WILEY SERIES IN PROBABILITY
AND MATHEMATICAL STATISTICS

WILEY SERIES IN PROBABILITY AND MATHEMATICAL STATISTICS

ESTABLISHED BY WALTER A. SHEWHART AND SAMUEL S. WILKS **Editors**

Ralph A. Bradley J. Stuart Hunter

David G. Kendall Geoffrey S. Watson

Probability and Mathematical Statistics

ANDERSON · The Statistical Analysis of Time Series

ANDERSON An Introduction to Multivariate Statistical Analysis BARLOW, BARTHOLOMEW, BREMNER, and BRUNK · Statistical Inference Under Order Restrictions

BARNETT · Comparative Statistical Inference

BHATTACHARYYA and JOHNSON · Statistical Concepts and Methods

CASSEL, SARNDAL and WRETMAN · Foundations of Inference in Survey Sampling

DE FINETTI · Probability, Induction and Statistics

DE FINETTI · Theory of Probability, Volume I

DE FINETTI · Theory of Probability, Volume II

DOOB · Stochastic Processes

FELLER · An Introduction to Probability Theory and Its Applications, Volume I, Third Edition, Revised

FELLER · An Introduction to Probability Theory and Its Applications, Volume II, Second Edition

FISZ · Probability Theory and Mathematical Statistics, Third Edition

FRASER · Statistics—An Introduction

FULLER · Introduction to Statistical Time Series

HANNAN · Multiple Time Series

HANSEN, HURWITZ, and MADOW · Sample Survey Methods and Theory, Volumes I and II

HARDING and KENDALL · Stochastic Geometry

HOEL · Introduction to Mathematical Statistics, Fourth Edition

ISSACSON and MADSEN · Markov Chains

KAGAN, LINNIK, and RAO · Characterization Problems in Mathematical Statistics

KENDALL and HARDING · Stochastic Analysis

LARSON · Introduction to Probability Theory and Statistical Inference, Second Edition

LARSON · Introduction to the Theory of Statistics

LEHMANN · Testing Statistical Hypotheses

MATHERON · Random Sets & Integral Geometry

MATTHES, KERSTAN and MECKE · Infinitely Divisible Point Processes

PARZEN · Modern Probability Theory and Its Applications

PURI and SEN · Nonparametric Methods in Multivariate Analysis

RAGHAVARAO · Constructions and Combinatorial Problems in Design of Experiments

RAO · Linear Statistical Inference and Its Applications, Second Edi-

ROHATGI · An Introduction to Probability Theory and Mathematical Statistics

SCHEFFE · The Analysis of Variance

SEBER · Linear Regression Analysis

WILKS · Mathematical Statistics

ZACKS · The Theory of Statistical Inference

BAILEY · The Elements of Stochastic Processes with Applications to the Natural Sciences

BAILEY · Mathematics. Statistics and Systems for Health

BARTHOLOMEW · Stochastic Models for Social Processes, Second Edition

BECK and ARNOLD · Parameter Estimation in Engineering and Science

BENNETT and FRANKLIN - Statistical Analysis in Chemistry and the Chemical Industry

BHAT · Elements of Applied Stochastic Processes

BLOOMFIELD · Fourier Analysis of Time Series: An Introduction

BOX · R. A. Fisher, The Life of a Scientist

BOX and DRAPER · Evolutionary Operation: A Statistical Method for Process Improvement

BOX, HUNTER, and HUNTER · Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building

BROWN and HOLLANDER · Statistics: A Biomedical Introduction BROWNLEE · Statistical Theory and Methodology in Science and Engineering, Second Edition

BURY · Statistical Models in Applied Science

CHAMBERS · Computational Methods for Data Analysis

CHATTERJEE and PRICE · Regression Analysis by Example

CHERNOFF and MOSES · Elementary Decision Theory

CHOW · Analysis and Control of Dynamic Economic Systems

CLELLAND, dcCANI, BROWN, BURSK, and MURRAY · Basic Statistics with Business Applications, Second Edition

COCHRAN · Sampling Techniques, Third Edition

COCHRAN and COX · Experimental Designs, Second Edition

COX · Planning of Experiments

COX and MILLER · The Theory of Stochastic Processes, Second Edition

DANIEL · Application of Statistics to Industrial Experimentation

DANIEL · Biostatistics a Foundation for Analysis in the Health Sciences, Second Edition

DANIEL and WOOD · Fitting Equations to Data

DAVID · Order Statistics

DEMING · Sample Design in Business Research

DODGE and ROMIG · Sampling Inspection Tables. Second Edition

DRAPER and SMITH · Applied Regression Analysis

DUNN Basic Statistics: A Primer for the Biomedical Sciences, Second Edition

DUNN and CLARK · Applied Statistics: Analysis of Variance and Regression

ELANDT-JOHNSON · Probability Models and Statistical Methods in Genetics

FLEISS · Statistical Methods for Rates and Proportions

GIBBONS, OLKIN and SOBEL · Selecting and Ordering Populations: A New Statistical Methodology

GNANADESIKAN · Methods for Statistical Data Analysis of Multivariate Observations

GOLDBERGER · Econometric Theory

GROSS and CLARK · Survival Distributions: Reliability Applications in the Biomedical Sciences

GROSS and HARRIS · Fundamentals of Queueing Theory

GUTTMAN, WILKS and HUNTER · Introductory Engineering Statistics, Second Edition

continued on back

Clustering Algorithms

A WILEY PUBLICATION IN APPLIED STATISTICS

Clustering Algorithms

JOHN A. HARTIGAN Department of Statistics Yale University Copyright @ 1975, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Hartigan, John A 1937-Clustering algorithms.

(Wiley series in probability and mathematical statistics)

Includes bibliographical references.

1. Cluster analysis. 2. Electronic data processing

Cluster analysis. I. Title.

QA278.H36 519.5'3 74-14573 ISBN 0-471-35645-X

Printed in the United States of America

10 9 8 7 6

To Pamela

Preface

In the last ten years, there has been an explosive development of clustering techniques and an increasing range of applications of these techniques. Yet there are at present only three books in English on clustering: the pioneering Numerical Taxonomy by Sokal and Sneath, oriented toward biology; Cluster Analysis by Tryon and Bailey, oriented toward psychology; and Mathematical Taxonomy by Jardine and Sibson. The principal contribution of statisticians has been in the area of discriminant analysis, the problem of assigning new observations to known groups. The more difficult, more important, and more interesting problem is discovery of the groups in the first place. Although modern clustering techniques began development in biological taxonomy, they are generally applicable to all types of data. They should be used routinely in early descriptions of data, playing the same role for multivaiate data that histograms play for univariate data.

The origin of this book was the general methodology lecture on clustering, given at the invitation of Dr. S. Greenhouse to the December 1970 meeting of the American Statistical Association. The notes for the lecture were used in a seminar series at Yale in early 1971 and later for a number of seminars given on behalf of the Institute of Advanced Technology, Control Data Corporation, at various places in the United States and overseas. These intensive two-day seminars required the preparation of more detailed notes describing algorithms, discussing their computational properties, and listing small data sets for hand application of the algorithms. After considerable evolution, the notes became the basis for the first draft of the book, which was used in a course at Yale University in 1973.

One difficulty of the two-day seminars was describing the various algorithms explicitly enough for students to apply them to actual data. A comprehensible but unambiguous description is needed before the algorithm can sensibly be discussed or applied. The technique eventually developed was the step-by-step description used in this book, an amalgamation of verbal description and Fortran notation. These descriptions form the skeleton of the book, fleshed out by applications, evaluations, and alternative techniques.

The book could be used as a textbook in a data analysis course that included some work on clustering or as a resource book for persons actually planning to do some clustering. The chapters are pretty well independent of each other, and therefore the one or two chapters containing algorithms of special interest may be read alone. On the other hand, the algorithms become increasingly complex as the book proceeds, and it is easier to work up to the later chapters via the early chapters.

viii Preface

Fortran programs implementing the algorithms described in the chapter are listed at the end of each chapter. An attempt has been made to keep these programs machine independent, and each program has been run on several different data sets, but my deficiencies as a programmer and comment card writer could make the programs tricky to use. The ideal user is an experienced Fortran programmer who is willing to adapt the programs to his own needs.

I am indebted to G. E. Dallal, W. Maurer, S. Schwager, and especially D. A. Meeter, who discovered many errors in facts and style in the first draft of the book. I am also indebted to Mrs. Barbara Amato, who cheerfully typed numerous revisions.

April 1974 JOHN A. HARTIGAN

Contents

CHAPTER

I.	INTROD	UCTION			•								1
	I.1.	Clustering											1
	I.1.	Examples of	f Clus	terin	g								1
	I.3.	Functions of											6
	I.4.												7
	I.5.	Types of D											9
	I.6.												11
	I.7.	Algorithms											11
	I.8.	_	on and	1 Ev	aluatio	n∙of	Clust	ers					12
	I.9.	Using This											13
		References			•			•		•	•		14
1.	PROFILE	is .	•		•					•		•	28
	1.1.	Introductio	n										28
	1.2.	Profiles Alg	orithr	n									29
	1.3.	Profiles of											29
	1.4.	Rank Profi	les Als	goriti	hm								32
	1.5.		otimal	Prof	files Al	gorit	hm						34
	1.6.	Linearly O									•		36
	1.7.	Things To								,			38
		References								٠.			40
		Programs			•				•	•	•		40
2.	DISTAN	CES .			•		•				•	•	58
	2. 1.	Introductio	n										58
	2.2.	Euclidean I	Distan	ces									58
	2.3.	Relations F	etwee	n Va	riables								62
	2.4.	Disguised I											64
	2.5.	Other Dista			•								64
	2.6.	Plotting Di	stance	s To									65

	2.1.	1 mings 10		•	•	•	•	•	•	•	•	•	00
		References	· .			•							67
		Programs	•							•	•		69
3.	QUICK	PARTITION A	ALGOR1	THMS									74
	3.1.	Introduction	o n										74
	3.2.	Leader Als		n.		·	•				•	•	75
	3.3.	Leader Alg									•	•	76
	3.4.	Properties	of Lea	yer V	lanrii	thm	6,,4,,,	. WLL.	•		•	•	77
	3.5.	Sorting Al			_		•					•	78
	3.6.	Sorting Al									•	•	76 79
	3.0. 3.7.	Properties									•	•	80
	3.8.										•	•	80
	3.0.	Things To			•				•	•	•	•	
		Programs	•	•	•	•	•	•	•		•	•	83
4.	THE K-	MEANS ALGO	RITHM	l			•	•		•			84
	4.1.	Introduction	on										84
	4.2.	K-means A	lgorith	ım									85
	4.3.												87
	4.4.	Analysis of											89
	4.5.	Weights											91
		Other Dist											92
		The Shape						-		•	_		93
	4.8.	•								•			97
	4.9.	Things To											100
		References							Ī	·		·	105
		Programs		:	•		•	:	÷	•	•	•	107
		, 10B. miii	•	•	•	•	•	•	•	•	•	•	
5.	MIXTUR	ES .	•	•		•	•	•	•		•	•	113
	5.1.	Introduction	n										113
	5.2.	Normal M	ixture .	Algor	ithm		•						116
	5.3.	Normal M	lixture	Algo	rithn	ı Ap	plied	To	New	Haven	Scho	ool	
		Scores				•				•			118
	5.4.	Things To	Do										120
		Programs	•		•	•	•	•	•	•	•	•	125
6.	PARTIT	ION BY EXAC	т орт	IMIZA'	TION					•			130
	6.1.	Introductio	n							•			130
	6.2.	Fisher Algo	orithm										130
	6.3.	Fisher Algo			ied To	o Oly	mpic	Time	es .				132
	6.4.	Significance											135
	6.5.	Time and S			. '					•			137
	6.6.	Things To											138
		References							•	•			140
		Programs		_	_								141

									•	ontents		х
7.	THE DIT	TO ALGORITHM		•				•				143
	7. 1.	Introduction										143
	7.2.	Ditto Algorith		•				•				143
	7.3 .	Application of		Algo	rithm	To V	Vines	•				145
	7.4.	Things To Do	•	•				•				147
		Programs	•	•	•	•		•	•	•	•	148
8.	DRAWING	G TREES .			•							155
	8.1.	Definition of a	Tree							•		155
	8.2.	Reordering To	Cont	tiguou	s Clus	sters		•		•		150
	8.3.	Application of										156
	8.4.	Naming Cluste								•		156
	8.5.	I Representation										157
	8.6.	I Representation						•		•		157
	8.7.	Trees and Dire					•	•		•		158
	8.8.	Linear Represe					•	•		•		158
	8.9.	Trees and Dist					•	•		•		160
		Block Represe						•	•	•	•	162
	8.11.	Things To Do	•		•		•	•	•			163
		References	•	•	•	•	•		•	•	•	164
		Programs	•	•	•	•	•	•	•	•	•	165
9.	QUICK T	REE CALCULATION	ON		•	•			•	•		169
	9.1.	Introduction						•	•			169
	9.2.	Leader Algorit								•		169
	9.3.	Tree-leader Al	gorith	m Ap	plied '	To M	amm	als' To	eeth	•		171
	9.4.	Things To Do				•				•		172
		Programs	•	•	•		•	•	•	•	•	176
0.	TRIADS	• •						•		•		177
	10.1.	Introduction										177
	10.2.	Triads Algorith	hm									177
	10.3.	Triads Algorith		pplied	to Ha	ardwa	re					179
	10.4.	Properties of T										181
	10.5.	Triads-leader A										181
	10.6.	Application of	f Tria	ds-lea	der A	lgorit	hm]	Го Ех	pect	ation o	f	
		Life .				•	•	•	•	•		182
	10.7.	Remarks On T		-leade	r Algo	rithm	١.	•	•	•	•	184
	10.8.	Things To Do	•	•	•		•	•	•	•	•	185
		References				•	•	•		•	٠	187
		Programs	•	•	•	•	•	•	•	•	•	187
1.	SINGLE-L	INKAGE TREES		•		•		•		•		191
	11.1.	Introduction	•				•			•		191
	11.2.	Single-linkage	_				•	•	•			191
	11.3.	Application of							line l	Distance	es	193
	11.4.	Computational			of Sir	ngle L	.inkag	ge		•		195
	11.5	Spiral Search	Algari	thm								196

	11.6.	Application of Spi	ral Searc	h Alg	orithn	n To I	3irths	and I	Deaths	196
	11.7.	Single-linkage Clus	sters Fro	m Pa	rtition	S				. 199
	11.8.	Joining and Splitti	ng.							. 199
	11.9.	Ultrametrics .								. 200
	11.10.	Strung-out Cluster	s.							. 200
	11.11.	Minimum Spannin	g Trees							. 201
		Reality of Clusters				•				. 202
		Density-contour T								. 205
		Densities and Con		ess, Di	istance	es Giv	en			. 208
		Things To Do								. 209
		References .								. 212
		Programs .								. 214
12.	DISTANCI	AND AMALGAMATI	ON ALGO	ORITHI	MS					. 216
	12.1.	Introduction .								. 216
	12.2.	Joining Algorithm	•	•	•	•				. 216
	12.3.	Joining Algorithm							•	. 218
	12.4.	Remarks On Joini			•				:	. 222
	12.5.							•	•	. 222
	12.5.	Adding Algorithm Adding Algorithm	Annlied	I To (· Juestic	Snnair	•		•	. 223
	12.7.	Things To Do	Applico				·	•	•	. 227
	12.7.	References .	•	•	•	•	•	•	•	. 230
			•	•	•	•	•	•	•	. 230
		Programs .	•	•	•	•	•	•	•	. 230
13.	MINIMUM	MUTATION METHO	os				•			. 233
	13.1.	Introduction .								. 233
	13.2.									. 233
	13.3.	Application of M	inimum	Muta	tion .	Algori	ithm	To C	егсі І	n
		Insects								. 235
	13.4.	Some Probability	Theory 1	For th	e Nur	nber o	of Mu	tatior	18	. 236
	13.5.	Reduced Mutation								. 237
	13.6.	Application of Re	duced M	Lutatio	n Alg	orithi	m To	Amin	o Aci	d
		Sequences .			_	•	•			. 239
	13.7.	Things To Do .								. 241
		References .	•							245
		Programs .								. 246
14.	DIRECT S	SPLITTING				•				. 251
		Introduction .								. 251
	14.2.	Binary Splitting A			•	•	•	•	•	. 252
	14.2.	Application of Bin			Igasie	· hm Ta	· Voti:	· ag Da	ta W iti	
	14.3.		ary spilt	ung A	rigorit	11111 1 0	, 4011	ארו איי	ia VV II.	
	1.4.4	Missing Values.	۸ اممانا		•	•	•	•	•	. 255
	14.4.	One-way Splitting			i nadžast	To P	• • • • • • • • • • • • • • • • • • • •	· liaa-	D	. 257
	14.5.		Aigoriti	um A)	hbiiea	TOK	epuo	iican .	rercer	
	146	tages	. A 1	• !	•	•	•	•	•	. 258
	14.6.	Two-way Splitting			, 1; *	, Tr. P		•	, 7-4: C	. 260
	14.7.	Two-way Splitting	Algorit	nm Aj	ppiied	10 K	ерцы	ican V	ote fo	
		President .	•							. 262

									Cot	tents		xiii
	14.8.	Things To Do										264
	14.0.	References	•	•	•	•	•	•	•	•	•	268
		Programs	•	•	•	•	•	•	•	•	•	269
		Tograms	•	•	•	•	•	• •	•	•	•	
15.	DIRECT .	OINING .	•	•	•	•	•	•	•	•	•	278
	15.1.	Introduction	•	•					•	•		278
	15.2.	Two-way Joini								•		280
	15.3.	Application of	Two	-way	Joinin	g Al	gorith	m To	Candi	da		282
	14.4.	Generalization	s of 7	ľwo-v	vay Jo	ining	Algo	rithm				284
	15.5.	Significance Te									ım	285
	15.6.	Direct Joining	Algo	rithm	for V	/ariat	oles o	n Diff	erent S	cales		286
	15.7.	Things To Do										288
		Programs				•						293
16.	SIMULTA	NEOUS CLUSTERI	NG A	ND SO	CALING	ì.						299
	16.l.	Introduction						_	_	_		299
	16.2.		d Va	riahle	• •	•	•	•	•	•	•	300
	16.3.	Scaling Ordere				olied :	To II	N. O	uestion	- 18	•	302
	16.4.	Joiner-scaler		-1401	,						•	303
	16.5.	Application of	Toin	· er-sca	ier Al	Igorit	hm T	o ILN	Vote	· ·s	•	305
	16.6.	Things To Do		V. 500		Боги	11101 1	0	,		•	308
	10.0.	References	•	•	•	•	•	•	•	•	•	312
			•	•	•	•	•	•	•	•	•	
17.	FACTOR	ANALYSIS .	•	•	•	•	•	•	•	•	•	313
	17.1.	Introduction		•				•				313
	17.2.	Sparse Root A				•	•			•		314
	17.3.		lgori	thm .	Applie	d To	Face	Meas	sureme	ents		316
	17 4.	Remarks on th								•	•	316
	17.5.								•	•	•	318
	17.6.	Joining Algori						•	•			319
	17.7.	Application of	f Joir	ning A	Algori	thm '	To Ph	ysical	Meas	ureme	nts	
		Data .	•	•						•	•	320
	17.8.	Things To Do					•		•			323
		References				•	•					325
		Programs			•							326
18.	PREDICT	ION			_	_					_	330
		Introduction	•	•	•	•	•	•	•	•	•	330
	18.2.	Variance Com	none	· nte A	Igoriti	h.m	•	•	•	•	•	332
	18.3.	Variance Con					A poli	ad Ta	Drad	iction	of.	JJ2
	10.5.	Leukemia Mo					ռիհո	cu it	, I ICU	iction	OI	333
	18.4.	Alternatives T				none	nte A	Igoriti	·	•	•	337
	18.5.						nts A	1501111	ш	•	•	337
	18.6.						Tenbe	omia N	Aortali	itu	•	338
	18.7.						LCGK	,11111 <i>a</i> 1	VI OI tai	Ly	•	340
	18.8.				-18011		•	•	•	•	•	341
	10.0.	Programs	•	•	•	•	•	•	•	•	•	343
		TORIAINS	•	•	•	•	•	•	•	•	•	747
	INDEX											347

Introduction

I.1 CLUSTERING

Table I.1 consists of a number of observations on minor planets. There are a very large number of such planets in orbits between Mars and Jupiter. The first minor planet is Ceres, discovered in 1801 by Piazzi and Gauss. In a photograph against the fixed stars, a minor planet sighting will show as a curved streak from which its orbital elements may be computed. Many astronomers see the minor planets as noise obscuring the observation of other interesting movements.

There are about 2000 named minor planets, and many thousands of sightings of these and perhaps other planets. An important problem in keeping track of the minor planets is deciding which sightings are of the same planet. In particular, if a new planet is claimed, it must be checked that the sighting does not agree with any planet already named.

Clustering is the grouping of similar objects. The naming of minor planets and the classification of sightings are typical clustering problems. The objects are the sightings. Two objects are similar if, considering measurement error, the sightings could plausibly be of the same planet. A group is a set of sightings of the same planet.

It is clear that such classifications occur constantly in thought and speech. Objects that differ in insignificant details are given the same name, can be treated the same, and can be expected to act the same. For example, a wife notices that the man coming in the door differs only in insignificant details from her husband that left in the morning, and so she expects him to answer to the same name.

The word clustering is almost synonymous with classification. In this book it is a general term for formal, planned, purposeful, or scientific classification. Other words that have been used for this purpose are numerical taxonomy, taximetrics, taxonorics, morphometrics, botryology, nosology, nosography, and systematics. General references are Blackwelder (1966) for animal taxonomy, Sokal and Sneath (1963) for the first and most important book in numerical taxonomy, Good (1965) for a classification of classification problems, Jardine and Sibson (1971) for a mathematical development, and Cormack (1971) for a recent survey of the literature.

I.2 EXAMPLES OF CLUSTERING

Naming is classifying. It is not necessary (or possible) that a naming scheme be best, but for effective communication it is necessary that different people give the same name to the same objects. The most familiar naming scheme is the taxonomy of animals and plants.

I.2.1 Animals and Plants

Formal classifications of animals and plants date back to Aristotle, but the modern system is essentially that of Linnaeus (1753). Each species belongs to a series of clusters of increasing size with a decreasing number of common characteristics. For example, man belongs to the primates, the mammals, the amniotes, the vertebrates, the animals.

Table I.1 Minor Planets	Fable	e T.1	Minor	Planets	e a
-------------------------	--------------	-------	-------	---------	-----

	A MDIC 1:1	Minut I minut	
name ⁶	Node (Degrees)	inclination degrees)	AXIS (A.U.)
1935RF	130.916	4.659	2.2562
1941FD	132.2	4.7	2.13
1955QT	130.07	4.79	2.1893
1940YL	338.333	16.773	2.7465
1953NH	339.625	16.067	2.7335
1930S Y	80.804	4.622	2.1890
1949HM	80.804	4.622	2.1906
1929EC	115.072	2.666	3.1676
1948RO	89.9	2.1	3.35
1951AM	115.072	2.666	3.1676
1938DL	135.6	1.0	2.6
1951AX	153.1	6.5	2.45
1924TZ	59.9	5.7	2.79
1931DQ	69.6	4.7	2.81
1936AB	78.1	6.6	2.90
1952DA	55.144	4.542	3.0343
1948RB	194.6	1.8	3.0200
1948RH	164.1	10.0	1.93
1 94 8 T G	34.2	12.5	2.82

^o The grouped sightings are some of those tentatively identified as being from the same planet in *Elements of Minor Planets*, University of Cincinnati Observatory (1961).

This tree, which was originally developed to name objects consistently, was given physical significance in the evolutionary theories of Darwin, which state that man, for example, has ancestors at the various levels of the tree. Man has an ancestor in common with a monkey, a rabbit, a frog, a fish, and a mosquito. If your naming scheme works exceptionally well, look for the reason why!

The tree is used in storing and disseminating knowledge. For example, vertebrates have a backbone, bilateral symmetry, four limbs, a head with two eyes and a mouth, a heart with blood circulation, a liver, and other common properties. Once you've seen one vertebrate, you've seen them all. It is not necessary to record these properties separately for each species. See Borradaile and Potts (1958) for accumulation of knowledge about an ant, moving down the tree through Metazoa, Arthropoda, Insecta, Pterygota, Endopterygota, Hymenoptera, and Formicoidea.

^b The year of sighting and the initials of the astronomer.

The angle, in the plane of the earth's orbit, at which the minor planet crosses the earth's orbit.

⁴ The angle between the plane of the earth's orbit and the plane of the planet's orbit.

[•] The maximum distance of the minor planet from the sun, divided by the same quantity for the earth.

The techniques of taxonomy deserve imitation in other areas. The tree structure is now used as a standard clustering structure. The functions of naming objects and of storing information cheaply are also generalized to other areas. It is in the construction of the tree that it becomes difficult to generalize the methods of animal and plant taxonomy. New classifications of groups of species are frequently suggested and much disputed. The *principles* of classification, which might sometimes settle the disputes, are themselves very underdeveloped.

Modern clustering owes its development to high-speed computers and to a small group of numerical taxonomists. The stronghold of numerical taxonomy is the journal Systematic Zoology. Sokal and Sneath's book (1963) has had a very important seminal influence. Since computers will do exactly what they are told, it is necessary to have precise definitions of the meaning of a cluster, of the data type, and of the meaning of similarity before computers can be useful. The intervention of the computer has thus caused extensive development of clustering principles. On the other hand, traditional taxonomists suspect that their rich and instinctive knowledge of species in their field cannot be reduced in any substantial part to machine-readable form and are wisely wary of accepting classifications from the computer. For such a "traditionalist" view, see Darlington (1971). For some recent examples of numerical taxonomy, see Dupont and Hendrick (1971), Stearn (1971), and Small, Bassett, and Crompton (1971).

I.2.2 Medicine

The principal classification problem in medicine is the classification of disease. Webster's dictionary defines a disease as an impairment of the normal state of the living animal that interrupts or modifies the performance of the vital functions, being a response to environmental factors (such as malnutrition, industrial hazards, or climate), to specific infective agents (such as worms, bacteria, or viruses), or to inherent defects of the organism. Webster's has already classified diseases into three types. The World Health Organization produces a Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death (1965). This provides a standard nomenclature necessary to compile statistics, especially death statistics, comparable across different countries and times. General theories of classification of disease or general principles such as the evolutionary principle of taxonomy in biology are not known to the author. See Temkin (1970) for some history of classifications. As Feinstein (1972) remarks, nosology differs from biological taxonomy in being oriented to treatment; it is important to separate diseases that require different treatment.

Numerical techniques have had only a slight impact on the classification of disease, perhaps because medical data and especially medical histories are not easy to assimilate into the standard data structures that were first developed for biological taxonomy. In particular, since a disease is an abnormality, it is always important to scale observations against normal observations for the patient or for a population, as in Goldwyn et al. (1971). The data structure used in the following studies is a matrix of measurements on a number of patients for various characteristics relevant to the disease. A measure of similarity is usually computed between each pair of patients, and groups of similar patients are then constructed. Knusman and Toeller (1972) discover three subgroups of diabetes mellitus, using factor analysis. Winkel and Tygstrup (1971) identify two distinct subgroups of 400 cirrhosis patients, but leave 70% of the patients unclassified. Baron and Fraser (1968), in an experimental test of

4 Introduction

clustering methods on 50 cirrhosis patients measured on 330 characteristics, show that the single-linkage algorithm conforms less well to previous diagnoses than the average-linkage algorithm. Hayhoe et al. (1964) identify four groups in 140 cases of leukemia and propose diagnostic criteria to distinguish the four groups. Manning and Watson (1966) divide 99 heart patients into three groups agreeing substantially with physicians' diagnoses of univalvular lesions, multivalvular lesions, and arteriosclerotic, hypertensive, or pulmonary disease.

Bouckaert (1971) uses single linkage to select clusters of patients from 85 persons presenting a goiter and also to select three syndromes (clusters of symptoms) that correspond to the common description of simple goiter, hyperthyroidism, and cancer. The usual practice in classification still follows the traditional biological taxonomists' technique of selecting one or two important variables by expert judgement and classifying according to these variables, as in Schrek et al (1972), where it is proposed to classify lymphocytic leukemia by the cross-sectional area of blood lymphocytes and by the percentage of smooth nuclei.

A particular type of classification within a disease is the identification of stages of severity—for example, for renal disease (1971). Various symptoms are grouped by expert judgement to make up ordered classes of severity in three categories. Goldwyn et al. (1971) use clustering techniques to stage critically ill patients.

For diseases that are caused by viruses and bacteria, the techniques of numerical taxonomy carry over, and there are many papers using such techniques. For example, Goodfellow (1971) measures 241 characters on 281 bacteria, some biochemical, some physiological, and some nutritional. He identifies seven groups substantially conforming to groups already known. However, the classifications of viruses in Wilner (1964) and Wildy (1971) and the classification of bacteria in Prevot (1966) are still based on picking important variables by expert judgement.

Stark et al. (1962) use clustering techniques to identify abnormal electrocardiograms. There are other uses of classification in medicine besides the direct classification of disease. Blood group serology is classification of blood, which began with the discovery of the A and B antigens by Landsteiner in 1900 (see, for example, Boorman and Dodd (1970)). Numerical techniques, as in Chakraverty (1971), frequently use a square data matrix in which the rows are antigens and the columns are the corresponding antibodies.

Finally, in epidemiology, diseases may be clustered by their pattern of distribution in space and time. Burbank (1972) identifies ten clusters of tumors by the pattern of death rates over time and over the United States and postulates a common causal agent for tumors within the same cluster.

I.2.3 Psychiatry

Diseases of the mind are more elusive than diseases of the body, and the classification of such diseases is in an uncertain state. There is agreement on the existence of paranoia, schizophrenia, and depression (such categories can be seen in Kant's classification published in 1790), but clear diagnostic criteria are not available, as Katz et al. (eds., 1970) remark. Shakow (1970) reports a study in which, of 134 patients diagnosed manic depressive at Boston Psychopathic Hospital, 28% were so diagnosed at Boston State Hospital and 10% were so diagnosed at Worcester State Hospital. A characteristic difficulty of classification of mental illness is the subjective, subtle, and variable character of the symptoms.

Numerical techniques have gained more acceptance in this area than in medical diagnosis. One of the earliest known contributions to clustering, by Zubin (1938a, 1938b), discusses a method of discovering subgroups of schizophrenic patients. The algorithm, which is of course oriented to hand calculation, is not clearly described. His schizophrenic group were on the average closer to his normal group than to themselves, which illustrates the variability problem.

The standard numerical technique collects mental state and historical data on each patient. The original data might be quite voluminous, but they are usually reduced by careful selection, by subjective averaging over groups of items, or by factor analysis. Some papers such as those of Everitt et al. (1971) and of Paykel (1970) seek clusters of patients. Others, such as those of Hautaluoma (1971) and of Lorr et al. (1963), seek clusters of symptoms (syndromes). Perhaps a great victory awaits clustering in psychiatry. Certainly, the psychiatrists have become hardened to numerical techniques and computerniks by their collaboration in factor analysis with psychologists. Certainly, the present classes and diagnostic rules satisfy no one. But perhaps the real problem is the vague data, which no amount of clever arithmetic will repair.

I.2.4 Archaeology and Anthropology

The field worker finds large numbers of objects such as stone tools, funeral objects, pieces of pottery, ceremonial statues, or skulls that he would like to divide into groups of similar objects, each group produced by the same civilization. Clustering techniques are surveyed in Weiner and Huizinger (eds., 1972) and in Hodson et al. (eds., 1971). Some recent papers are by Boyce (1969), who studies a number of average-linkage techniques on 20 skulls, and by Hodson (1969, 1970), who considers a wide range of techniques on three interesting data sets—broaches, stone tools, and copper tools.

I.2.5 Phytosociology

Phytosociology concerns the spatial distribution of plant and animal species. It bears the same relation to taxonomy that epidemiology bears to the classification of disease. Typical data consist of counts of the number of species in various quadrats. Clustering detects similar quadrats as being of the same type of habitat. An article by Whittaker (1962) contains a survey of traditional approaches. Lieth and Moore (1970) reorder the data matrix so that similar species are close in the new ordering and similar quadrats are close. Clark and Evans (1954) suggest a significance test for the random distribution of individuals (such as trees) within a region.

I.2.6 Miscellaneous

Clustering has been applied in diverse fields. In economics, Fisher (1969) considers input-output matrices in which the rows and columns have the same labels, so that the clustering of rows and columns must occur simultaneously. In market research, Goronzy (1970) clusters firms by various financial and operating characteristics, while King (1966) does so by stock price behavior. Frank and Green (1968) review a number of interesting applications. In linguistics, Dyen et al. (1967) use the proportion of matched words over a list of 196 meanings as a measure of the distance between two languages, with the aim of reconstructing an evolutionary tree of languages. Kaiser (1966) and Weaver and Hess (1963) consider numerical methods for establishing

6 Introduction

legislative districts. Abell (1960) finds clusters of galaxies by searching photographic plates of all high galactic latitudes. He lists 2712 such clusters and demonstrates that the clusters are not randomly distributed but exhibit further clustering themselves. Psychological applications are less common because of the dominance of factor analysis and multidimensional scaling, which are frequently interpreted as classifications. Miller (1969) has 50 Harvard students divide 48 nouns into categories according to similarity of meaning; the nouns are clustered into 5 groups, measuring similarity between two nouns by the proportion of students who place them in the same category. Wiley (1967) uses a factor-analysis-like technique on a similar data set.

I.3 FUNCTIONS OF CLUSTERING

The principal functions of clustering are to name, to display, to summarize, to predict, and to require explanation. Thus all objects in the same cluster will be given the same name. Objects are displayed, in order that subtle differences may become more apparent, by physically adjoining all objects in the same cluster. Data are summarized by referring to properties of clusters rather than to properties of individual objects. If some objects in a cluster have a certain property, other objects in the cluster will be

	Table I.2	Mammals' Mil	k	
	WATER	PROTE IN	FAT	LACTOSE
HORSE	90.1	2.6	1.0	6.9
DONKEY	90.3	1.7	1.4	6.2
MULE	90.0	2.0	1.8	5.5
ÇAMBL	87.7	3.5	3.4	4.8
LLAMA	86.5.	3.9	3.2	5.6
ZEBRA	86.2	3.0	4.0	5.3
SHEEP	82.0	5.6	6.4	4.7
BUFFALO	82.1	5.9	7.9	4.7
GUINEA PIG	81.9	7.4	7.2	2.7
FOX	81.6	6.6	5.9	4.9
PIG	82.8	7.1	5.1	3.7
RABBIT	71.3	12.3	13.1	1.9
RAT	72.5	9.2	12.6	3.3
DEER	65.9	10.4	19.7	2.6
REINDEER	64.8	10.7	20.3	2.5
WHALE	64.8	11.1	21.2	1.6

Selected animals have been clustered by similarity of percentage constituents in milk. [From *Handbook of Biological Data*, Spector, ed. (1956), Saunders.]

	NUMBER	Water	PROTEIN	FAT	iactose
HORSE-MUIE	3	90.1 ± 0.2	2.1 ± 0.5	1.4 ± 0.4	6.2 ± 0.7
Camel-Zebra	3	87.0 ± 0.8	3.5 ± 0.5	4.0 ± 0.8	5.2 ± 0.4
SHEEP-PIG	5,	82.2 ± 0.6	6.5 ± 0.9	6.5 ± 1.4	3.8 ± 1.1
RABBIT-RAT	2	71.9 ± 0.6	10.8 ± 1.6	12.9 ± 0.3	2.6 ± 0.7
DEER-WHALE	3	65.3 ± 0.6	10.8 ± 0.3	20.5 ± 0.8	2.1 ± 0.5

Table I.3 Mammal's Milk Summarized

expected to have the same property. Finally, clear-cut and compelling clusters such as clusters of stars or animals require an explanation of their existence and so promote the development of theories such as the creation of matter in space or the evolutionary theory of Darwin.

Some data on mammal's milk will be used to illustrate these functions. These data are displayed in Table I.2, where animals with similar proportions of the constituents of milk are sorted into contiguous groups. Names for the groups are given by looking for characteristic properties of the groups. For example, the deer-reindeer-whale group is a high-fat group, the horse-donkey-mule group is a high-lactose group, and the rabbit-rat group is a high-protein group. A summary of the data for five groups on four variables appears in Table I.3. Such a summary makes the data easier to understand and to manipulate. For example, it now becomes apparent that water and lactose tend to increase together, that protein and fat tend to increase together, and that these two groups of properties are inversely related, with high water and lactose corresponding to low fat and protein. As for manipulation, the mean water content in the original data requires a sum of 16 numbers yielding the mean 80.03. The mean water content in the summarized data requires a sum of five numbers yielding the mean 80.13.

Prediction might occur in two ways. First, if a new object is classified into one of these groups by some other means, the same values would be predicted for the variables. Thus a mouse would be expected to be in the rabbit-rat group and to have a protein content of about 10.8%. Secondly, a new measurement of a similar type should exhibit a similar grouping. Thus, if a horse had 1.3% of a special protein, it would be predicted that a donkey also had 1.3% approximately of that protein.

The clusters require explanation, especially those clusters which differ quite a bit from the accepted mammalian taxonomy. For example, the zebra is classified with the camel and llama rather than with the horse by using this data. It may be that the classical taxonomy is incorrect, but of course it is supported by much more compelling data. It may be that the milk constituents are more dependent on the eating habits and local environment than on evolutionary history. Another odd grouping is the deer-reindeer-whale group. The high percentage of fat perhaps is necessary for resistance to cold.

I.4 STATISTICS AND DATA ANALYSIS

Like factor analysis, clustering techniques were first developed in an applied field (biological taxonomy) and are rarely accompanied by the expected statistical clothing

8 Introduction

of significance tests, probability models, loss functions, or optimal procedures. Although clustering techniques have been used (with arguable effect) in many different fields, they are not yet an accepted inhabitant of the statistical world. As Hills remarks after Cormack (1971), "The topic... calls to mind, irresistibly, the once fashionable custom of telling fortunes from tea leaves. There is the same rather arbitrary choice of raw material, the same passionately argued differences in technique from one teller to another, and, above all, the same injunction to judge the success of the teller solely by whether he proves to be right." Could statistics itself be described in this way? Do fortune tellers passionately argue technique? The principal difference between traditional biological taxonomy and numerical taxonomy is that techniques in numerical taxonomy are sufficiently precisely stated to allow passionate argument. As Gower says after Cormack (1971),

"No doubt much 'numerical taxonomic' work is logically unsound, but it has acquainted statisticians with some new problems whose separate identities are only now beginning to emerge. If statisticians do not like the formulations and solutions proposed, they should do better, rather than denigrate what others have done. Taxonomists must find it infuriating that statisticians, having done so little to help them, laugh at their efforts. I hope taxonomists who have real and, I think, interesting problems find it equally funny that so much statistical work, although logically sound, and often mathematically complicated (and surely done for fun), has little or no relevance to practical problems."

Well then, clustering is vulnerable on two fronts; the first, that the classifications delivered are not sufficiently compelling to convince the experts, who believe that detailed knowledge is more important than fancy manipulation; the second, that the techniques themselves are not based on sound probability models and the results are poorly evaluated and unstable when evaluated.

It may be that statistical methods are not appropriate for developing clusters, because some classification is often a prerequisite for statistical analyses. For example, crime statistics are based on the classification of crimes by police officers and on the geographical division of a country into various areas. There is a standard metropolitan area for each city to be used routinely in the collection of statistics. The important thing about these classifications is that there be clear rules for assigning individuals to them, rather than that they be optimal. Demographers worry about the classification process, since discovery of a trend is frequently only discovery of a change in classification practice. The New Haven police were accused in 1973 of classifying crimes benevolently to show an improvement in the serious crime rate, which would justify receiving a Federal grant. Likewise, the Yale grading system shows a self-congratulatory tendency to give students higher and higher grades so that of the four grades fail, pass, high pass, and honors, high pass is now a disgrace and pass and fail are regarded as extreme and unusual punishment. Thus, without a stable and appropriate classification scheme, statistical analyses are in vain. On the other hand, clustering techniques require raw data from some initial classification structure also, so it is doubtful whether formal techniques are sufficient for organizing the initial data gathering structure. Perhaps a mixture of informal and formal classification techniques is required.

Correspondingly, probability judgements depend basically on classifications and similarity judgements. The probability that it will rain an hour from now requires

identification of "rain" (and rules for when rain occurs) and identification of "an hour from now." The numerical computation of this probability will require looking into the past for weather circumstances similar to the present one and counting how frequently it rained an hour later than those circumstances. Thus probability judgements arise from the principle of analogy that "like effects likely follow from like causes."

