
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2016)
Ladislav Kavan and Chris Wojtan (Editors)

Deployable 3D Linkages with Collision Avoidance

Changxi Zheng1 Timothy Sun1 Xiang Chen2,1

1Columbia University 2Zhejiang University

Abstract
We present a pipeline that allows ordinary users to create deployable scissor linkages in arbitrary 3D shapes, whose mechanisms
are inspired by Hoberman’s Sphere. From an arbitrary 3D model and a few user inputs, our method can generate a fabricable
scissor linkage resembling that shape that aims to save as much space as possible in its most contracted state. Self-collisions are
the primary obstacle in this goal, and these are not addressed in prior work. One key component of our algorithm is a succinct
parameterization of these types of linkages. The fast continuous collision detection that arises from this parameterization serves
as the foundation for the discontinuous optimization procedure that automatically improves joint placement for avoiding colli-
sions. While linkages are usually composed of straight bars, we consider curved bars as a means of improving the contractibility.
To that end, we describe a continuous optimization algorithm for locally deforming the bars.

1 Introduction

Deployable linkages fold and unfold, drastically changing their
shapes without introducing any mechanical strain. The design
of these linkages has intrigued inventors and engineers for cen-
turies [Ben03], with motivating applications in transportation, archi-
tecture, consumer products, toy design, aerospace engineering, and
biology. Among them, the most commonly used design is the uni-
form scissor linkage, which collapses uniformly, and is built up from
pairs of connected coplanar bars, known as scissor units. Examples
range from recreational toys such as the Hoberman Sphere [Hob91]
(Fig. 2) to scientific endeavors such as the Precision Expandable
Radar Calibration Sphere [BST∗08], an uniformly expandable satel-
lite launched into low Earth orbit.

The popularity of these linkages can be explained by their many
mechanical benefits. A scissor linkage exhibits a single degree of
mobility; in theory, only one actuator is needed to drive the mo-
tion. The mobility is present even though the various geometric
constraints imposed by the linkage, such as the bars’ lengths stay-
ing constant, outnumber its degrees of freedom. In short, these
mechanisms are often overconstrained. The redundancy of these
constraints offers structural failure tolerance: the linkage remains
functional even if some of its components are removed.

The design of overconstrained contractible linkages is difficult
because in general, such mechanisms will be rigid (i.e., no non-
trivial motions). To obtain a single degree of mobility, we need to
carefully construct the linkage’s geometry so that the constraints
have singularities (see more background in §3). In other words,
the design needs to embrace singularities rather than avoid them,
distinguishing our problem from recent work in linkage design in
computer graphics (e.g., [CTN∗13, TCG∗14, BCT15]).

Figure 1: Contractible Bird. A computationally generated and fab-
ricated deployable linkage structure (top) resembles a bird shape
(inset). It has a single degree of mobility, allowing the bird to uni-
formly expand and contract (bottom).

The need for singular mechanical constraints significantly limits
current designs of scissor linkages, especially those resembling spe-
cific 3D shapes. So far, existing 3D linkages typically have simple
and symmetric shapes, such as spheres. Few have explored complex
geometries.

In addition, as these linkages contract, bars are folded into a
smaller bounding volume. It is unavoidable that they would collide
with each other, preventing the linkage from contracting further. The

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Zheng et al. / Deployable 3D Linkages with Collision Avoidance

Figure 2: Hoberman’s sphere in expanded and contracted states.

original intent of these deployable linkages is to save space, but with
such collisions, this goal is obstructed. To the best of our knowl-
edge, the goal of maximizing the contractibility remains largely
unexplored.

We propose a method that enables non-experts to create 3D de-
ployable linkages (Fig. 1). The linkage resembles a user-provided
3D shape at its most expanded state and is able to uniformly fold
as much as possible. The output of our method is the linkage’s 3D
geometry that can be directly fabricated for physical construction.

Method in brief. Inspired by Hoberman’s original design of fold-
able scissor linkages [Hob90], we characterize geometric properties
that a scissor linkage needs to satisfy to form a uniformly deployable
structure. Using these properties, we augment Hoberman’s method
to construct 3D scissor linkages that resemble user-provided 3D
shapes. Our method also involves the user in the design loop, allow-
ing interactive editing of the linkage’s topology while automatically
computing valid geometries.

We consider the problem not simply as one of constructing link-
ages, but one of constructing compact linkages. Exploiting the scis-
sor linkage’s geometric properties, we develop a fast continuous col-
lision detection algorithm to detect when a collision occurs during
contraction. We rely on this subroutine as a cornerstone for improv-
ing the compactness of the linkage, a challenging constrained and
discontinuous optimization problem. Our strategy for increasing
the linkage’s compactness proceeds in two steps: (i) we optimize
the positions and lengths of scissor units to avoid collisions using
the continuous collision detection in a stochastic optimization al-
gorithm, and (ii) accounting for the fabrication constraints of the
linkage, we exploit an elastic rod model to locally deform the link-
age’s bars, further avoiding collisions without deviating too far from
its original shape.

Our method is able to generate complex 3D linkages that are
hard to design manually. Regardless of the geometric and structural
complexity, the output linkage designs can be directly 3D printed
and assembled, as we demonstrate virtually and physically with a
variety of examples.

2 Related Work

Linkage design. The origins of linkage design date back to at lat-
est the 18th century, with the four-bar linkages like Watt’s link-
age that approximated straight-line trajectories. Later work like
Burmester’s centerpoint theory (see §3.2.2 of [McC06]) enabled
the design of complicated trajectories of four-bar linkages, and Cey-
lan et al. [CLM∗13] relied on this theory to generate linkages of
animated characters from motion capture sequences.

Beyond four-bar linkages, Kempe’s universality theorem [Kin95],

shows that any algebraic curve in 2D could be traced out by
a point in a linkage, though the resulting linkage could have
an intractable number of parts to physically realize. A series of
papers [CTN∗13, TCG∗14] demonstrated how to construct link-
ages that approximated a desired input trajectory, and Bacher et
al. [BCT15] showed how to automatically modify linkages to sat-
isfy further user-specified constraints.

While the prior art deals with the difficult task of designing link-
ages that follow specified trajectories, these linkages generically
have multiple degrees of mobility, and their methods aim to avoid
singularities (e.g., [TCG∗14, BCT15]). Though we concern our-
selves with only simple uniform expansion and contraction, we
construct linkages that are highly overconstrained, but are singular
enough to be able to flex.

