal-to-noise ratio (SNR). Second, even after increasing
the sensing area, we are left with plenty of real estate to use
for circuits that would make the pixels more scene adaptive
and intelligent.
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Appendix

A. Desired Relationship Between Lens Thick-
ness and Lens Radius

As a lens experiences an increase in the local curvature,
the lens radius will increase and the lens thickness will de-
crease. Both of these changes will affect the field of view
of a lens. Thus, we seek to find the ideal relationship be-
tween change in radius and change in thickness of a single
lens in relation to the local curvature. This relationship is
ideal when the field of view of the lens is contiguous with
its neighbors.

In the deformed case shown in Figure 17, we have:

α = φ− ρ ≈ t

R′
− t

1/κ+ T ′
, (10)

β
τ
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R
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Figure 17. A lens with the desired optical adaptation property in
the deformed case.

where t is the distance between the refraction point p and
the optical axis, and T ′ is the thickness of the deformed
lens. In addition, we have τ = α−β+ρ = α(1−1/η)+ρ.
Substituting (10), we get:

τ ≈ t

R′

(
1− 1

η

)
+

1

η

t

1/κ+ T ′
. (11)

Assuming τ ≈ t/T ′, we obtain:

1

R′

(
1− 1

η

)
≈ 1

T ′
− 1

η

κ

1 + κT ′
. (12)

B. Actual Focal Length as a Function of Nor-
malized Curvature

To find the actual focal length, we must first understand
howR′ changes with local curvature. To estimate the radius
R′ of the deformed front surface, we simplify our system to
a section of a circle. Given an arc with chord length 2a and
chord height b, the radius of the front surface is R′ = (a2 +
b2)/(2b). Initially, in the undeformed case, we have a =
w/2, where w is the lens’ width and b = R −

√
R2 − a2.

In the deformed case, we approximate the deformed chord
length 2a′ and chord height b′ as a′ ≈ aL′/L and b′ ≈
bT ′/T , respectively. L′ can be found by substituting (7)
into (6) to obtain L′ = L ·

√
1 + 2κT . From the above

relations, we have:

R′

R
=

(L′/L)2a2 + (T ′/T )2b2

(T ′/T )(a2 + b2)
. (13)

For the initial radius R, we subsititute κ = 0 in (4) to get:

R = T · η − 1

η
. (14)

From (3), (7), (13) and (14) we obtain the following ex-
pression for the actual focal length (15).

fact
T

=
(1 + 2κT )(1 +

√
1 + 2κT )a2

2(a2 + b2)
+

(
√
1 + 2κT − 1)b2

κT (a2 + b2)
.

(15)