In some areas, such as in clustering of stars or in clustering of animals, the appropriateness of clustering is not in question. What about clustering used as a general purpose tool for data analysis? For one-dimensional data, the analogous procedure is to compute histograms. So one meaning of clustering is the computation of multivariate histograms, which may be useful and revealing even if there are no "real" clusters. Another humble and primitive use of clustering is the estimation of missing values, which may be more accurately done from the similar values in a cluster than from the complete set of data. The summary function of clustering may save much computer time in later more sophisticated analyses.

I.5 TYPES OF DATA

L5.1 Similarities

A cluster is a set of similar objects. The basic data in a clustering problem consist of a number of similarity judgements on a set of objects. The clustering operations attempt to represent these similarity judgements accurately in terms of standard similarity structures such as a partition or a tree. Suppose that there are M objects, $1 \le I \le M$. The similarity judgements might come in many forms. For example,

- (i) There is a real-valued distance D(I, J) for each I, J.
- (ii) The distance D(I, J) takes only two values 0 and 1, and D(I, I) = 0, $1 \le I \le M$. Thus each pair of objects is either similar or dissimilar.
- (iii) The distance D(I, J) takes only values 0 and 1, and $D(I, J) \le D(I, K) + D(K, J)$. In this case, the similarity relation expressed in (ii) is transitive, and the set of all objects is partitioned into a number of clusters such that D(I, J) = 0 if and only if I and J are in the same cluster.
- (iv) Triadic similarity judgements of the form "I and J are most similar of the three pairs (I, J), (I, K), and (K, J)."

I.5.2 Cases by Variables

The standard data structure in statistics assumes a number of cases (objects, individuals, items, operational taxonomic units) on each of which a number of variables (properties, characters) is measured. This data structure is almost always assumed in the book.

The variables may, in principle, take values in any space, but in practice there are five types of variables classified according to arbitrariness of the underlying scale:

- (i) Counts (e.g., the number of eyes on an ant) with no scale arbitrariness.
- (ii) Ratio scale (e.g., the volume of water in a cup), which is determined only in ratio to a standard volume.
- (iii) Interval scale (e.g., the height of a mountain) which is determined only from a standard position (sea level, say) and in terms of a standard unit (feet, say).

- (iv) Ordinal scale (e.g., socioeconomic status), determined only by an ordered classification that may be changed by any monotonic transformation.
- (v) Category scale (e.g., religion), determined by a classification that may be changed by any one-to-one transformation.

A given set of data may be *mixed* (containing variables of different types), it may be *heterogeneous* (variables of the same type but of different scales, such as temperature, rainfall, and corn production), or it may be *homogeneous* (variables measured on the same scale, such as percentage Republican vote for President in various years). There are a number of techniques transforming variables of one type to another or converting all variables to the same scale.

One special type of data has an identity between cases and variables. An example is imports, in dollars, from one country to another or the scores in a football conference where each team plays every other team. A distance matrix (or similarity matrix) is of this type. A standard approach in clustering (for example, Sokal and Sneath, 1963 and Jardine and Sibson, 1971) computes a distance matrix on the cases and then constructs the clusters from the distance matrix (see Chapter 2). In the distance approach, the two questions of the computation of distances from the cases by variables matrix and the computation of clusters from the distance matrix are separated. This causes a serious dilemma in that variables must be weighted before distances can be computed, yet it is desirable to have the weights depend on the within-cluster variability. An aesthetic objection to the distance approach is that the distance matrix is just a middle step between the actual data and the final clustering structure. It would be better to have algorithms and models that directly connect the data and the desired clustering structure.

Sometimes cases are clustered and sometimes variables are clustered. The traditional classification schemes in biology explicitly connect clusters of animals and clusters of characters; thus vertebrates are animals with backbones, two eyes, bilateral symmetry, four limbs, etc. A number of "two-way" algorithms in this book simultaneously produce clusters of cases and clusters of variables without a onceand-for-all distance calculation.

I.5.3 Other Data Structures

The cases-by-variables structure may be extended by the use of "not applicable" or "missing" values to include very general types of data. There are types of data which do not fit easily into this structure. One difficulty is the homology problem, in which it is not clear how a variable is to be measured on different objects. For example, the wings of a bird correspond to the arms of a man. The wings of a bee do not correspond to the wings of a bird, but there are more basic variables, such as the amino acid sequences in cytochrome-c molecules, which do correspond between a bird and a bee. The homology question makes it clear that the selection of variables and their measurement from object to object requires intimate knowledge of the objects and perhaps a preliminary informal classification.

A second difficulty arises when numerous measurements are applicable if some other condition is met. For example, if an insect has wings, the pattern of venation, the angle of repose, the relative size of the first and second pairs, whether or not the wings hook together in flight, and so on, are all useful measurements. It would be desirable to indicate explicitly in the data structure that these measurements are applicable only to insects with wings.

I.6 CLUSTERING STRUCTURES AND MODELS

There are only two clustering structures considered in this book, partitions and trees. A cluster is a subset of a set of objects. A partition is a family of clusters which have the property that each object lies in just one member of the partition. Algorithms for constructing partitions are considered in Chapters 3-7.

A model for cases-by-variable data, given a partition of the cases, is that within each cluster each variable is constant over cases. This model is made probabilistic by allowing cases to deviate randomly from the constant value in each cluster. A partition model for distance data is that all distances between pairs of objects in the same cluster are less than distances between pairs of objects in different clusters.

A tree is a family of clusters, which includes the set of all objects and for which any two clusters are disjoint or one includes the other. A partition, with the set of all objects added, is a tree.

A model on a distance matrix, given a tree, requires that the distance be an *ultrametric*. Thus if I, J, K are three objects, $D(I, J) \le \max [D(I, K), D(J, K)]$. An ultrametric uniquely determines a tree for which $D(I, J) \le D(K, L)$ whenever the objects I, J lie in the smallest cluster containing K and L. Thus a tree may be constructed from a distance matrix by finding the ultrametric closest to the distance matrix in some sense (see Chapter 11).

A weaker model requires that D(I, J) < D(K, L) whenever I and J lie in a cluster strictly included in the smallest cluster containing K and L. This is similar to a model for triads which requires that I and J are more similar than K if I and J lie in a cluster that excludes K. An algorithm using triads is given in Chapter 10.

A tree model that applies directly on the data matrix requires that each variable be constant within clusters of a partition conforming to the tree; the partition is possibly different for different variables (see Chapters 14 and 18).

For clusters of both cases and variables, the basic unit is the *block*, which is a submatrix of the data matrix. The row margin and column margin of this submatrix form a case cluster and a column cluster. There are now three trees to consider: the tree formed by the case clusters, the tree formed by the row clusters, and the tree formed by the blocks themselves. Within a block, a variety of models are available. For example, for homogeneous data all values within a block might be assumed equal, or nearly so, as in Chapters 14 and 15. Or, for heterogeneous data, it might be assumed that the homogeneous model holds for some scaling of the variables to be discovered during the course of the algorithm, as in Chapter 16.

I.7 ALGORITHMS

All clustering algorithms are procedures for searching through the set of all possible clusterings to find one that fits the data reasonably well. Frequently, there is a numerical measure of fit which the algorithm attempts to optimize, but many useful algorithms do not explicitly optimize a criterion. The algorithms will be classified here by mode of search.

I.7.1 Sorting

The data are in cases-by-variables form. Each variable takes a small number of distinct values. An important variable is chosen somehow, and the objects are partitioned according to the values taken by this variable. Within each of the clusters of

12 Introduction

the partition, further partitioning takes place according to further important variables. Examples of this type of algorithm are given in Chapters 3, 17, and 18. These algorithms are quick in execution but are unsatisfactory in handling many variables, since only a few variables affect the classification.

I.7.2 Switching

A number of objects are to be partitioned. An initial partition is given, and new partitions are obtained by switching an object from one cluster to another, with the algorithm terminating when no further switches improve some criterion. Algorithms of this type occur in Chapters 4 and 6. These algorithms are relatively quick in execution but suffer from the uncertainty of the initial partition. There is always the possibility that a different initial partition might lead to a better final partition.

I.7.3 Joining

Initially begin with a number of clusters each consisting of a single object. Find the closest pair of clusters and join them together to form a new cluster, continuing this step until a single cluster containing all the original objects is obtained. This type of algorithm appears in Chapters 11–13, 15, and 16. These algorithms have gained wide acceptance in numerical taxonomy. The search for closest pairs is rather expensive, so that the algorithms are only practicable for moderately large (<1000) numbers of objects. There is often an embarrassingly rich overflow of clusters in the output from the algorithm, which must be reduced in number, often by ad hoc methods.

I.7.4 Splitting

Inversely to joining algorithms, splitting algorithms begin by partitioning the objects into several clusters and then partitioning each of these clusters into further clusters, and so on. Sorting algorithms are a special subset of splitting algorithms. Other splitting algorithms occur in Chapters 6 and 14. These algorithms have found less acceptance than joining algorithms because it is difficult to decide on a compelling splitting rule. The splitting may also require an expensive search.

I.7.5 Adding

A clustering structure (a partition or a tree) already exists, and each object is added to it in turn. For example, a typical object is initially selected for each cluster, and each object is added to the cluster to whose typical object it is closest. Algorithms of this type appear in Chapters 3, 9, and 10.

I.7.6 Searching

It sometimes happens that mathematical considerations rule out many possible clusterings for a particular criterion, and it becomes feasible to search over the remaining clusterings for the optimal one. Such an algorithm appears in Chapter 6.

I.8 INTERPRETATION AND EVALUATION OF CLUSTERS

An algorithm has been applied to the data producing these many clusters. Suppose that the clusters are subsets of cases for cases-by-variables data. At this point, all that is known is that the cases in clusters are similar in some way, and the clustering is not

useful until the ways of similarity are made clear. It is therefore important to summarize the behavior of variables within clusters. (These summaries are an intrinsic part of the two-way algorithms in Chapters 14-16. Summaries for category variables appear in Chapter 13 and for continuous variables in Chapter 18.)

For continuous variables the summaries might be mean, standard deviation, minimum, and maximum for each variable for each cluster. If the clustering structure is a partition, an analysis of variance will reveal which variables distinguish well between clusters and which distinguish poorly. This information is useful for weighting variables in later analyses. More generally a discriminant analysis will reveal which combinations of variables distinguish best between clusters. The usual significance tests of analysis of variance are not valid because the clusters will have been chosen usually to maximize approximately a between-cluster sum of squares. Approximate significance tests are known only in very few cases (see Chapters 4 and 11).

For category variables, agreement of a single variable with a partition is expressed by a contingency table in which one margin is the variable and the other margin is the partition. The partition is nothing but a category variable itself which is an amalgamation of all the category variables in the data, a category version of the first principal component for continuous variables. The measure of agreement should be the proportion of correct predictions from the partition to the variable, under the predicting rule that each member of the partition predicts that value of the variable that occurs most frequently within it.

Between two partitions, the above measure of agreement is undesirable because it is asymmetrical. There are many measures of association between category variables in Goodman and Kruskal (1959). Suppose that the first variable takes values $1, 2, \ldots, M$ and the second variable takes values $1, 2, \ldots, N$. Let L(I, J) denote the number of times the first variable takes the value I and the second variable takes the value I. Let L(I, 0) be the number of times the first variable takes the value I, let L(0, J) be the number of times the second variable takes the value I, and let L(0, 0) be the total number of observations. One measure of association is the information measure

$$\sum \{1 \le I \le M, \ 1 \le J \le N\} \ L(I, J) \log L(I, J) \\ -\sum \{1 \le I \le M\} \ L(I, 0) \log L(I, 0) \\ -\sum \{1 \le J \le N\} \ L(0, J) \log L(0, J) \\ + L(0, 0) \log L(0, 0).$$

(Here, and throughout the book, $\sum \{1 \le I \le M\}$ denotes summation over the index I between the values 1 and M.) This is just the log likelihood ratio of the general multinomial hypothesis against the hypothesis of independence between variables. A measure that is more directly interpretable is the proportion of disagreed similarity judgements,

$$\sum \{1 \le I \le M\} L(I, 0)^2 + \sum \{1 \le J \le N\} L(0, J)^2 - 2 \sum \{1 \le I \le M, 1 \le J \le N\} L(I, J)^2$$
 divided by $L(0, 0)$ [$L(0, 0) - 1$].

Between two trees, a similar measure is the proportion of disagreed triads, the proportion of triples I, J, K in which I is more similar to J than to K according to the first tree, but I is more similar to K than to J by the second tree.

One method of assessing the stability of clusters is to estimate the probability that an object belongs to a cluster. In Wiley (1967) and in the mixture model in Chapter 5,

these probabilities are components of the model. For category variables amalgamated into a partition, each value of a variable has a frequency distribution over clusters. For each variable, a case has a frequency distribution over clusters according to the value of the variable. For a particular case, the frequency distribution is averaged over variables to form an estimated probability distribution that the case belongs to various clusters. A similar technique works for trees.

Clusters will be stable if all variables conform to the same clustering and unstable if different sets of variables suggest quite different clusters. This idea of stability may be applied directly by repeating the clustering on different sets of variables. The choice of sets might be made on prior knowledge; for example, classify insects by mouth parts, or by wing venation, or by genitalia, and assess the similarity of the classifications. In the absence of such knowledge, it is plausible to select variables from the original set so that each variable has, independently, probability 0.5 of appearing in the trial set. The selection and clustering are repeated several times, and agreement between the various clusterings is assessed. Examination of stability is useful in elimination of the many, only slightly different, clusters produced by joining methods.

I.9 USING THIS BOOK

Every chapter in the book with the exception of Chapter 2 has the same organization around a main algorithm, as follows:

- (i) concept and purpose of algorithm;
- (ii) step-by-step description of algorithm;
- (iii) execution of algorithm on a small data set;
- (iv) discussion and evaluation of algorithm and sometimes description of alternative strategies and algorithms;
- (v) suggestions for applying the algorithm, and various exercises, further techniques, and unsolved problems;
 - (vi) a discussion of relevant literature;
 - (vii) listing of Fortran programs.

Each chapter is more or less self-contained; one type of user of this book will be looking for a particular algorithm for a particular problem and should need to look at only two or three chapters. A second type of user will be learning about clustering in general, perhaps in a course. The book gets steadily more difficult, but there are some ridges in Chapter 4, 5, and 11 that perhaps should best be avoided in the first reading. These are starred. This second type of user is strongly urged to apply the techniques to his own small data sets and to try some of the problems in the THINGS TO DO sections. The difficult and impossible problems are starred. A sequence of chapters covering nearly all areas is 1-4, 8, 11, 13, 15, 18.

REFERENCES

GENERAL REFERENCES

BLACKWELDER, R. A. (1966). Taxonomy: A Text and Reference Book, Wiley, New York. A survey of classical biological taxonomy.

CORMACK, R. M. (1971). "A review of classification." J. Roy. Stat. Soc., A 134, 321-367. This is a careful and complete survey of the recent literature of classification, with reference to over 200 papers. The author is somewhat skeptical about the uses of classification, beginning "The availability of computer packages of classification techniques has led to the waste of more valuable scientific time than any other 'statistical' innovation" and ending with a quotation from Johnson: "Anyone who is prepared to learn quite a deal of matrix algebra, some classical mathematical statistics, some advanced geometry, a little set theory, perhaps a little information theory and graph theory, and some computer technique, and who has access to a good computer, and who enjoys mathematics . . . will probably find the development of new taximetric method much more rewarding, more up-to-date, more 'general,' and hence more prestigious than merely classifying animals or plants or working out their phylogenies." Beneath this bitter skin lies sweet flesh. Cormack distinguishes between identification or assignment, which allocate an individual to known classes, and classification, which constructs the classes. He considers three types of classification hierarchical, partitioning, and clumping—in which the classes or clumps may overlap. There is a brief (and rather unsatisfactory) discussion of the purposes of classification. Similarity measures are listed, and the difficult problems of scaling are discussed; in particular, if within-cluster measures are used to scale, "there appears to be a circularity in trying to transform data by properties of the cluster that it is hoped to determine." The homology problem is discussed, wherein "it is not clear what variable in one entity corresponds to a particular variable in another."

"There are many intuitive ideas, often conflicting, of what constitutes a cluster, but few formal definitions." Sometimes, "the resulting clusters are defined only by the algorithm by which they were obtained." He divides algorithms into three types: agglomerative (joining close pairs), divisive (successive splitting), and clustering (reallocation of individuals between members of a partition. Another technique is the formation of single clusters, each of which is completed before another is initiated. The few known comparative and evaluative studies are reported. Measures of distance between a tree and similarity structure are given.

Searching for modes is closely related to single linkage. Overlapping clusters are discussed, following the Jardine and Sibson generalization of single linkage. A number of papers treat entities and variables simultaneously.

GOOD, I. J. (1965). "Categorization of classification." Mathematics and Computer Science in Biology and Medicine, H. M. Stationery Office, London. Many interesting remarks on problems in classification. In particular, a method of two-way splitting is proposed for a data matrix $\{A(I,J), 1 \le I \le M, 1 \le J \le N\}$, according to row vectors $\{R(I), 1 \le I \le M\}$ and column vectors $\{C(J), 1 \le J \le N\}$ that take the values ± 1 and maximize $\sum R(I)C(J)A(I,J)$.

GOODMAN, L. A., and KRUSKAL, W. H. (1959). "Measures of association for cross classification II: Further discussion and references." J. Am. Stat. Ass. 54, 123–163. An earlier paper introduced some measures of association, and some further measures are discussed in the first section of this paper. The major part of the paper is an extensive and careful survey of the ancient and diverse literature of measures of association.

JARDINE, N., and SIBSON, R. (1971). Mathematical Taxonomy, Wiley, New York. The first part of the book develops various measures of dissimilarity. The

central measure is based on information theory; this leads to Mahalanobis' D with normal subpopulations. The second part of the book assumes a dissimilarity matrix given and regards a cluster method as a function from dissimilarity matrices to trees (or dendrograms, or equivalently to dissimilarity matrices satisfying the ultrametric inequality). The single-linkage method corresponds to a continuous function on the space of dissimilarity matrices, whereas the other joining techniques are discontinuous. Overlapping clusters are suggested as a generalization of the single-linkage technique, which avoids chaining. The book concludes with some remarks on applications, with particular attention to problems in biological taxonomy.

SOKAL, R. R., and SNEATH, P. H. A. (1963). Principles of Numerical Taxonomy, Freeman, London. The book is divided into three parts. The first part is a general introduction to numerical taxonomy, including criticism of then current taxonomic practices. The second part discusses data preparation including selection of organisms, characters, and coding of characters. In this part also, methods of measuring similarity are proposed, with particular attention given to category data. There is some discussion of weighting and scaling.

A technique for shading similarity matrices yields clusters visually. Average- and single-linkage algorithms are discussed.

In the third part of the book, implications of these techniques for developing evolutionary connections are considered, and also applications to classification in other areas.

AREA REFERENCES

Biology

BORRADAILE, L. A., and POTTS, F. A. (1958). The Invertebrata: A Manual for the Use of Students. Cambridge U. P., London.

Metazoa: At least two body layers. The inner layer, the endoderm, contains cells for digestion of food. The outer layer, the ectoderm, contains nerve cells, sensors, and cells forming a protective sheet.

Arthropoda: Bilaterally symmetrical, segmented. Paired limbs on the somites, of which at least one pair functions as jaws. A chitinous cuticle. A nervous system like the Annelida. The coelom in the adult much reduced and replaced as a previsceral space by enlargement of the haemocoele. Without true nephridia, but with one or more pairs of coclomoducts as gonoducts and often as excretory organs. Without cilia.

Insecta: The body is divided into three distinct regions, the head, thorax, and abdomen. The head consists of six segments and there is a single pair of antennae. The thorax consists of three segments with three pairs of legs and usually two pairs of wings. The abdomen has 11 segments typically and does not possess ambulatory appendages. Genital apertures are situated near the anus.

Pterygota: Young stage born with full complement of adult segments. No abdominal locomotory appendages. Simple metamorphosis. Malphigian tubes present. Mouth parts free.

Endopterygota: Wings folded in repose. Holometabolous. Endopterygote. Usually with few malphigian tubes.

Hymenoptera: Head orthognathous. Mouth parts for biting or fluid feeding. Mandibles. First abdominal segment fused to thorax. Four membranous wings, anterior wings linked to posterior wings by a groove and hooks. Tarsus pentamerous. Female with ovipositor. Numerous malphigian tubes. Legless larva with well-formed head capsule. Formicoidea: Social polymorphic insects in which two segments form the abdominal petiole. Females have a sting.

DARLINGTON, P. J.; JR. (1971). "Modern taxonomy, reality and usefulness." Systematic Zoology 20, 341–364. The ultimate purpose of taxonomy is a classification useful in storing and retrieving information. Some numerical taxonomists seem to be "slipping off into a kind of scientism which brings an appearance of precision by the abandonment of reality." As an example of modern practical taxonomy, Lindroth's taxonomy of ground beetles is discussed in detail.

DUPONT, P. F., and HENDRICK, L. R. (1971). "Deoxyribonucleic acid base composition, and numerical taxonomy of yeasts in the genus trichosporon." J. Gen. Microbiol. 66, 349-359. The DNA base was determined for each of 10 species of trichosporon, and the species were divided into 4 groups according to the percentage of quanine and cytosine in each species. This classification was compared to a "handsoff" numerical taxonomy of 25 strains of trichosporon, based on 81 characteristics. There was only slight agreement between the two classifications.

SMALL, E., BASSETT, I. J., and CROMPTON, C. W. (1971). "Pollen phylogeny in Clarkia." Taxon 20, 739–749. Electromicroscopy is used to measure 16 characteristics of 42 species of pollen. There are twelve continuous variables measuring geometric properties of the trilobed grains and four discrete variables measuring presence or absence of patterns, etc. This poses an interesting difficulty in the combination of different types of data.

STEARN, W. T. (1971). "A survey of the tropical genera Oplonia and Psilanthele (Acanthaceae)." Bull. Brit. Museum (Nat. Hist.) Bot. 4, 261-323. Uses numerical taxonomy conservatively in a revision of the genera.

Medicine

BARON, D. N., and FRASER, P. M. (1968). "Medical applications of taxonomic methods." *Brit. Med. Bull.* 24, 236-240. A number of clustering algorithms were tested on 50 patients with liver disease, with 330 characters recorded for each patient. In conforming to previous diagnoses of the patients, the single-linkage algorithm was less accurate than the average-linkage technique. Weighting characters to give more weight to rarely appearing characters also improved conformity to previous diagnoses.

BOORMAN, K. E., and DODD, B. E. (1970). An Introduction to Blood Group Serology, Churchill, London. In 1900, Landsteiner described the agglutination that occurred when red cells of one individual were exposed to the action of serum from another and so discovered the A, B, O blood group system. The four groups are determined by the presence or absence of the antigens A and B in the red blood cells. Corresponding to the antigens A, B are antibodies -A, -B which occur in the sera of individuals lacking the corresponding antigens. Thus a person of type AB has serum containing no antibodies, which is acceptable to all. A person of type O has serum containing antibodies -A and -B, acceptable only to another person of type O.

BOUCKAERT, A. (1971). "Computer diagnosis of goiters: I. Classification and differential diagnosis; II. Syndrome recognition and diagnosis; III. Optimal subsymptomatologies." J. Chronic Dis. 24, 299-310, 311-320, 321-327. The single-linkage and complete-linkage algorithms are applied to a grouping of 85 patients with goiters, using 30 symptoms. The complete-linkage algorithm gives results in accordance with conventional nosology. Distance between patients is measured in a number of ways; for example, one measure is the proportion of symptoms they have in common.

Symptoms are grouped into symptom classes called syndromes, measuring distance between symptoms by correlation. Using single linkage, three syndromes are obtained, which are more or less coincident with the common descriptions of simple goiter, hyperthyroidism, and cancer.

BURBANK, F. (1972). "A sequential space-time cluster analysis of cancer mortality in the United States: etiological implications." Amer. J. Epidemiol. 95, 393-417. Tumor types are defined in the International Classification of Disease either by cell type or by anatomical site. The correlations between death rates in the 50 United States are used as a measure of similarity between types. The most highly correlated types are amalgamated, until no pair of types have correlation exceeding 0.45. This yields 10 clusters of tumors which have different patterns of geographical distribution. The time trends for different tumor types are also considered. A common causal agent is postulated for tumor types with similar geographical distribution and time trend.

CHAKRAVERTY, P. (1971). "Antigenic relationship between influenza B viruses." Bull. World Health Org. 45, 755-766. Single-linkage clustering is used to determine whether antigenic groupings could be demonstrated among a wide variety of strains of influenza B virus. The data are characteristic immunological data, with a correspondence between the rows (viruses) and columns (antisera). No clearly distinct groups were discovered.

"Criteria for the evaluation of the severity of established renal disease" (1971). Ann. Intern. Med. 75, 251-252. The severity of the disease is classified in each of three categories: signs and symptoms, renal function impairment, and level of performance. The class assigned to each category is the highest class within which the patient falls.

Signs and Symptoms

- No symptoms directly referrable to renal disease plus one or more of (a)-(e)
 - (a) fixed proteinuria
 - (b) repeatedly abnormal urine
 - (c) radiographic abnormality in upper genito-urinary tract
 - (d) hypertension
 - (e) biopsy proved parenchymal renal disease
- Two or more of
 - (a) symptoms referrable to renal disease
 - (b) radiographic evidence of osteodystrophy
 - (c) stable anemia
 - (d) metabolic acidosis
 - (e) severe hypertension
- III. Two or more of
 - (a) osteodystrophy
 - (b) peripheral neuropathy

- (c) nausea and vomiting
- (d) limited ability to conserve or excrete sodium and water, tending to sodium depletion, dehydration, congestive heart failure
- (e) impaired mentation
- IV. Any two or more of
 - (a) uremic pericarditis
 - (b) uremic bleeding diathesis
 - (c) asterixis and impaired mentation
 - (d) hypocalcemic tetany
 - V. Coma

Renal Function Impairment

Glomerular filtration rate (secondarily, on serum creatinine with a different set of intervals)

- (a) normal
- (b) 50-100%
- (c) 20-50%
- (d) 10-20%
- (e) 5-10%
- (f) 0-5%

Performance

What the patient thinks he can do:

- (a) All usual activity
- (b) No strenuous activity
- (c) No usual daily activity
- (d) Severe limitation of usual activity
- (e) Semicoma

FEINSTEIN, A. R. (1972). "Clinical biostatistics. 13. Homogeneity, taxonomy and nosography." Clin. Pharmacol. Ther. 13, 114-129. One of a series of papers on the philosophy of classification. Homogeneity of a group must be established before statistical techniques are applicable. Measures of similarity must depend on final purposes. Nosology differs from traditional biological taxonomy because the taxonomy of disease must be oriented to diagnosis and treatment.

GOLDWYN, R. M., FRIEDMAN, H. P., and SIEGEL, J. H. (1971). "Iteration and interaction in computer data bank analysis—case study in physiological classification and assessment of the critically ill." *Comp. Biomed. Res.* 4, 607–622. In assessing the physiological status of critically ill patients, three stages of the septic process are identified, each characterized by its own pattern of homeostatic compensation. The principal variables used are the following (measured in logarithms):

- (i) cardiac output/body area,
- (ii) mean blood pressure,
- (iii) arterial venous difference in oxygen,
- (iv) heart rate,
- (v) ejection time, and
- (vi) central venous pressure.

A base group of patients not critically ill is used as a background. The Friedman-Rubin algorithm is used to maximize trace B/trace W, where B denotes the covariance

matrix between groups, and W the covariance matrix within groups. The three groups discovered represent stages with markedly different prognosis. Transitions of patients between the stages support the ordering of the stages.

GOODFELLOW, N. (1971). "Numerical taxonomy of some nocardioform bacteria." J. Gen. Microbiol. 69, 33-80. There are 283 bacteria and 241 characters, some biochemical, some physiological, and some nutritional. Using two measures of similarity and two joining algorithms (the single- and average-linkage methods), seven major clusters are detected. These correspond to groupings already known. Many new characters are shown to be suitable for identifying bacteria.

HAYHOE, F. G. J., QUAGLINO, D., and DOLL, R. (1964). "The cytology and cytochemistry of acute leukemias." *Medical Research Council Special Report Series No. 304*, H.M. Stationery Office, London. Single linkage identified four groups in 140 cases of acute leukemia. Diagnostic criteria are proposed for distinguishing the groups.

KNUSMAN, R., and TOELLER, M. (1972). "Attempt to establish an unbiased classification of diabetes mellitus." *Diabetologia* 8, 53. Using factor analysis, three groups are discovered closely related to age.

MANNING, R. T., and WATSON, L. (1966). "Signs, symptoms, and systematics." J. Amer. Med. Assoc. 198, 1180–1188. Clustering techniques were tested on 99 patients with heart disease characterized by 129 items. The three clusters obtained agree substantially with physicians' diagnoses of univalvular lesions, multivalvular lesions, and arteriosclerotic, hypertensive, or pulmonary disease.

Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death (1965). World Health Organization, Geneva, Vols. 1 and 2. "Classification is fundamental to the quantitative study of any phenomenon. It is recognized as the basis of all scientific generalization, and is therefore an essential element in statistical methodology.... There are many who doubt the usefulness of attempts to compile statistics of disease, or even causes of death, because of difficulties of classification. To these, one can quote Professor Major Greenwood: "The scientific purist, who will wait for medical statistics until they are nosologically exact, is no wiser than Horace's rustic waiting for the river to flow away"."

There are seventeen principal categories of disease, beginning with "Infective and Parasitic Diseases" and ending with the inevitable leftovers, such as "Certain Causes of Perinatal Morbidity and Mortality," "Symptoms and Ill-defined Conditions," and "Accidents, Poisonings and Violence." Each disease is represented by a three-digit code. All diseases of the same type have the same first two digits. There may be several types of diseases in a category. For example, the first category includes the following types: Intestinal infectious diseases (00), Tuberculosis (01), Zoonotic bacterial diseases (02), Other bacterial diseases (03), through Other infective and parasitic diseases (13). The type Tuberculosis includes Silicotuberculosis (010), Pulmonary Tuberculosis (011), through Late effects of tuberculosis (019).

The accident category is treated somewhat differently, with a separate code: E908 is "accident due to cataclysm."

Finally, there is a fourth digit which further breaks down each of the disease categories. For example, Late effects of tuberculosis (019) is divided into Respiratory tuberculosis (019.0), Central nervous system (019.1), Genito-Urinary system (019.2), Bones and joints (019.3), and Other specified organs (019.9).

PREVOT, A. H. (1966). Manual for the Classification and Determination of the Anaerobic Bacteria, Lea and Febiger, Philadelphia. Establishes the following classification scheme:

Schizomycetes
Eubacteria (no true branching)
Non-spore-forming
spherical
cylindrical
spiral
Spore-forming
spherical
cylindrical
spiral

Actinomycetaceae (tendency to form branches)

SCHREK, R., KNOSPE, W. H., and DONNELLY, W. (1972). "Classification of chronic lymphocytic leukemia by electron microscopy." Fed. Proc. 31, A629. Blood lymphocytes from 43 patients with chronic lymphocytic lymphosarcoma cell leukemia were examined. The cross-sectional areas were classified A and B. This yields four groups: I A, I B, II A, II B. Groups I A and I B were mostly lymphocytic, groups II A and II B frequently had lymphosarcoma, I A were benign, and II B were aggressive.

STARK, L., OKAJIMA, M., and WHIPPLE, G. M. (1962). "Computer pattern recognition techniques: Electrocardiographic diagnosis." Commun. Assoc. Comp. Mach. 6, 527-532. An electrocardiogram has three phases, PQ, QRS, ST-T, corresponding to different stages in the electrical excitation of the heart. Abnormal patterns are associated with pathological conditions. Techniques are described for recognizing abnormal patterns by computation rather than by expert judgement.

TEMKIN, O. (1970). "The history of classification in the medical sciences," in Katz, M. M., Cole, J. O., and Barton, W. E., eds. Classification in Psychiatry and Psychotherapy, National Institutes of Mental Health, Chevy Chase, Md. The Egyptians divided diseases according to anatomical location, and medical practitioners specialized accordingly. A number of ancient classification chemes are sketched, the four humors of the Greeks, the function-oriented classification of Galen, and Boissier de Sauvage's classes-orders-genera scheme in 1790, which parallels Linnaeus' systematics for animals and plants. Boissier de Sauvages believed that "species and genera of disease ought to be distinguished on a purely factual basis in contrast to causal theories. . . . [A] disease was to be defined by the enumeration of symptoms which suffice to recognize its genus or species, and to distinguish it from others."

WILDY, P. (1971). Classification and Nomenclature of Viruses: First Report of the International Committee on Nomenclature of Viruses, Karger, New York. Provides a classification scheme for recording important data about viruses. The classification lies more in identifying types of properties of viruses than in identifying groups of viruses. Each virus type is represented by a cryptogram recording

- (i) Type of nucleic acid
- (ii) Strandedness of nucleic acid
- (iii) Molecular weight of nucleic acid

22 Introduction

- (iv) Percentage of nucleic acid in infective particles
- (v) Outline of particle
- (vi) Outline of nucleocapsid
- (vii) Kinds of host infected
- (viii) Kinds of vector

WILNER, B. I. (1964). A Classification of the Major Groups of Human and Other Animal Viruses, Burgess, Minneapolis. Viruses are sorted by five variables, with the most important variables used first (see Table I.4).

Table I.4 Classification of Viruses (Wilner, 1964)

SCRITING VARIABLES

Muclaic Capsidal Envelope Viral Acid Family Acid Symmetry Particle Isbility Core Size RNA cubic naked 18-38 mu stable picornaviruses enteroviruses rhinoviruses labile 70-77 stable MIL reoviruses enveloped щµ labile arboviruses 30-75 helical enveloped. 90-300 mg labile myxoviruses labile myxoviruses like 37-218 mp labile DNA complex enveloped 120-250 mg herpesviruses stable adenoviruses 70-80 Щų

WINKEL, P., and TYGSTRUP, N. (1971). "Classification of cirrhosis: the resolution of data modes and their recovery in an independent material." Comp. Biomed. Res. 4, 417-426. Sneath's single-linkage method and Wishart's mode-seeking method are used to classify 400 patients with cirrhosis. Both methods identified two groups with distinct characteristics. Both methods left 70% of the patients unclassified.

40-57

18-26

Mμ

Щ

stable

stable

papovaviruses

parvoviruses

Deked

Psychiatry

EVERITT, B. S., GOURLAY, A. J., and KENDELL, R. E. (1971). Attempt at validation of traditional psychiatric syndromes by cluster analysis. *Brit. J. Psychiat.* 119, 399-412. "In spite of all the elegant and complex manipulations to which innumerable sets of data have been subjected, the classifications used by psychiatrists remain much as they were before the computer was invented." The K-means algorithm and a mixture algorithm are applied to two different sets of patients. There are 250 American patients and 250 British patients on which are measured 45 mental state items and 25 history items. These measurements are reduced to 10 factors by principal components and factor analysis. The clusters constructed corresponded to standard syndromes such as depression, schizophrenia, mania, drug abuse, and depressive delusions.

HAUTALUOMA, J. (1971). Syndromes, antecedents, and outcomes of psychoses: a cluster analytic study. J. Consult. Clin. Psychol. 37, 332-344. "Current psychiatric mental illness description and classifications have a questionable status.... The entities called illnesses have low interjudge reliabilities. Frequently symptoms are unclassifiable." Clusters of symptoms are discovered empirically on 333 patients and validated on two more sets each of 333 patients by checking that symptoms within the clusters remained highly correlated. The clusters agree with the Lorr syndromes of excitement, hostile belligerence, paranoid projection, grandiose expansiveness, perceptual distortions, anxious intropunitiveness, retardation and apathy, disorientation, motor disturbance, and conceptual disorganization. It is noted that antecedent symptoms and outcomes of treatment are not highly related to any one of the clusters.

- KANT, I. (1964). The classification of mental disorders, Charles T. Sullivan, ed., Doylestown Foundation, Doylestown, Pa. It is difficult to impose an orderly classification on that which is essentially and irreparably disordered. Kant recognizes four categories:
- (i) senselessness, the inability to bring one's thoughts into that coherence which is necessary even for the mere possibility of experience;
- (II) madness, subjective impressions of a falsely inventive imagination are taken for actual perceptions;
- (iii) absurdity, a disturbed capacity for judgement, whereby the mind is given to excessive analogies;
 - (iv) frenzy, the disorder of a disturbed reason.
- KATZ, M. M., COLE, J. O., and BARTON, W. E., eds. (1970). The Role and Methodology of Classification in Psychiatry and Psychopathology, National Institutes of Mental Health, Chevy Chase, Md. All aspects of classification are considered in this conference report. As part of the editors' summary (p. 4), "psychoanalysts found grave difficulties in assigning patients to specific diagnostic categories and preferred to describe the presenting symptoms, while hospital psychiatrists felt that the assigning of diagnosis, if carefully done, had real clinical meaning and was a necessary prerequisite to good clinical practice. Even at the end, the position was by no means that diagnosis in its present form dictated treatment, but that the study of the individual case necessary to determine and arrive at a diagnosis brought with it an increase in the clarity with which the case was understood, and this study, plus the diagnosis, suggested certain directions for treatment and management."
- LORR, M., KLETT, C. J., and McNAIR, D. M. (1963). Syndromes of Psychosis, Pergamon, New York. Includes a comprehensive review of earlier studies. By clustering symptoms, suggests 10 syndromes or clusters of symptoms.
- PAYKEL, E. S. (1970). "Classification of depressed patients—cluster analysis derived grouping." Brit. J. Psychiat. 118, 275. There are 165 depressed patients on which are measured 29 symptom ratings from a clinical interview, and six historical variables—namely, age, previous depressions, alcoholism, length of illness, neuroticism score, and stress score. These variables are reduced to six principal components. The patients are divided into four groups to maximize det T/det W in the Friedman-Rubin technique. The four groups are characterized as psychotic, anxious, hostile, and young depressive.

SHAKOW, D. (1970). Classification in Psychiatry and Psychotherapy, Katz, M. M., Cole, J. O., and Barton, W. E. eds. National Institutes of Mental Health, Chevy Chase, Md. Notes that of 57 patients diagnosed to have dementia praecox at Boston Psychopathic Hospital, 12% were so diagnosed at Boston State Hospital, and 37% were so diagnosed at Worcester State Hospital. Of 134 patients diagnosed manic depressive at Boston Psychopathic Hospital, 28% were so diagnosed at Boston State Hospital, and 10% were so diagnosed at Worcester State Hospital.

ZUBIN, J. (1938a). "A technique for measuring like-mindedness." J. Abn. Soc. Psychol. 33, 508-516. A group of 68 schizophrenic patients and 68 matched normal individuals are measured on 70 items. Individuals which agree among themselves on more than 45 items are assembled into one group. The remaining individuals are sorted to find a group agreeing on at least 40 items. This process is continued until all abnormal individuals are classified, revealing eight groups.

ZUBIN, J. (1938b). "Socio-biological types and methods for their isolation." *Psychiatry* 1, 237–247. A group of 68 schizophrenic patients was matched with a group of 68 normal individuals, and each group was given a personality inquiry form consisting of 70 items. The normals were more similar to each other on average than the abnormals, where similarity between two individuals is the proportion of similar responses over the 70 items. Groups of individuals similar among themselves were analyzed to detect common response patterns. In this way, six subgroups of abnormals and three subgroups of normals were established.

Archaeology and Anthropology

BOYCE, A. J. (1969). "Mapping diversity," in *Numerical Taxonomy*, Cole, A. J. ed., Academic, New York. A number of average-linkage clustering techniques are evaluated by application to 20 skulls of apes. It was found necessary to standardize the measurements for each ape to avoid size effects. The various techniques give only slightly different clusters.

HODSON, F. R. (1969). "Searching for structure within multivariate archaeological data." World Archaeol. 1, 90–105. Average-linkage cluster analysis is applied to two sets of data. The first consists of 50 assemblages of stone tools from southwestern France and central Europe. The number of tools in the assemblages ranges from 127 to over 4000. The tools are divided, by expert judgement, into 46 types, and the data used in clustering are then the proportions of each type in each assemblage. Similarity between assemblages is measured by euclidean distance computed on the square root of the percentages. The average-linkage analysis suggests eight clusters of assemblages, which are closely related to groups already hypothesized. Three distinct groups, also conforming to the existing taxonomy, are visually apparent when the first two principal components are plotted.