One recent work that deals with overconstrained linkages is that
of Zhang et al. [ZWC∗15], whose method generates 2D linkages
out of scissor units that deform from one polygon to another. While
their linkages can deform into a different shape, not just uniform
contraction, their method is in 2D and is not directly applicable in
3D. In addition, their method does not aim to avoid collisions.

Transformable objects. In graphics, there has been recent work
in the design of actuated characters beyond just linkages, and
typically these objects are physically realizable via 3D printing
or traditional manufacturing methods. Bächer et al. [BBJP12]
and Calì et al. [CCA∗12] used ball and socket joints to animate
3D printed characters. Some recent work on transformable puz-
zles [ZSMS14,SZ15] allows the user to interactively design puzzles
that can change shapes by manipulating joints connecting different
parts of the object. Our approach shares a similar motivation as the
“boxelization” of Zhou et al. [ZSMS14], in that one application of
their method is compressing objects into smaller bounding boxes
via folding. Another work with similar goals in mind is that of Li et
al. [LHAZ15], who modified furniture with extra joints so that they
take up less space when folded.

Architectural design. Deployable structures are well-studied
in architecture due to their widespread application in structure
where retractability is desirable, like fences, awnings, and rooftops
(e.g. [Piñ65]). One common approach is to start with a small
foldable element and repeat the element over the whole surface
(see [YP97]). One of the most important examples of such building
blocks is Hoberman’s angulated unit, which has been used to make
his namesake spheres and retractable dome structures [Hob91]. You
and Pellegrino [YP97] generalized the angulated unit in 2D to han-
dle more complicated geometries (so-called “multiangulated” and
“generalized angulated” units) while preserving the uniform expan-
sion and contraction properties of Hoberman’s original unit.

Recently, Roovers et al. [RMDT13] described a method for con-
verting continuous surfaces to contractible linkages. Their main idea
was to place scissor units along principal curvature lines, which are
well-behaved for simple continuous surfaces (e.g., quadrics). It is
possible to extend their method to discrete surfaces using conical
meshes [LPW∗06], whose elements form discretized principal cur-
vature lines. Conical meshes find other applications in architecture,
in particular the design of glass structures. In the present paper, we
describe a more general way of constructing scissor linkages that is
not limited by the surface’s curvature.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Zheng et al. / Deployable 3D Linkages with Collision Avoidance

θ
mi

ei

fi

hj

φ

(a) (b)

Figure 3: Angulated unit used in Hoberman’s sphere. The angle
φ formed by the dashed lines is always the same. The right side
shows an angulated unit at its theoretically most expanded (top)
and contracted (bottom) states.

Our work is based around Hoberman’s angulated unit, but unlike
existing literature, we focus on designing 3D linkages that avoid
collisions as much as possible, maximizing its contractility. In 2D,
the problem is sidestepped by offsetting pieces in a direction per-
pendicular to the plane, but in 3D, collisions are unavoidable. This
unexplored facet of detecting and resolving collisions heavily im-
pacts the physical realizability of these linkages, as some theoretical
motions would be otherwise blocked by colliding parts.

3 Background

The goal of this work is to computationally generate uniformly
deployable linkages given a 3D model. Its counterpart in 2D has
been well studied and provides us useful insights, so we first review
the established method for 2D linkage construction and introduce
some terminology used throughout this paper.

Hinge

Endpoint

Mechanical singularities. A 2D scis-
sor linkage is made of a set of “X”-
shaped scissor units; each consists of
two bars that are coplanar and con-
nected at their kink points by a hinge
joint. In general, the geometry of a scissor unit is determined by two
pairs of endpoints and the hinge point in 2D, possessing 10 degrees
of freedom. Meanwhile, it has six constraints, including four that
preserve the lengths between the endpoints and hinge point and two
that preserve the kink angles at the hinges. Given a single loop of n
scissor units (Figure 4), one can show that it has 6n constraints but
6n-3 geometric degrees of freedom, after the 3 degrees of freedom
of 2D rigid motion are eliminated. Thus, even with a single loop
of units, the geometry of the linkage is already over-constrained—
given arbitrary 6n geometric constraints, the linkage might not be
physically realizable. With more loops, the linkage has even more
constraints than its degrees of freedom.

A scissor linkage can fold only when its geometry is carefully as-
signed such that the constraints are redundant. However, computing
such a geometry is ill-conditioned: to obtain a linkage with a degree
of mobility, one necessary (but not sufficient) condition is that the
Jacobian matrix of the constraints with respect to the linkage’s end-
point and hinge positions must be rank-1 deficient [CDXF14], and
finding such a matrix is a difficult task excessively susceptible to
numerical imprecisions.

Angulated scissor unit. The aforementioned fundamental diffi-
culty has motivated methods for procedurally constructing special
types of linkages. Hoberman [Hob90] devised a special kind of
scissor unit, known as his angulated unit, where two identical bars

are connected by a hinge joint (Fig. 3(a)). One can prove (e.g.,
see [YP97]) that as the angle formed at the hinge changes, the lines
passing through each pair of endpoints always form the same angle.
For the remainder of this paper, when we refer to a “scissor unit”
we mean Hoberman’s angulated unit, unless otherwise specified.

2D linkages resembling polygons. A 2D linkage typically con-
sists of a loop of scissor units. Using the angulated scissor unit,
Hoberman [Hob91] developed a procedural algorithm that converts
a polygon into a contractible linkage in 2D. Fig. 4 illustrates this
algorithm, which has also been extended to simple 3D linkages by
essentially joining together multiple copies of a 2D linkage. In the
process of contraction, the polygon (dotted lines in Fig. 4) formed
by connecting the hinge points is a uniformly scaled version of the
user-provided polygon. Throughout this paper, we simply use the
term “linkage” to refer to this type of uniformly deployable linkage.

4 Deployable 3D Linkages

In this section, we extend Hoberman’s 2D linkage construction
algorithm to 3D, creating deployable linkages that resemble specific
3D shapes. The input to this algorithm is a surface mesh, and the
output is a set of connected scissor units and the positions of their
endpoints and hinges.

At this step, the user is involved through the manipulation of the
“linkage graph” (§4.2): the 3D linkage can be edited interactively
by changing the edges and node positions of the graph (§4.3). The
output of this step will be used in the next section to further optimize
the linkage’s geometry by taking into account possible collisions.

4.1 Geometric Parameterization

We first analyze Hoberman’s 2D linkage and establish a geomet-
ric parameterization satisfied by all uniformly deployable scissor
linkages. This parameterization provides insights for constructing
3D linkages and further serves as a starting point for us to derive
a fast collision detection algorithm in §5. To our knowledge, this
particular parameterization is new.

Recall that in Hoberman’s angulated unit, the angle formed by
the lines passing through the pairs of endpoints is identical regard-
less of the deployment angle θ (Fig. 3-a), the angle formed by a
pair of endpoints and the hinge. Thus, we can assume without loss
of generality that for all deployment angles, the orientation of the
scissor unit (i.e. the orientation of the two lines passing through the
endpoints) stays the same. When the deployment angle θ vanishes,
the scissor unit is in its most expanded state where its two bars
coincide. At the other extreme (i.e., θ = π), pairs of endpoints are
collinear with the hinge, forming an “X” shape (Fig. 3-b).

Let eeei and fff i be a pair of endpoints of a scissor unit. Since eeei, fff i
and the hinge hhh j form an isosceles triangle, the line connecting hhh j
and mmmi = (eeei + fff i)/2 and the line connecting eeei and fff i are always
perpendicular (Fig. 3-a). The length of the segment mmmihhh j can be ex-
pressed as ‖mmmi−hhh j‖2 = Li cos(θ

2), where Li is the length between
eeei and hhh j on the bar, a constant value throughout the linkage’s con-
traction. In other words, the length of mmmihhh j changes linearly with
respect to cos(θ

2). In 2D, mmmihhh j is a part of the shape polygon (re-
call the dotted line in Fig. 4), which contracts uniformly. Thus, in
3D, we expect that for any connected collection of scissor units, the
distances between the midpoints and hinges also contract linearly

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Zheng et al. / Deployable 3D Linkages with Collision Avoidance

Figure 4: Hoberman’s 2D construction. For each vertex of the
polygon (dotted line), there is a scissor unit with the hinge at the
vertex’s position and bars made from half of the sides incident with
the vertex. Note that the polygons formed from the dotted lines in
the two configurations are scaled versions of each other.

with cos(θ

2) until all those points collapse at a single point. Without
loss of generality, we may assume that this point is the origin, and
hence we can write the position of each midpoint and hinge, with
respect to the deployment angle θ, simply as mmmi(θ) = mmmi(0)cos(θ

2)

and hhh j(θ) = hhh j(0)cos(θ

2).

Now we can parameterize the positions of the units’ endpoints.
Let nnni denote the direction from eeei to fff i, i.e., nnni =

fff i−eeei
‖ fff i−eeei‖2

. Since
we fixed the orientation of all the scissor units earlier, nnni stays con-
stant. From basic trigonometry, the endpoints of the linkages can be
described using these values:

eeei(θ) = pppi cos
(

θ

2

)
−Linnni sin

(
θ

2

)
,

fff i(θ) = pppi cos
(

θ

2

)
+Linnni sin

(
θ

2

)
,

(1)

where pppi is a constant, indicating the position of eeei (and also of fff i)
at θ = 0 (i.e., pppi = eeei(0) = fff i(0)).

With this parameterization, the trajectory of a pair of endpoints
eeei and fff i can be succinctly specified by a track ttt i = (pppi,nnni,Li), and
furthermore, the trajectory of a hinge can also be specified by a
“degenerate” track (hhh j(0),000,0).

Key insight. We formalize our intuition using tracks: if two scissor
units are connected at two of their endpoints and the two corre-
sponding tracks for those endpoints are identical, then the two units
can contract and expand in the normal direction nnn. If this is satisfied
for all connected scissor units, then the entire linkage will contract
with one degree of mobility.

4.2 Generalization in 3D

The above parameterization and the notion of tracks are inde-
pendent from the number of dimensions, and thus, we can apply a
variation of Hoberman’s construction for constructing 3D linkages.
Given a 3D surface mesh, we start with a linkage graph, whose
nodes are points on the given surface (Fig. 5-a). The linkage graph
sparsely approximates the given 3D surface and determines the link-
age’s topology. Here, we assume this graph is given, converting it
into a uniformly deployable linkage with each graph node corre-
sponding to a pair of endpoints (i.e., eeei and fff i) of some scissor units
(Fig. 5-b). In §4.3, we will present our design tool for interactively
creating and editing such graphs.

In 3D, each scissor unit lies on a plane: the two bars are coplanar,
and the rotation axis of the hinge is perpendicular to that plane.

(a) (b) (c)
Figure 5: Linkage Graph. Starting from a 3D linkage graph (a),
we first compute normals for each graph node such that every pair
of connected nodes has coplanar normals (b). The graph is then
converted into a 3D deployable linkage (c).

Unlike in the 2D construction, there may be three or more scissor
units that have common endpoints (Fig. 6), ones that correspond to
nodes on the linkage graph with valence at least 3. In addition to the
analogous 2D linkage constraints, the constraints at each of these
“multi-valent” points are that the dihedral angles (φi in Fig. 6-a) the
scissor units make with each other must always be preserved.

Our strategy is to convert each graph node into a pair of endpoints
and convert each edge into a chain of two scissor units. To obtain
a deployable linkage using the idea of tracks introduced in §4.1,
if two scissor units are connected at a pair of endpoints, tracks
corresponding to these scissor units must be identical.

Expanding directions. We first compute the expanding directions
nnni of the tracks. Because every pair of adjacent vertices in the link-
age graph will be connected by scissor units, and every scissor unit
lies on a plane, it suffices to have their tracks ttt i and ttt j be coplanar:
the line passing through pppi and pointing along nnni must be coplanar
with the line passing through ppp j and pointing along nnn j (Fig. 5-b).
We construct a cost function that enforces the coplanarity,

Ennn = ∑
ei j∈E

[
(nnni×nnn j) · (pppi− ppp j)

]2
,

where ei j is the edge connecting nodes i and j, and the positions pppi
of the graph nodes are fixed. Minimizing this cost function over nnni
of all graph nodes is a nonlinear least-squares problem, and we use
the CERES library [AMO15] to solve it, with all nnni initialized using
surface normals of the 3D model at each pppi. The output consists
of expanding directions that minimize Ennn while staying close to
surface normals, the directions that naturally describe how a linkage
should expand and contract.

For a graph of N nodes, this optimization has 3N control variables
(i.e., x-, y- and z- components of N expanding directions). In all our
examples, this number is more than the number of penalty terms in

φφ

φ

Figure 6: Multi-valent nodes. A valence-3 graph node (left) and
its corresponding linkage structure (right).