The second set of data consists of spectrographic measurements of metal components in 100 copper tools. The percentages of the elements Cu, Sn, Pb, As, Sb, Ag, Ni, Bi, Au, Zn, Co, and Fe are estimated in each tool. Since many of the percentages are zero and variability is quite different for the different metals, a standardized measure of distance is necessary. The 16 groups obtained agreed reasonably well with geographical clustering of the tools.

HODSON, F. R. (1970). "Cluster analyses and archaeology. Some new developments and applications." World Archaeol. 1, 299-320. Four clustering techniques are

applied to a set of 30 iron age fibulae (broaches) mainly from a cemetery near Berne. Three angles and 10 dimensions are measured on each broach. The dimensions are expressed as proportions of total length so that overall size has no effect. The proportions are logged and standardized to unit variance, and then euclidean distance is used to measure dissimilarity between pairs.

The single-linkage algorithm gives two distinct clusters of six and seven objects, but other objects are added one at a time to these central groups in a characteristic chaining pattern, which make it difficult to define a working taxonomy. The average linkage algorithm "prevents the formation of chain clusters and provides the kind of structure that is useful in taxonomy. However, in doing so, it may force the units into an overly arbitrary framework." In particular, two similar units may be widely separated by the clustering. A double-linkage algorithm is a generalization of a single-linkage algorithm in which, approximately, each object is linked to the two objects closest to it. Overlapping clusters are the outcome of this algorithm. These differ only slightly from the single-linkage clusters. Finally, a version of the K-means algorithm produces partitions of various sizes. The correct partition size was not indicated by a sharp drop of within-cluster sum of squares; six clusters were nevertheless suggested. An attraction of the K-means technique is that it works directly on the data matrix rather than with distances, and so it saves computation time and produces interesting summary statistics.

HODSON, F. R., KENDALL, D. G., and TAUTU, P., eds. (1971). Mathematics in the Archaeological and Historical Sciences, University Press, Edinburgh. This "Proceedings of the Anglo-Romanian Conference" contains many relevant articles divided into the areas taxonomy, multidimensional scaling, and seriation and evolutionary tree structures in historical and other contexts. Rao clusters Indian caste groups, using Mahalanobis distance based on physical measurements. Hodson uses K-means on 500 ancient handaxes. Rowlett and Pollnac reduce 104 measurements, at 77 archaeological sites of Marnian cultural groups, to three factors, which they use to generate four clusters of sites. Kidd uses gene frequencies to reconstruct evolutionary histories of cattle. Kruskal, Dyen, and Black use cognation between words for 200 meanings in 371 Malayo-Polynesian languages to reconstruct the evolutionary tree for the languages. Buneman, Haigh, and Nita (in separate articles) consider evolutionary sequences for ancient hand-copied manuscripts.

WEINER, J. S., and HUIZINGER, J., eds. (1972). The assessment of population affinities in man, Oxford U. P., New York. A collection of papers including various ways of measuring distance between human populations and various studies of human populations.

Phytosociology

CLARK, P. J., and EVANS, F. C. (1954). "Distance to nearest neighbour as a measure of spatial relationships in populations." *Ecology* 35, 445-453. For N individuals distributed at random over a large area, the distance of each individual to its nearest neighbor, averaged over all individuals is approximately normal with mean $\frac{1}{2}\sqrt{p}$ and standard deviation $0.26136\sqrt{Np}$, where p is the density of individuals. Larger-than-random values of the average distance correspond to uniform packing, whereas smaller-than-random indicate clustering.

LIETH, H., and MOORE, G. W. (1970). "Computerized clustering of species in phytosociological tables and its utilization in field work," in *Spatial Patterns and Statistical Distributions*, Patil, G. P., Pielou, E. C., and Waters, W. E. eds., Penn State Statistics Series. Measures proportion of each species in various quadrats. The species are reordered to reduce distances between neighboring species. Quadrats are similarly reordered.

WHITTAKER, R. H. (1962). "Classification of natural communities." Bot. Rev. 28, 1-239.

Miscellaneous

ABELL, G. O. (1960). "The distribution of rich clusters of galaxies." Astrophys. J. Suppl. 32, Vol. 3, pp. 211–288. Clusters of galaxies are to be inferred by examination of their projections on photographic plates. The galaxies are relatively close in projection on the plate and in brightness. That is, they satisfy the following:

- (i) Richness criterion. A cluster must contain at least 50 members that are not more than two magnitudes fainter than the third-brightest member.
- (ii) Compactness criterion. A cluster must be sufficiently compact that its 50 or more members are within a given radial distance r of its center.

2712 rich clusters are listed. These clusters are not randomly distributed over the high galactic latitudes studied, which indicates further clustering.

DYEN, I., JAMES, A. T., and COLE, J. W. L. (1967). "Language divergence and estimated word retention rate." Language 43, 150-171. The data studied consist of the words in 89 Austronesian languages for 196 meanings (nearly the same as the Swadesh list). A sophisticated probability model is employed in which it is assumed that each pair of languages is separated in time by an unknown constant (twice the time since divergence from a common ancestor), and each meaning has a different mutation rate. The waiting time to mutation is assumed exponential. The time separations and mutation rates are then estimated by maximum likelihood.

FISHER, W. D. (1969). Clustering and Aggregation in Economics, Johns Hopkins, Baltimore. A number of economic applications are discussed. An interesting special data type is the input-output table, which is handled by a "lockstep progressive merger." This is a joining algorithm which joins the two closest rows and the corresponding two columns simultaneously.

FRANK, R. E., and GREEN, P. E. (1968). "Numerical taxonomy in marketing analysis, a review article." J. Market. Res. 5, 83–98. A number of different clustering techniques and measures of similarity are illustrated on several marketing research studies. For example, 88 cities are divided into five groups by using a K-means technique, with data consisting of 14 business and demographic variables. In another study, the proportion of viewers in various age groups is used to cluster TV programs. In a brand-loyalty study, the percentages of various brands (within the three product categories beverages, coffee, and cereals) by weight were taken for 480 households. Both households and brands are clustered. Again, 100 different computer models were characterized by 12 variables such as word length, execution time, and transfer rate. In another study, the basic data consisted of a zero-one matrix in which each physician is classified as a light or heavy reader of each of 19 medical journals.

GORONZY, F. (1970). "A numerical taxonomy on business enterprises," in *Numerical Taxonomy*, Cole A. J., ed., Academic, New York. A questionnaire is

completed by 50 firms, some questions dealing with fixed assets, others with productivity, others with labor statistics. To reduce size effects, average linkage is applied to the array of correlations between firms, yielding four clusters.

KAISER, H. F. (1966). "An objective method for establishing legislative districts." *Mid. J. Polit. Sci.* 10, 200-213.

KING, B. F. (1966). "Market and industry factors in stock price behavior." J. Bus. 39, 139-190. Clusters of stocks are obtained by using a joining algorithm on stock price data.

MILLER, G. A. (1969). "A psychological method to investigate verbal concepts." J. Math. Psychol. 6, 169–191. The data are obtained directly from 50 Harvard students, who were asked to divide 48 common nouns into piles according to similarity of meaning. The number of piles ranged from 6 to 26. Similarity between two nouns is measured by the number of times they are sorted into the same pile. If each student partitions the nouns consistently with some common tree, this measure of similarity corresponds to an ultrametric. The single- and complete-linkage algorithms recovered very similar clusters. The complete-linkage method suggests five clusters of nouns, living things, nonliving things, quantitative terms, social interaction, and emotions.

The correlations between the original similarity measure and the ultrametrics corresponding to single and complete linkage were about 0.95. For random data, the corresponding correlations were about 0.25.

WEAVER, J. B., and HESS, S. W. (1963). "A procedure for nonpartisan districting—development of computer techniques." Yale Law J. 73, 288-308.

WILEY, D. E. (1967). Latent partition analysis. *Psychometrika* 32, 183–193. Each of 127 elementary school teachers divided 50 verbs into categories similar in the way in which they facilitated learning. A model is presented in which an underlying partition is postulated, and each member of a class in the partition has a set of probabilities of being assigned to the various clusters constructed by a teacher, with the set of probabilities being the same for all members of the class. The observed data matrix is thus to be approximated by the product of two matrices, which are estimated by factor analysis. The factors here are the classes in the latent partition.

Profiles

1.1 INTRODUCTION

In the crime data in Table 1.1, the categories of crime (murder, rape, robbery, etc.) will be called "variables," and the cities will be "cases." (The values in the table are directly comparable within categories.) First analyses consist of single-variable summaries such as the minimum, maximum, mean, median, mode, standard deviation, and skewness; then come single-variable plots such as histograms and normal plots, and finally, plots of the variables taken two at a time.

The profile technique simultaneously plots several variables. It is useful in giving a feeling for the numbers without commitment to any mode of analysis. It is especially useful, in clustering, in informally suggesting possible clusters of similar cases and

Table 1.1 City Crime

	Murder Mans Lauchter	RAPE	ROBBERY	ASSAUIT	BURGLARY	LARCENY	AUTO THEFT
ATIANTA	16.5	24.8	106	147	1112	905	494
BOSTON	4.2	13.3	122	90	982	669	954
CHICAGO	11.6	24.7	340	242	808	609	645
DALLAS	18,1	34.2	184	293	1668	901	602
Denver	6.9	41.5	173	191	1534	1 368	780
DETROTT	13.0	35.7	477	220	1566	1183	788
HARTFORD	2.5	8.8	68	103	1017	724	468
HONOTULU	3.6	12.7	42	28	1457	1102	637
Houston	16.8	26.6	289	186	1 509	787	697
KANSAS CITY	10.8	43.2	255	226	1494	955	765
LOS ARTELES	9.7	51.8	286	355	1902	1386	862
NEW ORIEANS	10.3	39.7	266	283	1056	1036	776
NEW YORK	9.4	19.4	522	267	1674	1392	848
PORTLAND	5.0	23.0	157	144	1530	1281	488
TUCSON	5.1	22.9	85	148	1206	756	483
WASHLINGTON	12.5	27.6	524	217	1496	1003	739

From the United States Statistical Abstract (1970) per 100,000 population.

also clusters of similar variables. It is sometimes necessary, before clustering, to decide the weights to be given to the different variables, and profiles may suggest reasonable weights.

Profiles are best described as histograms on each variable, connected between variables by identifying cases (usually the case name is ignored in plotting a single histogram). As with other plotting techniques, the imprecise objectives of the profiles technique make it difficult to give completely explicit instructions for constructing profiles. There seems to be an unavoidable subjective element in the scaling and positioning of the variables. Three techniques are described: The first is an iterative one which demands judgement in rescaling and repositioning the variables; the second uses ranks to solve the scaling problem and a measure of complexity of profiles to be minimized in ordering the variables; the third uses the first two eigenvectors of the data matrix.

1.2 PROFILES ALGORITHM

- STEP 1. Choose a symbol for each case, preferably only one or two characters and preferably mnemonic so that the case can readily be identified from its symbol.
- STEP 2A. For each variable, plot the cases along a horizontal line, identifying each case by its symbol. If a number of cases have identical values, their symbols should be placed vertically over this value as in a histogram.
- STEP 2B. The horizontal scale for each variable is initially set so that the minima for different variables coincide and the maxima coincide, approximately.
- STEP 2c. The vertical positions of the horizontal scales for each variable are assigned so that "similar" variables are in adjacent rows. This may be a subjective decision, or more formal measurements of similarity between variables such as correlation might be used.
- STEP 3. A profile for each case is drawn by connecting the symbols for the case in the various horizontal scales, one for each variable. For many cases, drawing all the profiles gives you spaghetti. So just draw a few at a time, with different sets of profiles on different copies of the horizontal scales, or draw different sets in different colors.
- STEP 4. Rescale and reposition the variables to make the case profiles smoother. For example, minimize the number of crossings of profiles. An important option in this step is to reverse a variable, using a negative scale factor.
- STEP 5. Clusters of cases will correspond to profiles of similar appearance, and clusters of variables will be positioned closely together. The final scaling of the variables might be an appropriate weighting in later distance calculations, and several variables positioned close together might each be down-weighted. Finally, transformations of the variables might be suggested.

1.3 PROFILE OF CITY CRIME

STEP 1. Two symbols will be used for each city, although a single symbol code is possible for 16 cases. There are six ambiguities in a first-letter code, but the two-letter

code consisting of the first and last letter in each name, except for two-name cities where it consists of the first letters in the two names, is unambiguous.

ATLANTA	AA	BOSTON	BN
DENVER	DR	DETROIT	DT
HOUSTON	HN	KANSAS CITY	KC
NEW YORK	NY	PORTLAND	PD
CHICAGO	CO	DALLAS	DS
HARTFORD	HD	HONOLULU	HU
LOS ANGELES	LA	NEW ORLEANS	NO
TUCSON	TN	WASHINGTON	WN

STEP 2. The initial scales appear in Table 1.2. A 20-cell histogram is drawn for each variable. It is not necessary to agonize at this stage over the scaling or positioning of the variables. Grossly rounded minima and maxima are adequate. The periods marking the boundaries of the cells are useful in visually separating the symbols.

Table 1.2 Initial Profiles of City Crime

MURDER	o HD.BN.PD .DRNY.LA CO.WN.DT .AA.DS HU TN NO KC HN	20
RAPE	o	50
ROBBERY	o .Hu.Hd.AA.EN FD.DS KC.HNCO. DT TN DR NO IA NY WN	500
assault	o HUBN .AAHN.DR DT.CO.NY.NO.DS IA HD PD KC TN WN	400
BURGIARY	oj j	000
LARCENY	500 . BN.HD.TN HNAAKC NO.HUDT. PD.DR.IA 1 CO DS WN NY	500
AUTO THEFT	o]	000

- STEP 3. Profiles are drawn for selected cities (Figure 1.1). It will be seen that there is a distinct low-personal-crime group (HD, BN, PD, HU, and TN) and that this group is also low, though less distinctly, in property crime. Except for robbery and murder, LA is high on most crimes. The cities WN, DT, and NY have a similar pattern, moderate except in robbery.
- STEP 4. Burglary needs rescaling to range from 500 to 2000. Auto theft needs rescaling to range from 500 to 1000. This will bring the low-crime groups into coincidence on all variables. A slight increase in smoothness of profiles is obtained by

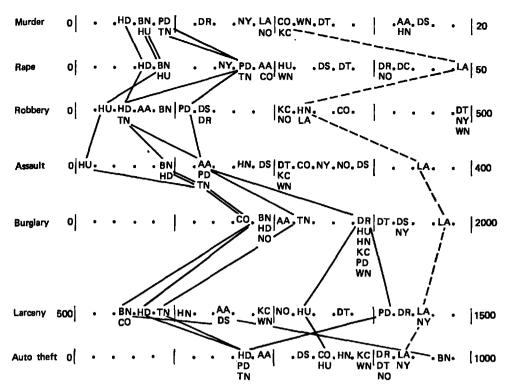


Figure 1.1 Initial profiles of city crime.

Table 1.3 Rescaled Crime Data

	MURDER	RAPE	Assaute	ROBBERY	BURGLARY	LARCENY	AUTO THEFT
HARTFORD	-	-	-	-	-	-	-
TUCSON	-	•	-	-	-	-	*
BOSTON	-	-	-	-	-	-	+
HONOIUIU	-	-	-	-	•	•	•
PORTLAND	-	•	-	-	•	+	-
ATIANTA	+	•	-	-	-	•	•
CHICAGO	•	•	•	•	•	-	•
DENVER	-	+	•	-	•	+	•
NEW ORIEANS	•	+	•	•	-	•	•
Kansas City	•	•	•	•	•	•	•
DALLAS	+	•	•	-	•	•	•
HOUSTON	+	•	•	•	•	-	•
DETROIT	•	•	•	+	•	•	•
VIASHINGTON	•	•	•	+	•	•	•
NEW YORK	•	•	•	+	•	+	•
LOS ANGELES	•	+	+	•	+	+	•

In each crime category, cities are divided into three clusters, low, average, and high denoted by -, \cdot , and +, respectively. (See Table 1.2 for the basis of the clusters.)

interchanging robbery and assault, and this is good on outside grounds because robbery is both a personal and property crime and should be the border between the personal and property variables.

STEP 5. The histograms for each variable seem to be multimodal (an easy thing to be deceived about for a small number of cases). There is a very pronounced low-personal-crime cluster, which fragments for property crimes. The final scales suggest the following weights for variables: murder (50), rape (20), robbery (2), assault (2), burglary (1), larceny (1), and auto theft (1).

It would be worthwhile to cluster cities separately on personal and property crimes to check for discordances between the clusterings.

A complete rescaling of each variable could be effected by measuring high, average, or low in each crime category. This procedure is suggested by the three modes appearing in nearly every category. There is no suggestion that a log transformation (almost routine for rate data like this) would be useful. The rescaled data are given in Table 1.3.

1.4 RANK PROFILES ALGORITHM

Preliminaries. A data matrix $\{A(I,J), 1 \le I \le M, 1 \le J \le N\}$ is given with M cases and N variables. The rank profiles algorithm transforms the values of each variable to ranks and in this way solves the scaling problem. (The solution is a draconian one, since the multimodality characteristic of well-clustered variables is not visible when the variables are transformed to ranks.) The second important decision is the positioning of the variables. For a given order of variables, define a crossing to take place if A(I,J) > A(K,J) but A(I,J+1) < A(K,J+1). The total number of crossings for all I, K $(1 \le I < K \le M)$ and all J $(1 \le J < N)$ is a measure of complexity of the profiles. [This measure is equivalent to $-\sum \{1 \le J < N\}$ $\tau(J,J+1)$, where $\tau(J,J+1)$ denotes Kendall's rank correlation τ between variables J and J+1.] The algorithm orders the variables to minimize the total crossings. Maurer suggested some parts of this algorithm.

- STEP 1. Define a name for each case $I (1 \le I \le M)$.
- STEP 2. To avoid ties, take a very small random number U and add $U \times I$ to each data value A(I, J). Then define R(K, J), for $1 \le K \le M$, $1 \le J \le N$, to be the name of the case which is greater than exactly K 1 of A(I, J) $(1 \le I \le M)$.
- STEP 3. Define a distance D(J, K) between each pair of variables J, K for $1 \le J, K \le N$, to be the number of pairs I, L with $1 \le I, L \le M$ and A(I, J) > A(L, J) and A(I, K) < A(L, K).
- STEP 4. The array NR states for each variable which variable is to its right in the final order. Initially, NR(J) = 0 $(1 \le J \le N)$. It is convenient to invent bounding variables 0 and N+1 with D(0,J) = D(N+1,J) = 0.
- STEP 5. Find variables J(1) and J(2) whose distance is minimum. Set NR(0) = J(1), NR[J(1)] = J(2), NR[J(2)] = N + 1, NR(N + 1) = 0.

STEP 6. For each variable I ($1 \le I \le N$) with NR(I) = 0 and for each variable $J(0 \le J \le N)$ with $NR(J) \ne 0$, compute E(I, J) = D(I, J) + D[I, NR(J)] - D[J, NR(J)]. This is the increase in sum of distances due to adding I between J and NR(J). The quantities E(I, J) need not all be recomputed after each addition.

STEP 7. Find I, I minimizing E(I, J). Set NR(I) = NR(J), then set NR(J) = I. If any variables $I(1 \le I \le N)$ with NR(I) = 0 remain, return to Step 6.

STEP 8. Define K(1) = NR(0), and for each J $(2 \le J \le N)$ define K(J) = NR[K(J-1)]. Then $K(1), K(2), \ldots, K(N)$ is the final order of the variables.

STEP 9. The transformed array is printed as follows:

$$\{R[1, K(L)], 1 \le L \le N\} \qquad \text{(first row)}$$

$$\{R[2, K(L)], 1 \le L \le N\} \qquad \text{(second row)}$$

$$\vdots$$

$$\{R[I, K(L)], 1 \le L \le N\} \qquad \text{(Ith row)}.$$

The rank profiles algorithm, applied to the crime data, is shown in Table 1.4. Note that the procedure for ordering variables does not guarantee that the number of crossings is minimal. For small numbers of variables (<7) it is feasible to minimize exactly by examining all permutations.

	MURDER	RAPE	ROBBER	Ý.	assauli	r 3	BURGLAR	r 1	ARCEN	Y AU	TO THE	FT
HARTFORD	HD H	H CH C	D HU		HU		CO		CO		HD	HD
HONOLULU	HU	HU	HD	HD	BN	BN	BN	BN	BN	BW	TN	
BOSTON	BN B	n en e	n in		HD	HD	HD	HD	HD	HD	PD	
PORTLAND	PD	NY	AA		PD		NO		TN		AA	
TUCSON	TN	TN	BN	BN	AA 1		AA		HN		ds	
DENVER	DR	PD	PD		TN		TH		ds		HU	
NEW YORK	NY	CO	DR		HN		HU		AA		CO	
LOS ANGELES	IA	AA	DS		DR		KC		KC		HN	
NEW ORLEANS	NO	HN	KC		WN		WN		WN		MM	
KANSAS CITY	KC	WIN	NO		DT		HN		NO		KC	
CHICAGO	CO	DS	IA		KC		PD		HU		NO	
WASHINGTON	WN	DT	HN		CO		DR		DT		DR	
DETROIT	DT	NO	CO		NY		DT		PD		DT	
atlanta	AA	DR	ď		NO		ÐS		DR		IA	
HOUSTON	HN	KC	NY		DS		NY		IA		NY	
DALLAS	DS	IA	WN		IA		IA		NY		BN	BN

Table 1.4 Rank Profiles of Crime Data

Boston and Hartford emphasized to show that Bostonians are good, except they can't resist an unattended automobile.

The computer program given for reordering the data values is a slow one for large numbers of objects, requiring M(M-1) comparisons when an efficient sorting program takes $O(M \log M)$. The program given should not be used for M > 50.

1.5 LINEARLY OPTIMAL PROFILES ALGORITHM

Preliminaries. In drawing profiles, the scaling and positioning of the variables are determined to make the profiles for all cases as "smooth" as possible. The definition of "smooth" used in the rank profile technique is the number of crossings of the profiles. However, this technique becomes prohibitively expensive for many variables (say, more than six) and, since it only orders the variables, does not reveal clusters of very similar variables.

Another definition of smoothness requires that the profiles be as nearly linear as possible. Ideally, if A(I,J) denotes the value of the Ith case for the Jth variable $(1 \le I \le M, 1 \le J \le N)$, then

$$B(J) + C(J)A(I,J) = D(I) + E(J)F(J).$$

Here B(J) and C(J) are the scale parameters for the Jth variable, F(J) is the position of the Jth variable, and D(I) and E(I) determine the straight-line profile of the Ith case (see Figure 1.2). In fitting real data to such a model, it is necessary to define thresholds for each variable, proportional to the desired error variance of the observed values from the fitted values. An initial estimate of such thresholds is the raw variance for each variable. The weighting decision is somewhat subjective; a variable that you

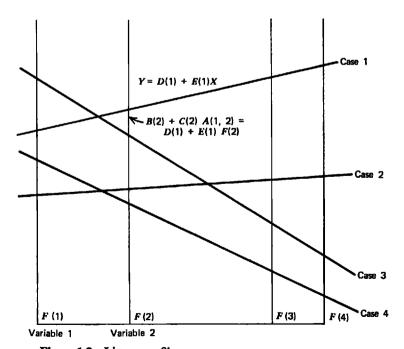


Figure 1.2 Linear profiles.

want to have little influence is given a large threshold. In the following, all variables will be presumed prestandardized to have equal thresholds.

The problem is to choose B(J), C(J), F(J), E(I), and D(I) to minimize the sum of squared errors,

$$\sum \{1 \le I \le M, \ 1 \le J \le N\} \left(A(I,J) - \frac{[E(I)F(J) + D(I) - B(J)]}{C(J)} \right)^{3}.$$

This eigenvector problem is discussed in Section 1.7. The coefficients B(J), C(J), F(J), E(I), and D(I) are not uniquely determined by the requirement that they minimize the sum of squares. Ignore the profile parameters E(I) and D(I) and concentrate on the scale and position parameters B(J), C(J), and F(J). Let $\overline{A}(J)$ denote the mean of the Jth variable, and let $\{E1(J)\}$ and $\{E2(J)\}$ denote the first two eigenvectors of the covariance matrix $(1/M) \sum \{1 \le I \le M\}$ $[A(I,J) - \overline{A}(J)][A(I,K) - \overline{A}(K)]$. Then

$$\frac{B(J)}{C(J)} = -\bar{A}(J),$$

$$\frac{F(J)}{C(J)} = E2(J),$$

$$\frac{1}{C(J)} = E1(J)$$

is a solution of the "linearly optimal" fitting problem.

Thus the variables are shifted to have mean zero, and the values for the Jth variable are divided by EI(J), the coefficient of the Jth variable in the first eigenvector. The Jth variable is positioned at E2(J)/EI(J). This technique is useful in providing precise scaling and positioning instructions, but the linearity of the model implies that the data can be represented in two dimensions, which is a rare occurrence. Of course, using the first two eigenvectors, both cases and variables may be represented on the plane, the variables by plotting EI(J) and E2(J) and the cases by plotting the corresponding eigenvectors $\sum A(I,J)EI(J)$ and $\sum A(I,J)E2(J)$. The "linearly optimal" profile technique is a new way of using the first two eigenvectors, in which the variables and cases are represented by lines rather than points. It is possible to represent the data values exactly in this new technique.

STEP 1. Prestandardize variables so that an error of size 1 is equivalent across all variables.

STEP 2. Compute the covariance matrix S,

$$S(J, K) = \frac{1}{M} \sum \{1 \le I \le M\} [A(I, J) - \bar{A}(J)] [A(I, K) - \bar{A}(K)],$$

where

$$\bar{A}(J) = \sum \{1 \le I \le M\} \frac{A(I,J)}{M}.$$

Let $\{E1(J), 1 \le J \le N\}$ be the first eigenvector of S, that solution to the equations

$$\sum \{1 \le K \le N\} S(J, K)E1(K) = CE1(J) \qquad (1 \le J \le N),$$

which maximizes C. Let $\{E2(J), 1 \le J \le N\}$ be the second eigenvector of S.

STEP 3. Replace A(I, J) by $[A(I, J) - \bar{A}(J)]/E1(J)$. Position the variable J at E2(J)/E1(J).

STEP 4. The fitted profile, for the Ith case, is the line

$$y = F1(I) + F2(I) x,$$

where

$$F1(I) = (\sum \{1 \le J \le N\} A(I, J)E1(J))(\sum \{1 \le J \le N\} E1(J)^2)^{-1},$$

and

$$F2(I) = (\sum \{1 \le J \le N\} A(I, J) E2(J)) (\sum \{1 \le J \le N\} E2(J)^2)^{-1}.$$

Thus the fitted value of the Ith case and the Jth variable is F1(I) + F2(I)E2(J)/E1(J)since the Jth variable is in position E2(J)/E1(J).

1.6 LINEARLY OPTIMAL PROFILES OF CRIME DATA

In Table 1.5, scale and position parameters are computed with thresholds equal to variances. Standardization then requires that the eigenvectors be computed on the correlation matrix of the variables. The scale for the Jth variable transforms A(I, J) to $[A(I,J) - \bar{A}(J)]/SD(J)E1(J)$ and the position is E2(J)/E1(J), where $\bar{A}(J)$ and SD(J)are the mean and standard deviation of the Jth variable. The corresponding case eigenvectors F1(I) and F2(I) determine the line y = F1(I) + F2(I)x, which corresponds to the Ith case; see Table 1.6.

Profiles based on these eigenvectors are given in Table 1.7. The corresponding point representation based on the first two eigenvectors is given in Figure 1.3. The scales are not much different from those guessed at crudely from the minima and maxima.

VARIABLE MEAN SD 1ST EIGENV 2ND EIGENV SCALE POSITION MURDER 10 5 .28 . 61 (X-10)/1.42.2 RAPE 28 12 .44 .06 (X-28)/5.20.1 ROBBERY 244 150 .38 (X-244)/57 .19 0.5 ASSAULT 196 80 .46 . 27 (X-196)/37 0.6 BURGLARY 1378 300 . 39 -.40 (X-1378)/117 -1.0 (X-1004)/87 LARCENY 1004 250 .35 -.59 -1.7 AUTO THEFT 689 150 . 31 -.12 (X-6891/46 - .4

Table 1.5 Scale and Position Based on Eigenvectors

Note: The scale divisor is the product of the standard deviation and the first eigenvector. The position is the 2nd eigenvector divided by the first.

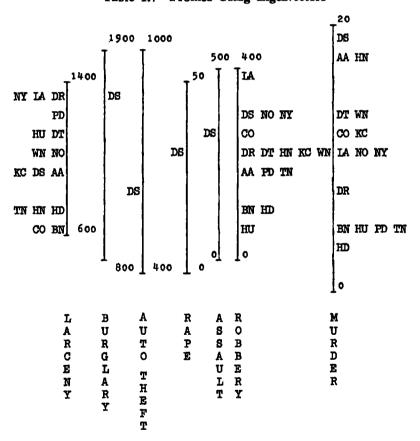
Thresholds are raw variances; the eigenvectors therefore are computed from the correlation matrix.

Table 1.6 Case Eigenvectors Determining Profiles

CASE	F1	F 2	CASE	F1	F2
ATLANTA	-1.2	1.2	HOUSTON	0.3	1.2
BOSTOM	-2.2	-0.2	Kansas City	1.1	0.2
CHICAGO	-0.9	2.2	LOS ANGELES	3.5	-1.0
DALLAS	1.2	1.3	NEW ORLEANS	0.8	0.7
Denver	1,0	-1.5	NEW YORK	2.0	-0.9
DETROIT	1.9	0.1	PORTLAND	-0.8	-1.6
HARTFORD	-3.5	2	Tucson	-2.1	-0.0
HONOLULU	-2.3	-2.0	Washington	1.2	0.6

The intercept is the first eigenvector, the slope is the second; the profile for the *I*th case is $\dot{y} = F1(I) + F2(I)x$.

Table 1.7 Profiles Using Eigenvectors



Positions and scales of variables determined by the first two eigenvectors of the correlation matrix. To avoid overwhelming you with a welter of symbols, only Dallas is recorded throughout.

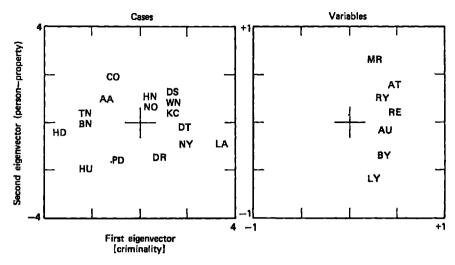


Figure 1.3 Cases and variables as points, using first two eigenvectors.

The positions of the variables are interesting; murder is separated from all other variables, assault and robbery are quite close. Possibly the crimes are ordered by increasing severity? All personal crimes are together, and all property crimes are together.

1.7 THINGS TO DO

1.7.1 Eigenvalues

The data matrix A(I, J) is to be approximated by a sum $\sum \{1 \le K \le L\} R(I, K)C(J, K)$. If the sum of squared residuals

$$\sum \{1 \le I \le M, \ 1 \le J \le N\} \ (A(I,J) - \sum R(I,K)C(J,K))^2$$

is minimized, then R(I, K) and C(J, K) satisfy the equations

$$\sum \{1 \le I \le M\} R(I, K) A(I, J) = C(J, K) \sum \{1 \le I \le M\} R^2(I, K)$$

and

$$\sum \{1 \le J \le N\} \ C(J, K) A(I, J) = R(I, K) \sum \{1 \le J \le N\} \ C^2(J, K).$$

The eigenvalues $E(K) = [\sum R^2(I, K) \sum C^2(J, K)]^{1/2}$ $(1 \le K \le L)$ are unique up to a permutation. If E(K) differs from other eigenvalues, eigenvectors $\{R(I, K), 1 \le I \le M\}$ and $\{C(J, K), 1 \le J \le N\}$ are unique up to a scale factor. Two row eigenvectors $\{R(I, K)\}$ and $\{R(I, KK)\}$ with $E(K) \ne E(KK)$ are orthogonal with $\sum \{1 \le I \le M\}$ R(I, K)R(I, KK) = 0, and similarly for two column eigenvectors. Now let $L = \min(M, N)$. Even if some two eigenvalues are equal, it is possible to write

$$A = R D C',$$

$$M \times N = M \times L L \times L L \times N$$

where R and C have orthogonal columns and D is a diagonal matrix. The eigenvalues of A are the diagonal elements of D. The row eigenvectors R are also eigenvectors of AA', and the column eigenvectors C are also eigenvectors of A'A.

For L=2, the eigenvalues E(1) and E(2) are the two largest eigenvalues of A. The fitted-data matrix $\{R(I,1)C(J,1)+R(I,2)C(J,2)\}$ may be regarded as M vectors of dimension N, the vectors $R(I,1)\{C(J,1),1\leq J\leq N\}+R(I,2)\{C(J,2),$

 $1 \le J \le N$. These vectors lie in the plane spanned by $\{C(J, 1), 1 \le J \le N\}$ and $\{C(J, 2), 1 \le J \le N\}$. Regarding the data as M points in N-dimensional space, this plane is closest to the data.

The M fitted points on the plane are obtained by orthogonal projection of the observed points onto the plane. Setting $\sum \{1 \le J \le N\}$ $C(J, 1)^2 = 1$ and $\sum \{1 \le J \le N\}$ $C^2(J, 2) = 1$, these points are (after a rotation) the points $\{[R(I, 1), R(I, 2)], 1 \le I \le M\}$. The orientation of the plane in N-dimensional space is best seen by projecting the vectors $(1, 0, \ldots, 0), (0, 1, \ldots, 0), \ldots, (0, \ldots, 1)$, corresponding to the axes, onto the plane. The ends of these projected axes are the points $\{C(J, 1), C(J, 2), 1 \le J \le N\}$. Thus plotting the two eigenvectors for each row and each column gives a view of the data from an angle where they most appear to lie in a plane (equivalently, they appear to have the largest covariance matrix from this angle). The distribution of points is determined by the row eigenvectors; the angle of view, by the column eigenvectors.

It is usually desirable to remove column means, so that the best fitting plane is not required to pass through zero but through the mean point. If the columns are measured on different scales, they should be rescaled to have variance one or to reflect a desired weighting. It is sometimes sensible with many variables, all measuring the same thing, to remove a row mean also.

1.7.2 Lines

This technique is the transpose of the profiles method. A horizontal line is drawn for each case. An upper and lower value is given for each variable, corresponding to the ends of the line. For each case, variables are plotted on the line according to their values for the case. A different symbol is used for each variable. The positioning of the cases now becomes important. Similar optimality criteria to those used in "linearly optimal profiles" might determine the positioning of the cases.

1.7.3 Bilines

In the profiles and lines methods, first the variables are represented as parallel lines with the cases as general lines, the cases are then represented as parallel lines with the variables as general lines. Obviously, both cases and variables might be general lines laid down on a plane. Two marks are set on each variable line. The value of a case is then determined by the intersection with a case line, relative to these marks. Theoretical and computational aspects need work.

1.7.4 Faces

Each case is a face and the variables are features such as mouth, nose, eye position, and eye width. Extreme values of variables are assigned to extreme values of features. This technique was invented by Chernoff [1973].

1.7.5 Boxes

If three variables are measured on each case, the case may be represented by a box whose three sides correspond to the three variables. This is a blander version of "faces" that is easy to implement on a printer using the symbols |, —, and /. For more than three variables, divide the variables into three similar sets and assign each set of variables to a side of the box. The visual effect is of a box with strings wrapped around it parallel to the edges.

1.7.6 Block Histograms

A block histogram may be computed in two (or more) dimensions by finding the smallest rectangular block that contains (say) 20 points, then the smallest rectangular block that contains 20 of the remaining points (discounting area included in the first block), and so on.

REFERENCES

CHERNOFF, H. (1973). Using Faces to Represent Points in k-Dimensional Space Graphically. J. Am. Stat. Ass. 68, 361-368. Six measurements of the dimensions of 88 fossil specimens of the Nummulitidae shellfish group were represented by the width and height of a face, the eccentricity of the upper face, the vertical position and curvature of the month, and the size of the eyes. One face is given for each specimen. A compelling clustering of the 88 specimens into 3 distinct groups is then possible by visual sorting of the drawn faces.

TRYON, R. C., and BAILEY, D. C. (1970). Cluster Analysis, McGraw-Hill, New York. In this book there is a technique of representing correlations between variables by profiles, with one profile giving the correlations between a single variable and all other variables. Variables are permuted to smooth the profiles, and similar profiles signal clusters of variables.

PROGRAMS

IN reads a data matrix, with row and column labels. The data format is specified by the user.

OUT prints data matrix with row and column labels.

PROF draws profiles, given positions and scales for the variables.

RANK prints row labels in the order of each variable, one column of labels for

each variable.

LINE represents each case by symbols distributed over an interval, one symbol

for each variable.

PLOT plots several pairs of variables on the same page.

EIGEN computes first two row and column eigenvectors of a matrix using a

crude but quick iterative method.

HIST computes and prints univariate histograms.

KC discretizes a value, used in plotting. RANGE finds minimum and maximum of vector. PMANY draws many pairwise plots on the same page. TABL computes contingency table between two variables.

MODAL finds blocks of minimum area containing given number of points.

PLACE used by MODAL for identifying blocks already removed. DENSITY used by MODAL to evaluate a given rectangular block.

BDRAW draws bivariate block histograms.

TRYI finds best set of multivariate blocks, changing one at a time.

PICK changes a given side of a given block.

LOB computes log likelihood for a given set of blocks.

MHIST represents multivariate block histogram.

LBOX draws vertical, horizontal, or sloped line in constructing boxes.

BOXES represents each case as a box, with several variables assigned to each

side of the box.

```
SUBROUTINE IN(A,M,N)
C.... READS IN BORDERED ARRAY IN STANDARD FORMAT
C.... M = NUMBER OF ROWS, INCLUDING ONE ROW FOR COLUMN LABELS
C.... N = NUMBER OF COLUMNS, INCLUDING ONE COLUMN FOR ROW LABELS
C.... A = BORDERED ARRAY, FIRST ROW CONTAINS TITLE AND COLUMN LABELS,
FIRST COLUMN CONTAINS TITLE AND ROW LABELS.

C.... DATA SHOULD BE ARRANGED AS FOLLOWS....

C.... FIRST CARD TITLE, NUMBER OF ROWS, NUMBER OF COLUMNS, IN FORMAT (A5,215)

THE NUMBERS OF ROWS AND COLUMNS REQUESTED IN THE SUBROUTINE CALL MAY BE

LESS THAN THESE NUMBERS.
C.... SECOND CARD FORMAT FOR ONE ROW OF THE DATA MATRIX, FIRST WORD BEING THE C ROW LABEL. FOR EXAMPLE, (A5, 2F10.6).
C.... THIRD CARD(S)
                         COLUMN LABELS IN FORMAT 16(1X,A4)
C.... NEXT CARDS DATA ACCORDING TO FORMAT IN SECOND CARD
       DIMENSION A(M.N)
       DIMENSION FMT(20)
     1 FORMAT(1X, A4, 215)
        WRITE(6,6)A(1,1)
        READ(5,1) A(1,1), MM, NN
     6 FORMATIZOH READING DATA MATRIX
        WRITE(6,7) MM,M
     7 FORMAT(15H ACTUAL ROWS = , 15, 18H REQUESTED ROWS = , 15)
        WRITE(6,8) NN,N
     B FORMAT(18H ACTUAL CDLUMNS = , 15, 21H REQUESTED COLUMNS = ,15)
        IF(M.GT.MM.OR.N.GT.NN) RETURN
        READ(5,2)(FMT(I),I=1,20)
     2 FORMAT(2DA4)
        READ(5,4)(A(1,J),J=2,N)
     4 FORMAT(16(1X,A4))
        WRITE (6,9) (A(1,J),J=2,N)
     9 FDRMAT(1X,10(8X,A4))
       DO 20 I=2,M
READ(5,FMT)(A(I,J),J=1,N)
        WRITE(6,5)(A(I,J),J=1,N)
     5 FORMAT(1X, A4, 10G12.4/(5X, 10G12.4))
    20 CONTINUE
        RETURN
        END
       SUBROUTINE OUT (A, M, N)
÷....
                                          PRINTS OUT A BORDERED ARRAY A.
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C .... A = M BY N BORDERED ARRAY
       DIMENSION A(M,N)
       WRITE(6,1) A(1,1)
     1 FORMAT(6H ARRAY, 1X, A4)
       WRITE(6,2)(A(1,J),J=2,N)
     2 FORMAT(10X,5A10,2X,5A10)
       DO 20 I=2,M
       WRITE(6,3)(A(I,J),J=1,N)
     3 FORMAT(1X, A4, 5X, 5F10.4, 2X, 5F10.4/(10X, 5F10.4, 2X, 5F10.4))
```

20 CONTINUE RETURN END

```
SUBROUTINE PROF(M,N,A,B)
C . . . . .
                                                                                            .. 20 MAY 1973
C.... PROFILE OF BORDEREO ARRAY A, ACCORDING TO SCALE AND POSITION VECTOR B
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... A = M BY N BORDERED ARRAY
C.... B = 3 BY N POSITION VECTOR
              A(1,J) IS PLOTTED AT (B(3,J) , B(1,J)+B(2,J)+A(1,J) )
OIMENSION A(M,N),8(3,N)
OIMENSION A(25)
        DATA BB, BL/1H*, 1H /
DATA YMIN, YMAX, XMIN, XMAX/4*0./
C.... MINIMUM AND MAXIMUM
        00 10 I=2,M
00 10 J=2,N
KK=I+J-4
        11,1)A+(1,5)8+(1,1)8=YY
        XX=B(3,1)
IF(YY.LT.YMIN.OR.KK.EQ.O) YMIN=YY
IF(YY.GT.YMAX.DR.KK.EQ.O) YMAX =YY
IF(XX.LT.XMIN.OR.KK.EQ.O) XMIN=XX
        IF(XX.GT.XMAX.OR.KK.EQ.O) XMAX=XX
    10 CONTINUE
C.... SET SCALES
NP=M/20+1
        FY=(NP+50)/(YMAX-YMIN+.000D01)
        FX=25/(XMAX-XMIN+.000001)
C.... WRITE TITLES
     WRITE(6,1) A(1,1)
1 FORMAT(13H1PROFILES OF ,A4)
        WRITE(6,21
      2 FORMAT (32HOVARIABLE
                                       MINIMUM
                                                       MAXIMUM }
        DO 30 J=2,N
Y1=(YMAX-B(1,J))/B(2,J)
        Y2=(YMIN-B(1,J))/B(2,J)
        WRITE(6,3) A(1,J), Y2, Y1
      3 FORMAT(3X, A4, 4X, 2F10.4)
    30 CONTINUE
C.... WRITE PROFILES
        IL=-1
    45 IL=1L+1
C... INITIALIZE LINE

00 40 I=1,25

40 AA(I)=BL
        DO 43 J=2,N
         JJ=(8(3,J)-XMIN)#FX+1
         AA(JJ)=BB
43 IF(IL.EQ.O) AA(JJ)=A(1,J)
IF(IL.EQ.O) GO TO 44
C.... FILL IN VALUES ON LINE
        DO 41 J=2,N
        K=(B(1,J)+B(2,J)+A(1,J)-YMIN)+FY+1
IF(K.NE.IL) GO TO 41
         JJ=(8(3,J)-XM[N]+FX+1
         IF(JJ.LT.1.OR.JJ.GT.25) GO TO 41
        AA(JJ)=A(I,1)
        (1,1)A=(LL)AA
    41 CONTINUE
44 CONTINUE
        WRITE(6,5) IL, (AA(I), I=1,25)
      5 FORMAT(1X,13,1X,25(1X,A4))
        IF(IL.LE.NP+50) GO TO 45
        RETURN
        EN0
```

```
SUBROUTINE RANK (M, N, A, SC)
                                                                             .....20 MAY 1973
C . . . . . .
C.... ORDERS EACH COLUMN OF A AND REPLACES VALUES BY ROW NAMES
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... A = M BY N BORDERED ARRAY
C.... SC = M BY 1 SCRATCH VECTOR
DIMENSION A(M,N),SCIM)
OO 20 J=2,N
C... ORDER VALUES OF THE JTH COLUMNS
DO 10 I=2,M
SC(I)=A(I,I)
DD 10 II=2,I
IP(A(I,J).GE.A(II,J)) GD TO 10
       C=A(I,J)
        (L,II)A=(L,I)A
        A(11, J)=C
       C=SC(I)
        SC(1)=SC(11)
       SC(II)=C
   10 CONTINUE
C.... REPLACE VALUES BY CORRESPONDING ROW NAMES
   DO 11 I=2,M
11 A(I,J)=SC(I)
    20 CONTINUE
C..... WRITE ARRAY OF NAMES
       WRITE(6,1) A(1,1)
     I FORMAT(18H1RANKING OF ARRAY , A4)
     WRITE(6,2)(A(1,J),J=2,N)
2 FORMAT(25(1X,A5))
       WRITE(6,3)
     3 FORMAT(1HO)
       DO 40 I=2, M
WRITE(6, 2)(A(I, J), J=2, N)
    40 CONTINUE
       RETURN
        END
```

```
SUBROUTINE LINE(M, N, A, R, S)
                                                                                            ....20 MAY 1973
L . . . . .
C.... PRINTS EACH CASE AS A SET OF SYMBOLS, ONE FOR EACH VARIABLE
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... A = BORDERED DATA MATRIX
C.... R = N BY 2 ARRAY. FOR ITH VARIABLE, R(I,1) IS MAPPED INTO 0,
C R(I,2) IS MAPPED INTO 100.
C IF R(1,1) = 0 ON INPUT, THE PROGRAM COMPUTES THE ARRAY R.
C.... S = N BY 1 SYMBOL ARRAY, COMPUTED IN PROGRAM IF S(1)=0 ON INPUT.
        DIMENSION A(M,N),R(N,2),S(N)
DIMENSION SA(36),AA(105)
        DATA P1, P2/1H(,1H)/
        DATA SA/1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9,
                    1HA,1HB,1HC,1HD,1HE,1HF,1HG,1HH,1HI,
1HJ,1HK,1HL,1HM,1HN,1HO,1HP,1HQ,1HR,
                    1HS.1HT.1HU.1HV.1HW.1HX.1HY.1HZ.1H./
C.... COMPUTE RANGES AND SYMBOLS IF REQUESTED IF(R(1,1).NE.0) GO TO 30
        DD 20 J=2,N
R(J,1)=A(2,J)
        R(J,2)=A(2,J)
        DO 21 I=2,M
         IF(A(I,J).LT.R(J,1)) R(J,1)=A(I,J)
    21 IF(A(I,J).GT.R(J,2)) R(J,2)=A(I,J) IF(R(J,1).EQ.R(J,2)) R(J,1)=R(J,1)-1
     20 CONTINUE
    30 IF(S(1).NE.O) GO TO 40
        DO 31 J=2,N
JJ=J-((J-1)/35)*35
    1J=JJ-1
31 S(J)=SA(JJ)
    40 CONTINUE
C.... TITLES
        WRITE(6.2) A(1.1)
      2 FORMAT(21HILINE PRINT OF ARRAY ,A4)
        WRITE(6,3)
      3 FORMAT(40HOVARIABLE SYMBOL
                                                         MIN
                                                                      MAX
        WRITE (6,4) (A(1,J),S(J),R(J,1),R(J,2),J=2,N)
      4 FORMAT(3X, A4, 5X, A1, 5X, 2F10.4)
        WRITE(6,5)
     5 FORMAT(1HO)
C.... PRINT CASES
    DO 49 I=2, M
DO 41 J=1,105
41 AA(J)=$A(36)
        DO 42 J=2.N
         JJ=100*(A(I,J)-R(J,1))/(R(J,2)-R(J,1))+3
    44 IF(JJ.LT.3) JJ=1
IF(JJ.GT.103) JJ=105
         IF(AA(JJI.EQ.SA(361) GO TO 42
         IF(JJ.LT.51) JJ=JJ+1
        IF(JJ.GT.51) JJ=JJ-1
IF(JJ.NE.51) GO TO 44
    42 AA(JJ)=S(J)
        AA{21=P1
        AA(104)=P2
        WRITE(6,1) A(I,1), (AA(J),J=1,105)
      1 FORMAT(1X,A4,5X,105A1)
    49 CONTINUE
        RETURN
        END
```

```
SUBROUTINE PLOT(X,NN,N)
c . . . . .
C.... PLOTS A BORDERED 3 BY N ARRAY,X.

THE NAMES OF THE POINTS ARE IN THE FIRST ROW, THE X VALUES ARE IN THE SECOND ROW. THE Y VALUES ARE IN THE THIRD ROW.

SEVERAL ARRAYS MAY BE PLOTTED ON THE SAME PAGE BY SETTING N NEGATIVE.

SET RANGES BY CALLING PLOT WITH N = 0.
C .... NN = DIMENSION OF ARRAY.
C.... N = CONTROL PARAMETER.
C.... X = 3 BY N ARRAY.
C.....
                                     DIMENSION X(3,NN)
DIMENSION T(20),A(51,26)
DATA B,IC/1H,O/
DIMENSION E(7.10)
C... INITIALIZE PLOT MATRIX A.
        IF(IC.NE.O) GO TO 15
        IU=51
        JU=26
        DO 11 I=1,IU
        DD 11 J=1,JU
    11 A(1,J)=B
    15 CONTINUE
C.... SET RANGES
        IF(N.NE.O.AND.IC.NE.O) GO TO 20
        X1=X(2.2)
        X2=X(2,3)
        Y1=X(3,2)
        Y2=X(3,3)
        IF(NN.EQ.3) GO TO 20
        DO 10 J=2,NN
        IF(X(2,J).LT.X1) X1=X(2,J)
IF(X(2,J).GT.X2) X2=X(2,J)
IF(X(3,J).LT.Y1) Y1=X(3,J)
        IF(X(3,J).GT.Y2) Y2=X(3,J)
    10 CONTINUE
        IF(N.EQ.O) RETURN
   20 CONTINUE
C... PLOT POINTS IN X ARRAY ON A MATRIX
        DO 21 J=2,NN
        II=(X(2,J)-X1)*(JU-1)/(X2-X1)+1
        IF(II.LT.1) II=1
        IF(II.GT.26) II=26
        JJ=(X(3,J)-Y1)+(IU-1)/(Y2-Y1)+1
        IF(JJ.LT.1) JJ=1
IF(JJ.GT.51) JJ=51
        JJ=52-JJ
    21 A(JJ,II)=X(1,J)
IC=IC+1
E(1,IC)=X(1,1)
        E(2,IC)=X(2,1)
        E(3,1C)=X1
        E(4,1C)=X2
        E(5,1C)=X(3,1)
        E(6,IC)=Y1
        E(7,IC)=Y2
        IF(N.LT.O) RETURN
C... PRINT A MATRIX
       WRITE(6,1)
     1 FORMAT(
      *62H1PLOTS OF ARRAY X-AXIS
                                                         MAX
                                                                   Y-AXIS
                                                                                MIN
                                                                                           MAXI
     WR(TE(6,2)((E(1,J),[=1,7),J=1,IC)
2 FORMAT(11X,A4,2X,A4,2F10.4,2X,A4,2F10.4)
       WRITE (6,4)
     4 FORMAT(1HO)
       WRITE (6,6)
     6 FORMAT(10X,106(1H-1)
       WRITE(6,5)((A(I,J),J=1,26),I=1,51)
     5 FDRMAT(10X,1H', 26A4,1H')
       WRITE (6,6)
       IC=0
       RETURN
       END
```

```
SUBROUTINE EIGEN(M,N,A,X,Y)
C . . . . . .
                                                                          ......20 MAY 1973
C.... FINDS FIRST TWO EIGENVECTORS OF A BY CRUDE BUT QUICK ITERATION
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... A = BORDERED ARRAY
C.... X = BORDERED 3 BY M ARRAY, FIRST TWD ROW EIGENVECTORS
C.... Y = BORDERED 3 BY N ARRAY, FIRST TWD COLUMN EIGENVECTORS, MSSQ =1.
       DIMENSION A(M,N),X(3,M),Y(3,N)
       DIMENSION BB(6)
C.... INSERT X AND Y BDRDERS
        DATA BB/4HEIGC, 4HCDL1, 4HCOL2, 4HEIGR, 4HRDW1, 4HROW2/
       DD 12 J=1.3
       Y(J,1)=BB(J)
    12 X(J,1)=BB(J+3)
DO 10 J=2,N
    10 Y(1,J)=A(1,J)
       DO 11 I=2,N
    11 X(1, I)=A(I, 1)
C.... INITIALIZE COLUMNS
       DD 20 J=2,N
DD 20 K=2,3
    20 Y(K,J)=0
DO 21 J=2,M
DD 21 K=2,3
    21 X(K,J)=J++K
       DO 60 IT=1,5
C.... ITERATE ON Y
       DO 32 K=2,3
       KK=5-K
       DD 50 J=2.N
        Y(K, J)=0
       DO 50 1=2.M
    50 Y(K,J)=Y(K,J)+(A(1,J)-X(KK,1)+Y(KK,J))+X(K,1)
C .... STANDARDIZE Y
       SY=0
       DO 30 J=2,N
    30 SY=SY+Y(K,J)++2
       SY=(SY/(N-1))++(0.5)
    DO 31 J=2,N
31 IF(SY.NE.O) Y(K,J)=Y(K,J)/SY
       S X=0
       DO 33 J=2,M
    33 SX=SX+X(K,J)++2
   DO 34 J=2,M
34 IF(SX.NE.O) X(K,J)=X(K,J)*SY/SX
32 CONTINUE
C.... ITERATE X
       DO 40 K=2.3
       KK=5-K
       DO 40 I=2,M
X(K,I)=0
       DO 40 J=2,N
    40 X(K,1)=X(K,1)+(A(1,J)-X(KK,1)+Y(KK,J))+Y(K,J)/(N-1)
    60 CONTINUE
       RETURN
        END
```

```
SUBROUTINE HIST(N, X, T, X1, X2, NI, P)
C-----
                                                      C.... SUBROUTINE FOR PRINTING HISTOGRAMS
C.... N = NUMBER OF DATA VALUES
C.... X = VECTOR TO BE COUNTED
C.... T = TITLE
C.... X1 = MINIMUM
C.... X2 = MAXIMUM
C IF X1.LE.X2 THESE ARE COMPUTED FROM X
C.... NI = NUMBER OF INTERVALS( O IS CHANGED TO 100)
C.... P = DIVISOR FOR VERTICAL SCALE( O CHANGED TO 1.)
        DIMENSION X(N)
        DIMENSION A(102), AA(102)
DATA B,C,H,V/1H ,1HO,1H_,1Hi/
        IF(P.EQ.0) P=1
        IF(NI.EQ.0) NI=100
    CALL RANGE(X,N,X1,X2)
DD 20 I=1,102
20 A(I)=0
C.... COMPUTE FREQUENCIES
        DD 30 J=1,N
K=KC(X(J),X1,X2,101)
    30 A(K)=A(K)+1
        L=0
        L=100/NI
IF(L.LT.1) L=1
C.... ADJUST FOR INTERVALS
        DD 40 J=1,N,L
JU=J+L-1
        5=0
        IF(JU.GT.N) JU=N
        DO 41 K=J, JU
    41 S=S+A(K)
        DD 42 K=J.JU
    42 A(K)=S/(P+L)
    40 CONTINUE
C.... FIND MAXIMUM VALUE
        AM=0
        DO 50 K=1,102
   50 IF(A(K).GT.AM) AM=A(K)
C.... PRINT HISTOGRAM
        MM=AM
        WRITE(6,1) T
     1 FORMAT(1H ,A4, * HISTOGRAM')
WRITE(6,2)
     2 FORMAT(1H+,19X,102(1H_))
        DO 60 K=1, MM
        AA(1)=V
        DO 61 I=1,102 IF(I.GT.1) AA(I)=B
         AA(102)=V
    61 IF(A(I)+K.GT.MM) AA(I)=C
        KK=MM-K+1
    60 WRITE(6,3) KK, (AA(I), I=1,102)
     3 FORMAT(10X, 15, 5X, 102A1)
        WRITE(6,2)
     WRITE(6,5) X1,X2
5 FORMAT(F25.4,5X,8(1H],9XJ,1H[,F14.4)
        RETURN
        END
```

FUNCTION KC(A,A1,A2,NC)
KC=(A-A1)*NC/(A2-A1)*1.00001
IF(KC.LT.1) KC=1
IF(KC.GT.NC) KC=NC
RETURN
END

SUBROUTINE RANGE(X,N,X1,X2)
DIMENSION X(N)
X1=X(1)
X2=X(1)
DD 20 I=1,N
IF(X(I)-LT-X1) X1=X(I)
20 IF(X(I)-GT-X2) X2=X(I)
RETURN
END

```
SUBROUTINE PMANY(A,M,N,A1,A2,NC)
c....
                                                                    ...... 1973
C.... PLOTS MANY PAIRS OF VARIABLES SIMULTANEOUSLY C... M = NUMBER OF ROWS
C.... M = NUMBER OF ROWS
C.... A = NUMBER OF COLUMNS
C.... A = M BY N BORDERED ARRAY
C.... A1 = 1 BY N ARRAY OF MINIMA FOR EACH VARIABLE
C.... A2 = 1 BY N ARRAY OF MAXIMA
C....IF A1.GE.A2 COMPUTE ACTUAL RANGE
C.... NC = 1 BY N ARRAY OF CELL NUMBERS ( {1 = 0 CHANGEO TO NC =10}
        DIMENSION A(M,N),A1(N),A2(N),NC(N),AA(122),AH(122)
        DATA 8,H,V,D,T,P/1H ,1H_,1H|,1H-,1H:,1H+/
C.... ADJUST RANGES
        DO 10 J=2,N
        IF(NC(J).LE.O) NC(J)=10
        IF(A1(J).LT.A2(J)) GO TO 10
        A1(J)=A(2,J)
        A2(J)=A(2,J)
        DO 20 1=2.M
    1F(A(I,J).LT.A1(J)) A1(J)=A(I,J)
20 1F(A(I,J).G.T.A2(J)) A2(J)=A(I,J)
4 (L,I)A=(L,I)A
        IF(A1(J).EQ.A2(J)) RETURN
    10 CONTINUE
WRITE(6,1) A(1,1)
1 FORMAT(16H ALL PAIRS FROM ,A4)
C.... SET UP STARTING POINT OF BLOCKS
        NC(1)=2
        DO 60 J=2,N
    60 NC(J)=NC(J-1)+NC(J)+2
C.... HORIZONTAL LINE OF CHARACTERS
        DO 31 I=1,122
    31 AH(1)=8
        N1=N-1
        DO 33 J=1,N1
JL=NC(J)
        JU=NC [J+1]-3
        DD 33 JJ=JL,JU
    33 AH(JJ)=H
C.... PLOT A LINE AT A TIME
        DO 30 JC=2.N
        WRITE (6,3) (A(1,J),J=2,N)
      3 FORMAT(10X,10(4X,A4,4X))
        WRITE(6.6) (AH(I),I=1,122)
C.... FIND VALUES CONDITIONAL ON JC
JU=NC(JC)-NC(JC-1)-2
        DD 50 JP=1.JU
DD 53 K=1,122
    53 AA(KJ=0
        DO 51 1=2.M
        IF(KC(A(I,JC),A1(JC),A2(JC),JU).NE.JP) GO TO 51
        00 52 J=2,N
               JJ=NC(J)-NC(J-11-2
        K=KC(A(I,J),A1(J),A2(J),JJ)+NC(J-1)-1
    52 AA(K)=AA(K)+1
51 CONTINUE
C.... RECODE AA
        JL=NC (JC-1)
        L=AA(JL+JP-1)
         L=L+JL-1
         JJU=NC(JC)-3
         DO 63 K=JL,JJU
     63 AA(K)=0
        DO 61 KK=1,3
     62 IF(K.LE.L) AA(K)=AA(K)+1
61 L=LJJU+JL-1
DO 54 K=1,122
IF(AA[K].GT.3] AA(K)=3
          IF(AA(K).EQ.O) AA(K)=B
         IF(AA(KJ.EQ.1) AA(KJ=D
         IF(AA(K).EQ.2) AA(K)=T
     54 IF(AA(K).EQ.3) AA(K)=P
         AA(1/=V
        DO 55 J=2,N
AA(NC(JJ-1)=V
     55 AA(NC(J)-2)=V
         AA (NC (N)-1)=B
```

```
C.... TYPE AA

IF(JP.EQ.1) WRITE(6,4) A1(JC),(AA(J),J=1,122)

IF(JP.EQ.JU) WRITE(6,4) A2(JC),(AA(J),J=1,122)

IF(JP.EQ.JU/2+1) WRITE(6,2) A(1,JC),(AA(J),J=1,122)

IF(JP.NE.1.AND.JP.NE.JU.AND.JP.NE.JU/2+1)

*WRITE(6,5) (AA(J),J=1,122)

FORMAT(5X,A4,1X,122A1)

FORMAT(10X,122A1)

5 CONTINUE

WRITE(6,6) (AH(I),I=1,122)

6 FORMAT(1H+,9X,122A1)

IF(4*((JC-1)/4).EQ.JC-1) WRITE(6,7)

7 FORMAT(1H1)

30 CONTINUE

RETURN

END
```

```
SUBROUTINE TABL(M, N, A, N1, N2, B, II, JJ, X1, X2, Y1, Y2)
5 . . . . . .
                                                                                         .......20 NDV 1973
C.... COMPUTES CONTINGENCY TABLE BETWEEN II AND JJ COLUMNS OF ARRAY A C.... M = ROWS OF DATA ARRAY A C.... N = COLS OF DATA ARRAY A
C... A = DATA ARRAY A
C.... N1 = ROWS OF CONTINGENCY TABLE
C.... N2 = COLUMNS OF CONTINGENCY TABLE
C.... B = CONTINGENCY TABLE
C.... B = CONTINGENCY TABLE
C.... II = OATA COLUMN TO BE ROW OF TABLE
C.... JJ = OATA COLUMN TO BE COLUMN OF TABLE
C.... X1 = MINIMUM POINT OF II
C.... X2 = MAXIMUM POINT OF II(IF X1.GE.X2 COMPUTE)
C.... Y1 = MINIMUM POINT OF JJ
C.... Y2 = MAXIMUM POINT OF JJ
DIMENSION A(M, N), B(N1, N2)
          M1=M-1
          CALL RANGE(A(2,II),M1,X1,X2)
          CALL RANGE (A(2, JJ) , M1, Y1, Y2)
          00 30 I=1,N1
         00 30 J=1.N2
     30 B(I,J)=0
         00 40 I=2,M
          KI=KC(A(I, II), X1, X2, N1)
          KJ=KC(A(I,JJ),Y1,Y2,N2)
     40 B(KI,KJ)=B(KI,KJ)+1
          RETURN
          END
```

```
SUBROUTINE MODAL(M,N,F,PT,B,NB,K)
C.... FINDS BLOCKS OF MINIMUM AREA CONTAINING FREQUENCY PT.
C... M = NUMBER OF ROWS

C... N = NUMBER OF COLUMNS

C... F = M BY N ARRAY OF CELL FREQUENCIES

C... PT = FREQUENCY THRESHOLD
C.... NB = BLOCK BOUNDARIES
C NB(1,K) = FIRST ROW
NB(2,K) = FIRST COLUMN
              NB(3,K) = LAST ROW
NB(4,K) = LAST COLUMNS
C
              B(1.K)= FREQUENCY
              B(2,K) = AREA
              B(3,K) = DENSITY
                                                ............
       DIMENSION F(M, N) , NB(4,50) , B(3,50)
C.... FIND TOTAL FREQUENCY
       PP=0
       PTOT=0
       00 9 I=1,M
00 9 J=1,N
     9 PTOT=PTOT+F(I,J)
       K=0
C.... INITIALISE BLOCK SIZE
       FM=0
    DO 70 I=1,M
DO 70 J=1,N
70 IF(F(I,J).GT.FM) FM=F(I,J)
IF(FM.EQ.O) RETURN
LI=PT/FM
       IF(LI.LT.1) LI=I
       LJ=1
    10 K±K+1
C .... INITIALISE BLOCK PARAMETERS
       NB(1,K)=1
       NB(2,K)=1
       NB (3, K) = M
       NB (4.K)=N
       B(1,K)=0
       B(2,K)=M*N
       B(3.K)=0
       IF(PP+PT.GT.PTOT) RETURN
    52 CONTINUE
       DO 21 I1=1,M
        12=11+L1-1
        IF(12.GT.M) GO TO 21
       00 20 J1=1,N
C... FIND BLOCK EXCEEDING THRESHOLD OF MINIMUM AREA
       J2=J1+LJ-1
       J2-31+L3-1

IF(J2-GT-N) GO TO 20

CALL DENSTY(I1,I2,J1,J2,M,N,F,P,A)

IF(P-LT-PT) GO TO 20
       IF(P/A.LT.B(3,K).OR.A.GT.B(2,K)) GO TD 23
       NB(1,K)=11
       NB(2,K)=J1
       NB(3,K)=12
       NB ( 4, K)=J2
       B(1,K)=P
       B(2,K)=A
       BL3.KI=P/A
    23 CONTINUE
    20 CONTINUE
    22 CONTINUE
   21 CONTINUE
C.... REPLACE DENSITIES BY BLOCK DENSITY
       IF(B(1,K).NE.O) GO TO 51
        II=LI
        JJ=LJ
       MIN=M*N
       DO 50 I=1,M
DO 50 J=1,N
       IF(I+J.LT.LI+LJ.OR.I+J.GT.MIN)
                                                 GO TO 50
       IF(I+J.EQ.LI+LJ.AND.J.LE.LJ) GO TO 50
       I I = I
       L=LL
       L*I=NIM
    50 CONTINUE
```

```
LI=II
      LJ=JJ
      IF(MIN.LT.M+N) GO TO 52
   51 CONTINUE
      CALL PLACE(NB(1,K),NB(3,K),NB(2,K),NB(4,K),M,N,F,B(3,K))
      PP=PP+8(1,K)
      IF(K.LT.50) GO TO 10
      RETURN
      END
      SUBROUTINE PLACE(I1, 12, J1, J2, M, N, F, O)
                                        ...... 31 OECEMBER 1973
C .... REPLACES DENSITIES IN BLOCK BY -D
C.... SEE DENSTY FOR ARGUMENTS
C . . . . . . .
                          ______
     DIMENSION F(M,N)
     DO 10 [=11,12
00 10 J=J1,J2
IF(F(I,J).LT.0) GO TO 10
      f(I,J)=-0
   10 CONTINUE
     RETURN
     ENG
     SUBROUTINE DENSTY(11,12,J1,J2,M,N,F,P,A)
```

C.... FINOS PROBABILITY AND AREA FOR A BLOCK, WITH PREVIOUS BLOCKS INDICATED BY A NEGATIVE FREQUENCY. IF A .NE.O ON INPUT IT WILL REPLACE DENSITIES BY A NEGATIVE BLOCK DENSITY. č C A NEGATIVE BLOCK DENSITY.

C...II = FIRST ROW OF BLOCK

C...IZ = SECOND ROW OF BLOCK

C...IZ = SECOND COLUMN CELLS

C...IZ = M BY N ARRAY OF CELL FREQUENCIES

C...IZ = TOTAL BLOCK FREQUENCY

C...IZ = TOTAL BLOCK FREQUENCY C... A = AREA OF BLOCK 31 DECEMBER 1973 C -- -- -- -DIMENSION F(M.N) $\Delta = 0$ P=0 00 10 I=[1, [2 00 10 J=J1, J2 IF(F(I,J).LT.0) G0 TO 10 A=A+1 P=P+F(I, J) 10 CONTINUE RETURN END

```
SUBROUTINE BORAW (NB, K, A, M, N, NP)
                                                          ...... 31 GECEMBER 1973
C.... ORAWS OVERLAPPING BLOCKS IN GIVEN ORDER
       DIMENSION A(M,N)
       DIMENSION NB(4,K)
DATA B,H,V/IH ,IH ,IH|/
C.... CONSTRUCT BLOCKS IN REVERSE ORGER
       DO 5 I=1.M
OO 5 J=1.N
     5 A([,J)=B
       DO 10 KK=1.K
       L=K-KK+1
       I1=NB(1,L)+2-1
       I2=NB(3,L)+2
       J1=NB(2,L)+2-1
       J2=NB(4,L)+2+1
       00 20 I=I1,I2
00 20 J=J1,J2
IF(I.LT.I2.ANG.I.GT.I1.ANG.J.LT.J2.AND.J.GT.J1) A(I,J)=B
       IF(I.EQ.I1.ANG.(J.EQ.J1.GR.J.EQ.J2)) GO TO 20
       IF(I.EQ. I1.OR.I.EQ. I2) A(I,J)=H
       IF(J.EQ.J1.OR.J.EQ.J2) A(I.J) =V
    20 CONTINUE
10 CONTINUE
       M1=M-1
       00 30 I=1, M1
    30 WRITE(6,3)(A(I,J),J=1,N)
     3 FORMAT(5X,120A1)
       RETURN
       ENG
       SUBROUTINE TRY1(A.M.N.B.K.L.XLL.V.G.NV)
                                                                     .....23 GECEMBER 1973
C.... FINDS BEST SET OF K BLOCKS, CHANGING ONE AT A TIME
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... B = 2 BY N BY K BLOCK ARRAY
C.... L = BLOCK OPTIMIZED BY PROGRAM
C.... XLI = LOG LIKELIHOOD AFTER OPTIMIZATION
C.... V = 2 BY K SCRATCH ARRAY
C.... O = 1 BY N SCRATCH ARRAY
C.... NV = 1 BY N ARRAY DEFINING ORDER OF VARIABLES
       OIMENSION NV(N)
OIMENSION A(M,N),B(2,N,K)
OIMENSION V(2,K),O(N)
       GIMENSION XX(5)
       CALL LOB(A,M,N,B,K,XM,V)
       00 51 LD=1,3
D0 20 JJ=2,N
J=NV(JJ)
       B1=8(1,J,L)
       82=8(2,J,L)
       U=MV
       KM=1
       00 30 KK=1.5
       CALL PICK(KK, 81, 82, 8(1, J, L), 8(2, J, L))
       CALL LOB(A,M,N,B,K,XX(KK),V)
       IF(V(2,L).NE.O) V(2,L)=V(1,L)/V(2,L)
       IF(V(2,L).LE.VM) GO TO 30
       KM=KK
       VM=V(2,L]
    30 CONTINUE
       B(1,J,L)=B1
       B(2,J,L)=82
       IF(XX(KM).LT.XM) GO TO 20
       XM=XX(KM)
       CALL PICK(KM, B1, B2, B(1, J, L1, B(2, J, L1)
    20 CONTINUE
    51 CONTINUE
    52 CONTINUE
       RETURN
       END
```

```
SUBROUTINE PICK(K, B1, B2, BB1, BB2)
                                                                              31 DECEMBER 1971
C. . . . . . . .
 C.... SUBROUTINE TO CHANGE RANGE OF INTERVAL WHILE SEARCHING FOR BEST BLOCK
C.... K = INDEX OF TYPE OF CHANGE
 C.... B1 = ORIGINAL MINIMUM
 C.... B2 = ORIGINAL MAXIMUM
C.... B81 = NEW MINIMUM
C.... B82 = NEW MAXIMUM
                           ................
 C . . . . .
        BB=[B2-B1]/2.
        IF(K.EQ.1.OR.K.EQ.2) BB1=B1+BB
IF(K.EQ.3.OR.K.EQ.4) BB2=B2-BB
IF(K.EQ.4.OR.K.EQ.5) BB1=B1-BB
         IF(K.EQ.1.OR.K.EQ.5) BB1=B2+BB
         IF(K.EQ.3) BB1=B1
         IF(K.EQ.2) BB2=B2
IF(K.EQ.5) BB1=B1+B8/2
         IF(K.EQ.5) BB2=B2-BB/2
        RETURN
        END
        SUBROUTINE LOB(A,M,N,B,K,XLL,V)
                                                                       ..... 23 DECEMBER 1973
C - - - - - -
C.... COMPUTES LOG LIKELIHOOD FIT FOR GIVEN SET OF BLOCKS
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
 C.... A = M BY N BORDERED ARRAY
C.... B = 2 BY N BY K ARRAY DEFINING BLOCKS
C.... XLL = LOG LIKELIHOOD
C.... V = 2 BY K SCRATCH ARRAY
        OIMENSION A(M,N),B(2,N,K),V(2,K)
C.... COUNT NUMBER IN EACH BLOCK
        DO 20 KK=1,K
    20 V(1.KK)=0
       DO 30 I=2.M
DO 32 KK=1.K
        00 31 J=2,N
        IF(A(I,J).GT.B(2,J,KK).OR.A(I,J).LT.B(1,J,KK)) GO TO 32
    31 CONTINUE
        GO TO 30
    32 CONTINUE
    30 V(1,KK)=V(1,KK)+1
C... COUNT VOLUME IN EACH BLOCK
       DO 33 KK=1.K
       V(2,KK)=1
       DO 34 J=2.N
34 V(2,KK)=V(2,KK)*(8(2,J,KK)-B(1,J,KK))
C... ADJUST FOR THO BLOCKS OVERLAPPING
       DO 35 K1=1,KK
        IF(K1.EQ.KK) GO TO 33
       XV=1
       00 36 J=2.N
       XL=AMAX1(B(1,J,KK),B(1,J,K1))
       XU=AMIN1(B(2,J,KK),B(2,J,K1))
       IF(XL.GE.XU) GO TO 35
    36 XV=XV+(XU-XL)
       V(2,KK)=V(2,KK)-XV
       DO 37 KK1=1,K1
(F(KK1.EQ.K1) GO TO 35
       XV=1
       DO 38 J=2,N
       XL=AMAX1(B(1,J,KK),B(1,J,K1),B(1,J,KK1))
       XU=AMIN1(8(2,J,KK),8(2,J,K1),8(2,J,KK1))
       IFIXL.GE.XU) GO TO 37
    38 XV=XV+(XU-XL)
       V(2,KK)=V(2,KK)+XV
    37 CONTINUE
    35 CONTINUE
   33 CONTINUE
C.... COMPUTE LOG LIKELIHOOD
       XLL=0
       DO 50 KK=1.K
       IF(V(1,KK).EQ.O.OR.V(2,KK).EQ.O) GO TO 50
       XLL=XLL+V(1,KK)+ALOG(V(1,KK)/V(2,KK))
   50 CONTINUE
       RETURN
       END
```

```
SUBROUTINE MHIST(A,B,NB,M,N,NC,X1,X2,KM,NM,NY)
C . . . . .
                                                                                  ....12 DECEMBER 1973
C... A = M BY N BORDERED ARRAY
C... B = 2 BY N BY K ARRAY : B(1, J, K), B(2, J, K) IS RANGE FOR JTH YAR., KTH BLK.
C... M = NUMBER OF ROWS
C... N = NUMBER OF COLUMNS
C .... DRAWS MULTIVARIATE HISTOGRAM BASED ON BLOCKS IN B
C.... NC = NUMBER OF CELLS

C.... X1 = 1 BY N ARRAY : X1(J) = LOWER BOUND OF JTH VARIABLE

C.... X2 = 1 BY N ARRAY : X2(J) = UPPER LIMIT OF JTH VARIABLE

C.... KM = NUMBER OF MODES
C.... NY = 1 BY N SCRATCH ARRAY
C.... NY = 1 BY N ARRAY DEFINING DROER OF VARIABLES
         DIMENSION AA(112)
         GIMENSION NV(N)
         DIMENSION NB(2,N,KM)
         DIMENSION A(M, N), B(2, N, KM), X1(N), X2(N), NM(M)
         DATA BL.V.H/1H .1HI.1H_/
         DATA P/1H-/
      WRITE(6:1) A(1:1),(A(1:1),X1(J),X2(J),J=2;N)

1 FORMAT(21H1 MODAL HISTOGRAM OF ,A4/

+60H INTERVALS ... | | .... FOR EACH VARIABLE DEFINE MODAL BLOCKS/
+61H RECTANGLES TO RIGHT HAVE AREA PROPORTIONAL TO NUMBER IN MODE//
+16H VARIABLE RANGES/(1x,A4;F9.3,2X;16(1H.);1X;F10.3)}
         WRITE (6+2)
      2 FORMAT(1H+,15X,10(1H-))
         DD 9 1=2,M
      9 NM(I)=0
DO 10 K=1,KM
C.... COUNT NUMBER SATISFYING CONDITIONS
         NK=0
         00 20 I=2,M
          IF(NM(I).NE.O) GO TO 20
         DO 31 J=2.N
         IF(A(I,J).GT.B(2,J,K)) GO TO 30
IF(A(I,J).LT.B(1,J,K)) GO TO 30
     31 CONTINUE
         NM(I)=1
         NK=NK+1
     30 CONTINUE
     20 CONTINUE
C.... GENERATE HEIGHT
         NK=NK+19
         00 40 I=1,112
     40 AA(I)=BL
         DO 41 I=3.NK
     41 IF(I.NE.17.ANG.I.NE.18.AND.I.NE.NK) AA(I)=H
HRITE(6,5) (AA(I),I=1,112)
      5 FORMAT(15X,112A1)
     00 42 I=19,NK
42 AA(I)=BL
C.... WORK ON PROFILE
         00 50 JJ=2.N
         (LL)YN=L
         00 53 I=I,1B
     53 AA(I)=BL
         AA(19)=V
         AA (NK J=V
         K1=NB(1,J,K)+1
         K2=NB(2, J, K)+1
         AA(KI)=V
         AA(K2)=V
         11=11+1
         IF(JJ.EQ.N) J1=JJ
         J1=NV (J1)
         K3=NB(1,J1,K]+1
         K4=NB(2,J1,K)+1
         00 51 KK=2,17
         IF(KK.EQ.K1.DR.KK.EQ.K2) GO TO 51
         IF(KK.LT.K1) AA(KK)=P
IF(KK.GT.K2) AA(KK)=P
         IF((KK-K3)+(KK-K1).LT.O) AA(KK)=H
         IF((KK-K4)+(KK-K2).LT.0) AA(KK)=H
    51 CONTINUE
C.... PRINT A LINE
WRITE(6.6) A(1,J),(AA(1),I=1,112)
6 FORMAT(10X,A4,1X,112A1)
```

```
50 CONTINUE
       DO 61 I=3,NK
    61 IF(I.NE.17.AND.I.NE.18.AND.I.NE.NK) AA(I)=H
10 WRITE(6,7)(AA(I),I=1,112)
7 FORMAT(1H+,14X,112A1)
        WRITE(6.3)
      3 FORMAT(1H1)
        RETURN
         END
       SUBROUTINE LBOX(I, J, NL, A, IS)
                                    C------
C.... DRAWS LINE IN MATRIX A
C.... I = START ROW
C.... J = STARTING COLUMN
C.... NL = LENGTH OF LINE
C.... A = 21 BY 132 DATA MATRIX
C.... IS = 1:LEFT
             2:DOWN
             3:SLOPE
                                DIMENSION A(21,132)
       DATA D,V.H,S/1H-1H|.1H_,1H//
IF(I.LT-1.OR-I-GT-132) RETURN
IF(J.LT-1.OR-J.GT-132) RETURN
    IF(A(I,J).NE.V) A(I,J)=S
GD TD (10,20,30),IS
10 DD 11 K=1,NL
       1 I = I
        JJ=J-K
    11 IF(JJ.GT.O) A(II,JJ)=H
       RETURN
    20 DO 21 K=1,NL
        11=1
```

I I = I+K

RETURN 30 DQ 31 K=1,NL II=I-K JJ=J+K

RETURN

21 IF(II.GT.O) A(II,JJ)=V

31 IF(K.NE.NL) A(II,JJ)=S

```
SUBROUTINE BOXES(A,M,N,A1,A2,NC,NN)
 C . . . . .
                                                                 .........23 NOV 1973
 C.... PRODUCES ONE BOX PER CASE WITH VARIABLES DIVIDED INTO 3 SETS
C.... A = M BY N BORDERED DATA ARRAY
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... A1 = 1 BY N LOWER LIMITS FOR EACH VARIABLE
C.... A2 = 1 BY N UPPER LIMITS FOR EACH VARIABLE
C.... NC = 1 BY N CELL SIZES
C.... NC = 1 BY N CELL SIZES
C.... NC = 1 BY N NUMBER OF INTERVALS FOR EACH VARIABLE
C.... NN = 3 BY N SIDE DIVISIONS: NN(K,I) IS THE ITH VARIABLE IN THE KTH DIMENSI
C.... NN = 3 BY N SIDE DIVISIONS: NN(K,I) IS THE ITH VARIABLE IN THE KTH SIDE
         DIMENSION ALM, NJ, AL(NJ, AZ(NJ, NC(NJ, NN(3, N)
         DIMENSION NCS(3)
         DIMENSION P(21,132), NW(3)
C .... DIMENSIONS OF BOX
         DATA B/1H /
         N1=M-1
         DO 10 J=2,N
     10 CALL RANGE(A(2,J),N1,A1(J),A2(J))
DO 11 K=1,3
         NW(K)=0
         DO 11 I=1,N
     11 IF(NN(K,I).NE.O) NW(K)=NW(K)+NC(K)
 C .... WRITE RANGE AND BOX ASSIGNMENTS
         WRITE (6,5)
      5 FORMAT(22H1 VARIABLE ASSIGNMENTS)
         WRITE(6.6)
                          6 FORMAT(5H
      17 FORMAT(12H VARIABLE: ,44,13H MINIM + F8.3,25H NUMBER OF INTERVALS: ,14)
         DO 13 K=1,3
      B FORMAT(//18H X VARIABLE RANGES/1H ,17(1H-))
9 FORMAT(//18H Y VARIABLE RANGES/1H ,17(1H-))
7 FORMAT(//18H Z VARIABLE RANGES/1H ,17(1H-))
         IF(K.EQ.1) WRITE(6,8)
IF(K.EQ.2) WRITE(6,9)
         IFIK.EQ.3) WRITE(6,7)
         DO 14 J=1,N
         IF(NN(K, J) . EQ. O) GO TO 13
         JL=NN (K, J)
         WRITE(6,17) A(1,JL), A1(JL), A2(JL), NC(JL)
     14 CONTINUE
    13 CONTINUE
        WRITE(6,3) A(1,1)
      3 FORMAT(1H1)
         NDD=NW(3)+NW(2)+1
         IF(NDD.GT.60) RETURN
NR=132/(NW(1)+NW(3)+1)
        IF(NR.EQ.O) RETURN
C.... LOOP THROUGH CASES
        NLIN=0
        00 20 II=2,M,NR
        IL-II
         IU=II+NR-1
         IF(IU.GT.M) IU-M
        DO 30 I=1,21
        DO 30 J=1,132
    30 P(1,J)=B
        NOD=0
        00 31 1=IL, IU
        JS=(I-IL+1)+(NW(1)+NW(3)+1)-NW(3)
        IS=NW(3)+1
        DO 41 K=1,3
        NCS(K)=0
        DO 41 J=1,N
        IF(NN(K, J) . EQ. 0) GO TO 41
        JN-NN(K, J)
        NCH-KC(A(I,JN),AL(JN),A2(JN),NC(JN))
        NCS(K)=NCS(K)+NCH
    41 CONTINUE
        NNI = NCS(2)+NCS(3)+2
        IF(NNI.GE.NDO) NOD=NNI
        00 32 K=1,3
   32 CALL LBOX(15,JS,NCS(K),P.K)
C.... INSERT BOX FOR CASE I
        00 40 KB=1,3
```

```
K=4-KB
ISS=IS
JSS=JS
DD 50 J=1,N
IF(NN(K,J).EQ.0) GD TO 40
JN=NN(K,J)
NCH=KC(A(I,JN),A1(JN),A2(JN),NC(JN))
IF(K.EQ.1) JSS=JSS-NCH
IF(K.EQ.2) ISS=ISS-NCH
IF(K.EQ.3) JSS=JSS+NCH
IF(K.EQ.3) ISS=ISS-NCH
DD 51 KK=1,3
IF(KK.EQ.3) GD TO 51
CALL LBOX(ISS,JSS,NCS(KK),P,KK)
51 CONTINUE
50 CONTINUE
40 IF(K.EQ.3) P(ISS,JSS)=B
31 CONTINUE
NLIN=NLIN+NDD
C... FINALLY, PRINT OUT ARRAY
DD 70 I=1,21
DD 71 J=1,132
IF(P(I,J).NE.B) GD TD 72
71 CONTINUE
GD TO 70
72 WRITE(6,1)(P(I,J),J=1,132)
70 CONTINUE
1 FORMAT(1X,132A1)
WRITE(6,2)(A(I,1),I=IL,IU)
2 FORMAT(4(16X,A4,11X))
IF(NLIN+NW(2)+NW(3).LE.100) GD TD 20
NLIN=0
WRITE(6,3) A(1,1)
RETURN
END
```

Distances

2.1 INTRODUCTION

From Table 2.1, it is desired to select clusters of similar Southern States. What does similar mean? No one thing. If the interest is in evaluating a government health program, the variables age, births, income, doctors, and infant mortality might be selected to base the clustering on and the others ignored. If the interest is in locating an industrial plant, the variables might be manufacturing, cars, telephones, and school years completed. Different measures of similarity and different clusters will be appropriate for different purposes.