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Zheng et al. / Deployable 3D Linkages with Collision Avoidance

Figure 7: Tracks and their “dual” polygon sides are represented
with blue arrows and orange lines, respectively. The newly added
track is depicted with dashed lines. On the right, we add scissor
units in the same way as in Hoberman’s 2D construction.

the cost function Ennn (i.e., the number of edges), as the linkage graph
does not need to be too dense to resemble a provided 3D surface.
Consequently, the optimized expanding directions always produce
a zero cost function, guaranteeing the coplanarity requirement.

From graph to linkage. We construct the 3D linkage by convert-
ing each graph edge into two connected scissor units. Consider two
graph nodes i and j connected by an edge with tracks ttt i = (pppi,nnni,Li)
and ttt j = (ppp j,nnn j,L j), respectively. Their normal directions nnni and
nnn j are those computed in the previous step. Consequently, ttt i and
ttt j are coplanar, and connecting ttt i and ttt j using scissor units can
be considered locally in 2D (see Fig. 7 for an illustration). Using
ideas from Hoberman’s construction from a polygon, we imagine
the tracks ttt i and ttt j as two sides of a polygon on the plane where ttt i
and ttt j lie. The orientations of both sides are perpendicular to the
normal direction nnni and nnn j , the midpoints lie at pppi and ppp j , and their
lengths are 2Li and 2L j , respectively.

To connect two tracks ttt i and ttt j, we “complete” the partial poly-
gon by adding another side between them. Since there are four
possible choices for adding a new side (i.e., connecting one of uuui,vvvi
with one of uuu j,vvv j in Fig. 7), we choose the pair of vertices that are
closest to each other in Euclidean distance. Suppose without loss of
generality that the connected vertices are vvvi and vvv j . A new track ttt i j
is then placed at the midpoint pppi j of the new side, with its normal
direction nnni j perpendicular to the new side and its length Li j equal
to half the distance between vvvi and vvv j. Following the 2D construc-
tion, two new scissor units are added: one with endpoints pppi and pppi j
and hinge vvvi and one with endpoints ppp j and pppi j and hinge vvv j. By
construction, these scissor units form matching tracks at pi, p j , and
pi j , thereby guaranteeing the resulting linkage’s contractibility.

The above process uniquely constructs a linkage, as long as the
track length Li for every graph node i is given. We start by setting Li
heuristically to be proportional the minimal length of edges incident
to node i:

Li =
1
3

min
(i, j)∈E

‖pppi− ppp j‖2.

The simple assignment of Li produces well-shaped linkage struc-
tures for quick user preview. In §5, we will optimize Li, the graph
node positions and the bars’ geometries to avoid collisions.

4.3 User-Guided Graph Design

With the linkage construction algorithm depicted above, we ad-
dress the problem of creating the linkage graph. Provided a 3D
surface shape, our first attempt was to generate the linkage graph

Figure 8: Our design interface allows the user to interactively edit
a linkage graph and explore different topologies (bottom), with the
resulting linkages generated and visualized in real time (see video).

fully automatically. The most straightforward approach is to use
the dual of the surface mesh as the linkage graph. Unfortunately,
we found that it is hard to produce a reasonably structured link-
age from a surface mesh, even with various remeshing algorithms
we experimented with. We made the following observation: unless
largely simplified, using a mesh as the linkage graph produces a
large number of scissor units (see video), thus significantly increas-
ing the manufacture and assembling cost. However, when a mesh is
heavily simplified, it becomes hard to preserve geometric features,
and the resulting linkage would fail to resemble the given 3D shape.
Moreover, the process of manufacturing and assembling linkages
imposes additional limitations—for example, the valency of a graph
node needs to be small, and the dihedral angle between two scissor
units needs to be sufficiently large. Using a surface mesh is unable
to account for all these criteria.

User interface. Inspired by the recent work on linkage edit-
ing [TCG∗14, BCT15], we develop a tool for interactively editing
linkage graphs (Fig. 8). Using this tool, the user can edit graph node
positions by simply clicking and dragging on the surface of the
3D shape. One can also change the graph’s connectivity by adding
or removing edges. In real time, our method generates the linkage
structure using the algorithm in §4.2 and allows the user to interac-
tively fold and unfold the resulting linkage. To help the user edit
the graph’s topology intuitively, whenever the user selects a graph
node, our tool samples different sets of edges that connect the se-
lected node to its nearby graph nodes, while ensuring the valencies
of the nodes are smaller than a user-defined number (typically 4).
Meanwhile, it computes the resulting linkage for each sample con-
figuration and presents them to the user. The user then chooses the
most proper graph topology and moves on to the next editing opera-
tion (see video). As an extension, when the shape is symmetric with
respect to a plane, our tool can optionally respect the symmetry: all
the user editing operations are symmetrically duplicated to ensure
that the graph and in turn the linkage structure stays symmetric.

Our editing tool serves an important purpose: the user needs to
preserve the important geometric features of the 3D shape while dis-
carding others to produce an aesthetically-pleasing and expressive
linkage—a creative process that is hard to codify algorithmically.

5 Avoiding Collisions

In the process of folding, a linkage collides with itself unavoid-
ably. In this section, we fix the linkage’s topology but adjust its
geometry to avoid collisions and thereby increase its compactness.
Our intuition is illustrated using a 2D linkage in Fig. 9: many colli-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Zheng et al. / Deployable 3D Linkages with Collision Avoidance

case 1 case 2

(b) (c)

Figure 9: (top) A 2D linkage resembling an ellipse contracts (left)
until it collides, where the collision point is indicated by the red
dot. Even a small perturbation of the linkage nodes leads to a very
different collision state (right).

sions can be avoided by perturbing the scissor lengths of tracks and
node positions of the linkage graph on a 3D surface.

Challenging discontinuous optimization. Optimizing a linkage’s
geometry to avoid collisions is challenging, as the collision states
change discontinuously with respect to the linkage’s geometric pa-
rameters. Even an infinitesimal change of a node position can in-
troduce or eliminate collisions in the process of linkage contrac-
tion. Thus, it is fundamentally hard to express how much a linkage
can fold with respect to its geometric parameters in any analytical
form. In addition, the optimization process needs to account for
other geometric and mechanical constraints, such as the limitation
of dihedral angles between scissor units and the preservation of ge-
ometric features of the original 3D shapes, many of which cannot
be analytically expressed. Consequently, the widely used gradient-
based optimization methods become inapplicable for solving this
problem.

An alternative approach is to use stochastic optimization, one
that samples geometric parameters probabilistically and evaluates a
predefined objective function to accept or reject the samples. With
sufficient samples, this method converges to find the optimum of the
objective function without resorting to gradient computation. Since
stochastic optimization requires many samples, the key to this ap-
proach is a fast evaluation of the objective function for each sample.
In our problem, this demands a fast collision detection algorithm.

Algorithm overview. Our method for avoiding collisions has two
steps: first, we use a modified simulated annealing method to opti-
mize the graph node positions and the lengths of scissor units (§5.2).
To make this approach efficient, a critical component is a fast algo-
rithm for detecting the earliest collisions continuously (§5.1) and
evaluating the objective function in the process of sampling. Fur-
thermore, our sampling algorithm considers the mechanical and
geometric constraints that the linkage needs to satisfy. This step
aims to avoid collisions by adjusting the linkage geometry globally.
After the stochastic optimization step, we adjust the linkage locally,
taking into account physical parameters necessary for fabrication,
such as the bars’ thickness and joint sizes. To this end, we fix scissor
units’ endpoints and hinge positions, but locally deform the shape
of the bars to avoid more collisions (§5.3).

5.1 Continuous Collision Detection

We derive a continuous collision detection algorithm with the
assumption that the bars are infinitely thin. In fact, the bars’ thick-

e

e
e

e(a) (b)

Figure 10: Collisions. (a) A collision occurs when two scissor unit
bars become coplanar and intersect. (b) The end joints and bolts
can also cause collisions.

ness depends on many factors, such as the fabrication material and
the overall size of the linkage. Since our collision detection algo-
rithm is to support the optimization of a linkage’s intrinsic geometry
(i.e., the endpoints, hinges and scissor lengths), we ignore the bars’
thickness here in exchange for computational performance, but will
consider it later in §5.3.

With this assumption, a scissor linkage is a set of straight line
segments connecting endpoints with hinges (as illustrated in Fig. 9).
Recall the linkage parameterization introduced in §4.1. According
to Eq. (1), the positions of endpoints and hinges can be expressed in
the form eeei(α) = αxxxi +

√
1−α2yyyi, where xxxi and yyyi are pppi and Linnni

in Eq. (1), respectively, and α = cos(θ

2). For hinges, yyyi vanishes.
Since we start from the most expanded state and try to collapse the
linkage as much as possible, α decreases from 1 (corresponding
to θ = 0) to 0 (corresponding to θ = π). Our goal is to search for
the largest α ∈ [0,1] that produces an intersection between the line
segments.

Quadratic equation for collision detection. To check if two line
segments are intersecting, we first check if the line segments are
coplanar. Given two pairs of segment endpoints (eee1(α),eee2(α)) and
(eee3(α),eee4(α)) (Fig. 10(a)), they are coplanar if and only if the fol-
lowing determinant vanishes:

det(uuu2(α),uuu3(α),uuu4(α)) = (uuu2(α)×uuu3(α)) ·uuu4(α) = 0, (2)

where uuui(α) = eeei(α)− eee1(α). Each uuui can also be expressed in the
form of uuui(α) =αxxx′i +

√
1−α2yyy′i with xxx′i = xxxi−xxx1 and yyy′i = yyyi−yyy1.

Expanding the determinant (2) yields the equation

0 = b3α
3 +b2α

2
√

1−α2 +b1α(1−α
2)+b0(1−α

2)
√

1−α2,
(3)

where

b3 = det(xxx′2,xxx
′
3,xxx
′
4)

b2 = det(yyy′2,xxx
′
3,xxx
′
4)+det(xxx′2,yyy

′
3,xxx
′
4)+det(xxx′2,xxx

′
3,yyy
′
4)

b1 = det(yyy′2,yyy
′
3,xxx
′
4)+det(yyy′2,xxx

′
3,yyy
′
4)+det(xxx′2,yyy

′
3,yyy
′
4)

b0 = det(yyy′2,yyy
′
3,yyy
′
4).

Notice that each line segment represents a bar connecting one of a
scissor unit’s endpoints with its hinge. Without loss of generality,
assume eee1 and eee3 are the hinges. Thus, yyy′3 vanishes, so b0 = 0.
Squaring and rearranging Eq. (3) yields a degree-6 equation in α,(

2b1b3−b2
1−b2

2−b2
3

)
α

6 +
(

2b2
1−2b1b3 +b2

2

)
α

4−b2
1α

2 = 0.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Zheng et al. / Deployable 3D Linkages with Collision Avoidance

Algorithm 1 Linkage Geometry Optimization
1: while not terminate do
2: sample graph node positions {pppi}
3: project the sampled positions {pppi} on 3D surface
4: if fail_graph_check({pppi}) then continue
5: for k← 1,N do
6: sample scissor lengths {Li}
7: if fail_graph_check({pppi},{Li}) then continue
8: ln←construct_linkage({pppi},{Li}) . §4.2
9: if fail_linkage_check(ln) then continue

10: En←objective_function(ln) . §5.1 and §5.2
11: if rand(0,1)<acceptance_probability(E0,En,T) then
12: E0← En; l0← ln . accept the sample
13: end if
14: end for
15: decrease_temperature(T)
16: end while

After factoring out α
2, we are left with solving just a quadratic

equation in α
2. After finding candidate solutions, we check if the

bars are actually coplanar at these α values.

Once we have α values that result in coplanar line segments, we
find the intersection point between the lines containing the segments
and check if the intersection is contained in both segments. In partic-
ular, we parameterize both line segments as sssa(ta)= eee1+ta(eee2−eee1)
and sssb(tb) = eee3 + tb(eee4− eee3). Equating the two parameterizations
yields a linear system about ta and tb. If they are in the range [0,1],
then the two line segments collide at α.

In summary, our continuous collision detection algorithm iter-
ates over all pairs of line segments that connect endpoints of scissor
units and their hinges. For each pair of segments, we solve the afore-
mentioned quadratic equation to find the earliest collision when the
linkage collides. The entire process is fast to compute (typically
taking less than 200 milliseconds for all our examples).

For fabricated linkages, the deployment angle cannot increase to
π. This is because the revolute joints that connect two scissor units
can block the bars from increasing the deployment angle (Fig. 10-b).
In this case, we simply compute the maximum possible deployment
angle for each scissor unit and use the corresponding α (rather than
0 as used above) to bound the collision check.