A standard way of expressing similarity is through a set of distances between pairs of objects. Many clustering algorithms assume such distances given and set about constructing clusters of objects within which the distances are small. The choice of distance function is no less important than the choice of variables to be used in the study. A serious difficulty in choosing a distance lies in the fact that a clustering structure is more primitive than a distance function and that knowledge of clusters changes the choice of distance function. Thus a variable that distinguishes well between two established clusters should be given more weight in computing distances than a "junk" variable that distinguishes badly (see Friedman and Rubin, 1967).

2.2 EUCLIDEAN DISTANCES

There are M objects or cases, N variables, and the Jth variable has value A(I, J) for the Jth case. Consider, for example, the demographic data for cases Alabama, Arkansas, Delaware, and Florida and for variables age and altitude. Here M=4, N=2, and a typical data value is A(3, 2)=6, the value of the second variable for the third case (see Table 2.2).

Definition. The euclidean distance between case I and case K is

$$D(I, K) = (\sum \{1 \le J \le N\} [A(I, J) - A(K, J)]^2)^{1/2}.$$

In one, two, or three dimensions, this is just "straight-line" distance between the vectors corresponding to the *I*th and *K*th cases. For the data in Table 2.2, consider the distance between the first case, Alabama, and the third case, Delaware:

$$D(1,3) = \{ [A(1,1) - A(3,1)]^2 + [A(1,2) - A(3,2)]^2 \}^{1/2}$$

= $[(26 - 29)^2 + (50 - 6)^2]^{1/2}$
= 44.1.

Table 2.1 Demographic Data for the South (1960-1965)

AIT: Mean altitude above sea level, in tens of feet TEM: Mean annual temperature, in degrees fahrenheit

PME: Mean annual predipitation in inches POP: Number of persons per square mile

MEG: Number of Negroes per 100 of total population

AGE: Median age

URB : Urban population as percentage of total BIR : Number of births per 1000 population

RUR : Rural farm population as percentage of total

MAN : Employment in manufacturing as percentage of total

CAR: Automobiles per 100 population TEL: Telephones per 100 population

INC : Income in hundreds of dollars

FED: Federal revenue per 100 dollars of state and local revenue

LAW : Lawyers per 100,000 persons

SCH: School years completed, in tenths of a year

EDX: Expenditure on education in tens of dollars per pupil per year

DOC: Physicians per 100,000 persons

DNF: Infant mortality of whites per 1000 births

HOU: Percentage of houses with sound plumbing

R60 : Percentage Republican votes in Presidential election 1960 R64 : Percentage Republican votes in Presidential election 1964

GOV : Percentage Republican votes in 1962-64 state governor elections

	ALT	TEM	PRE	POP	NEG	ACE	BIR	URB	RUR	MAN	CAR	TEL	INC	FED	LAW	DOC	INF	SCH	EDX	HOU	R60	R64	GOV
AL		68	68	64	30	_	22	55	12	31	39		19	22	82		25	89	28	54	42	70	4
AB	65	62	49	34	22	29	22	43	17	29	33	30	18	24	79	91	23	87	32	48	43	43	43
DE	6	54	45	226	14	29	23	66	4	37	40	53	"	15	115	135	20	108	54	80	49	39	49
FL	10	72	56	91	18	71	20	74	2	15	45	45	24	11	150	142	23	106	41	78	52	49	44
GA.	60	62	47	68	29	26	24	55	9	32	37	36	22	19	125	102	23	88	33	58	37	54	0
KY	75	56	41	76	7	28	22	45	17	27	38	32	20	21	108	95	26	85	32	53	54	36	49
LA	10	70	63	72	32	25	25	63	7	17	32	36	21	21	128	114	21	86	42	61	29	57	39
Ю	35	58	44	314	17	29	20	73	31	25	37	48	30	11	175	158	22	10	50	81	46	35	44
MI	30	65	49	46	42	24	24	38	23	31	29	25	16	21	101	76	23	86	27	45	25	87	38
MO	80	56	35	63	9	32	21	67	12	26	37	47	26	17	72	149	21	93	45	66	50	36	38
EC	70	60	44	93	25	26	22	40	16	42	35	31	20	15	77	100	22	85	32	57	48	44	43
SC	35	64	47	79	35	23	22	41	14	43	35	28	18	16	72	80	22	84	28	54	49	59	0
TE	90	61	47	85	17	28	22	52	15	35	35	35	20	22	116	113	24	86	30	57	53	45	49
TS	170	67	29	37	12	27	22	75	7	20	42	41	23	15	144	111	26	101	40	69	49	37	26
VA	95	59	44	100	21	27	21	56	9	27	34	38	24	16	114	108	24	92	38	66	52	46	36
w	150	56	44	77	5	29	20	38	7	27	31	34	20	18	97	103	26	87	33	57	47	32	45

Notice that the variable altitude makes the major contribution to all the distances in Table 2.2 and that almost the same distance matrix would be obtained if age were ignored entirely. This distance calculation is a silly one because the squared distance is in units of squared years plus squared feet, and why should one year equal one foot? Age would dominate the calculations if it were measured in fine enough units, say months or weeks.

It is necessary then, when variables are measured in different units, to prescale the

	1	DATA		DISTA	nce	
	AGE (YRS)	ALTITUDE (FT)	AL	AS	De	FL
ALABAMA	26	50	0	15.3	44.1	40.3
ARKANSAS	29	65	15.3	0	59.0	55.0
DE LAWARE	29	6	44.1	59.0	0	4.5
FLORIDA	31	10	40.3	55.0	4.5	0

Table 2.2 Euclidean Distances

		W	eighted i	DISTANCE	
VAR (AGE) = 4.25 YRS ²		AL	AB	DE	FL
VAR (ALT) = 857 FT ²	AL	0	1.6	2.1	2.8
W(1) = 1/4	AS	1.6	0	2.0	2.1
W(2) = 1/900	DE	2.1	2.0	0	1.0
	FL,	2.8	2.1	1.0	0

variables to make their values comparable or, equivalently, to compute a weighted euclidean distance

$$D(I, K) = (\sum \{1 \le J \le N\} W(J)[A(I, J) - A(K, J)]^2)^{1/2}.$$

This form of distance is not necessary if all variables are measured on the same scale—for example, the percentage Republican in the three elections. But even in this case, weights might be used to increase or decrease the importance of some variable, perhaps on subjective or a priori grounds. For example, if the next presidential election is the reason for organizing the data, the two presidential votes may be given more weight than the gubernatorial vote.

There are a number of unsatisfactory methods of choosing the weights W(J).

- (i) Subjective. Just as the investigator selected the variables to be used in the data, he is free to weight the variables according to considerations outside the data. He thinks to himself, 1 yr in age is equivalent to about 10 ft in altitude, and this implies a weight 1 yr^{-2} for age and a weight $\frac{1}{100}$ ft⁻² for altitude. He expects variation within clusters to be about 1 yr in age to 10 ft in altitude.
- (ii) Measurement error. Weights are chosen inversely proportional to measurement variance. (The units of weights are always the inverse square of measurement units.) For example, in the demographic data, the measurement variance for each variable is the average variance within states. Thus altitude might have a measurement variance of 45² on average, age about 15², and the relative weights of age to altitude would be 9 to 1. The measurement error is estimated from "replications" of the cases—that is, from a subjective preclustering of cases. This weighting scheme is used in the coefficient of racial likeness (Pearson, 1926). It may happen that there are no replications for the cases, so that this technique is unavailable. Even with the preclustering, there may be a tendency to overweight variables that are measured with great precision but are useless for clustering.
- (iii) Equal variance scale. Weights are inversely proportional to variance and are thus chosen from the data. In Table 2.2,

$$VAR(AGE) = \frac{1}{8}[26^2 + 29^2 + 29^2 + 31^2 - \frac{1}{2}(26 + 29 + 29 + 31)^2] = 4.25 \text{ yrs}^2$$

and VAR(ALT) = 857 ft²; therefore, by rounding, WT(1) = $\frac{1}{4}$ and WT(2) = $\frac{1}{900}$. Doing one calculation in detail,

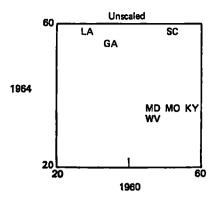
$$D(1,3) = \left[\frac{1}{4}(26-29)^2 + \frac{1}{200}(50-6)^2\right]^{1/2} = 2.1.$$

With this variance weighting, the distances are invariant under change of the units of measurement, and all variables make the same average contribution to the squared distances (see Sokal and Sneath, 1963).

Look at Table 2.3 and Figure 2.1 to see a serious defect in scaling to equalize variances. The percent Republican for president is taken for Georgia, Louisiana, South Carolina, West Virginia, Missouri, Kentucky, and Maryland in 1960 and 1964.

Table 2.3 Bad Weighting by Variances of Percent Republican for President

	מ	ATA			UN	we ight	ED DIS	TANCES	}	
	1960	1964		GA	IA	SC	WV	MO	KY	MD
GA	37	54		0	9	13	24	22	25	21
LA	29	57		9	0	20	31	30	33	28
SC	49	59		13	20	0	27	23	24	24
MΛ	47	32		24	31	27	0	5	8	3
MO	50	36		22	30	23	5	0	4	4
KY	54	36		25	33	24	8	4	0	8
MD	46	35		21	28	24	3	4	8	0
					W	EIGHTE	D DIST	ances		
	(1960) -			GA	IA	SC	WV	MO	KY	MD
VAR (1964) -	141	GA	0	12	18	26	26	30	23
W(1)	2		IA	12	0	28	36	36	42	33
W(2)	- 1		SC	18	28	0	27	23	24	24
			WV	26	36	27	0	6	11	3
			MO	26	36	23	6	0	6	6
			KY	30	42	24	11	6	0	11
			MD	23	33	24	3	6	11	0
	•				MA	HA LANC	BIS DI	STANCE	8	
-		64) = -62		GA.	LA	SC	WV	MO	KY	MD
W(1,	1) = 2		GA	0	9	21	16	14	17	13
W(1,	2) = W(2	, 1) = 1	LA	9	0	30	19	21	25	18
W(2,	2) - 1		SC	21	30	0	29	22	19	27
			WV	16	19	29	0	8	13	2
			MO	14	21	55	8	0	6	6
			KY	17	25	19	13	6	0	12
			MD	13	18	27	2	6	12	0



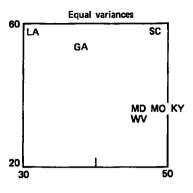


Figure 2.1 Decreased clarity of clusters after rescaling to equal variances—Republican voting data.

By using the unscaled data or the unweighted distances, two very distinct clusters are seen, GA, LA, SC and WV, MO, KY, MD. All the within-cluster distances (just) are smaller than the between-cluster distances. If the data are rescaled to have equal variances (or, equivalently, if weights are inversely proportional to variances in the distance calculation), the clusters become much less clear cut. The ratio of between-to within-cluster average distance is decreased and seven of the between-cluster distances become less than the within-cluster distance for SC and LA. The correct location of SC becomes uncertain.

To see the problem, suppose the variables were initially scaled so that withincluster variances are equal. If all variables are now rescaled to have equal variances, those variables that have relatively large between-cluster variances will be reduced in importance. Therefore overall between-cluster variance will be reduced relative to within-cluster variance, which means that the clusters become less distinct.

Ideally, the scaling should be done so that the within-cluster variances are approximately equal. (The measurement error approach equalizes variances within a preclustering of the cases.) There is a basic circularity here:

- (i) In order to cluster objects, it is necessary to propose a measure of distance between objects.
 - (ii) In order to define distance, it is necessary to weight the variables.
- (lif) In order to weight the variables, it is necessary to know the clusters of objects so that within-cluster variances can be equalized.

2,3 RELATIONS BETWEEN VARIABLES

Suppose that the only data available were age, income, infant mortality, and the three voting variables. Even after standardization (say to equalize variances), the political effect has three times the weight of each of the demographic variables. It would be reasonable to give each of the voting variables weight $\frac{1}{3}$ and each of the others weight 1.

More generally, if it is noticed that several variables are highly correlated, it might be desirable to down-weight each. Similarity between variables thus affects the computation of similarity between cases (and vice versa). To accommodate relations between variables, a generalized euclidean distance is defined as

$$D(I, K)^{\underline{a}} = \sum \{1 \le J, L \le N\} W(J, L)[A(I, J) - A(K, J)][A(I, L) - A(K, L)].$$

The matrix W(J, L) of weights, one for each pair of variables, must be positive semidefinite; that is, the above expression must be nonnegative for every possible A.

The choice of weights W is even more difficult than the previous case when only the diagonal elements were nonzero. There is a natural extension of the "equal variance" scale, in which W is the inverse of the matrix with (J, L) element:

$$\sum \{1 \le I, K \le M\} [A(I, J) - A(K, J)] [A(I, L) - A(K, L)].$$

Equivalently, W is the inverse of the covariance matrix of the variables. (The covariance matrix may be computed over a reference class of cases other than the full data set—for example, within an initial clustering.) The distance is called the Mahalanobis distance, and arises naturally in multivariate normal theory (see Rao, 1948). The distance is invariant under any linear transformation of the original variables, including transformations of the type (ALT, AGE) \rightarrow (2ALT + AGE, 3ALT - AGE). Invariance under this general class of linear transformations seems much less compelling than invariance under the change of measuring units of each of the variables.

The Mahalanobis distance based on the full data covariance matrix is even worse than the "equal variance" scale in decreasing the clarity of clusters. For the voting data in Table 2.3, the variances and covariances are VAR(1960) = 74, VAR(1964) = 141, and COV(1960, 1964) = -62. And so the weight matrix, proportional to the inverse of the covariance matrix is W(1, 1) = 2, W(1, 2) = W(2, 1) = 1, and W(2, 2) = 1. To do one distance computation in detail,

$$D(LA, SC) = [2(29 - 49)^2 + (29 - 49)(57 - 59) + (29 - 49)(57 - 59) + (57 - 59)^2]^{1/2} = 30.$$

Notice that the within-cluster distances are increased compared to the between-cluster distances, even from the already bad equalized variance case. The equalized variance technique is not too harmful to the clarity of clusters if all variables have about the same ratio of within- to between-cluster variance. The Mahalanobis distance reduces the clarity of clusters even in this case. Suppose there are two distinct clusters, equally well separating all the variables. The first eigenvector is approximately the vector between the mean of the cases in the first cluster and the mean of the cases in the second cluster. If the clusters are well separated, the first eigenvector will have a large variance compared to the other eigenvectors. Stomping out the brush fire, the Mahalanobis distance standardizes all eigenvectors to have equal variance, thus reducing the between-cluster component in the distances principally contributed by the first eigenvector (see Cronbach and Gleser, 1953).

The weights should be estimated from the within-cluster covariance of the variables (as with the equalized variance procedure). Of course, this involves the same circularity as before. The original treatments of Mahalanobis (1936) and Rao (1948) define the distance between two groups, given the means and common covariance matrix of the groups. These groups are a preclustering of the data.

Friedman and Rubin (1967) have considered a clustering technique that maximizes the average distance between clusters relative to the within-cluster covariance matrix.

This technique embraces the circularity by not assuming that distances are given once and for all.

2.4 DISGUISED EUCLIDEAN DISTANCES

(i) The distance between variables J and L is defined to be 1 - CORR(J, L), where

$$CORR(J, L) = \frac{(\sum \{1 \le I \le M\}[A(I, J) - \bar{A}(J)][A(I, L) - \bar{A}(L)])}{(\sum \{1 \le I \le M\}[A(I, J) - \bar{A}(J)]^2 \sum \{1 \le I \le M\}[A(I, L) - \bar{A}(L)]^2)^{1/2}},$$

where $\bar{A}(J) = \sum \{1 \le I \le M\} A(I,J)/M$. This rather horrible looking expression is just the usual definition of correlation.

Let A^* denote the matrix standardized to have mean zero and variance one for every variable. Let A^{*T} denote the transposed standardized matrix. Then the euclidean distance between the Jth and Lth row of this matrix is $(2M)^{1/8}[1 - \text{CORR}(J, L)]^{1/2}$. Thus many of the considerations relevant to computing distances between cases may be transferred to computing correlations. For example, the cases should be weighted, perhaps.

(ii) Suppose that the responses to a variable are not numerical but categorical—say, the religion or sex of a person. Define the distance between two cases I and K as the number of variables J for which $A(I,J) \neq A(K,J)$. This distance can also be cast as a euclidean distance by defining a new data matrix A^* with number of variables equal to the total number of categories (over all variables) in the original data matrix. Each of the new variables corresponds to a single category of one of the old variables. The new variable takes value 1 if case I occurs in this category and value 0 otherwise. The euclidean distance between cases is then equal to the square root of the distance just defined.

Weighting considerations apply as before, if desired, separately to each category.

2.5 OTHER DISTANCES

First consider distances for a single variable. A distance for the Jth variable, between cases I and K, will be denoted by D(I, K | J).

(i)
$$D(I, K | J) = |A(I, J) - A(K, J)|.$$

This is the usual univariate euclidean distance, and is only appropriate for numerically valued variables.

(ii)
$$D(I, K | J) = |A(I, J) - A(K, J)| \qquad \text{if } |A(I, J) - A(K, J)| \le T(J) \\ = T(J) \qquad \text{if } |A(I, J) - A(K, J)| > T(J).$$

This distance is a modification of euclidean distance that prevents any one variable from having too much weight in a particular comparison.

(iii)
$$D(I, K | J) = 0 \qquad \text{if } A(I, J) = A(K, J)$$
$$= 1 \qquad \text{if } A(I, J) \neq A(K, J).$$

This is a special case of (ii), appropriate for category variables.

There are a number of ways of combining distances over variables, each with its own way of weighting variables to make equal contribution to the distance.

(i)
$$D(I, K) = \sum \{1 \le J \le N\} D(I, K \mid J)W(J).$$

In this case, a choice of weights analogous to the equal variance choice selects W(J), so that

$$\sum \{1 \le I, K \le M\} \ D(I, K | J)W(J) = 1.$$

Thus each variable makes the same average contribution to the distances D(I, K).

$$D(I, K) = [\sum \{1 \le J \le N\} D(I, K | J)^2 W(J)]^{1/2}.$$

This gives euclidean distance if $D(I, K \mid J) = |A(I, J) - A(K, J)|$.

$$D(I, K) = \max \{1 \le J \le N\} D(I, K | J) W(J).$$

The weighting procedure here chooses W(J) so that

$$\max \{1 \le I, K \le M\} D(I, K | J)W(J) = 1.$$

All three of these methods of combining distance are members of the Minkowski family,

$$D(I, K) = [\sum \{1 \le J \le N\} D(I, K | J)^p W(J)]^{1/p}$$

with $p = 1, 2, \infty$, respectively.

2.6 PLOTTING DISTANCES TO DETECT CLUSTERS

If the cases are distributed uniformly in M-dimensional space, the number of objects N within euclidean distance d of a given object will be Kd^M . Thus, if d(N) is the distance of the object Nth closest to the given object, approximately

$$\log N = a + M \log d(N).$$

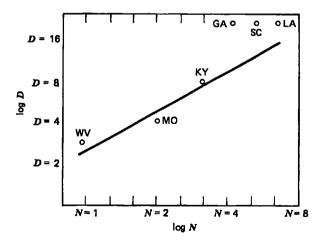


Figure 2.2 Clusters in plots of distances (based on Table 2.3, distances from Maryland).

If N_0 objects form a cluster near the given object, the distances d(N) for $N > N_0$ will be greater than expected from the plot of objects within the cluster. Thus a break in the plot occurs at the boundary of the cluster. In Figure 2.2, distances are taken from Maryland using Table 2.3. The objects WV, MO, and KY are in a cluster about Maryland. The distances of GA, SC, and LA are greater than expected for a uniform distribution of objects.

2.7 THINGS TO DO

2.7.1 Distances between Variables

Complications arise because the variables lie on different scales or are of different types.

For two real variables measured on different scales, an appropriate rescaling gives them mean 0 and variance 1, and then euclidean distance is proportional to 1-correlation.

For two ordered variables, a plausible distance is

$$P(X < X^* \mid Y < Y^*, X \neq X^*),$$

where X, Y and X^* , Y^* are randomly sampled from the two variables.

For two category variables, let P(I, J) be the proportion of cases taking value I for the first variable and value J for the second variable. (Suppose I takes values $1, 2, \ldots, M$ and J takes values $1, 2, \ldots, N$.) Let

$$P(I, 0) = \sum \{1 \le J \le N\} P(I, J)$$

$$P(0, J) = \sum \{1 \le I \le M\} P(I, J).$$

A measure of similarity is

$$\sum \{1 \le I \le M, \ 1 \le J \le N\} P(I, J) \log P(I, J) - \sum \{1 \le I \le M\} P(I, 0) \log P(I, 0) - \sum \{1 \le J \le N\} P(0, J) \log P(0, J).$$

For a category variable and a real variable, a natural measure of similarity (invariant under permutation of categories and linear transformation of the real variable) is the ratio of between-category mean square to within-category mean square.

What is the relationship between all these measures in the intersecting case of two 0-1 variables?

2.7.2 Distributions of Distances

For many stochastically independent variables, the squared euclidean distance between cases I and K is a sum of independent components and the central limit theorem is applicable. The set of distances D(I, K) is approximately multivariate normal, with the same mean and variance for every D(I, K), with a certain covariance between D(I, K) and D(I, L) not depending on I, K, or L, and with all other covariances zero. It is assumed that the set of cases is fixed and that the number of variables is very large, much larger than the number of cases.

The three parameters mean, variance, and covariance may be estimated in an obvious way from the observed distance matrix.

REFERENCES

BLACKWELDER, R. A. (1966). Taxonomy, Wiley, New York. A "traditional" taxonomy book deemphasizing numerical methods. The author argues (p. 150) that some weighting of characters is practically unavoidable, taking place in the first instance in the selection of characters to be used in classifying animals.

CATTELL, R. B. (1949). " R_p and other coefficients of pattern similarity." Psychometrika 14, 279–288. In educational psychology, a pattern or profile is the set of scores obtained by a person on a number of items in a questionnaire. In our terminology, a person is a case, and an item is a variable. Cattell's R_p is a monotone transformation of d, where d is euclidean distance with the variables standardized to have variance 1. Setting k equal to the median of a chi-square variable on n degrees of freedom (approximately $k = n - \frac{2}{3}$),

$$R_p = \frac{2k-d^2}{2k+d^2}.$$

This coefficient takes values between -1 and +1, with a negative value corresponding to cases that are further apart than would be expected by chance. Cattell shows empirically that R_p is approximately normally distributed for two randomly selected persons.

CRONBACH, L. J., and GLESER, G. C. (1953). "Assessing similarity between profiles." *Psychol. Bull.* 50, 456–473. This article contains a good survey of distances used in educational psychology. There is a revealing analysis of the various weighting schemes in terms of eigenvectors. The first principal component is the linear combination of variables (with coefficients whose squares sum to unity), which has maximum variance. The second principal component is that linear combination of variables, which is uncorrelated with the first and has maximum variance among those uncorrelated with the first. And so on. These new variables (it turns out) are obtained by orthogonal transformations from the original ones, and so distances based on them are exactly the same as distances based on the original. As a practical matter, the variances of the later principal components will be small, these components will make only a slight average contribution to distances between cases, and they could perhaps be ignored to reduce storing of data and computation of distances.

Now consider the various weighting schemes. If all variances equal unity, the eigenvectors or principal components will be computed from the correlation matrix of the variables, rather than the covariance matrix. If the variables are uncorrelated, the principal components will all have variance equal to unity (in this case they are not uniquely determined, and a particular set of principal components is the original set of variables). Suppose three variables are nearly identical, but otherwise all variables are nearly uncorrelated. In this case, the first principal component will be proportional to an average of the three identical variables and will have variance 3. Thus weight 3 is "really" being given to these repeated variables.

The Mahalanobis weighting corresponds to standardizing all the principal components to have variance unity. At first sight, this will solve the repeated variables problem described above. Yet all the later principal components (which above were discarded entirely to reduce computation) will have equal weight with the early ones. The feeling is that these later principal components merely represent measurement errors, not the important factors in the data, and so should not be increased in weight.

This argument applies even if the reference covariance matrix is computed within clusters previously given.

FRIEDMAN, H. P., and RUBIN, J. (1967). "On some invariant criteria for grouping data." J. Am. Stat. Assoc. 62, 1159-1178. The Mahalanobis distance requires weights to be the inverse of the covariance matrix computed within clusters, but since the distances are to be used to construct the clusters, the procedure is circular. They suggest a clustering procedure that maximizes the average between cluster distance, with weights computed from the within-cluster covariance matrix.

MAHALANOBIS, P. C. (1936). "On the generalized distance in statistics." *Proc. Indian Nat. Inst. Sci.* (Calcutta) 2, 49-55. Defines a distance between two populations with mean vectors \overline{X}_1 and \overline{X}_2 and common covariance matrix W, by $(\overline{X}_1 - \overline{X}_2)'W^{-1}(\overline{X}_1 - \overline{X}_2)$.

PEARSON, K. (1926). "On the coefficient of racial likeness." Biometrika 18, 105. Pearson measures the distance between two groups by

$$\sum_{j=1}^{n} \frac{n_{1j}n_{2j}}{n_{1j}+n_{2j}} \left(\frac{\overline{X}_{1j}-\overline{X}_{2j}}{\sigma_{j}}\right)^{2},$$

where n_{1j} is the number of cases of the jth variable in the first group, n_{2j} is the number of cases of the jth variable in the second group, \overline{X}_{1j} is the average of the jth variable in the first group, \overline{X}_{2j} is the average of the jth variable in the second group, and σ_j is the standard deviation within groups of the jth variable. Actually, $\sigma_j(n_{1j}^{-1} + n_{2j}^{-1})^{1/2}$ is an estimate of measurement error for the jth variable, so this is one of the early weighting schemes where the weight of each variable is based on measurement error. Here the measurement error is estimated from repeated observations. The above quantity is approximately distributed as $2\chi_n^2$ if the variables are independent.

RAO, C. R. (1948). "The utilization of multiple measurements in problems of biological classification." J. Roy. Stat. Soc., B 10, 159-193. Rao considers the classification of Indian caste groups based on measurement of height, sitting height, nasal depth, nasal height, head length, frontal breadth, bizygometric breadth, head breadth, and nasal breadth. There are 50-200 individuals observed in each caste group, and an initial covariance matrix W is computed within caste groups. Now suppose an individual is known to belong to either the *i*th or *j*th caste and is to be classified into one or the other; there is a discriminant function F which is linear in the variables such that, for F > C, the individual is classified in the *i*th caste and, for F < C, the individual is classified in the *j*th caste. The number of individuals misclassified is increasing with $(\bar{X}_i - \bar{X}_j)W^{-1}(\bar{X}_i - \bar{X}_j)$, the Mahalanobis distance between the two castes. This theory assumes a multivariate normal distribution of constant covariance matrix within castes.

SOKAL, R. R., and SNEATH, P. H. (1963). Principles of Numerical Taxonomy, Freeman, San Francisco. There is an extensive discussion of distances computed from 0-1 variables (equal to characters in biology). Sokal and Sneath argue that all characters should be given equal weight. If one character is more important than the others, this will show by the presence of several other characters correlated with it, and therefore this "type" of character will have more weight.

One problem that worries them is whether or not two species' agreement in *possessing* a character is equivalent to their agreement in *not* possessing the character. Thus, if the biologist selected for data many characters irrelevant to spiders and, say,

one relevant to spiders, the spiders would look unreasonably similar to each other using euclidean distance.

They suggest that measured variables should be standardized to have variance 1 across all cases.

PROGRAMS

DIST computes Minkowski (including Euclidean) and threshold distances.

WCOV computes within-cluster covariance matrix.

INVERT inverts a square matrix.

WDIST computes a euclidean distance with a general weight matrix (such as the inverse of the within-cluster covariance matrix).

MISS replaces missing values by within-cluster means.

TWO computes means and covariances of a data matrix.

STAND standardizes an array so that each column has mean 0 and variance 1.

MOM computes means and covariances when each row is weighted.

FUNCTION DIST(X.Y.M.N.P)

20 DIST=DD RETURN END

```
....20 MAY 1973
C.... COMPUTES VARIOUS MEASURES OF DISTANCE BETWEEN VECTORS Z AND Y. C.... X \# FIRST VECTOR
C.... Y = SECOND VECTOR
C.... M = NUMBER OF ELEMENTS
C.... N = SKIP FACTOR, FOR USE IN DISTANCES BETWEEN ROWS OF MATRIX.
C.... TO CALL DIST BETWEEN ITH AND JTH ROW OF A BORDERED M BY N ARRAY, USE
C.... CALL DIST(A(I,2),A(J,2),M1,M2,P) WHERE M1=M*(N-2)+1 , M2=M.)
C... P = PARAMETER
               P.GT.O PTH POWER DISTANCE
               P.LE.O THRESHOLD DISTANCE COUNTIN PROPORTION OF DEVIATIONS OVER ABS P
        DIMENSION X(M) . Y(M)
        DD=0
        DP=0
        DO 10 I=1,M,N
        IF(X(I).EQ.99999.OR.Y(I).EQ.99999.) GO TO 10
        DP=DP+1
        DIF=ABS(X(1)-Y(1))
        IF(P.GT.O) DD=DD+DIF+*P
        IF(P.LE.O.AND.DIF+P.GT.O) DD=DD+1
    10 CONTINUE
        IF(OP.EQ.O) GO TO 20
IF(P.GT.O) DD=(DD/DP)**(1./P)
IF(P.LT.O) DD=DD/DP
```

```
SUBROUTINE WCOV(A, M, N, COV, NC)
C . . . . . .
                                                                            ........20 MAY 1973
C.... COMPUTES COVARIANCE WITHIN CLUSTERS, ASSUMING NO MISSING VALUES
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... A = M BY N BORDERED ARRAY
C.... NC = M BY 1 ARRAY ASSIGNING CASES TO CLUSTERS
C.... COV = M BY M BORDERED WITHIN CLUSTER COVARIANCE MATRIX
C . . . . .
DIMENSION A(M,N) COV(N,N) NC(M)
C... INITIALIZE COVARIANCES AND COUNT CLUSTERS
       DATA AA/4HWCGV/
       DO 10 I=1,N
DO 10 J=1,N
    10 COV(1,J)=0
        K=0
        DO 11 1=2,M
    11 IF(NC(I).GT.K) K=NC(I)
C .... COMPUTE MEANS
        0=0
        DO 20 L=1.K
        P=0
        DO 26 J=2,N
    26 COV(1,J)=0
DO 21 I=2,M
        IF(NC(I).NE.L) GO TO 21
        P=P+1
       DG 22 J=2,N
    22 COV(1, J)=COV(1, J)+A(I, J)
    21 CONTINUE
    DO 23 J=2,N
23 IF(P.NE.O) COV(1,J)=COV(1,J)/P
IF(P.GT.O) Q=Q+P-1
C.... ADD ON TO CROSS PRODUCTS
       DO 24 I=2,M
IF(NC(I).NE.L) GO TO 24
       DO 25 J=2,N
DO 25 JJ=2,J
    25 COV(1,JJ)=COV(J,JJ)+(A(I,J)-COV(1,J))+(A(I,JJ)-COV(1,JJ))
    24 CONTINUE
    20 CONTINUE
C.... DIVIDE BY DEGREES OF FREEDOM
       1F(Q.GT.0) COV(1,11)=COV(1,11)/Q
    30 COV(JJ,J)=COV(J ,JJ)
C.... LABEL
       DO 40 J=2, N
       COV(1, J)=A(1, J)
    40 COV(J,1)=A(1,J)
       COV(1,1)=AA
       RETURN
       END
```

```
SUBROUTINE INVERT(A,D,M)
C . . . . <u>.</u>
                                                                          ....20 MAY 1973
C.... INVERTS SQUARE BORDERED ARRAY, PREFERABLY POSITIVE DEFINITE
C.... M = NUMBER DF ROWS
C.... A = M BY N BORDERED ARRAY
C.... D = DETERMINANT
C . . . . . . .
                         .............
       DIMENSION AIM, MJ
       D=1.
       TH=10.##(-6)
       DO 10 1=2,M
D=D*A[1,1]
       IF(A(1,1).LT.TH) WRITE(6,1) A(1,1),1
    1 FORMAT (38H **** ERROR IN INVERT, DIAGONAL VALUE .F15.10.7H IN ROW
      *,15)
       IF(A(I.I).LT.TH) D=0
       IF(D.EQ.O) RETURN
       IF(A(I,I).GT.TH) A(I,I)=1./A(I,I)
       DD 13 J=2, M
       IF(J.NE.I) A(I,J)=A(I,J)*A(I,I)
    13 CONTINUE
       DO 11 II=2.M
IF(II.EQ.I) GO TO 11
       DO 12 J=2,M
       IF(J.EQ. I) GD TO 12
       (1,11)A*(L,1)A-(L,11)A=(L,11)A
   12 CONTINUE
11 CONTINUE
       DD 14 J=2,M
    14 IF(J.NE.I) A(J,I)=-A(J,I)*A(I,I)
    10 CONTINUE
       RETURN
       END
        FUNCTION WDIST(X.Y.N.WT)
                                                                    ......20 MAY 1973
 C... EUCLIDEAN DISTANCE COMPUTED FROM A WEIGHT MATRIX WT
 C... M = NUMBER DF ELEMENTS
C... X = M BY 1 VECTOR
C... Y = M BY 1 VECTOR
 C.... MT = M BY M BORDERED WEIGHT MATRIX
 c . . . . . <u>.</u>
        DIMENSION X(M), Y(M), WT(M,M)
        DIST=0
        DP=0
        DO 20 1=2, M
        DD 20 J=2, M
        XM=99999.
        IF((X(I)-XM)+(X(J)-XM)+(Y(I)-XM)+(Y(J)-XM),EQ.O.) GD TO 20
        | DIST=DIST+(X(1)-Y(1))+(X( J)-Y(J))+WT(I,J)
        DP=DP+WT(I,J)
    20 CONTINUE
        IF(DP.NE.O) DIST=(DIST/DP)++(0.5)
        RETURN
        END
```

```
SUBROUTINE MISS (A, M, N, NC)
C . . . . .
                                                           ...... 1973
C.... REPLACES MISSING VALUES BY WITHIN CLUSTER MEANS
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... A = M BY N BORDERED ARRAY
C... NC = M BY 1 ARRAY ASSIGNING CASES TO CLUSTERS
C . . . . . .
       DIMENSION A(M,N),NC(M)
C.... FIND NUMBER OF CLUSTERS
XM=99999.
       K=1
       00 10 I=2,M
    10 IF(NC(I).GT.K) K=NC(I)
       DO 20 L=1,K
       DO 20 J=2,N
C.... COMPUTE MEANS
       PR=0
       C=VA
       00 21 I=2.M
       IF(NC(I).NE.L) GO TO 21
       IF(A(I,J).EQ.XM) GO TO 21
       PR=PR+1.
       (L.I)A+VA=VA
    21 CONTINUE
IF(PR.NE.O) AV=AV/PR
C.... REPLACE MISSING VALUES
       00 22 I=2,M
       IF(NC(I).EQ.L) GO TO 22
       IF(A(I,J).EQ.XM) A(I,J)=AV
    22 CONTINUE
    20 CONTINUE
       RETURN
       ENO
      SUBROUTINE TWO (DATA, M.N.COV. AVE)
                                                                        .....20 MAY 1973
C.... COMPUTES MEAN AND COVARIANCE, REPLACING MISSING VALUES BY COLUMN MEANS C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... DATA = M BY N BORDERED ARRAY
C.... COV = M BY M BORDERED COVARIANCE MATRIX
C.... AVE = 2 BY N BORDERED COLUMN MEANS
       DATA CC. AA/3HCOV. 3HAVE/
      DIMENSION COV(N,N), AVE(2,N), DATA(M,N)
C.... REPLACE MISSING VALUES BY COLUMN MEANS
      00 10 J=2,N
      AVE(2,J)=0
       XP=0
      00 20 I=2,M
       IF(DATA(I.J).EQ.99999.) GD TO 20
      XP=XP+1
       AVE(2,J)=AVE(2,J)+DATA(I,J)
   20 CONTINUE
       IF(XP.NE.O) AVE(2,J)=AVE(2,J)/XP
      00 30 I=2.M
   30 IF(OATA(I,J).EQ. 99999.) DATA(I,J)=AVE(2,J)
   10 CONTINUE
C.... COMPUTE COVARIANCES
      DO 50 J=2,N
DO 50 K=2,J
      CDV(J,K)=0
      00 51 I=2,M
   51 COV(J,K)=COV(J,K)+(DATA(I,J)-AVE(2,J))+(DATA(I,K)-AVE(2,K))
       COV(J,K) = COV(J,K)/(M-1)
   50 COV(K,J)=COV(J,K)
C.... LABEL BORDERS
      00 60 J=2,N
      AVE(1,J)=0ATA(1,J)
      COV(1,J)=OATA(1,J)
   60 COV(J.1)=DATA(1.J)
      COV(1,1)=CC
      AVE(1,1)=AA
      RETURN
      ENO
```

```
SUBRDUTINE STAND(A,M,N)
 C---- STANDARDIZES A BORDERED ARRAY A TO HAVE UNIT VARIANCE AND ZERD MEAN
C--- M = NUMBER DF ROWS
C--- A = M BY N ARRAY
C--- N = NUMBER DF CDLUMNS
                                                                     ...... 1973
 C . . . . .
                                DIMENSION A(M.N.)
 C.... COMPUTE MEANS AND VARIANCES
         DO 20 J=2,N
         SD=0
         S1=0
         52=0
         DO 30 I=2,M
         IF(A(I,J).EQ.99999.) GD TD 30
         S0=SD+1
         S1=S1+A(I,J)
         S2=S2+A(I,J)**2
     30 CONTINUE
        IF(SO.NE.O) S1=S1/S0
IF(SD.NE.O) S2=S2/S0-S1++2
IF(S2.GT.O) S2=S2++0.5
         IF(S2.EQ.0) S2=1
         DO 4D I=2, M
     40 IF(A(I,J).NE.99999.) A(I,J)=(A(I,J)-S1)/S2
     20 CONTINUE
         RETURN
         END
       SUBROUTINE MOM (U.C.P.X.M.N)
C.... CDMPUTES WEIGHTED MEANS AND CDVARIANCES
C... M = NUMBER OF ROWS
C... N = NUMBER OF CDLUMNS
C... X = M BY N DATA ARRAY
C... U = N BY 1 ARRAY DF MEANS
C... P = M BY 1 ARRAY OF WEIGHTS
C... C = N BY N ARRAY DF CDVARIANCES
                                      C . . . . .
       DIMENSION C(N,N),P(M),U(N),X(M,N)
        SP=0
    DD 1D 1=2, M
10 SP=SP+P(I)
       IF(SP.EQ.O.) SP=1D.**(-10)
DD 20 J=2,N
        SS=0.
    DO 21 I=2,M
21 SS=SS+X(I,J)*P(I)
    20 U(J)=S$/SP
        DO 3D J=2.N
DO 30 K=2.J
        55=0.
       DO 31 I=2.M
    31 SS=SS+(X(1,J)-U(J))*(X(1,K)-U(K))*P(1)
        C(J,K)=SS/SP
    30 C(K,J)=C(J,K)
        RETURN
        END
```

Quick Partition Algorithms

3.1 INTRODUCTION

Figure 3.1 consists of the outlines of 20 pieces in a child's jigsaw puzzle. The assembly of jigsaw puzzles is an instructive example of human clustering ability. A standard strategy is to first select the pieces with straight-line edges and construct the border, then to select pieces with some significant color combination and assemble these and to continue this process until most pieces are incorporated. At the end, there is usually a blah background color and these pieces are incorporated on the basis of shape. Characteristically then, some "important" variable is used as a basis for an initial crude partition and other variables are used for more detailed work within the partition.