We note that the simplification to quadratic equations and small
linear systems is made possible by assuming that the bars have no
thickness. By adding thickness, we would have to check if the bars
are within a distance threshold from each other, and the equation
that describes such collisions has no closed-form solution (i.e. it is
a higher-degree polynomial). We chose to ignore thickness because
doing so significantly accelerates the stochastic optimization pro-
cess, whose bottleneck is exactly the collision detection problem.
We will consider the thickness and other geometric and mechanical
constraints in the subsequent step.

5.2 Optimizing Linkage Geometry

Given a user-edited linkage graph, we now improve the compact-
ness of the resulting linkage. We formulate this step as an optimiza-
tion problem, whose variables are the positions of the graph nodes

pppi and their associated scissor lengths Li. The graph topology stays
unchanged. Following the linkage construction algorithm in §4.2,
these variables uniquely determine a linkage structure.

Objective function. There are many choices for measuring the
compactness of a linkage. For example, one choice uses the deploy-
ment angle when the earliest linkage self-collision occurs. We pro-
pose to use the volume of the bounding box at the earliest collision,
as it best represents how much space the linkage saves in its most
contracted state. Evaluating this objective function first requires
performing the continuous collision detection (§5.1). Then, using
the deployment angle at which the collision occurs, we compute
the corresponding state of the linkage following the parameteriza-
tion (1) and evaluate the bounding box volume. We also note that
the optimization algorithm we propose here does not depends on
any particular form of objective function.

Modified Simulated Annealing. Because of the discontinuous na-
ture of the collision state with respect to the graph configuration,
we opt for a gradient-free optimization method. We choose to use
a modified simulated annealing method [VLA87] (Algorithm 1).
The only difference from the standard version is that we sample the
scissor lengths Li more frequently than node positions pppi (typically
N = 10 in Line 5 of Algorithm 1), because sampling graph nodes
involves projecting the sampled positions back onto the provided
3D surface (Line 3 of Algorithm 1), which is more expensive than
sampling the scissor lengths. Thus, this sampling scheme leads to
faster performance than the standard approach.

Constraints. For every sampled linkage generated during the opti-
mization, we check it against the following mechanical and geomet-
ric constraints and reject if it fails any of the checks. To preserve the
geometric features, we check if the sampled graph nodes is within
a distance threshold away from the user-edited graph node (Line 4
of Algorithm 1). The distance threshold is proportional to the “ge-
ometric saliency” of the graph nodes, computed using the method
of Chen et al. [CSPF12]. While the graph nodes are sampled on the
3D surface, the hinges and the endpoints that connects two graph
nodes may be off the surface (see Fig. 7(a), where the dotted line
indicates an object’s surface). We therefore check if those points are
within a threshold away from the surface (Line 9 of Algorithm 1).

In addition, we also ensure that the distance between each pair
of graph nodes is larger than a threshold (Line 4 of Algorithm 1), if
each sampled scissor length Li is bounded (Line 7 of Algorithm 1),
and if the dihedral angle between each pair of connected scissor
units is larger than a threshold. All these checks guarantee that the
optimized linkage can be easily fabricated and assembled.

5.3 Deforming the Bars

We now consider bars’ thickness and volumes of the revolute
joints, as they can cause collisions that were not predicted in the pre-
vious collision detection step, or even worse render the linkage me-
chanically impossible to fabricate. To this end, our key observation
is that even though almost all existing linkage construction methods,
including our previous step, assume straight bars, the straightness is
in fact unnecessary. We demonstrate that by bending them, we can
avoid more collisions and contract the linkages further,with about
10% improvement in terms of bounding box volume.

Briefly, after optimizing the linkage graph with simulated an-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Zheng et al. / Deployable 3D Linkages with Collision Avoidance

Figure 11: To construct a mechanically sound linkage, the positions
of the bars’ endpoints are offset from the joint centers (inset). These
offsets need to be considered to avoid collisions.

nealing, we use it to generate the initial geometry, in which scissor
units are made from straight bars with nonzero thickness, and all
the pieces are offset from each other so that they do not intersect
(Fig. 11). We then contract the linkage. To avoid collisions, we try to
deform the colliding bars, terminating when a bar is too deformed or
a collision cannot be avoided. Conceptually, we treat each bar as an
elastic body with fixed endpoints, and while the linkage contracts,
the collisions deform the bars plastically.

(a) (b)
Figure 12: When deforming a linkage’s bar (a), we represent it
using two chains of particles connecting from its endpoints to its
hinge (red and blue chains in (b)).

Optimization problem. We formulate our strategy as a continu-
ous optimization problem. We first discretize every bar into two
chains of particles, each connecting one of its endpoints to its hinge
(Fig. 12). The radius of each particle equals the bar thickness used
in fabrication. Thus, the optimized variables are the positions of
these particles in each scissor unit’s local frame of reference, except
the beginning and ending particles of each chain, which are fixed.
In addition, we place a particle at the position of each endpoint and
hinge point. The radii of those particles is as large as the radii of the
bounding spheres of the mechanical joints at those points. These
particles are all fixed, serving only for collision detection.

Elastic energy. Borrowing concepts from continuum mechan-
ics [Ies08, BWR∗08], we define two energy terms for each chain
of particles to resist deformation, namely stretching and bending.
Fig. 13 summarizes our indexing and notation. The stretching en-
ergy of a single chain of particles (denoted as C) simply penalizes

(a) (b)
Figure 13: Notation used for elastic energy formulation (a), and for
collision energy formulation (b). Both xxx1 and xxxNc are fixed particles.

the distance between two consecutive particles:

Es(C) =
NC−1

∑
i=1
‖ēeei‖2‖xxxi− xxxi+1‖2

2,

where ‖ēeei‖2 is the length of the undeformed particle segment i.
Because the starting and ending particles are fixed, minimizing this
energy tends to produce uniformly distributed particles along the
chain. Following the model proposed in [BWR∗08], the bending
energy involves the discretized curvature, defined as

Eb(C) =
NC

∑
i=1

‖κbbbi‖2
2

‖ēeei−1‖2 +‖ēeei‖2
,

where κbbbi is the discretized curvature binormal

κbbbi =
2eeei−1× eeei

‖ēeei−1‖2‖ēeei‖2 + eeei−1 · eeei

at particle i. The total elastic energy of a single chain C is Es(C)+
αEb(C), where α is a weight to balance both terms (typically α =
0.8). When there are no collisions, minimizing this energy results
in a straight chain of particles.