It is difficult to formalize the patterns of color that are frequently used, but the shapes of the edges are explicitly measurable. In this puzzle (and in many), every piece has four edges and four vertices and two pieces are joined together if and only if they have an exactly matching edge. Three measurements were made for each edge:

- (f) the length of the line between the two vertices,
- (ii) the maximum deviation of the edge from this line into the piece, and
- (iii) the maximum deviation of the edge from this line out from the piece.

There are thus twelve measurements for each piece. These measurements are given in Table 3.1.

Let A(I, 1), A(I, 2), and A(I, 3) denote the three measurements of the first edge of the *I*th piece. The first edge of the *I*th piece corresponds to the first edge of the *J*th piece if A(I, 1) = A(J, 1), A(I, 2) = A(J, 3), and A(I, 3) = A(J, 2). A natural measure of distance between edges taking values X1, X2, X3 and Y1, Y2, Y3 is thus

$$D = [(X1 - Y1)^2 + (X2 - Y3)^2 + (X3 - Y2)^2]^{1/2}.$$

This is *not* euclidean distance. The distance between two pieces is the minimum distance between any two edges. If any two edges exactly coincide, the distance between the pieces will be zero.

3.2 LEADER ALGORITHM

Preliminaries. It is desired to construct a partition of a set of M cases, a division of the cases into a number of disjoint sets or clusters. It is assumed that a rule for computing the distance D between any pair of objects, and a threshold T are given. The

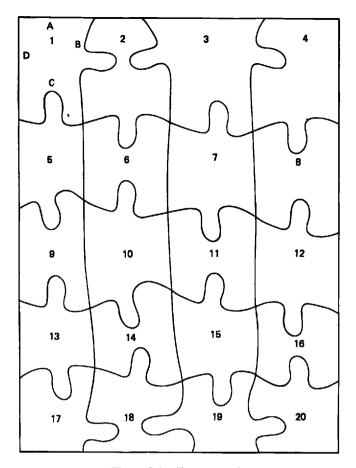


Figure 3.1 Jigsaw puzzle.

algorithm constructs a partition of the cases (a number of clusters of cases) and a leading case for each cluster, such that every case in a cluster is within a distance T of the leading case. The threshold T is thus a measure of the diameter of each cluster. The clusters are numbered 1, 2, 3, ..., K. Case I lies in cluster P(I) [$1 \le P(I) \le K$]. The leading case associated with cluster J is denoted by L(J).

The algorithm makes one pass through the cases, assigning each case to the first cluster whose leader is close enough and making a new cluster, and a new leader, for cases that are not close to any existing leaders.

- STEP 1. Begin with case I = 1. Let the number of clusters be K = 1, classify the first case into the first cluster, P(1) = 1, and define L(1) = 1 to be the leading case of the first cluster.
- STEP 2. Increase I by 1. If I > M, stop. If $I \le M$, begin working with the cluster J = 1.
- STEP 3. If D(I, J) > T, go to Step 4. If $D(I, J) \le T$, case I is assigned to cluster J, P(I) = J. Return to Step 2.

Piece	Edge A			Ed	lge I	3	Eđ	ge C	!	Ed	ge I)
1	142	0	0	191	21	48	125	40	12	167	0	0
2	120	0	0	183	5 9	16	160	16	50	192	48	21
3	186	0	0	208	17	51	152	49	13	183	17	5 9
4	138	0	0	180	0	0	157	13	42	209	51	18
5	126	13	39	138	0	2	125	20	43	171	0	0
6	1 59	50	15	163	4	0	1 52	47	17	139	2	0
7	149	13	50	142	0	6	1 57	19	49	163	0	3
8	1 57	42	13	203	0	0	152	50	25	143	3	0
9	125	44	20	190	2	0	1 38	42	18	159	0	0
10	1 52	17	46	144	2	0	147	19	56	1 90	0	2
11	157	48	20	161	0	0	152	49	22	143	0	2
12	1 52	25	49	1 39	0	0	153	27	52	160	0	0
13	138	19	42	112	0	1	143	10	41	143	0	0
14	147	55	20	150	6	1	1 54	36	21	113	1	0
15	151	22	48	126	0	8	1 37	14	51	160	0	6
16	152	52	27	141	0	0	1 53	42	2,1	128	8	0
17	143	42	9	149	7	54	117	0	0	136	0	0
18	1 54	22	36	130	77	6	192	0	0	150	54	8
19	1 34	52	13	140	16	51	123	0	0	130	6	78
20	151	21	43	118	0	0	150	0	0	140	52	13

Table 3.1 Jigsaw Puzzle Measurements

Edges are in clockwise order. There are three measurements for each edge, in hundredths of an inch (the error in each measurement is approximately $\frac{1}{100}$ in.): (i) the length of the line between the vertices, (ii) the maximum deviation of the edge from the line between vertices into the piece, and (iii) the maximum deviation of the edge from the line between vertices out from the piece.

STEP 4. Increase J to J+1. If $J \le K$, return to Step 3. If J > K, a new cluster is created, with K increased by 1. Set P(I) = K, L(K) = I, and return to Step 2.

3.3 LEADER ALGORITHM APPLIED TO JIGSAW PUZZLES

The algorithm requires a measure of distance, which will be the one described in Section 3.1. A threshold T is needed also. Since the error in a single measurement is approximately 1 (in hundredths of an inch), a plausible distance between two matching edges is $[2^2 + 2^2 + 2^2]^{1/2} = 3.5$. An initial threshold T = 4 will be used.

- STEP 1. Initially K = 1, P(1) = 1, L(1) = 1, and I = 1.
- STEP 2. Increase I to I = 2. Try the first cluster J = 1.
- STEP 3. The distance D(2, 1) = 1 by matching edge B of 1 to edge D of 2. Since $D(2, 1) \le 4$, P(2) = 1. Return to Step 2.
 - STEP 2. Increase I to I = 3. Try J = 1.

STEP 3. The distance D(3, 1) = 19 by matching edge D of 1 to edge A of 3. Since D(3, 1) > 4, go to Step 4.

STEP 4. Increase J to 2. Since J=2>K=1, a new cluster is created with K increased by 1. Set P(3)=2, L(2)=3, and return to Step 2.

In this way, all cases are assigned to clusters as follows:

Cluster 1:	1	2	5	13*	16*
Cluster 2:	3	4	7		
Cluster 3:	6	10	17*		
Cluster 4:	8	11*	12	15*	
Cluster 5:	9	18*			
Cluster 6:	14				
Cluster 7:	19	20			

The pieces with asterisks do not truly have a matching edge with their cluster leader. The algorithm has identified seven true matches and five false matches. The false matches are mostly due to the algorithm rather than measurement error, because the algorithm assigns each case to the first leader to which its distance is within threshold, rather than to the closest leader. The difficulty is partly solved by reducing the threshold to T=2.

Cluster 1:	1	2	5	13*	16*
Cluster 2:	3	4	7		
Cluster 3:	6	10			
Cluster 4:	8	12			
Cluster 5:	9				
Cluster 6:	11	15			
Cluster 7:	14				
Cluster 8:	17	18			
Cluster 9:	19	20			

Here there are ten true matches, and two false matches. The false matches 13 and 16 to 1 represent edges that are accidentally very close and should not be blamed on the algorithm.

It is sensible to consider clustering edges rather than pieces, since it is the similarities between edges that are used in matching pieces. The results of this clustering are given in Table 3.2. Ideally, there should be 31 clusters of pairs of matched edges, and 18 clusters of single edges corresponding to the borders of the puzzle. The computed partition contains one cluster of four edges, two clusters of three edges, 25 clusters of two edges, and 19 clusters of single edges. There are 23 true matches and 12 false matches, all of which are due to close similarities between edges without indentations. These errors seem unavoidable, whatever the algorithm.

3.4 PROPERTIES OF LEADER ALGORITHM

The positive feature of the leader algorithm is that it is very fast, requiring only one pass through the data. (It is thus not necessary to store the data in core, but it is sufficient to read it once from disk or tape.)

Several negative properties follow from the indecent haste with which objects are assigned to clusters. The first of these is that the partition is not invariant under

Table 3.2 Clusters of edges in a jigsaw puzzle using a leader algorithm with a threshold T=2. False matches are denoted by an asterisk.

CLUSTER		ED	ŒS		CIUSTER		EDGES	
1	1 A	1 5D*	1 6B*		26	9C	1 3A	
2	1B	2D			27	9D	11B*	12D*
3	10	5A			28	10B		
4	1D				29	100	14A	
5	2A				30	11C	1 5A	
6	2B 5D				31	12C	1 6A	
7	2C 6A				32	1 3B	14D	
8	3A				33	1 3C	17A	
9	3B	4D			34	14B	1 5D	
10	3C				35	14C	1 8A	
11	4A	5B*	17D*	12B*	36	1 5B	16D	
12	4B				37	1 5C		
13	4C	A8			38	1 6C		
14	5C	9A			39	17B	18D	
15	5D				40	17C	20B*	
16	6B	7D			41	18B	9D	
17	6C	1 0A			42	1 8C		
18	6D				43	1 9A		
19	7A				ji ji	19B		
20	7B				45	19C		
21	7C	1 1A			46	20A		
22	8B				47	2 o C		
23	8C	1 2Å			48	2 OD		
24	8D	11D*						
25	9B	1 0D						

reordering of the cases. For example, the first case is always a cluster leader. A second negative property is that the first clusters are always larger than the later ones, since they get first chance at each case as it is allocated. This property could be changed by allocating each case to the cluster whose leader it is closest to, but this change might require four or five times (or more) the distance calculations.

3.5 SORTING ALGORITHM

Preliminaries. A threshold T(J) is given for the Jth variable $(1 \le J \le N)$. Cases are partitioned into a set of clusters so that within each cluster the Jth variable has a range less than T(J). The thresholds should be chosen fairly large, especially if there are many variables. The procedure is equivalent to converting each variable to a

category variable (using the thresholds to define the categories) and the clusters are then the cells of the multidimensional contingency table between all variables.

- STEP 1. Order all cases $I(1 \le I \le M)$ according to the integral part of A(I, 1)/T(1).
- STEP 2. Reorder all cases I ($1 \le I \le M$) according to the integral part of A(I, 2)/T(2). Then reorder according to the integral part of $A(I, 3)/T(3), \ldots, A(I, N)/T(N)$.
- STEP 3. Clusters are now the sequences of cases which have identical values of the integral parts of A(I, J)/T(J) for all J.
 - HINT. Order by the least important variables first.

3.6 SORTING ALGORITHM APPLIED TO JIGSAW PUZZLES

This algorithm will be used for an initial sorting of edges—the matching of opposite edges would be necessary in a later step. A threshold of 10 will be used for each variable to avoid an excessively large number of clusters.

STEP 1. (Table 3.3). Order by integral part of deviation into piece divided by 10. The minimum value is 0; the maximum is 7.

Insid	e deviati	ion/10)	E	dges											
0	1A	1D	2A	3A	4A	4B	5B	5D	6 B	6D	7B	7D	8B	8D	9 B	9D
	10B	10D	11B	11D	12B	12D	13B	13D	14B	14D	15B	15D	16B	16 D		
	17B	17C	17D	18C	19C	19D	20B	20C								
1	2C	3B	3D	4C	5A	7A	7C	10A	10C	13A	13C	15C	19B			
2	1B	5C	12A	12C	15A	18A	20A									
3	14C															
4	1C	2D	3C	6C	8A	9A	9C	11A	11C	16C	17A					
5	2B	4D	6A	8C	14A	16A	18D	19A	20D							
6																
7	18B															

Table 3.3

STEP 2. (Table 3.4). Reorder by integral part of deviation out from piece divided by 10. The minimum value is 0; the maximum is 7.

Table 3.4

Outsi	ide devia	tion/l	10	1	Edges											
0	1A	1D	2A	3A	4A	4B	5B	5D	6B	6D	7B	7D	8B	8D	9B	90
	10B	10D	11 B	11D	12B	12D	13B	13D	14B	14D	15B	45D	16B	16 D		
	17C	17D	18C	19C	20B	20C	17A	18D	18B							
1	1C	3C	6C	8A	9C	2B	4D	6A	19A	20D						
2	14C	2D	9A	11A	11C	16C	8C	14A	16A					-		
3	5A	18A														
4	4C	7C	10A	13A	13C	1B	12A	5C	15A	20A						
5	17B	2C	3B	3D	7A	10C	15C	19B	12C							
6																
7	19D															

Next reorder by the integral part of the length divided by 10 (Table 3.5). The minimum value is 11; the maximum is 20.

Table 3.5

Leng	th/10				E	dges														
11	13B	14D	17C	20B			-					_								
12	2A	15B	16D	19C	1C	9A	5A	5C												
13	4A	5B	6D	12B	17D	18B	9C	19A	13A	15C	19D									
14	1A	7B	8D	10B	11D	13D	14B	17A	20D	14A	13C	17B	7A	10C	19B					
15	9D	20C	18D	3C	6C	8A	6A	14C	11A	11C	16C	8C	16A	. 18A	4C	7C 1	0A	12A	15A	20A 12
16	1 D	6B	7D	11B	12D	14B	15D	2C												
17	5D																			
18	3A	4B	2B	3D																
19	9B	10D	18C	2D	1B															
20	8B	4D	3B																	

STEP 3. Clusters are sequences of edges with identical integer parts of A(I, J)/T(J) for all J. Each sequence in a cluster is consistent with the ordering given above.

The clusters are given in Table 3.6. This clustering is not comparable to the ones based on the leader algorithm, because possible candidates for matching are not clustered together. Almost all the nonsingleton clusters are ones with straight edges, including both boundaries and internal straight edges. The other clusters must be matched to find matching edges—for example, the (15, 4, 1) cluster should be matched with the (15, 1, 4) cluster. This yields 6C-10A and 8A-4C as true matches and 3C-7C as a false match.

3.7 PROPERTIES OF SORTING ALGORITHM

The sorting algorithm is fast, requiring as many passes through the data as there are variables. The final clusters are independent of the original order of the cases (unlike clusters from the leader algorithm). They have a simple interpretation in that each variable has a range less than a given threshold T(J) in every cluster.

This algorithm has a peculiar drawback in producing extremely large numbers of clusters when there are many variables. For example, with 10 variables, if every variable has an effect on the clustering (if thresholds are not set larger than the ranges of variables over all cases), there are potentially $2^{10} = 1024$ clusters. Another difficulty is that the clusters are forced to be "rectangular" by the threshold property. Thus, if a cluster is spherical, its cases will be divided among a number of rectangular cells and the cluster will not show clearly.

3.8 THINGS TO DO

3.8.1 Running the Leader Algorithm

The leader algorithm is most appropriate for very large numbers of objects for which a quick initial sorting is required. Suitable data might be the moons and planets, or life expectancies by age and sex, or the dentition of mammals. The threshold must be guessed by using the knowledge that all objects in a cluster are within threshold distance from the cluster leader. For summarizing, the cluster leader represents the cluster.

Table 3.6 Final Clusters from Sorting Algorithm

Length/10	inside deviation/10	outside deviation/10				Ed	ges				
11	0	0	1 3B	14D	17C	20B					
12	0	0	2A	15B	1 ஹ	19C					
12	4	1	1C								
12	4	2	9A		•						
12	, 1	3	5A								
12	2	4	5C								
13	0	0	4A	5B	Œ	12B	17D				
13	7	0	18B								
13	4	1	9C								
13	5	1	1 9A								
13	1	4	1 3A								
13	1	5	1 5C								
13	0	7	1 9D								
14	0	0	1A	7B	8D	1 0B	1 1 D	1 3D	1 6B	1 7A	20D
14	5	2	1 4A								
14	1	4	1 3C								
14	0	5	17B								
14	1	5	7A	1 0C	19B						
15	0	0	9D	20C							
15	5	0	18D	_							
15	4	1	3C	6D	A3						
15	5	1	6A								
15	3	2	1 4C	_							
15	4	2	11A	11C	16C						
15	5	2	8C	1 6A							
15	2	3	1 8A								
15	1	4	4C	7C	1 0A						
15	2	4	1 2A	1 5A	2 O.A						
15	2	5	1 2C	-							
16	0	0	1D	бB	7D	11B	12D	14B	1 5D		
16	1	5	2C								
17	0	0	5D								
18	0	0	3A	¥B							
18	5	1	2B								
18	1	5	3D								
19	0	0	9B	1 OD	18C						
19	4	2	SD								
19	2	4	13								
20	0	0	8B								
20	5	1	4D								
20	1	5	3B								

3.8.2 Improved Leader Algorithm

A one-pass leader algorithm that avoids inflated early clusters measures the distance of a new object to the leaders in reverse order and allocates it to the first leader to which it is close enough. A many-pass algorithm, which is invariant under a change of the input order and does not require the specification of thresholds, begins with an initial central object (say, the mean object on each variable). On the first pass the object furthest from this is discovered. On the second pass, objects are allocated to whichever of the first two objects they are closest, and the object furthest from its leader is discovered to be the new leader in the next pass. In this way, after K passes, K clusters will be discovered. This algorithm is analogous to the K-means algorithm, without updating of cluster leaders.

3.8.3 Number of Clusters

It is always difficult to estimate the threshold and the number of clusters to be obtained for a given threshold. A very small initial threshold will produce a large number of small clusters after expensive computation.

```
SUBRDUTINE QUICK(A, M, N, NC, THRESH, LC, LL, XMISS)
5 . . . . .
                                                                                        .......20 MAY 1973
C... QUICK SUCCESSIVELY ASSIGNS EACH ROW TO THE LAST CLUSTER FOR WHICH THE C... DISTANCE BETWEEN THE ROW AND THE CLUSTER LEADER IS LESS THAN THRESHOLD. C... IF NO CLUSTER HAS THIS PROPERTY, THE ROW BECOMES A CLUSTER LEADER.
C.... A = M BY N BORDERED ARRAY
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF CDLUMNS
C.... NC = NUMBER DF CLUSTERS
C.... THRESH = THRESHDLD FOR ASSIGNING AN OBJECT TO A LEADER.
C.... LL = 1 BY NC ARRAY LISTING LEADERS
C.... LC = 1 BY M ARRAY SPECIFYING LEADER FOR EACH OBJECT
C.... XMISS = VALUE TO BE TREATED AS MISSING
C . . . . . . .
         DIMENSION A(M,N),LL(NC),LC(M)
DIMENSION AA(20)
         KC=1
         LL(1)=2
         DO 2D 1=2,M
         LC(1)=D
         DO 21 KK=1,KC
         K=KC-KK+1
         L=LL(K)
C.... COMPUTES DISTANCE BETWEEN ROW AND CLUSTER LEADER
         DD=0
         DC = D
         DD 22 J=2,N
IF (A(L,J).EQ.XMISS.OR.A(I,J).EQ.XMISS) GO TO 22
          DC=DC+1
         DD=DD+(A(L,J)-A(I,J))**2
IF(DD.GT.THRESH**2*(N-1)) GO TO 21
     22 CONTINUE
IF(DC.NE.O) DD=(DD/DC)++0.5
IF (DD.GT.THRESH) GD TD 21
C.... ASSIGN RUW I TD CLUSTER K IF DISTANCE BELOW THRESH
          LC[[]=K
          GD TD 2D
      21 CONTINUE
          IF (KC.EQ.NC) GO TD 20
 C.... CREATE NEW CLUSTER AND LEADER
          KC=KC+1
          LC(I)=KC
          LL(KC)=I
      2D CONTINUE
 C .... DUTPUT CLUSTER LEADERS
          WRITE (6,4)
       4 FORMAT(16HDCLUSTER LEADERS)
          CG 60 K=1,KC
          I=LL(K)
      60 hRITE(6,3) K,(A(I,J),J=1,N)
3 FORMAT(8H CLUSTER,I4,2X,A4,10F11.4/(16X,1DF11.4))
 С.
          CUTPUT CLUSTERS
          KC=KC+1
          DD 50 K=1.KC
          KK=K-1
          J=0
          DD 50 I=2,M
IF (J.EQ.20) J=0
          IF (LC(I).NE.KK) GD TO 5D
          J=J+1
          44(J)=A(I,1)
      5D IF(J.EQ.2D.DR.(I.EQ.M.AND.J.NE.D)) WRITE(6,1) KK,(AA(JJ),JJ=1,J)
1 FORMAT(' CLUSTER',I5,2D(1X,A5))
          RETURN
          END
```

For a metric distance $[D(I, J) \le D(I, K) + D(J, K)$ for each I, J, K] there is a relationship between the threshold and the number of clusters. Suppose that the leader algorithm, for some order of the objects, produces K clusters at threshold T. Then, for any order of the objects, show that it produces no more than K clusters at threshold 2T.

3.8.4 Size of Clusters

Let the data be real values with each point taken at random from [0, 1]. Then the size of the interval corresponding to the Kth cluster is smaller, in probability, than that of the (K-1)th cluster; this means that for every x the Kth cluster is at least as likely as the (K-1)th cluster to be less than x in size. It would be interesting to know by analysis or experiment the distribution of size of the Kth cluster. (This does not depend on the number of points, for large numbers of points.)

PROGRAMS

QUICK finds quick partition by assigning each object to the first leader object to which its distance is less than a threshold.

The K-Means Algorithm

4.1 INTRODUCTION

The principal nutrients in meat, fish, and fowl are listed in Table 4.1. The foods are classified by food type and method of preparation. In the source book, Yearbook of Agriculture (1959), there are more details on the mode of preparation, as well as amounts of vitamins and basic amino acids, given for dairy products, meats, fowl, fish, vegetables, fruits, grains, oils, and sugars. There is a ready-made weighting scheme for the nutrients in the estimated daily dietary allowances: food energy (3200 cal), protein (70 g), calcium (0.8 g), and iron (10 mg). In Table 4.2, note that these foods deliver about 7% of the daily allowances in calories but about 25% of iron, so that the iron component is rather heavily weighted. An argument could be made that iron is less important than calories or protein and so should be given less weight or ignored entirely.

It is desired to partition the foods so that foods within clusters are close, in some sense, and foods in different clusters are distant. The discordance between the data and a given partition P(M, K) of M objects into K clusters is measured by an error e[P(M, K)]. The very large number of possible partitions makes it impractical to search through all for the minimum of e. It is necessary instead to use the technique of local optimization. In this technique, a neighborhood of partitions is defined for each partition. Beginning with an initial partition, search through the set of partitions at each step, moving from a partition to that partition in its neighborhood for which e[P(M, K)] is a minimum. (If the neighborhoods are very large, it is sometimes cheaper computationally to move to the first partition discovered in the neighborhood where e[P(M, K)] is reduced from its present value.) A number of stopping rules are possible. For example, the search stops when e[P(M, K)] is not reduced by movement to the neighborhood. The present partition is then locally optimal in that it is the best partition in its neighborhood.

As an example, consider partitions into three clusters of the beef foods BB, BR, BS, BC, and BH. A plausible neighborhood for a partition is the set of partitions obtained by transferring an object from one cluster to another. Thus, for the partition (BB BR) (BS) (BC BH), the neighborhood consists of the following ten partitions:

(BR) (BB BS) (BC BH), (BR) (BS) (BB BC BH), (BB) (BR BS) (BC BH), (BB) (BS) (BR BC BH), (BB BR BS) () (BC BH), (BB BR) () (BS BC BH), (BB BR) () (BS) (BH), (BB BR) (BS BC) (BH), (BB BR BH) (BS) (BC), (BB BR) (BS BH) (BC).

A typical search route beginning with (BB BR) (BS) (BC BH) might be

(BB BR) (BS) (BC BH)	with	e = 8
(BB BR) (BS BC) (BH)	with	e = 6
(BR) (BS BC) (BB BH)	with	e = 5
(BR BC) (BS) (BB BH)	with	e = 4.

No neighborhood of this partition reduces e, and the search stops.

4.2 K-MEANS ALGORITHM

Preliminaries. The Ith case of the Jth variable has value A(I, J) $(1 \le I \le M, 1 \le J \le N)$. The variables are scaled so that euclidean distance between cases is appropriate. The partition P(M, K) is composed of the clusters $1, 2, \ldots, K$. Each of the M cases lies in just one of the K clusters. The mean of the Jth variable over the cases in the Lth cluster is denoted by B(L, J). The number of cases in L is N(L). The distance between the Ith case and Lth cluster is

$$D(I, L) = (\sum \{1 \le J \le N\} [A(I, J) - B(L, J)]^2)^{1/2}.$$

The error of the partition is

$$e[P(M, K)] = \sum \{1 \le I \le M\} D[I, L(I)]^2$$

where L(I) is the cluster containing the Ith case. The general procedure is to search for a partition with small e by moving cases from one cluster to another. The search ends when no such movement reduces e.

STEP 1. Assume initial clusters 1, 2, ..., K. Compute the cluster means B(L, J) $(1 \le L \le K, 1 \le J \le N)$ and the initial error

$$e[P(M, K)] = \sum \{1 \le I \le M\} D[I, L(I)]^2,$$

where D[I, L(I)] denotes the euclidean distance between I and the cluster mean of the cluster containing I.

STEP 2. For the first case, compute for every cluster L

$$\frac{N(L)D(1,L)^2}{N(L)+1} - \frac{N[L(1)]D[1,L(1)]^2}{N[L(1)]-1},$$

The increase in error in transferring the first case from cluster L(1), to which it belongs at present, to cluster L. If the minimum of this quantity over all $L \neq L(1)$ is negative, transfer the first case from cluster L(1) to this minimal L, adjust the cluster means of L(1) and the minimal L, and add the increase in error (which is negative) to e[P(M, K)].

STEP 3. Repeat Step 2 for the Ith case $(2 \le I \le M)$.

STEP 4. If no movement of a case from one cluster to another occurs for any case, stop. Otherwise, return to Step 2.

Table 4.1 Nutrients in Meat, Fish, and Fowl

[The Yearbook of Agriculture 1959 (The United States Department of Agriculture, Washington, D.C.) p. 244.] The quantity used is always 3 ounces.

		Food Energy (Calories)	Protein (Grams)	Fat (Grams)	Calcium (Milli Grams)	Iron (Milli Grama)
BB	Beef, braised	340	20	28	9	2.6
HR	Hamburger	245	21	17	9	2.7
BR	Beef, roast	420	15	39	7	2.0
BS	Beef, steak	375	19	32	9	2.6
BC	Beef, canned	180	22	10	17	3.7
CB	Chicken, broiled	115	20	3	8	1.4
CC	Chicken, canned	170	25	7	12	1.5
BH	Beef heart	160	26	5	14	5.9
ഥ	Lamb leg, roast	265	20	20	9	2.6
LS	Lamb shoulder, roast	300	18	25	9	2,3
HS	Smoked ham	340	20	28	9	2.5
PR	Pork roast	340	19	29	9	2.5
PS	Pork simmered	355	19	30	9	2,4
BT	Beef tongue	205	18	14	7	2.5
VC	Veal cutlet	185	23	9	9	2.7
FB	Bluefish, baked	135	22	4	25	.6
AR	Clams, raw	70	11	1	82	6.0
AC	Clams, canned	45	7	1	74	5.4
TC	Crabmeat, canned	90	14	2	38	.8
HF	Haddock, fried	135	16	5	15	•5
MB	Mackerel, broiled	200	19	13	5	1.0
MC	Mackerel, canned	155	16	9	157	1.8
PF	Perch, fried	195	16	11	14	1.3
SC	Salmon, canned	120	17	5	159	0.7
DC	Sardines, canned	180	22	9	367	2.5
UC	Tuna, canned	170	25	7	7	1.2
RC	Shrimp, canned	110	23	1	98	2.6

Table 4.2 Nutrients in Meat, Fish, and Fowl

As a percentage of recommended daily allowances.

,	Food Energy	Protein	Fat (Grams)	Calcium	Iron
Beef, braised	11	29	28	1	26
Hamburger	8	30	17	1	27
Beef, roast	13	21	39	1	20
Beef, steak	12	27	32	1	26
Beef, canned	6	31	10	2	37
Chicken, broiled	4	29	3	1	14
Chicken, canned	5	36	7	2	15
Beef, heart	5	37	5	2	59
Lamb leg, roast	8	29	20	1	26
Lamb shoulder, roast	9	26	25	1	25
Ham, smoked	11	29	28	1	25
Pork roast	11	27	29	1	25
Pork simmered	11	27	30	1	25
Beef tongue	6	26	14	1	25
Veal cutlet	6	33	9	1	27
Bluefish, baked	4	31	4	3	6
Clams, raw	2	16	1	10	60
Clams, canned	1	10	1	9	54
Crabmeat, canned	3	20	2	5	8
Haddock, fried	4	23	5	2	5
Mackerel, broiled	6	27	13	1	10
Mackerel, canned	5	23	9	20	18
Perch, fried	6	23	11	2	13
Salmon, canned	4	24	5	20	7
Sardines, canned	6	31	9	46	25
Tuna, canned	5	36	7	1	12
Shrimp, canned	3	33	1	12	26

4.3 K-MEANS APPLIED TO FOOD NUTRIENT DATA

To keep the computations manageable, only the first eight foods will be considered for the nutrients' food energy, protein, and calcium as a percentage of recommended daily allowances. The eight foods will be partitioned in three clusters. The calculations appear in Table 4.3.

Table 4.3	Application	of	K-Means	Algorithm	to	Food	Data
-----------	-------------	----	---------	-----------	----	------	------

		140		o why	itation of M-1410s	ma viieorimm	to room Di	a-ca
					Energy	Protein	Calcium	
	BB				11	29	1	
	HR				8	30	1	
	BR				13	21	1	
	B8				12	27	1	
	BC				6	31	2	
	CB				4	29	1	
	CC				5	36	1	
	BH				5	37	2	
					INITIAL CLUST	er means		e = 154.9
					Energy	Protein	Calcium	
1.	HR,	CB			8.5	25	1	
2.	HR,	BS			10	28.5	1	
3.	BB,	BC,	CC,	BH	6.75	33,25	1.5	
					First Cha	NTER		e = 108.2
•	7070	СВ			8.5		1	6 - 10042
		BS,			10.33		1	
	-	CC,			5.33	34.67	1.67	
•	20,	00,	<i>-</i>		,.,,	3		
					SECOND CH	ANGE		e = 61.4
1.	BR				13	21	1	
2.	HR,	B8,	BB		10,33	28.67	1	
3.	BC,	CC,	BH,	CB	5	33.25	1.5	

STEP 1. A quick initial clustering, which often works well, is based on the case sums. Suppose these are denoted by SUM(I), having minimum value MIN and maximum value MAX. To obtain K initial clusters, set case I into the Jth cluster, where J is the integral part of K[SUM(I) - MIN]/(MAX - MIN) + 1. Here the case sums are 41, 39, 35, 40, 41, 34, 42, and 44. The corresponding clusters are 3, 2, 1, 2, 3, 1, 3, and 3. Thus the initial partition is (BR CB) (HR BS) (BB BC CC BH). The values of B(L, J) ($1 \le L \le 3$, $1 \le J \le 3$) are next computed. For example, B(1, 1), the mean of cases in the first cluster for the first variable, equals (13 + 4)/2 = 8.5. (See Table 4.3 for more.) The error for the initial partition is the sum of squared distances of cases from their cluster means,

$$e[P(8,3)] = (11 - 6.75)^2 + (29 - 33.25)^2 + (1 - 1.5)^3 + (8 - 10)^2 + (30 - 28.5)^2 + (1 - 1)^2 + (13 - 8.5)^2 + (21 - 25)^2 + (1 - 1)^2 + (12 - 10)^2 + (27 - 28.5)^2 + (1 - 1)^2 + (6 - 6.75)^2 + (31 - 33.25)^2 + (2 - 1.5)^2 + (8.5 - 4)^2 + (29 - 25)^2 + (1 - 1)^2 + (5 - 6.75)^2 + (36 - 33.25)^2 + (1 - 1.5)^2 + (5 - 6.75)^2 + (37 - 33.25)^2 + (2 - 1.5)^2 = 154.9.$$

The first three squares are the squared distance of BB from its cluster mean (6.75, 33.25, 1.5), and so on.

STEP 2. For the first case, the distances to clusters are

$$D(1, 1)^{2} = (11 - 8.5)^{2} + (29 - 25)^{2} + (1 - 1)^{2} = 22.25,$$

$$D(1, 2)^{2} = 1.25,$$

$$D(1, 3)^{2} = 36.4.$$

The increase in error in transferring the first case to cluster 1 is $2 \times 22.5/3 - 4 \times 36.4/3$, and that to cluster 2 is $2 \times 1.25/3 - 4 \times 36.4/3$. The cluster that is best for the first case is thus the second cluster, and the error reduction is 47.7. The new value of e[P(8,3)] is thus 154.9 - 47.7 = 108.2.

It is necessary to update the means of clusters 2 and 3, since cluster 2 has gained the first case and cluster 3 has lost it. For example,

$$B(2, 1) = (11 + 2 \times 10)/3 = 10.33,$$

 $B(2, 2) = (29 + 2 \times 28.5)/3 = 28.67,$
 $B(2, 3) = (1 + 2 \times 1)/3 = 1.00.$

- STEP 3. Repeating Step 1 on all cases, for case 2, cluster 2 is far closer than any other, and case 2 remains in cluster 2, with no change taking place. Continuing, no change takes place until case 6, which moves to cluster 3. No further changes occur in this pass.
- STEP 4. Since some changes occurred in the last pass, another pass is necessary through all cases. No changes occur on this pass and the algorithm stops with the final cluster (BR) (HR BS BB) (BC CC BH CB). These clusters are characterized by the variables as follows: The first cluster is high in energy and low in protein, the second is high in energy and protein, and the third is low in energy and high in protein Calcium hardly matters. The complete data set is partitioned in Table 4.4.

4.4 ANALYSIS OF VARIANCE

Some distributions which appear frequently in the analysis of variance are the following:

- (i) the normal distribution $N(\mu, \sigma^2)$, which has mean μ and variance σ^2 and density exp $[-\frac{1}{2}(x-\mu)^2\sigma^{-2}]/\sigma\sqrt{2\pi}$. The unit normal is N(0, 1), having mean 0 and variance 1;
- (ii) the chi-square distribution χ_n^2 , which is the distribution of a sum of squares of *n* independent unit normals; and
- (iii) the F distribution $F_{m,n}$, which is the ratio of independent standardized chi squares, $(\chi_n^2/m)(\chi_n^2/n)^{-1}$.

Suppose P(M, K) is a partition of M objects into K clusters, and let $e(M, K, J) = \sum \{1 \le I \le M\} \{A(I, J) - B[L(I), J]\}^2$, where the case I lies in cluster L(I) and B(L, J) is the mean of the Jth variable over cases in cluster L. If the clusters are selected without regard to the Jth variable and if $A(I, J) \sim N\{\mu[L(I)], \sigma^2\}$ independently for each I, $e(M, K, J) \sim \sigma^2 \chi^2_{M-K}$. Furthermore, if the partition P(M, K+1) is obtained

Table 4.4

Clusters and cluster means from K-means algorithm applied to food data on energy, protein, and calcium expressed as percentages of daily requirements. The two clusters obtained by splitting cluster 3 are denoted by 31 and 32.

D4 D/D	-	_	4-		and.						-				TO ME TH	04T07777
PARTI															PROTEIN	
		H	B MC	PS PF	BT SC	VC DS	FB UC	AR RC	AC	TC	HF				27.1	
2		H M	S PR B PF	PS UC	BT RC	VC									27.3	
_		: M	C SC	DS										4.7	26.1	28.5
3	12		B HR B PR											7.4	29.0	1.8
	112	: A	R AC	TC										2.1	15.2	8.1
4			B HR S PR												28.8	
	3	: M	C SC	RC										4.0	26.7 31.4	17.3
		: D												5.6	31.4	45.9
5	112,	•						_								
	21													5.6	32.4	1.5
,					LL	Ш	HS	PR	PS	BT	Ш	МВ	PF	9.1	25.8	1.2
•	112, 31	. W	, 22 7 gm	, +										LЗ	23.6	108
	32														32.9	
7	112,			. 3	2.	ų.									,,,,	,
•	221	: B	B BS	ĹĹ	LL	HS	PR	PS	BT	HF	ΜВ	PF		8.7	26.5	1.2
	222	: B	R											13.1	26.5 21.4	.9
8	222,															
			C CC		VC	$\mathbf{F}\mathbf{B}$	UC							5.2	34.0	1.7
	6	: A	R AC											5.6	31.4	45 .9
	7	: B	B HR	BS	LL	LL	HS	PR	PS	MВ				9.6	27.8 24.0	1.1
_		_	в вт											4.6	24.0	2.1
9	222,		, 32 B HR					7010	ъе					10.0	27.9	1 1
			в вт					Γħ	LO						25.4	
	11	•		ш	MD	rr									20.0	
	• •	• -	-												-0.0	7.0

by splitting one of the clusters in P(M, K), then the mean square ratio

$$\left(\frac{e(M, K, J)}{e(M, K+1, J)} - 1\right)(M - K - 1) \sim F_{1, M-K-1}.$$

The ratio is a measure of the reduction of within-cluster variance for the Jth variable between the partitions P(M, K) and P(M, K + 1). The F distribution is not correct for evaluating K-means partitions because each variable influences the partition. The partition P(M, K + 1) is chosen to minimize

$$\sum \{1 \leq J \leq N\} e(M, K+1, J),$$

and this will tend to increase all the mean square ratios. Also, the partition P(M, K + 1) is not necessarily obtained by splitting one of the clusters in P(M, K), so the mean

square ratio is conceivably negative. Nevertheless, as a crude rule of thumb, large values of the ratio (say, >10) justify increasing the number of clusters from K to K+1.