Collision energy. Next, we discretize the deployment angle θ ∈
[0,π] into N intervals, each corresponding to a discretized timestep
in contracting the linkage. At each step s, we consider each pair of
particles (i, j) and define the collision energy

Ec(i, j,s) = f
(
‖xxxi(s)− xxx j(s)‖2

ri + r j

)2

,

where ri and r j are values slightly larger (typically 1.1× larger)
than the radius of particle i and j. One of the two particles can
be the particle at an endpoint or hinges to account for possible
collisions between bars and joints. xxxi(s) is the position of particle i
at the contraction step s in the world frame of reference, and f is a
function that vanishes when the two particles are separated:

f (d) =
{ 1

d +d−2, d < 1
0, otherwise.

We note that this collision energy slightly differs from one typically
used in elastic rod simulations (e.g., [KJM08]), because we prefer
to define all energy terms as a sum of squared functions, so that
minimizing this energy can leverage full-fledged nonlinear least-
squares methods (e.g., [AMO15]).

To solve the optimization problem, we increase the contraction
step s iteratively, starting from 0. At each step s, we minimize:

E = ∑
C
(Es(C)+αEb(C))+

β

s

s

∑
k=0

∑
(i, j)

Ec(i, j,k),

with β being a scalar to balance elastic and collision energies (typ-
ically β = 0.2 in our examples). Minimizing this energy amounts
to avoiding collisions up to timestep s while keeping the bars as
straight as possible. We iteratively increase s until a step where the
elastic energy is so strong that the resulting particle shapes fail to
avoid collisions. At each step, we solve this nonlinear least-squares
problem using a quasi-Newton method with a warn-start initializa-
tion resulting from the previous solve.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Zheng et al. / Deployable 3D Linkages with Collision Avoidance

(a) (b)

(c) (d)

Figure 14: BUNNY. We fabricated and assembled the BUNNY’s
head (a) into a functional linkage (b-d).

Finally, we extrude the curves defined by particles into bars. Join-
ing these bars with standard revolute joints, we produce the final
geometry of bars that are ready for fabrication.

6 Results

We applied our algorithm to design eight examples, starting from
an input mesh and ending with an optimized geometry of a link-
age. We fabricated a simple cube example (Fig. 5 and Fig. 15) to
validate our linkage construction algorithm and two more complex
examples (Fig. 1 and Fig. 14) to validate the entire pipeline. The
major bottleneck of the design and fabrication process is in fact the
fabrication and assembly, as both examples consist of hundreds of
bars and revolute joints, and assembling them is time-consuming.
In the following, we briefly discuss our examples (§6.1), followed
by a comparison to validate our compactness optimization (§6.2).

6.1 Examples

Our examples have a wide range of geometric and topological
details (see statistics in Table 1). In our animal zoo examples, in-
cluding the BUNNY (Fig. 14), WHALE (Fig. 16(a)), BIRD (Fig. 1),
and OCTOPUS (Fig. 16(d)), small features like the bunny’s ears and
the bird’s wings are captured with valence 2 vertices in the linkage
graphs. The symmetry-preserving option in our interface enabled
the symmetric linkages for the bird and whale.

Our examples resemble shapes with different topologies. BOB,
the duck-shaped lifesaver (Fig. 16(c)), demonstrates that our ap-
proach easily generalizes to surfaces of nonzero genus. The OCTO-
PUS example shows that our method can also handle open chains of

(a) (b)

Figure 15: CUBE. A fabricated cubic linkage in expanded (a) and
contracted (b) states.

(d) OCTOPUS

(c) BOB

(b) BEANBAG

(a) WHALE

Figure 16: Contracting Shapes. Four additional deployable link-
ages that resemble different shapes (see video).

scissor units for depicting the OCTOPUS’s tentacles. The BEANBAG

example (Fig. 16(b)) is inspired by foldable furnitures [LHAZ15],
demonstrating a beanbag-shaped contractible chair.

6.2 Comparison

The improvements in the contractibility is summarized in Table 1
with the linkages’ complexity and the contraction ratio of bound-
ing volumes after each step of our method. The contraction ratio is
defined as the ratio of bounding volume of the linkage at its most
contracted state to the volume at its most expanded state. The “orig-
inal” ratio is computed after the user design step; the “repositioned”
ratio is computed after the geometry optimization step (§5.2); and
the “deformed” ratio is computed after the final shape deformation
step (§5.3). We also animate these comparisons in the video.

7 Conclusion

We presented a method for constructing deployable scissor link-
ages in 3D to resemble user-provided 3D shapes. By optimizing the
linkages’ joint placement and the pieces’ geometries, we were able
to improve its contractibility. We demonstrated the correctness of
our method by fabricating the output geometries, manually assem-
bling the final linkage, and verifying its compactness.

Limitations and future work. However, we noted that while the
fabricated results were able to contract and expand as predicted, it
was sometimes difficult to actually move the linkage along its de-
gree of freedom. Our optimization procedure only takes the geome-
try into account. For example, we did not conduct any kind of stress
analysis on the linkages, nor did we take into account the friction
at each joint. The ease of contractibility can be increased by con-
sidering these mechanical properties, perhaps by adding additional
scissor units for structural support, augmenting the optimization pro-
cess with structural analyses, or by determining optimal locations
for actuators to automatically contract and expand the linkage.

Uniform contraction is not the most optimal way of minimizing
the bounding volume of the linkage. For concave objects, it would
be more effective to design a linkage that changes its intrinsic shape
while contracting. The method of Zhang et al. [ZWC∗15] generates

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Zheng et al. / Deployable 3D Linkages with Collision Avoidance

geometric complexity contraction ratio timings (min)
nodes # edges # SUs # joints original repositioned deformed reposition deformation

BUNNY 27 34 68 120 0.776 0.293 0.227 32.5 40.2
BIRD 35 41 82 150 0.724 0.167 0.138 46.6 52.8

WHALE 32 43 86 160 0.774 0.354 0.302 40.5 64.2
BEANBAG 59 106 212 330 0.535 0.174 0.158 53.2 84.3

BOB 58 102 204 320 0.631 0.462 0.392 78.7 94.5
OCTOPUS 71 92 184 310 0.606 0.282 0.223 82.4 104.7

Table 1: Statistics. The user-edited linkage graphs (“original”) generate linkages which contract, and the amount it can contract is improved
by the stochastic optimization procedure (“repositioned”) and local deformation (“deformed”). Here, we report the complexity of the geometry
in terms of number of graph nodes, edges, scissor units, and number of joints. The compactness is measured as the ratio of the bounding box
volumes between the most contracted and expanded states.

linkages that change shape, but they only demonstrated its applica-
tions on 2D linkages with one redundant constraint (i.e., a single
loop of scissor units). For example, in the 3D linkages we generate,
there can be arbitrarily many redundancies. Constructing a 3D scis-
sor linkage that transforms from one shape to another shape remains
an open problem. Lastly, in our examples, we fabricate the scissor
units’ bars individually and assemble them together with screws,
bolts, and nuts. This is a laborious and time-consuming process,
much longer than the computation time. Initially, we attempted to
3D print the entire linkage in one piece. However, the clearance
needed at each joint causes the final linkage to be too loose. Thus,
it is of practical importance to design new method for fabricating
complex joints in a single piece.