Suppose again that P(M, K) is a given partition into K clusters, that P(M, K + 1) is obtained from it by splitting one of the clusters, and that

$$A(I,J) \sim N\{\mu[L(I),J], \sigma^2\}$$

independently over all I and J.

Then the overall mean square ratio

$$R = \left(\frac{e[P(M, K)]}{e[P(M, K+1)]} - 1\right)(M - K + 1) \approx F_{N,(M-K-1)N}.$$

Again this F distribution is not applicable in the K-means case, because the partition P(M, K + 1) is chosen to maximize the overall mean square ratio. Again, as a crude rule of thumb, overall mean square ratios greater than 10 justify increasing partition size

Some ratio measures are given for the food data in Table 4.5. For the variables, notice that calcium is very much reduced at the second, fourth, and sixth partitions.

Table 4.5 Ratio Due to K-Partition

Decrease in the sum of squares from the (K-1)th to the Kth partition, divided by the mean sum of squares within the Kth partition.

Maximum Cluster Size	PARTITION SIZE	OVERALL	energy	PROTEIN	CALCIUM
24	2	23.6	1.0	0.1	64.1
21	3	13.0	9.6	25.8	4.1
20	4	18.4	2.4	0	200.8
12	5	16.1	15.4	20.3	0.3
12	6	6.7	0.1	6.6	35.0
11	7	3.2	4.8	3.0	0.1
9	8	12.5	18.4	10.4	11.6
8	9	6.5	11.9	3.5	31.9

while energy and protein are reduced for the third and fifth. The larger ratios for calcium follow from the large initial variance for calcium [the initial variances are 10 (energy), 37 (protein), and 95 (calcium)].

Plausible stopping points in the clustering are K = 2, K = 5, and K = 8, where the ratios are unusually large.

4.5 WEIGHTS

The weights will depend on considerations outside the data. If persons eating the food were known to have a diet abundant in calcium, then the calcium component would be down-weighted. If protein were scarce in other foods, then it would be given

more weight. It is clear that in the initial analysis calcium was much the most important variable in the first few partitions. This is partly due to the scaling and partly due to the good clustering qualities of calcium, which is extremely high in a few sea foods and low elsewhere.

Another weighting scheme scales all variables to equal variance. As previously explained, this may be self-defeating in reducing the weight of variables that cluster well. Another weighting scheme repeats the partition a number of times, with one of the variables given weight 0 each time. The effect of the omitted variable on the clustering may be evaluated in this way. The 8-partitions corresponding to these weighting schemes are given in Table 4.6. Note there that calcium and protein are the best

Table 4.6 Effect of Changing Weights on 8-Partitions of Food Data by K-Means Algorithm

MEAN	SQUARE	ERROR	WITHIN	CLUSTERS
------	--------	-------	--------	----------

WEIGHTING	Energy ₂ (Calories)	Protein (Grams ²)	Fat (Grams ²)	Calcium (Mgms ²)	Iron (Mgms ²)
	4 6 6 5	4.1	60	11	•99
EQUAL VARIANCE	924	3.0	10	1500	.42
OMITTING ENERGY	1392	3.8	17	1199	.45
OMITTING PROTEIN	1151	19.5	11	320	.20
OMITTING FAT	1632	3.6	20	382	.41
OMITTING CALCIUM	816	2.6	9	6787	.36
OMITTING IRON	791	4.1	9	167	1.25

clustering variables in that their omission from the sum of squares to be minimized vastly increases their mean square error within the clusters obtained. Iron is the worst in that omitting it does not much increase the iron mean square and does much reduce the other mean squares. Since iron is subjectively less important anyway, a good final scheme would be to weight so that all variables would have variance 1 except iron, which would have variance 0.

4.6 OTHER DISTANCES

The K-means algorithm searches for partitions P(M, K) with a small error

$$e[P(M, K)] = \sum \{1 \le I \le M\} D^{2}[I, L(I)],$$

where D is the euclidean distance from I to the average object in L(I), the cluster to which I belongs. The essential characteristics of the K-means method are the search method, changing partitions by moving objects from one cluster to another, and the measure of distance. Euclidean distance leads naturally to cluster means and an analysis of variance for each of the variables.

To consider more general measures of distance, denote the *I*th case $\{A(I, J), 1 \le J \le N\}$ by A(I), and let $B(L) = \{B(L, J), J = 1, ..., N\}$ denote a set of values corresponding to the *L*th cluster.

A distance F[A(I), A(K)] is defined between the Ith and Kth cases. The central case of the Lth cluster is B(L) minimizing $\sum \{I \in L\} F[A(I), B(L)]$.

The error of a particular partition is

$$e[P(M, K)] = \sum \{1 \le I \le M\} F\{A(I), B[L(I)]\}$$

where L(I) is the cluster containing I.

Locally optimal clusters may be obtained by moving cases from one cluster to another, if this decreases e, and updating the central cases after each movement. For example, if the distance between two cases is the sum of the absolute deviations between the cases over variables, then the central case of a cluster is the median for each variable. The contribution of a cluster to the error is the sum of absolute deviations from the median, over all objects in the cluster and over all variables.

Approaching the error function from a statistical point of view, the cases $\{A(I, J), 1 \le J \le N\}$ will be denoted by A(I), and the parameters $\theta(1), \theta(2), \ldots, \theta(K)$ will be associated with each of the clusters. The cases in cluster L are a random sample from a probability distribution determined by $\theta(L)$; the probability of observing these cases is $\prod P[A(I) \mid \theta(L)],$

where the product is over the cases in the *L*th cluster. The probability of observing all cases is $\prod \{1 \le I \le M\} P\{A(I) \mid \theta[L(I)]\}.$

The error function associated with the partition P(M, K) is minus the log likelihood:

$$e = -\sum \{1 \le I \le M\} \log P\{\mathbf{A}(I) \mid \mathbf{\theta}[L(I)]\}.$$

To minimize this error function for a particular partition, the parameters $\theta(L)$ are chosen by maximum likelihood. Searching over all possible partitions may now take place by using the K-means procedure. Choosing the values $\theta(L)$ corresponds to selecting the cluster "centers" B(L,J) in the K-means procedure. The probability distribution $P[A(I) \mid \theta(L)]$ specifies the joint distribution of all variables, given the cluster center $\theta(L)$. If the variables are independent normal with equal variance and mean vector $\theta(L)$, the K-means error function is minus the log likelihood as indicated above. Note that this requires that the variables have equal variance within clusters.

Independent Laplace distributions for each variable within clusters implies a distance function summing absolute deviations. Uniform distributions within clusters implies a distance between cases equal to the maximum deviations between the cases, over variables.

A further refinement is to use Bayes techniques, with some prior distribution of the parameters, $\theta(1), \ldots, \theta(K)$, which will be assumed to be independent and identical random variables. The random variables A(I) are marginally independent between clusters but dependent within, so that the probability of the observed cases is $\prod \{1 \le L \le K\} P(L)$, where P(L) is the probability of the cases lying in cluster L. The value $-\log P(L)$ is a reasonable measure of cluster diameter, $e = \sum [-\log P(L)]$ is a measure of partition error, and the same search procedure as before is used to find good partitions.

4.7 THE SHAPE OF K-MEANS CLUSTERS

Some properties of the K-means algorithm, including the convexity of the clusters, are discussed in Fisher and Van Ness (1971). Consider a partition that is locally optimal in $e[P(M, K)] = \sum \{1 \le I \le M\} D^2[I, L(I)]$

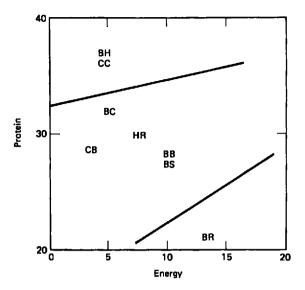


Figure 4.1 Clusters separated by hyperplanes based on food data in Table 4.3.

using the K-means search pattern. Here L(I) is the cluster containing case I, and D(I, L) is the distance between case I and the mean of cases in cluster L.

Let L1 and L2 be two different clusters. For each I in L1, D(I, L1) < D(I, L2), for otherwise I would be removed from L1 during step 2 of the algorithm. Therefore, each case I in L1 satisfies

$$\sum \{1 \le J \le N\} [B(L1, J) - B(L2, J)] A(I, J) > c,$$

where

$$c = \sum \{1 \le J \le N\} \frac{1}{2} [B(L1, J)^2 - B(L2, J)^2],$$

and each case I in L2 satisfies

$$\sum \{1 \le J \le N\} [B(L1, J) - B(L2, J)] A(I, J) < c.$$

Geometrically, the cases in L1 and L2 are separated by a hyperplane normal to $\{B(L1, J) - B(L2, J)\}$ (see Figure 4.1). (This hyperplane is a linear discriminant function for separating cases into the clusters L1 and L2.)

Each cluster is convex, which means that a case lies in a cluster if and only if it is a weighted average of cases in the cluster. To show this, suppose that case II lies in cluster L2, but it is a weighted average of cases in cluster L1. For all cases in L1

$$\sum \{1 \le J \le N\} [B(L1, J) - B(L2, J)] A(I, J) > c,$$

and the reverse holds for cases in L2.

Since $A(II, J) = \sum W(I)A(I, J)$, where the summation is over cases in cluster L1 and $W(I) \ge 0$,

$$\sum \{1 \le J \le N\} [B(L1, J) - B(L2, J)] A(II, J) > c.$$

Therefore case II does not lie in L2. Thus each cluster is convex, as required.

The partition that is optimal over all partitions is also, of course, locally optimal in the neighborhood of the K-means search procedure. The globally optimal clusters are therefore also convex. In searching for a globally optimal partition, it is necessary to consider only convex clusters, and in certain special cases this constraint makes it feasible to insist on the global optimum.

For 2-partitions with two variables, convexity requires that each partition be determined by a line. The first cluster lies on one side of the line and the second cluster lies on the other. The number of such partitions is M(M-1)/2+1. It is thus feasible for just two variables to find exactly optimal 2-partitions. The number of 2-partitions for N variables is $\sum \{0 \le J \le N\} \binom{M-1}{J}$, where $\binom{M-1}{J}$ is the number of ways of choosing J objects from M-1. For reasonably large N—say, N > 4—it quickly becomes impractical to obtain the optimal 2-partition by searching over hyperplanes.

To find the optimal 2-partition, consider a projection $V(I) = \sum \{1 \le J \le N\}$ E(J)A(I,J), where the coefficients E(J) sum square to unity. Find the optimal 2-partition of the variable V and compute the mean square error between clusters—say, B(V). The optimal 2-partition of all the data is the optimal 2-partition of V for that V maximizing B(V). Searching over all coefficients E(J) corresponds to searching over all hyperplanes. The error B(V) is continuous but not differentiable everywhere as a function of the E(J); it has many local maxima, and so setting derivatives equal to zero is useless. Fix J = J1 and consider coefficients E(J1), $\{\alpha E(J), J \ne J1\}$, where E(J1) and α vary but E(J) for $J \ne J1$ are fixed. The variable V is determined by a single parameter, and the optimal E(J1) may be found by using a similar procedure to the two-variable problem. In this way, each of the E(J)'s may be optimized one at a time. The final partition is not guaranteed globally optimal.

Now, asymptotic arguments will be used to speculate about cluster shape. For M infinite, with one variable, normally distributed, the clusters for 2, 3, 4, ..., partitions have been computed by Cox (1957) and Dalenius (1951). For example, the 2-partition contains clusters $(-\infty, 0)$ $(0, \infty)$, each with 50% of the cases. The 3-partition contains clusters $(-\infty, -0.612)$ (-0.612, 0.612) $(0.612, \infty)$, containing 27%, 46%, 27%, and so on (see Table 4.8). Note that the length of intervals increases towards the tails and the proportion of cases contained decreases. The cut points must be equidistant from the cluster means on either side, and the cluster means are determined by integration between the cutpoints. Beginning with an initial set of cutpoints, the cluster means are computed, then the cut points are taken anew as the averages of the neighboring cluster means, and so on until convergence. This is very similar to the K-means algorithm in concept and will not necessarily

Table 4.7 Relation between Weights and Mean Square Error within Clusters

For 27 observations from five-dimensional spherical normal. The weights used are 1, 2, 3, 4, 5. Table entries are weights multiplied by the mean square error within clusters.

	VARIABLE							
PARTITION SIZE	1	2	. 3	4	5			
1	1.2	1.9	2.7	3.7	4.5			
2	1,1	1.8	2.5	3.3	1.9			
3	1.0	1.7	1.9	2.4	1.9			
4	1.0	1.7	1.5	1.8	1.7			
5	.9	1.6	1.3	1.3	1.5			
10	•7	.8	1.1	1.0	.8			
15	•5	.6	•5	.6	.6			

converge to the optimum partition for any distribution (one with many modes, for example).

For N variables, M infinite, assume some joint distribution with continuous density on the variables such that each variable has finite variance. As $K \to \infty$, the mean square error within clusters approaches zero. If the joint density is positive everywhere, for each case there must be a cluster mean arbitrarily close to the case for K large enough. There will be some asymptotic N-dimensional distribution of cluster means

Table 4.8 Optimal Clusters of Normal Distribution

PARTITION SIZE			PROPO	RTION :	IN CLUS	STERS	
2	0	•50	.50				
3	<u>+</u> .612	.27	.46	.27			
Ţ.	o, <u>+</u> .980	.16	. 34	. 34	.16		
5	<u>+</u> 1.230, <u>+</u> .395	.11	. 24	.31	. 24	.11	
6	0. + 1.449. + .660	.07	.18	• 25	.25	.18	.07

that will depend on the original N-dimensional distribution of cases. In the neighborhood of a point, the density of cases is nearly constant. A certain large number of cluster means will be located in the neighborhood, and an approximately optimal location would occur if the density were exactly constant in the neighborhood. Therefore, there is no reason for the cluster shapes to be oriented in any one direction (the shapes will not be spheres, but polyhedra) and the within-cluster covariance matrix will be proportional to the identity matrix.

This is a heuristic argument. It has an important practical consequence. For large M and K, the within-cluster covariance matrix will be proportional to the identity matrix. Thus a hoped-for iterative weighting procedure may not work. It is desired to obtain weights from the within-cluster variances. The clusters must first be computed by using equal weights. The above argument shows, at least for large K, that the final within-cluster variances will be nearly equal and no change in weights will be suggested.

To test this empirically, 27 observations from a five-dimensional normal with mean zero and unit covariance matrix were clustered, using a distance function,

$$D(I, L) = \sum \{1 \le J \le 5\} W(J)[A(I, J) - A(L, J)]^2,$$

where the weights W(J) take the values 1, 2, 3, 4, 5. In a later step, the inverses of the within-cluster variances might be used as weights. In Table 4.7, it will be seen that the inverses of the within-cluster variances approach the original weights as the number of clusters increases.

Thus in specifying the weights you are specifying the within-cluster variances. In specifying between-variable weights, you are specifying the within-cluster covariance matrix to be the inverse of the weight matrix. These consequences occur only for a large number of clusters, so that if the clustering is stopped soon enough there may be some value to iteration. For example, if there are very distinct clusters separated well by every variable, the partitioning might stop when these clusters are discovered and the weights might be based on these within-cluster variances. But, of course, if there are such distinct clusters, they will appear under any weighting scheme and careful choice of the weights is not important.

4.8 SIGNIFICANCE TESTS

Consider the division of M observations from a single variable into two clusters minimizing the within-cluster sum of squares. Since this is the maximum likelihood division, under the model that observations in the first cluster are $N(\mu_1, \sigma^2)$ and observations in the second cluster are $N(\mu_2, \sigma^2)$, it will be plausible to test $\mu_1 = \mu_2$ versus $\mu_1 \neq \mu_2$ on this normal model.

Let L(I) = 1 or 2, according as the observation X(I) lies in the first or second cluster. Define

$$N(J) = \sum \{L(I) = J\}1 \qquad \text{(the number of observations in cluster } J),$$

$$Y(J) = \sum \{L(I) = J\} \frac{X(J)}{N(J)} \qquad \text{(the average in cluster } J),$$

$$SSW = \sum \{L(I) = J\} [X(I) - Y(J)]^2,$$

$$SSB = \frac{[Y(1) - Y(2)]^2}{1/N(1) + 1/N(2)}.$$

The likelihood ratio criterion is monotone in SSB/SSW, rejecting $\mu_1 = \mu_2$ if this quantity is large enough. The empirical distribution of this quantity for less than 50 observations is tabulated in Engelman and Hartigan (1969).

Suppose $\mu_1 = \mu_2 = 0$. It is sufficient to consider partitions where the first cluster consists of observations less than some split point c, and the second cluster consists of observations greater than c. Asymptotically, SSB and SSW vary negligibly over splits in the neighborhood of μ_1 , so the split may be assumed to occur at $\mu_1 = 0$ and the second cluster of observations will be a sample from the half-normal. The half-normal density $f(x) = \exp\left(-\frac{1}{2}x^2\right)\sqrt{2/\pi}$, (x > 0) has mean $\sqrt{2/\pi}$, variance $1 - 2/\pi$, third moment $\sqrt{2/\pi}(4/\pi - 1)$, and fourth moment $3 - 4/\pi - 12/\pi^2$. From this it

follows, by using standard asymptotic normal theory on the sums SSB and SSW,

SSB
$$\approx N \left(\frac{2M}{\pi}, \frac{8(\pi - 2)M}{\pi^2} \right),$$

SSW $\approx N \left[M \left(1 - \frac{2}{\pi} \right), 2M \left(1 - \frac{8}{\pi^2} \right) \right],$

and the covariance between them is $M(16/\pi^2 - 4/\pi)$. Note that SSB + SSW $\approx N(M, 2M)$, which is correct because SSB + SSW is just the sum of squared deviations from the overall mean.

More generally, for an arbitrary symmetric parent distribution X, for which the optimal split point converges asymptotically to zero, define

$$\mu(1) = E|X|$$

and

$$\mu(I) = E[|X| - \mu(1)]^{I}.$$

Then

SSB
$$\approx N[M\mu(1)^2, 4M\mu(1)^2\mu(2)]$$

and

SSW
$$\approx N\{M\mu(2), [\mu(4) - \mu(2)^2]M\},$$

with covariance $2\mu(3)\mu(1)$. It follows that SSB/SSW is approximately normal with mean $\mu(1)^2/\mu(2)$ and variance

$$\left(\frac{4\mu(1)^2}{\mu(2)} + \frac{[\mu(4) - \mu(2)^2]\mu(1)^4}{\mu(2)^4} - \frac{4\mu(3)\mu(1)^3}{\mu(2)^3}\right)M^{-1}$$

(you should forgive the expression).

In the normal case,

$$\frac{\text{SSB}}{\text{SSW}} \approx N\left(\frac{2}{\pi - 2}, \left(\frac{8}{\pi}\right)\left(1 - \frac{3}{\pi}\right)\left(1 - \frac{2}{\pi}\right)^{-4}M^{-1}\right)$$

OT

$$\frac{\text{SSB}}{\text{SSW}} \approx N\left(1.75, \frac{6.58}{M}\right).$$

This asymptotic distribution is not applicable except for very large M because SSB/SSW is extremely skew. Empirical investigation shows that log (SSB/SSW) is nearly nonskew for small M (say, M > 8) and that the actual distribution is much closer to the asymptotic one,

$$\log\left(\frac{\text{SSB}}{\text{SSW}}\right) \approx N\left(0.561, \frac{2.145}{M}\right).$$

A comparison between SSB/SSW and log (SSB/SSW) for small sample sizes is given in Table 4.9 (see also Engelman and Hartigan, 1969). There remains a substantial bias in log (SSB/SSW) that is incorporated in the formula

$$\log\left(\frac{\text{SSB}}{\text{SSW}}\right) \approx N\left(0.561 + \frac{0.5}{M-1}, \frac{2.145}{M}\right).$$

Table 4.9 Empirical Distribution of SSB/SSW

Using random samples from a normal distribution, with 100 repetitions for sample size n = 5 and 10, with 200 repetitions for sample sizes n = 20 and 50.

SAMPI	e size		SSI	B/SSW	LOG (SSB/SSW)		
			MEAN	VARIANCE	MEAN	VARIANCE	
5	OBSERVED	ı	8.794	382.007	1.708	. 582	
	ASYMPTOTIC	1	1.752	1.316	. 561	.429	
10	OBSERVED	ı	3.286	2.613	1.093	.180	
	ASYMPTOTIC	İ	1.752	.658	.561	.214	
20	OBSERVED	1	2.316	.565	•792	. 089	
	ASYMPTOTIC	1	1.752	.329	.561	.107	
50	OBSERVED	1	2.004	.207	.668	. 052	
	ASYMPTOTIC		1.752	.132	. 561	.042	

The quantity $\mu(1)^8/\mu(2)$ is a measure of the degree of bimodality of the distribution. It will be a maximum when the distribution (assumed symmetric) is concentrated at two points and a minimum (zero) for long-tailed distributions with infinite variance but finite first moment. Since SSB/SSW estimates this quantity, for symmetric distributions it might be better to estimate it directly by

$$\mu_{1} = \sum \{1 \le I \le M\} \frac{|X(I) - XBAR|}{M}$$

$$\mu_{2} = \sum \frac{[X(I) - XBAR]^{2}}{M} - \mu_{1}^{2},$$

where XBAR = $\sum \{1 \le I \le M\} X(I)/M$. This method of estimation is faster than the splitting method, which requires ordering the M observations and then checking M possible splits. In a similar vein, a quick prior estimate of within-cluster variance for weighting purposes (the estimate works well if the two clusters are of approximately equal size) is

$$\sum \left\{1 \le I \le M\right\} \frac{[X(I) - XBAR]^2}{M} - \left(\sum \left\{1 \le I \le M\right\} \frac{|X(I) - XBAR|}{M}\right)^2.$$

In N dimensions, assume that the null distribution is multivariate normal and that the covariance matrix has eigenvalues $E(1) > E(2) > \cdots > E(N)$. The asymptotic argument reduces to the one-dimensional case by orthogonal transformation to the independent normal variables with variances $E(1), \ldots, E(N)$. The split will be essentially based on the first variable, and the remaining variables will contribute standard

chi-square-like terms to the sums of squares:

$$SSB \approx N \left(\frac{2ME(1)}{\pi}, 8(\pi - 2)M \frac{E(1)^2}{\pi^2} \right),$$

$$E(SSW) = M \sum \{ 1 \le I \le N \} E(I) - 2M \frac{E(1)}{\pi},$$

$$VAR(SSW) = 2M \sum \{ 1 \le I \le N \} E(I)^2 - 16M \frac{E(1)^2}{\pi^2},$$

$$COV(SSB, SSW) = ME(1)^2 \left(\frac{16}{\pi^2} - \frac{4}{\pi} \right).$$

From this, asymptotically,

$$\begin{split} E\Big(\frac{\text{SSB}}{\text{SSW}}\Big) &= \frac{2E(1)}{\pi} \Big(\sum \{1 \le I \le N\} E(I) - \frac{2E(1)}{\pi} \Big)^{-1}, \\ \text{VAR}\Big(\frac{\text{SSB}}{\text{SSW}}\Big) &= \Big[\Big(\frac{8}{\pi^2}\Big) E(1)^2 (\sum \{1 \le I \le N\} E(I)^2 + (\pi - 2) [\sum \{1 \le I \le N\} E(I)]^2) \\ &- \Big(\frac{16}{\pi^2}\Big) E(1)^3 \sum \{1 \le I \le N\} E(I) \Big] \Big[M\Big(\frac{E(\text{SSW})}{M}\Big)^4 \Big]^{-1}. \end{split}$$

For N large, with E(1) making a relatively small contribution to $\sum \{1 \le I \le N\} E(I)$,

$$E\left(\frac{\text{SSB}}{\text{SSW}}\right) = \frac{2E(1)}{\pi} \left(\sum \{1 \le I \le N\} E(I)\right)^{-1}$$

and

$$VAR\left(\frac{SSB}{SSW}\right) = \left(\frac{8}{\pi^2}\right) E(1)^2 \left[\sum \{1 \le I \le N\} E(I)\right]^{-2} \frac{\pi - 2}{M}.$$

This reveals the obvious—that SSB/SSW has larger expectation if E(1) is larger relative to the other eigenvalues.

In the important case where the null distribution is spherical normal (all eigenvalues equal), the asymptotic distribution of SSB and SSW is not joint normal and the complicated calculations will not be given here.

4.9 THINGS TO DO

4.9.1 Running K-Means

A good trial data set is expectations of life by country, age, and sex, in Table 4.10. Try running the K-means algorithm on these data. An initial decision is the question of rescaling the variables. The variances and covariances of the variables should be examined. In a problem like this, where the variables are on the same scale (here, years), no change should be made except for a compelling reason.

The number of clusters K should not be decided in advance, but the algorithm should be run with several different values of K. In this problem, try $K = 1, 2, \ldots, 6$. Analysis of variance, on each of the variables, for each clustering will help decide which number of clusters is best. It is also desirable to compute covariances within each cluster, the overall covariance matrix within clusters, and the overall covariance

Table 4.10 Expectations of Life by Country, Age, and Sex

Keyfitz, N., and Flieger, W. (1971). Population, Freeman.

	COUNTRY (YEAR)	MALE					FEM	FEMALE.			
		AGE	0	25	50	75	AGE	0	25	50	75
1,	ALGERIA 65 ,		63	51	30	13		67	54	34	15
2.	CAMEROON 64		34	29	13	5		38	32	17	6
3.	MADAGASCAR 66		38	30	17	7		38	34	20	7
ħ.	MAURITIUS 66		59	42	20	6		64	46	25	8
5.	REUNION 63		56	38	18	7		62	46	25	10
6.	SEYCHELIES 60		62	44	24	7		69	50	28	14
7.	SOUTH AFRICA (COL) 61		50	39	20	7		55	43	23	8
8.	SOUTH AFRICA (WH) 61		65	44	22	7		72	50	27	9
9.	TUNISIA 60		56	46	24	11		63	54	33	19
10.	CANADA 66		69	47	24	8		75	53	29	10
11.	COSTA RICA 66		65	48	26	9		68	50	27	10
12.	DOMINICAN REP. 66		64	50	28	11		66	51	29	11
13.	EL SALVADOR 61		56	44	25	10		61	48	27	12
14.	GREENIAND 60		60	44	22	6		65	45	25	9
15.	GRENADA 61		61	45	22	8		65	49	27	10
16.	GUATEMALA 64		49	40	22	9		51	41	23	8
17.	HONDURAS 66		5 9	42	22	G		61	43	22	7
13.	JAMAICA 63		63	44	23	8		67	48	26	9
19.	MEXICO 66		59	44	24	8		63	46	25	8
20.	NICARAGUA 65		65	48	28	T ft		68	51	29	13
21.	PANAMA 66		65	48	26	9		67	49	27	10
22.	TRINIDAD 62		64	43	21	7		68	47	25	9
23.	TRINIDAD 67		64	43	21	6		68	47	24	8
24.	UNITED STATES 66		67	45	23	8		74	51	28	10
25.	UNITED STATES (NON-W) 66		61	40	21	10		67	46	25	11
26.	UNITED STATES (W) 66		68	46	23	8		7 5	52	29	10
27.	UNITED STATES 67		67	45	23	8		74	51	28	10
28,	ARGENTINA 64		65	46	24	9		71	51	28	10
29.	CHILE 67		59	43	23	10		66	49	27	12
۶o.	COLUMBIA 65		58	44	24	9		62	47	25	10
31.	ECUADOR 65		57	46	25	9		60	49	28	11

matrix between clusters. If the overall within covariance matrix differs significantly from a multiple of the unit matrix, transformation of the data to make it proportional to a unit matrix is suggested.

4.9.2 Varieties of the K-Means Algorithm

There are a number of versions of the K-means algorithm that need to be compared by sampling experiments or asymptotic analysis. The changeable components are (i) the starting clusters, (ii) the movement rule, and (iii) the updating rule. The criteria for evaluation are (i) the expected time of calculation and (ii) the expected difference between the local optimum and the global optimum. It is often required that an algorithm produce clusters that are independent of the input order of the cases; this requirement is not necessarily satisfied by the K-means algorithm but can always be met by some initial reordering of the cases. For example, reorder all cases by the first, second, . . . , Nth variables, in succession. (Note that this reordering will usually reduce the number of iterations in the algorithm.)

The following are some starting options:

- (i) Choose the initial clusters at random. The algorithm is repeated several times from different random starting clusters with the hope that the spread of the local optima will give a hint about the likely value of the true global optimum. To justify this procedure, it is necessary to have a distribution theory, finite or asymptotic, connecting the local and global optima.
- (ii) Choose a single variable, divide it into K intervals of equal length, and let each cluster consist of the cases in a single interval. The single variable might be the average of all variables or the weighted combination of variables that maximizes variance, the first row eigenvector.
- (iii) Let the starting clusters for K be the final clusters for K-1, with that case furthest from its cluster mean split off to form a new cluster.

The following are some movement options:

- (i) Run through the cases in order, assigning each case according to the cluster mean it is closest to.
- (ii) Find the case whose reassignment most decreases the within-cluster sum of squares and reassign it.
- (iii) For each cluster, begin with zero cases and assign every case to the cluster, at each step finding the case whose assignment to the cluster most decreases (or least increases) the within-cluster sum of squares. Then take the cluster to consist of those cases at the step where the criterion is a minimum. This procedure makes it possible to move from a partition which is locally optimal under the movement of single cases.

The following are some updating options:

- (i) Recompute the cluster means after no further reassignment of cases decreases the criterion.
 - (ii) Recompute the cluster means after each reassignment.

4.9.3 Bounds on the Global Optimum

It would be good to have empirical or analytic results connecting the local optima and the global optimum. How far is the local optimum likely to be from the global optimum? How different are the two partitions?

For some data configurations, the local optimum is more likely global than for others. Some bad things happen. Let $\{A(I,J), 1 \le I \le M, 1 \le J \le N\}$ be divisible into K clusters such that the euclidean distance between any pair of cases inside the same clusters is less than ρ and the euclidean distance between any pair of cases in different clusters is greater than ρ . Then this partition is a local optimum but not necessarily global.

Yet, if the clusters are widely separated, it should be possible to prove that there is only one local optimum. Let there be K clusters and fix the distances inside each of the clusters, but let the distances between cluster means all approach infinity. Then eventually there is a single local optimum.

The interesting problem is to make the relation precise between the within-cluster distances and the between-cluster distances, so that there is a unique local optimum. For example, suppose there are K clusters, M(I) points in the Ith cluster, D(I) is the maximum distance within the Ith cluster, and E(I, J) is the minimum distance between the Ith and Ith clusters. For what values of M(I), D(I), and E(I, J) is there a unique local optimum at this partition?

Some asymptotic results suggest that for large sample sizes there will be only a few local optima, differing only a little from the global optimum. The assumption required is that the points are drawn from some parent distribution which itself has a unique local optimum. If these results are expected, it means that a crude algorithm arriving quickly at some local optimum will be most efficient. It would be useful to check the asymptotics in small samples by empirical sampling.

4.9.4 Other Criteria

The points in cluster J may come from a population with parameters, possibly vector valued, $\theta(J)$, φ . The log likelihood of the whole data set is then

$$-\sum \{1 \leq I \leq M\} F\{A(I), \theta[L(I)], \varphi\},\$$

where A(I) denotes the Ith case, L(I) denotes the cluster to which it belongs, and φ denotes a general parameter applying across clusters. A generalized K-means algorithm is obtained by first assigning A(I) to minimize the criteria and then changing the parameter values $\theta[L(I)]$ and φ to minimize the criteria.

A first generalization is to allow an arbitrary within-cluster covariance matrix. The algorithm will first assign each case according to its distances from cluster means relative to the covariance matrix. It will then recompute the covariance matrix according to the redefined clusters. Both steps increase the log likelihood. The final clusters are invariant under arbitrary linear transformations of the variables, provided the initial clusters are invariant.

4.9.5* Asympototics

Consider the simplest case of division of real observations into two clusters. (The following results generalize to arbitrary numbers of dimensions and clusters and to more general optimization criteria.) The cluster means are θ and φ , and a typical point is x. Define the 2-vector

$$W(x, \theta, \varphi) = \begin{pmatrix} \theta - x \\ 0 \end{pmatrix}, \quad \text{if} \quad |\theta - x| \le |\varphi - x|$$

$$= \begin{pmatrix} 0 \\ \varphi - x \end{pmatrix}, \quad \text{if} \quad |\varphi - x| < |\theta - x|.$$

For data $X(1), \ldots, X(M)$, the criterion

$$\sum \{X(I) \in C(1)\}[X(I) - \theta]^2 + \sum \{X(I) \in C(2)\}[X(I) - \varphi]^2$$

has a local minimum if no reallocation of an X(I) between clusters C(1) and C(2)reduces it and if no change of θ or φ reduces it. The criterion has a local minimum if and only if $\sum \{1 \le I \le M\} W[X(I), \theta, \varphi] = 0$.

Asymptotic distributions for θ and φ follow from asymptotic distributions for $\sum W$, which for each fixed θ , φ is a sum of identically distributed independent random variables. Let X(I) be sampled from a population with three finite moments. Let

$$E(W) = \begin{bmatrix} \int_{X \le 1/2(\theta + \varphi)} (\theta - X) dP \\ \int_{X \ge 1/2(\theta + \varphi)} (\varphi - X) dp \end{bmatrix} \quad \text{for} \quad \theta < \varphi,$$

$$V(W) = \begin{bmatrix} \int_{X \le 1/2(\theta + \varphi)} (\theta - X)^2 dP & 0 \\ 0 & \int_{X \ge 1/2(\theta + \varphi)} (\varphi - X)^2 dP \end{bmatrix} - E(W)E(W').$$

Suppose E(W) = 0 for a unique θ , φ , $\theta < \varphi$ —say, θ_0 , φ_0 . Suppose the population

has a density f > 0 at $x_0 = \frac{1}{2}(\theta_0 + \varphi_0)$, and that V(W) is evaluated at θ_0 , ϕ_0 . Let θ_n and ϕ_n denote solutions to the equation $\sum W[X(I), \theta, \varphi] = 0$. Asymptotically,

$$\sqrt{nE}[W(X, \hat{\theta}_n, \hat{\varphi}_n)] \approx N[0, V(W)].$$

This means

$$\sqrt{n} \left[\frac{\partial EW}{\partial \theta_0} \frac{\partial EW}{\partial \varphi_0} \right] \begin{bmatrix} \theta_n - \theta_0 \\ \phi_n - \varphi_0 \end{bmatrix} \approx N[0, V(W)]$$

and

$$\sqrt{n} \begin{bmatrix} \hat{\theta}_n - \theta_0 \\ \hat{\phi}_n - \varphi_0 \end{bmatrix} \approx N[0, U],$$

where

$$U = \Sigma^{-1}V\Sigma^{-1},$$

$$\Sigma = \begin{bmatrix} P(X \le x_0) + \delta & \delta \\ \delta & P(X > x_0) + \delta \end{bmatrix},$$

and

$$\delta = \frac{1}{4}(\theta_0 - \varphi_0)f(x_0).$$

It turns out that different locally optimal solutions θ_n and ϕ_n differ from one another by terms of $O(n^{-1})$.

For symmetric parent distributions,

$$\sqrt{n} (\phi_n - \theta_n) \approx N(-\sqrt{n}2\theta_0, V),$$

$$\theta_0 = 2 \int_{X < 0} X dP,$$

and

$$V = 8 \int_{X<0} (X - \theta_0)^2 dP.$$

For a unit normal variable

$$\sqrt{n}(\phi_n - \hat{\theta}_n) \approx N[2\sqrt{2n/\pi}, 4(1-2/\pi)].$$

In general, the cluster centers are asymptotically normal with the covariance matrix computed in a similar way to the above. Each cluster center is the average of a number of observations lying closest to it. Its covariance matrix is just the covariance matrix of a mean with a δ term added due to the boundary of the region varying.

Since usually the quantities $\partial EW/\partial \theta$ and V(W) are not known, they must be estimated from the data—V(W) from the observed quantities $W[X(I), \theta, \varphi]$ at $\theta = \theta_n$ and $\varphi = \phi_n$, and the derivatives from

$$\sum \{W[X(I), \theta, \varphi] - W[X(I), \theta_n, \phi_n]\}\$$

for θ , φ near $\hat{\theta}_n$, $\hat{\varphi}_n$.

It would be useful to check the asymptotics by empirical sampling, at least for the normal distribution above. It would be useful to check that the different locally optimal solutions vary by $O(n^{-1})$. It would be useful to check the formulas of Section 4.8 empirically.

4.9.6 Subsampling

To avoid thought and asymptotic formulas, distributions for the cluster means that agree with the asymptotic ones may be obtained empirically as follows. A subset of cases is formed by randomly including each case with probability 0.5. The algorithm produces cluster means. A new subset is formed, and the algorithm produces a new set of cluster means. Repeating this procedure a few times, a sample of cluster means is obtained that agrees asymptotically with a sample from the posterior distribution of true cluster means.

4.9.7 Symmetric Paradox

In the univariate case, find a set of values, symmetric about zero, for which an optimal division into two clusters does not occur at zero.

4.9.8 Large Data Sets

For large numbers of cases (say, M = 5000) it is wasteful to do many runs on all cases. No matter what the eventual analysis, there will usually be no great loss in reducing the data to 100 cases using the leader algorithm. Each data point will be within a threshold distance d of one of these 100 cases. Suppose that the leading case is replaced by the average case in each cluster. A K-means algorithm is run on these 100 cases, with each case weighted by the number of original cases in the corresponding cluster. This produces a partition of the average cases with a weighted within-cluster sum of squares w. Show that the within-cluster sum of squares of the corresponding partition of the original cases lies between w and $w + Md^2$.

REFERENCES

COX, D. R. (1957). "Note on grouping." J. Am. Stat. Assoc. 52, 543-547. It is desired to classify an individual into one of K groups using an observation X. Define a grouping function $\xi(X)$ that takes at most K different values. Measure the loss associated with the grouping by $E[X - \xi(X)]^2$. Then $\xi_i P[\xi(X) = \xi_i] = \int_{\xi(X) = \xi_i} X dP$. This equation

determines the value of $\xi(X)$ in any group, but it does not specify the groups. The groups are specified, without proof, for $K = 1, 2, \ldots, 6$ from a normal distribution. DALENIUS, TORE (1951). "The problem of optimum stratification." Skandinavisk Aktuarietidskrift 34, 133-148. In dividing a continuous population into K clusters to minimize within-cluster variance, the cut point between neighboring clusters is the average of the means in the clusters. An iterative method is proposed for attaining this condition from an initial trial division.

ENGELMAN, L., and HARTIGAN, J. A. (1969). "Percentage points of a test for clusters." J. Am. Stat. Assoc. 64, 1647-1648. This paper gives empirical distributions of SSB/SSW for sample sizes 3-10, 15, 20, 25, 50. From examination of the empirical distributions, it is suggested that

$$\log\left(1+\frac{\text{SSB}}{\text{SSW}}\right)\approx N\left[-\log\left(1-\frac{2}{\pi}\right)+\frac{2.4}{M-2},\frac{1}{M-2}\right].$$

This formula agrees approximately with the asymptotic theory of Section 4.8.

FISHER, L., and VAN NESS, J. W. (1971). "Admissible clustering procedures." Biometrika 58, 91–104. The authors compare a number of "joining" algorithms and the K-means algorithm, which they call "hill climbing least squares." Their technique is to test whether or not the procedures produce clusters satisfying certain admissibility conditions for every possible set of data.

The K-means algorithm shows up rather badly failing every test but one—the final clusters are convex. That is, if a case is a weighted average of cases in a cluster, the case also lies in the cluster. The tests it fails include the following:

- (i) Perfect data. If there exists a clustering such that all distances within clusters are less than all distances between clusters, K means might not discover this clustering.
- (ii) Duplication of cases. If a case is repeated exactly, the final clustering might change.

They also note that it is practicable for very large numbers of observations, when a joining algorithm requires too much storage and computer time.

MACQUEEN, J. (1967). "Some methods for classification and analysis of multivariate observations." 5th Berkeley Symposium on Mathematics, Statistics, and Probability. Vol. 1, pp. 281–298. The K-means procedure starts with K groups, each of which contains a single random point. A sequence of points is sampled from some distribution, and each point is added in turn to the group whose mean it is closest to. After a point is added, the group mean is adjusted.