Acknowledgments

This work is partially supported by the National Science Foun-
dation of U.S. (CAREER-1453101) and China (No. 61303136), as
well as generous gifts from Intel and Adobe. We also thank Chang
Xiao for his help of assembling the linkages.

References

[AMO15] AGARWAL S., MIERLE K., OTHERS: Ceres solver. http:
//ceres-solver.org, 2015. 4, 8

[BBJP12] BÄCHER M., BICKEL B., JAMES D. L., PFISTER H.: Fabri-
cating articulated characters from skinned meshes. ACM Trans. Graph.
(Proc. SIGGRAPH) 31, 4 (2012). 2

[BCT15] BÄCHER M., COROS S., THOMASZEWSKI B.: Linkedit: Inter-
active linkage editing using symbolic kinematics. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2015) 34, 4 (Aug. 2015). 1, 2, 5

[Ben03] BENNETT G.: A new mechanism. Engineering 76, 777 (1903),
2. 1

[BST∗08] BERNHARDT P. A., SIEFRING C. L., THOMASON J. F., RO-
DRIQUEZ S. P., NICHOLAS A. C., KOSS S. M., NURNBERGER M.,
HOBERMAN C., DAVIS M., HYSELL D. L., ET AL.: Design and appli-
cations of a versatile HF radar calibration target in low Earth orbit. Radio
Science 43, 1 (2008). 1

[BWR∗08] BERGOU M., WARDETZKY M., ROBINSON S., AUDOLY B.,
GRINSPUN E.: Discrete elastic rods. ACM Trans. Graph. 27, 3 (Aug.
2008), 63:1–63:12. 8

[CCA∗12] CALÌ J., CALIAN D. A., AMATI C., KLEINBERGER R.,
STEED A., KAUTZ J., WEYRICH T.: 3d-printing of non-assembly, artic-
ulated models. ACM Transactions on Graphics 31, 6 (2012), 130. 2

[CDXF14] CAI J., DENG X., XU Y., FENG J.: Constraint analysis and
redundancy of planar closed loop double chain linkages. Advances in
Mechanical Engineering 6 (2014), 635423. 3

[CLM∗13] CEYLAN D., LI W., MITRA N. J., AGRAWALA M., PAULY

M.: Designing and fabricating mechanical automata from mocap se-
quences. ACM Trans. Graph. 32, 6 (Nov. 2013), 186:1–186:11. 2

[CSPF12] CHEN X., SAPAROV A., PANG B., FUNKHOUSER T.:
Schelling points on 3D surface meshes. ACM Transactions on Graphics
(SIGGRAPH 2012) (Aug. 2012). 7

[CTN∗13] COROS S., THOMASZEWSKI B., NORIS G., SUEDA S., FOR-
BERG M., SUMNER R. W., MATUSIK W., BICKEL B.: Computational
design of mechanical characters. ACM Trans. Graph. 32, 4 (July 2013),
83:1–83:12. 1, 2

[Hob90] HOBERMAN C.: Reversibly expandable doubly-curved truss
structure, July 24 1990. US Patent 4,942,700. 2, 3

[Hob91] HOBERMAN C.: Radial expansion/retraction truss structures,
June 18 1991. US Patent 5,024,031. 1, 2, 3

[Ies08] IESAN D.: Classical and generalized models of elastic rods. CRC
Press, 2008. 8

[Kin95] KING H. C.: Planar linkages and algebraic sets. 2

[KJM08] KALDOR J. M., JAMES D. L., MARSCHNER S.: Simulating
knitted cloth at the yarn level. ACM Trans. Graph. 27, 3 (Aug. 2008). 8

[LHAZ15] LI H., HU R., ALHASHIM I., ZHANG H.: Foldabilizing fur-
niture. ACM Transactions on Graphics, (Proc. of SIGGRAPH 2015) 34,
4 (2015). 2, 9

[LPW∗06] LIU Y., POTTMANN H., WALLNER J., YANG Y.-L., WANG
W.: Geometric modeling with conical meshes and developable surfaces.
In ACM Transactions on Graphics (TOG) (2006), vol. 25, ACM, pp. 681–
689. 2

[McC06] MCCARTHY J. M.: Geometric design of linkages, vol. 11.
Springer Science & Business Media, 2006. 2

[Piñ65] PIÑERO E. P.: Three dimensional reticular structure, May 1965.
US Patent 3185164. 2

[RMDT13] ROOVERS K., MIRA L. A., DE TEMMERMAN N.: From
surface to scissor structure. In Proceedings of the First Conference Trans-
formables, Seville, Editorial Starbooks, Seville, Spain (2013). 2

[SZ15] SUN T., ZHENG C.: Computational design of twisty joints and
puzzles. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2015) 34, 4 (Aug. 2015). 2

[TCG∗14] THOMASZEWSKI B., COROS S., GAUGE D., MEGARO V.,
GRINSPUN E., GROSS M.: Computational design of linkage-based char-
acters. ACM Trans. Graph. 33, 4 (July 2014), 64:1–64:9. 1, 2, 5

[VLA87] VAN LAARHOVEN P. J., AARTS E. H.: Simulated annealing:
theory and applications. Springer Science & Business Media, 1987. 7

[YP97] YOU Z., PELLEGRINO S.: Foldable bar structures. International
Journal of Solids and Structures 34, 15 (1997), 1825–1847. 2, 3

[ZSMS14] ZHOU Y., SUEDA S., MATUSIK W., SHAMIR A.: Boxeliza-
tion: Folding 3d objects into boxes. ACM Trans. Graph. 33, 4 (July 2014),
71:1–71:8. 2

[ZWC∗15] ZHANG R., WANG S., CHEN X., DING C., JIANG L., ZHOU
J., LIU L.: Designing planar deployable objects via scissor structures.
IEEE Trans. Vis. Comp. Graph. (2015). 2, 9

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

http://ceres-solver.org
http://ceres-solver.org