Suppose the population has density p(z) and that the cluster means, after n points are sampled, are x_1, \ldots, x_K .

Set

$$W(x_1, ..., x_K) = \sum_{i=1}^K \int_{S_i} |z - x_i|^2 p(z) dz,$$

$$S_i = \left\{ z \mid |z - x_i| = \min_{z} |z - x_j| \right\}.$$

where

Then the principal theorem is that $W(x_1, \ldots, x_k)$ converges to $W(u_1, \ldots, u_k)$, where $u_i = (\int_{S_i} z \, p(z) \, dz)/\int_{S_i} p(z) \, dz$. In words, the population variance within the sample clusters converges to the population variance within a locally optimal clustering of the population.

SEBESTYEN, GEORGES. (1962). Decision Making Processes in Pattern Recognition, Macmillan, New York. "Pattern detection is the process of learning the characterization of a class of inputs by detecting the common pattern of attributes of inputs of the same class. Pattern recognition is a process of decision making in which a new input is recognized as a member of a given class by a comparison of its attributes with the already known pattern of common attributes of members of that class." A principal part of the book is concerned with the second problem, discrimination between known classes. A K-means-type of algorithm is considered on p. 47, although it is described only in general terms. A number of inputs are introduced in sequence. Each input is assigned to one of a number of classes, according to its distance to the mean input of each class. The input is left unassigned if it is not close enough to any mean input. The mean inputs are updated after each assignment.

PROGRAMS

There are a series of routines that construct partitions of various sizes and print summary statistics about the clusters obtained.

BUILD calls programs constructing optimal partition of given size and increases partition size by splitting one of the clusters.

KMEANS assigns each case optimally.

SINGLE computes summary statistics.

OUTPUT prints information about clusters.

The following programs perform the basic operations of K means.

RELOC moves cluster center to cluster means.

ASSIGN reassigns each case to closest cluster center.

```
SUBROUTINE BUILD(A, M, N, K, SUM, XMISS, NCLUS, DCLUS, X, ITER)
                                                                                                          -20 MAY 1973
        BUILDS K CLUSTERS BY K-MEANS METHOD. A CLUSTEP IS ADDED AT EACH STEP, THE WORST OBJECT FROM THE PREVIOUS STEP.
FOR VERY LARGE MATRICES, THIS PROGRAM MUST BE MODIFIED TO AVDID STORING THE COMPLETE DATA MATRIX A IN CORE. THERE WILL BE K PASSES THROUGH THE DATA MATRIX FOR K CLUSTERS. THE DIMENSIGN STATEMENT MUST BE MODIFIED, AND
         STATEMENT NUMBERED 12.
C.... A = M BY N BORDERED ARRAY
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF CLUMNS
C.... K = NUMBER OF CLUSTERS
C.... XMISS = MISSING VALUE
C.... NCLUS = M BY 1 ARRAY SPECIFYING A CLUSTER NUMBER FOR EACH CASE
C.... DCLUS = 1 BY M ARRAY SPECIFYING DISTANCE OF EACH ROW TO CLUSEST CLUSTER.
C.... X = N BY 1 SCRATCH VECTOR
C.... ITER = NUMBER OF ITERATIONS AT EACH PARTITION SIZE
                                                                                         DIMENSION SUM(8,N,K),A(M,N),X(N),NCLUS(M),DCLUS(M)
         DO 20 I=1.8
DO 20 J=2.N
         DD 20 KK=1.K
     20 SUM(1, J, KK) = 0
         KL=K-1
         DD 10 KK=1,KL
DD 14 NC=1,ITER
         DMAX=0.
         ERR=0.
         DD 13 KKK=1,KK
DD 13 J=2,N
IF(NC.EQ.1.OR.SUM(1,J,KKK).NE.SUM(3,J,KKK)) ERR=1.
     13 CONTINUE
         IF(ERR.EQ.O) GD TO 15
         DD 16 KKK=1,KK
DD 16 J=2,N
          SUM(8,J,KKK)=SUM(2,J,KKK)
          IF(NC.EQ.1) SUM(8,J,KKK)=1.
         SUM (2, J, KKK)=0
     16 SUM(1,J,KKK)=SUM(3,J,KKK)
00 11 I=2,M
00 12 J=2,N
     12 X(J)=A(1,J)
NCLUS(I)=NC
     CALL KMEANS(N,KK,SUM,X,NGLUS(I),DCLUS(I),XMISS)
11 CONTINUE
     14 CONTINUE
     15 CONTINUE
CALL DUTPUT(M,N,KK,SUM,A,NCLUS,DCLUS)
C.... CREATE A NEW CLUSTER BY SPLITTING VARIBLE WITH LARGE WITHIN VARIANCE
         SM=0
         DD 30 J=2.N
         DD 30 KKK=1,KK
IF(SUM(4,J,KKK).LT.SM) GD TD 30
         SM=SUM(4,J,KKK)
         JME.L
         KM=KKK
     30 CONTINUE
         KN=KK+1
          DD 31 JJ=2,N
          SUM (2, JJ, KN) = 0
          SUM(2,JJ,KM)=0
          SUM(3,JJ,KM)=0
     31 SUM(3,JJ,KN)=0
         DD 32 I=2,M
IF(NCLUS(I).NE.KM) GD TD 32
          DD 33 JJ=2.N
          IF(A(I,JJ).EQ.XMISS) GD TJ 33
          IF(A(I,JJ).LT.SUM(1,JJ,KM)) GD TD 34
SUM(2,JJ,KN)=SUM(2,JJ,KN)+1
          SUM(3,JJ,KN)=SUM(3,JJ,KN)+A(1,JJ)
          GO TO 33
     34 SUM(2,JJ,KM)=SUM(2,JJ,KM)+1
          SUM(3,JJ,KM)=SUM(3,JJ,KM)+A(I,JJ)
     33 CONTINUE
     32 CONTINUE
          DD 35 JJ=2,N
IF(SUM(2,JJ,KN).NE.O) SUM(3,JJ,KN)=SUM(3,JJ,KN)/SUM(2,JJ,KN)
IF(SUM(2,JJ,KM).NE.O) SUM(3,JJ,KM)=SUM(3,JJ,KM)/SUM(2,JJ,KM)
     35 CONTINUE
      10 CONTINUE
          RETURN
          END
```

```
SUBROUTINE KMEANS(N,K,SUM,X,JMIN,DMIN,XMISS)
        DIMENSION SUM(8.N.K).X(N)
        JMIN=1
        DMIN=19.##20
        DD 20 J=1.K
XP=10.++(-10)
        0=00
       DD=0
DO 21 I=2,N
IF (X(I).EQ.XMISS) GO TO 21
DD=DO+(X(I)-SUM(1,I,J))**2
        XP=XP+I
    21 CONTINUE
       DD=[DD/XP]**0.5
IF(DD.GT.DMIN) GD TO 20
DMIN*DD
        L=MIML
    20 CONTINUE
        XM=N
        DO 31 I=2.N
    IF(X(I).EQ.XMISS) GO TO 31
30 CALL SINGLE(X(I).SUM(2,I,JMIN).SUM(3,I,JMIN).SUM(4,I,JMIN)
1,SUM(5,I,JMIN).SUM(6,I,JMIN).SUM(7,I,JMIN))
    31 CONTINUE
        RETURN
        END
        SUBROUTINE SINGLE(X, COUNT, AVE, SO, XMIN, XMAX, SSQ)
                                                                           ......23 MAY 1973
       INCORPORATES NEW VALUE X INTO SUMMARY STATISTICS THE MEANING OF EACH VARIABLE IS GIVEN IN KMEANS.
        IF(COUNT.NE.O.)GO TO 10
        AVE=0
        SD=0
        XMIN=10.**20
        XMAX=-10.+*20
        SSQ=0
    10 COUNT=COUNT+1.
        AVE=AVE+ (X-AVE) / COUNT
        IF(COUNT.NE.1) SSQ=SSQ+COUNT+(X-AVE)++2/(COUNT-1.)
        SD=(SSQ/COUNT) **D.5
        IF(XMIN.GT.X) XMIN=X
IF(XMAX.LT.X) XMAX=X
        RETURN
```

END

```
SUBROUTINE OUTPUT(M,N,KK,SUM, A, NCLUS, DCLUS)
C . . . .
       DUTPUT ROUTINE FOR KMEANS ALGORITHM
       PUTS OUT SUMMARY STATISTICS FOR EACH VARIABLE FOR EACH CLUSTER ALSO PUTS OUT OVERALL ANALYSIS OF VARIANCE FOR EACH VARIABLE
C .... A = M BY N BORDERED DATA MATRIX
C.... M = NUMBER OF CASES
C.... N = NUMBER OF VARIABLES
C... KK = NUMBER OF CLUSTERS
C.... SUM = 7 BY N BY KK MATRIX OF SUMMARY STATISTICS (SEE KMEANS ROUTINE)
C.... NGLUS = M BY 1 ARRAY IDENTIFYING CLUSTER TO WHICH EACH ROW BELONGS
C... DCLUS = EUCLIDEAN DISTANCE OF EACH ROW TO CLOSEST CLUSTER
       OIMENSION SUM(8,N,KK),NCLUS(M),DCLUS(M),A(M,N)
DIMENSION AA(10),DD(10)
       DIMENSION R(50)
       DATA NPAGE/0/
       DATA LC/0/
C... MEAN SQUARE CALCULATION OVER ALL CLUSTERS
       NPAGE=NPAGE+1
       WRITE (6,7) NPAGE
     7 FORMAT(1H1,110x,15)
       WRITE(6,9) KK
     9 FORMAT( OVERALL MEAN SQUARE CALCULATIONS, FOR EACH VARIABLE, ", 1" with 15," Clusters.)
       ASSW=0
       DD 40 J=2,N
       50=0.
       SC=O.
       SSB=0.
       SSW=0.
       00 41 K=1,KK
       SO=SD+SUM(3,J,K)*SUM(2,J,K)
SSB=SSB+SUM(3,J,K)**2*SUM(2,J,K)
        SSW=SSW+SUM(7,J,K)
    41 SC=SC+SUM(2,J,K)
       OFB=KK-1
       OFW=SC-DFB-1
       TH=10.**(-10)
       IF(SC.EQ.O) SC-TH
IF(OFW.EQ.O) OFW-TH
        IF(DFB.EQ.O) DFB=TH
        ASSW=ASSW+SSW
        SSB=SSB-SD**2/SC
        SSB=SSB/DFB
        SSH=SSW/DFH
        IF(SSW.EQ.O) SSW=TH
        RATIO=0
        IF(LC.NE.0) RATIO=(R(J)/SSW-1)*(1+DFW)+1
       R(J)=SSW
     WRITE(6,8)A(1,J),SSW,DFW,SSB,DFB,RATIO
B FDRMAT(' VARIABLE',AB,F20.6, '(WITHIN MEAN SQ.)',F4.0, '(WITHIN DF)'
      1,F20.6, '(BETWEEN MSQ)',F4.0, '(BETWEEN DF)',F6.1,'(FRAT10)')
    40 CONTINUE
    WRITE(6,10) ASSW
10 FORMAT(* DVERALL WITHIN SUM OF SQUARES*, F20.6)
        LC=LC+1
        00 20 K=1,KK
       WRITE (6,11)
    11 FORMAT(1X,131(1H-))
     WRITE(6,1) K,KK
1 FORMAT(15, T
                        TH CLUSTER OF , 15)
        WRITE (6,2) (I.I=1,10)
     2 FORMAT( OCCUSTER MEMBERS WITH THEIR DISTANCES TO THE CLUSTER CENTRE / (13x,
       1E'/13X,10[11]
       L=0
        DO 21 I=2.M
        IF(NCLUS(I).NE.K) GD TO 22
        L=L+1
        AA{L}=A(I,1)
       DO(L)=BCLUS(I)
    22 IF (L.LT.10.AND.I.LT.M) GD TO 21 IF(L.EQ.0) GO TO 21
        WRITE(6,3)(AA(LL),LL=1,L)
     3 FORMAT(15X,1047X,A4))
        WRITE(6,121(00(LL),LL=1,L)
    12 FORMAT(15X, 10F11.4)
```

```
21 CONTINUE
      WRITE(6,4)
4 FORMAT("OSUMMARY STATISTICS FOR THE CLUSTER")
      WRITE(6,5)
5 FORMAT( LABEL ,5X, CENTRE ,8X,
                          "COUNT",12x, 'AVE", 13x, 'SO', 11x, 'XMIN', 11x, 'XMAX', 12x, 'SSQ''
       1501)
         00 30 J=2,N
    30 WRITE(6,6)A(1,J),(SUM(I,J,K),I=1,7)
6 FORMAT(1X,A4,7F15.6)
    20 CONTINUE
81 CONTINUE
         RETURN
         ENO
         SUBROUTINE RELOC (M, N, K, A, X, NC)
C....
                                                                                 ..... 1973
C.... RELOCATES EACH CLUSTER CENTRE TO BE A CLUSTER MEAN
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... K = NUMBER OF CLUSTERS
C.... A = M BY N BORDERED ARRAY
C.... X = N BY K BORDERED ARRAY OF CLUSTER CENTRES
C.... NC = M BY 1 ARRAY ASSIGNING EACH ROW TO A CLUSTER
C . . . . . . . . .
         DIMENSION A(M.N),X(N,K),NC(M)
DIMENSION CC(10)
         DATA CC/4HCLUS, 2HC1, 2HC2, 2HC3, 2HC4, 2HC5, 2HC6, 2HC7, 2HC8, 2HC9/
         XM=99999.
C.... COMPUTE MEANS
         DO 10 L=2,K
DO 10 J=2,N
         X(J,L)=0
         IF(NC(I).NE.L) GO TO 20
         IF(A(I,J).EQ.XM) GO TO 20
         P=0
         00 20 I=2,M
         P=P+1
         (L,I)A+(J,L)+A(I,J)
     20 CONTINUE
         IF(P.NE.O) X(J,L)=X(J,L)/P
         IF(P.EQ.O) X(J,L)=XM
    10 CONTINUE
C... LABEL CLUSTER MEANS
00 40 J=2,N
     40 X(J,1)=A(1,J)
         00 50 L=1,K
         IF(L.GT.10) RETURN
     50 X(1.L)=CC(L)
         RETURN
         ENO
```

```
SUBROUTINE ASSIGN(M.N.K.A.X.NC)
Č . . . . .
DIMENSION A(M,N),X(N,K),NC(M)
C... INITIALISE
        0=0
        NC(1)=0
        XM=99999.
        00 10 I=2,M
0C=10.**10
        00 20 J=2.K
        01=0
        OP=0
C.... FIND DISTANCE TO CLUSTER CENTRE
        00 30 L=2,N
IF(X(L,J).EQ.XM.DR.A(I,L).EQ.XM) GO TO 20
DJ=DJ+(X(L,J)-A(I,L))**2
    30 CONTINUE
IF(OP.6T.O) DJ=(DJ/DP)**0.5
C... FIND CLOSEST CLUSTER CENTRE
WRITE(6.1) I.J.NC(I).DP.DC.DJ
1 FORMAT(315.3F20.6)
IF(OJ.GT.DC) GO TO 20
        OC=OJ
       NC(I)=J
    20 CONTINUE
C.... FIND ROW FURTHEST FROM ITS CENTRE IF(DC.LT.D) GD TO 10
        D=DC
       NC(1)=I
    10 CONTINUE
       RETURN
       END
```

Mixtures'

5.1 INTRODUCTION

A statistical model for partitions supposes that each of M observations is selected at random from one of K populations. If the probability density for an observation x given a parameter value θ is written $f(x \mid \theta)$, the probability density of the mixture will be $\sum \{1 \le J \le K\} P(J) f[x \mid \theta(J)]$. Here P(J) is the probability that the observation x belongs to the Jth population, which is determined by parameter $\theta(J)$.

The log likelihood of observations $x(1), x(2), \ldots, x(M)$ is

$$\sum \{1 \le I \le M\} \log \left(\sum \{1 \le J \le K\} P(J) f[\mathbf{x}(I) \mid \boldsymbol{\theta}(J)]\right),$$

and this may be maximized to estimate the parameters P(J) and $\theta(J)$. The quantity

$$P(I,J) = P(J) f[\mathbf{x}(I) \mid \mathbf{\theta}(J)] \left(\sum \{1 \le J \le K\} P(J) f[\mathbf{x}(I) \mid \mathbf{\theta}(J)] \right)^{-1}$$

is the probability that the *I*th observations belongs to the *J*th population (or *J*th cluster), given its value, x(I). These conditional probabilities are useful in assigning objects to populations after the parameters have been estimated. They also play an important role in the iterative process to maximize the likelihood with P(I, J) being the weight that the *I*th observation has in determining the *J*th parameter.

Stationary values of the likelihood occur when the following equations are satisfied:

$$\sum \{1 \le I \le M\} P(I, J) \frac{\partial \log f[\mathbf{x}(I) \mid \boldsymbol{\theta}(J)]}{\partial \boldsymbol{\theta}(J)} = 0, \tag{1a}$$

$$\sum (1 \le I \le M) \frac{P(I,J)}{M} = P(J). \tag{2a}$$

and

$$P(I,J) = P(J) \frac{f[\mathbf{x}(I) \mid \mathbf{\theta}(J)]}{(\sum \{1 \le J \le K\} P(J) f[\mathbf{x}(I) \mid \mathbf{\theta}(J)])}.$$
 (3a)

Note that eq. 1a corresponds to the maximum likelihood estimate of θ when the Ith observation is observed P(I, J) times. In this way, the P(I, J) are the weights of the Ith observation in the Ith parameter estimate.

There are no guarantees that the above equations determine the maximum likelihood estimate, that a solution exists, or that a solution is unique. These questions are answered differently for different densities $f(\mathbf{x} \mid \boldsymbol{\theta})$. A plausible iterative technique first guesses P(J) and $\theta(J)$ [the $\theta(J)$'s should be unequal], computes P(I, J) from eq.

3a, and then estimates $\theta(J)$, P(J), and P(I,J) in succession, until the procedure converges. This approach is analogous to the K-means approach, in which cluster means are first guessed [corresponding to P(J) and $\theta(J)$] and then objects are assigned to the various clusters [corresponding to estimating P(I,J)], after which cluster means are recomputed, objects are reassigned, and so on. The same sort of local optimization problems are to be expected. A solution to the equations may not be unique, and other solutions may have larger likelihoods.

For the multivariate normal $x \sim N(\mu, \Sigma)$, the equations will be

$$\mu(J) = \frac{\sum \{1 \le I \le M\} \mathbf{x}(I) P(I, J)}{\sum \{1 \le I \le M\} P(I, J)},$$
(1b)

$$\Sigma(J) = \frac{\sum (1 \le I \le M) [x(I) - \mu(J)][x(I) - \mu(J)]' P(I, J)}{\sum (1 \le I \le M) P(I, J)}$$
(1b')

$$P(J) = \sum \left\{ 1 \le I \le M \right\} \frac{P(I, J)}{M},\tag{2b}$$

and

$$P(I, J) = |\Sigma(J)|^{-1/2} P(J)B(I) \exp \left\{ -\frac{1}{2} [x(I) - \mu(J)]' \Sigma^{-1}(J) [x(I) - \mu(J)] \right\}$$
(3b)

with B(I) determined by $\sum \{1 \le J \le K\} P(I, J) = 1$. This model is difficult to fit if there are many clusters and variables and just a few observations. In any case, there are solutions for which the likelihood is infinite, in which some of the $\Sigma(J)$'s are zero, and these must be forbidden somehow.

In order to reduce the many parameters to be estimated in the covariance matrices, a number of simplifying assumptions are suggested. First, suppose that the $\Sigma(J)$ are all equal. The equations remain as above, except that Eq. 1b' becomes

$$\Sigma(J) = \sum \{1 \le I \le M\} \{1 \le J \le K\} \left[x(I) - \mu(J) \right] \left[x(I) - \mu(J) \right]' \frac{P(I, J)}{M}.$$

Second, suppose that $\Sigma(J) = \Delta$, where Δ is diagonal. The equations remain the same, except that the off-diagonal terms in the estimate of $\Sigma(J)$ are always set zero.

Finally, if all variables are assumed uncorrelated with equal variance σ^2 , the equations become

$$\mu(J) = \frac{\sum \{1 \le I \le M\} \ \mathbf{x}(I)P(I, J)}{\sum \{1 \le I \le M\} \ P(I, J)},$$
(1c)

$$\sigma^{2} = \frac{\sum \{1 \leq I \leq M\}\{1 \leq J \leq K\} [\mathbf{x}(I) - \mu(J)]'[\mathbf{x}(I) - \mu(J)] P(I, J)}{MN} \quad (1c')$$

$$P(J) = \sum \left\{1 \le I \le M\right\} \frac{P(I,J)}{M},\tag{2c}$$

and

$$P(I, J) = P(J)B(I) \exp\left(\frac{-\frac{1}{2}[\mathbf{x}(I) - \mu(J)]'[\mathbf{x}(I) - \mu(J)]}{\sigma^2}\right), \tag{3c}$$

where B(I) is determined by $\sum \{1 \le J \le K\} P(I, J) = 1$.

The mixture model is connected to K-means models as follows. Return to the general model, where M observations are assumed each to come from one of K populations and where the probability density for the Ith observation from the Lth population is $f[x(I) | \theta(L)]$. Let E(I, L) be a parameter that is unity if I comes from the Lth population and zero otherwise. Then the log likelihood of the observations is

$$\sum \{1 \le I \le M\} \{1 \le L \le K\} E(I, L) \log f[x(J) \mid \theta(L)].$$

For fixed $\{E(I, L), 1 \le I \le M, 1 \le L \le K\}$, the maximum log likelihood is

$$LL(E) = \sum \{1 \le I \le M\} \log f\{\mathbf{x}(I) \mid \theta[L(I)]\},$$

where $\theta(L)$ is the value of $\theta(L)$ maximizing

$$\sum \{1 \le I \le M, E(I, L) = 1\} \log f[\mathbf{x}(I) \mid \mathbf{\theta}(L)],$$

and L(I) is the unique value of L for which E(I, L) = 1.

The vector $\{E(I,L), 1 \le I \le M, 1 \le L \le K\}$ determines a partition of the M observations into K clusters, which is evaluated by the error function LL(E) given above. In the multivariate normal case, with covariance matrix spherical normal within all clusters, the quantity LL(E) is just the sum of squared euclidean distances from the cluster means. Other assumptions on the covariance matrix will give different error functions appropriate for, say, constant covariance matrices within clusters or covariance matrices that are diagonal, etc.

Now suppose that the parameters E(I, L) are random variables. A reasonable assumption is that $\{E(I, L), 1 \le L \le K\}$ are independent and identically distributed over the M observations, so that E[I, L] = 1 with probability P(L),

$$\sum \{1 \le L \le K\} P(L) = 1.$$

Then the log likelihood is

$$\sum \{1 \le I \le M\} \log \left(\sum \{1 \le L \le K\} P(L) f[\mathbf{x}(I) \mid \mathbf{\theta}(L)]\right)$$

and the mixture model is obtained. An important feature of the model is that the conditional distribution of $\{E(I, L), 1 \le L \le K\}$, given the observations $\kappa(I)$, gives probabilities that each observation belongs to each of the K clusters. These probabilities are the quantities P(I, K) which played a pivotal role in the iterative maximum likelihood solution. Unfortunately, the P(I, K) involve the unknown parameters $\theta(L)$, which must be estimated, and the estimated inclusion probabilities are not quite trustworthy as an indication of definition of the various clusters.

The mixture model follows from the straight partition model by assuming a prior probability distribution of partitions. An important outcome of this approach is the posterior distribution of partitions given the data. A fully Bayesian approach would also require prior distributions on $\theta(L)$ and the parameters P(L). Usually $\theta(1)$, $\theta(2)$, ..., $\theta(K)$ and P(1), P(2), ..., P(K) should be exchangeable, since there is no reason to distinguish between clusters. [Exchangeability might offer a control on wildly different estimates of $\theta(1)$, $\theta(2)$, ..., $\theta(K)$ obtained when the data are few.]

There are considerable difficulties in generalizing this approach from partitions to trees.

The quantity

5.2 NORMAL MIXTURE ALGORITHM

Preliminaries. The data $\{A(I,J), 1 \le I \le M, 1 \le J \le N\}$ are assumed to be a random sample of size M from a mixture of K multivariate normal distributions in N dimensions. The Lth multivariate normal is determined by its mean $\{U(J,L), 1 \le J \le N\}$ and covariance $\{C(J1,J2,L), 1 \le J1, J2 \le N\}$. The probability density for the Jth observation from the Lth normal is

$$F(I, L) = (2\pi)^{-N/2}D(L)^{-1/2}$$

$$\times \exp\left(-\frac{1}{2}\sum \{1 \le J1, J2 \le N\} \left[A(I, J1) - U(J1, L)\right] \right.$$

$$\times \left[A(I, J2) - U(J2, L)\right]CC(J1, J2, L),$$

where D(L) is the determinant, and $\{CC(J1, J2, L), 1 \le J1, J2 \le N\}$ is the inverse of the covariance $\{C(J1, J2, L), 1 \le J1, J2 \le N\}$. In the mixture model, each observation is obtained by selecting from the K multivariate normals, drawing the Lth with probability W(L) and then sampling the observation from the normal distribution selected. The probability density of the Ith observation is thus

$$G(I) = \sum \{1 \le L \le K\} F(I, L) W(L).$$

$$P(I, L) = \frac{F(I, L)}{G(I)}$$

is the probability that the Ith observation was drawn from the Lth normal. These quantities play an important role in estimating W, U, C, and also in interpreting the fit. Essentially the P(I, L) determine to which of the K clusters the Ith observation probably belongs.

The criterion to be maximized is the log likelihood $\sum \{1 \le I \le M\} \log G(I)$. The procedure iterates toward a stationary (locally optimal under small changes in W, U, C) likelihood, but there is no guarantee that this local optimum is global. In general, there will be more than one local optimum.

The technique first guesses at the probabilities $\{P(I, L), 1 \le I \le M, 1 \le L \le K\}$, like guessing an initial partition in the K-means algorithm, then estimates means U and covariance C as weighted averages over all observations with the weights $\{P(I, L), 1 \le I \le M, 1 \le L \le K\}$; it then estimates the weights W as averages of the P, and finally estimates the probabilities P(I, L) using P(I, L) = F(I, L)/G(I). This cycle is repeated until the values of W, U, C converge. It is not known whether the log likelihood surely increases after each cycle. A reasonable stopping rule is: Stop when the log likelihood increases by less than 0.01.

The very many parameters present in the covariance matrices $\{C(J1, J2, L), 1 \le J1, J2 \le N, 1 \le L \le K\}$ require a lot of data for their estimation. A rule of thumb is that M should be greater than $\frac{1}{2}(N+1)(N+2)K$. Even with many observations, the procedure is vulnerable to nonnormality, or linear dependence among the variables. A way to reduce this sensitivity is by assumption on the covariance matrices. There are four plausible stages from very general to very specific:

- (i) Covariance matrices are arbitrary;
- (ii) Covariance matrices in different normals are equal;
- (iii) Covariance matrices are equal and diagonal;
- (iv) All variables have the same variance and are pairwise independent.

STEP 1. Initialize P(I, L) by setting

$$P(1, 1) = P(2, 1) = \cdots = P[I(1), 1] = 1,$$

$$P[I(1) + 1, 2] = P[I(1) + 2, 2] = \cdots = P[I(2), 2] = 1,$$

$$\vdots$$

$$P[I(K - 1) + 1, K] = \cdots = P[I(K), K] = 1,$$

where I(J) = JM/K. The remainder of the P(I, L) are set equal to zero. This initialization is equivalent to partitioning the observations into equal size groups. A different initialization is obtained by reordering the observations.

STEP 2. Update the weights W by

$$W(L) = \sum \{1 \le I \le M\} P(I, L).$$

The quantity W(L) is the estimated number of observations from the Lth distribution.

STEP 3. Update the means U by

$$U(J, L) = \sum \{1 \le I \le M\} A(I, J) \frac{P(I, L)}{W(L)}.$$

STEP 4. Update the covariances C by

$$C(J_1, J_2, L) = \sum \{1 \le I \le M\} [A(I, J_1) - U(J_1, L)] [A(I, J_2) - U(J_2, L)] \frac{P(I, L)}{W(I)}.$$

Under option (i), go to Step 5.

Under options (ii)-(iv), replace C(J1, J2, L) for each L ($1 \le L \le K$) by

$$\sum \{1 \le L \le K\} \ C(J_1, J_2, L) \frac{W(L)}{M}.$$

Under option (iii), replace C(J1, J2, L), for each L and for each $J1 \neq J2$ by zero. Under option (iv), replace C(J, J, L) for each J, L by

$$\sum \left\{1 \leq J \leq N\right\} \frac{C(J,J,1)}{N}\,.$$

STEP 5. Compute the determinants and inverses of the covariance matrices $\{C(J1,J2,L), 1 \le J1, J2 \le N\}$ for each L and then the probability densities F(I,L), the average densities G(I), and the log likelihood $\sum \{1 \le I \le M\} \log G(I)$. Update P(I,L) by P(I,L) = F(I,L)/G(I). If the log likelihood does not exceed its previous value by 0.01, stop. Otherwise go to Step 2.

NOTE. For covariance structure options (iii) and (iv), independence between variables is assumed, and considerable simplification in the computations in Steps 4 and 5 is possible.

5.3 NORMAL MIXTURE ALGORITHM APPLIED TO NEW HAVEN SCHOOL SCORES

Table 5.1 contains the scores in fourth grade reading, fourth grade arithmetic, sixth grade reading, and sixth grade arithmetic in 25 New Haven primary schools. A reasonable standardization would divide the fourth grade scores by the national average, four, and the sixth grade scores by the national average, six. Since the general mixture model is invariant under linear transformation, this scaling is not necessary.

For two clusters, the number of parameters to be estimated in the most general mixture model is $\frac{1}{2}(N+1)(N+2)K-1=29$, which exceeds the number of observations. The algorithm produced infinite likelihoods for several starting configurations

Table 5.1 Achievement Test Scores, New Haven Schools

The measurements are in years and months, in terms of national averages. There are ten months in a school year. At the beginning of fourth grade, the national average score is 4.0.

SCHOOL	FOURTH GRADE		SIXTH GRADE		
	READING	ARITHDETIC	READING	ARITHMETIC	
Baldwin	2.7	3.2	4.5	4.8	
Barnard	3.9	3.8	5.9	6.2	
Beecher	4.8	4.1	6.8	5.5	
Brennan	3.1	3.5	4.3	4.6	
Clinton	3.4	3.7	5.1	5.6	
Conte	3.1	3.4	4.1	4.7	
Devis	4.6	4.4	6.6	6.1	
Day	3,1	3.3	4.0	4.9	
Dwight	3.8	3.7	4.7	4.9	
Edgewood	5.2	4.9	8.2	6.9	
Edwards	3.9	3.8	5.2	5.4	
Hale	4.1	4.0	5.6	5.6	
Hooker	5.7	5.1	7.0	6.3	
Ivy	3.0	3.2	4.5	5.0	
Kimberly	. 2.9	3.3	4.5	5.1	
Lincoln Bassett	3.4	3.3	4.4	5.0	
Lovell	4.0	4.2	5.2	5.4	
Prince	3.0	3.0	4.6	5.0	
Ross	4.0	4.1	5.9	5.8	
Scranton	3.0	3.2	4.4	5.1	
Sherman	3.6	3.6	5.3	5.4	
Truman	3.1	3.2	4.6	5.0	
West Hills	3.2	3.3	5.4	5.3	
Winchester	3.0	3.4	4.2	4.7	
Woodward	3.8	4.0	6.9	6.7	

by moving toward a cluster containing only four objects. It was decided to reduce the number of parameters to be estimated by constraining the covariance matrices within each cluster to be equal.

STEP 1. Initially,

$$P(1, 1) = P(2, 1) = \cdots = P(12, 1) = 1,$$

 $P(13, 2) = P(14, 2) = \cdots = P(25, 2) = 1,$

and all other P(I, J) are zero.

INITIAL PROBABILITIES OF BELONGING TO FIRST NORMAL

- STEP 2. Compute W(1) = 12 and W(2) = 13. These are the number of observations initially in the two clusters.
- STEP 3. The U(J, 1) are the means of the four variables over the first twelve observations: U(1, 1) = 3.81, U(2, 1) = 3.82, U(3, 1) = 5.42, and U(4, 1) = 5.43. Similarly, the U(J, 2) are the means of the four variables over the last thirteen observations.
- STEP 4. The covariance matrix C(J1, J2, 1) $(1 \le J1, J2 \le 4)$ is computed on the first twelve points, and the covariance matrix C(J1, J2, 2) is computed on the next thirteen points. These covariances are averaged with weights 12 and 13, and the weighted covariance matrix is used in later steps.
- STEP 5. The determinant and inverse of the within-cluster covariance matrix is used to compute the probability density of each observation under each of the two multivariate normal distributions. Return to Step 2.

The values of various parameters at the first and 11th steps are given in Tables 5.2 and 5.3. The parameters take almost the same values at the 21st step as at the 11th,

Table 5.2 Normal Mixture Model with Equal Covariances, Applied to New Haven School Data, First Cycle

THITTEN LYCOURDID	<u> </u>	LORGING	TO PENDE NO						
Baldwin 1.000	Conte	1.000	Edwards	1.000	Lincoln	0.000	Sherman	0.000	
Barnard 1.000	Davis	1.000	Hale	1.000	Lovell	0.000	Truman	0.000	
Beecher 1.000	Day	1.000	Hooker	1.000	Prince	0.000	West Hills	0.000	
Brennan 1.000	Dwight	1,000	Ivy	0.000	Ross	0.000	Winchester	0.000	
Clinton 1.000	Edgewood	1.000	Kimberly	0.000	Scranton	0.000	Woodward	0.000	
WEIGHTS - EXPECTED NUMBER OF OBSERVATIONS IN EACH NORMAL - (12, 13)									
MEANS	R	EA4	ARI	<u>;</u> 4	REA6		ARI6		
MEANS FIRST NORMAL		EA4 5.81	ARI		REA6 5.42		ARI6 5.43		
	3			2			-		
FIRST NORMAL SECOND NORMAL VARIANCES AND CO	3 RRELATIONS	3.81 3.52	3.8	2	5.42 5.15		5.43 5.37		
FIRST NORMAL SECOND NORMAL	3 RRELATIONS	5.81	3.8	12 1	5.42 5.15		5.43 5.37		
FIRST NORMAL SECOND NORMAL VARIANCES AND CO	RRELATIONS	3.81 3.52	3.8 3.6	2 1 1	5.42 5.15		5.43 5.37		
FIRST NORMAL SECOND NORMAL VARIANCES AND CO	3 RRELATIONS	3.81 3.52 ,544	3.8 3.6	2 1 5 5 6	5.42 5.15		5.43 5.37		
FIRST NORMAL SECOND NORMAL VARIANCES AND CO REA4 ARI4	RRELATIONS .	3.81 3.52 544 955	3.8 3.6 .95	2 3 5 6 6 5	5.42 5.15 .875		5.43 5.37 .774 .806		

LOG LIKELIHOOD = 60.032

Table 5.3 Normal Mixture Model with Equal Covariances, Applied to New Haven School Data, 11th Cycle

Baldwin	.942	Conte	.924	Edwards	.222	Lincoln	.000	Sherman	.071
Barnard	.000	Davis	.988	Hale	.763	Lovell	1.000	Trumen	. 004
Beecher	1.000	Day	.004	Hooker	1.000	Prince	.000	West Hills	. 031
Brennan	1.000	Dwight	.970	Ivy	.006	Ross	.971	Winchester	.989
Clinton	. 04 0	Edgewood	1.000	Kimberly	. 044	Scranton	.000	Woodward	.000

WEIGHTS - EXPECTED NUMBER OF OBSERVATIONS IN EACH NORMAL

= (12, 13)

MEANS	REA+	ARI4	rea 6	ARI6
FIRST NORMAL	4,01	4.00	5.59	5.44
SECOND NORMAL	3.33	3.44	4.99	5.36
VARIANCES AND CORREL	ATIONS			
REA#	.454	.948	.874	.826
ARI4	.948	.205	.878	.897
REA 6	. 874	.878	1.064	.950
ARI6	.826	.897	.950	.376

LOG LIKELIHOOD - 62.210

so these values are a particular set of maximum likelihood solutions. It will be noted that the belonging probabilities in Table 5.3 are all nearly unity or zero, so that, except for Edwards and Hale, membership in the clusters is clear cut. This is not a sign of stability or statistical significance of the clusters.

The iterative algorithm converges rather slowly and needs to be speeded up. The acceleration technique, after five iterations, sets each probability equal to unity or zero, whichever the probability was closer to. This recognizes the fact that final belonging probabilities tend to be close to unity or zero.

The two clusters of schools are well distinguished by the difference in arithmetic performance between fourth and sixth grades. Schools in the first cluster advance 1.44 years, whereas schools in the second cluster advance 1.92 years, with a within-cluster standard deviation of 0.3 years.

5.4 THINGS TO DO

5.4.1 Running the Mixture Algorithm

The mixture algorithm is a fancy version of the K-means algorithm, with the extra twist that each case is assigned only a probability of belonging to the various clusters. Therefore, the results of the mixture algorithm should be compared with the results of a K-means algorithm. Usually the probabilities that each case belongs to various clusters are very close to unity or zero, but this should not be taken as an indication of sharply defined clusters. Setting about half the data missing will disclose different clusters with equally well-defined "belonging" probabilities.

Table 5.4 Civil War Battles in Chronological Order

[From T. L. Livermore (1957). Numbers and Losses in the Civil War, Indiana University Press, Bloomington.] The variables are union forces, union shot, confederate forces, and confederate shot.

Bull Run '	28452	1492	33232	1969
Wilson's Creek	5400	944	11600	1157
Ft. Donelson	27000	2608	21000	2000
Pea Ridge	11250	1183	14000	600
Shiloh	62682	10162	40335	9735
Williamsburg	40768	1866	31823	1570
Fair Oaks	41797	4384	41816	5729
Mechanicsville	15631	256	16356	1484
Gaines' Mill	34214	4001	57018	8751
Malvern Hill	83345	4969	86748	8602
Seven Days	91169	9796	95481	19739
Cedar Mt.	8030	1759	16868	1338
Manassas	75696	10096	48527	91 08
Richmond, Ky.	6500	1050	6850	450
South Mt.	28480	1728	18714	1885
Antietam	75316	11657	51844	11724
Corinth	21147	2196	22000	2470
Perryville	36940	3696	16000	3145
Fredericksburg	1 00007	1 08 84	7249 7	4656
Chickasaw Bayou	30720	1213	1 3792	197
Stone's River	41400	9220	34732	9239
Arkansas Post	28944	1 0 3 2	4564	1 09
Chancellorsville	97382	11116	57352	10746
Champions Hill	29373	2254	20000	2181
Pt. Hudson I	13000	1838	41 92	235
Pt. Hudson II	6000	1604	3487	47
Gettysburg	83289	17684	75054	22638
Ft. Wagner	5264	1126	1785	169
Chicamanga	58222	11413	66326	16986
Chatanooga	56359	5475	46165	2521
Mine Run	69643	1272	44426	680
Olustee	5115	1 3 5 5	5200	934
Pleasant Hill	12647	994	14300	1000
Drewry's Bluff	15800	2770	18025	2860
Atlanta I	110123	10528	66089	9187
Weldon RR	20289	1303	14787	1200
Kenesaw Mt.	16225	1999	17733	270
Tupelo	14000	636	6600	1 32 6
Peach Tree Ck.	20139	1600	18832	2500
Atlanta II	30477	1989	36934	7000
Atlanta III	13226	559	18450	4100
Jonesborough	14170	179	23811	1725
Winchester	37711	4680	17103	21 03
Cedar Ck.	30829	4074	18410	1860
Franklin	27939	1222	26897	5550
Bentonville	16127	933	16895	1508
			_	_

[Note: Confederate casualties not known in Grant's Richmond campaign.]

Table 5.5 Planets and Moons

[From P. Moore (1970) The Atlas of the Universe Rand McNally, New York.] Distance: in thousands of miles, of satellite from planet; diameter: in miles, of satellite; period: in days, of satellite about planet.

PLANET	DIST	DIAM	PERIOD	PLANET	dist	DIAM	PERIOD
EARTH	239	2160	655	SATURN	116	300	23
MARS	5.8	10	7.7		148	400	33
	14.6	10	30		183	600	45
JUPITER	112	100	12.0		235	600	66
	262	2020	42		327	81 0	108
	417	1790	85		759	2980	383
	665	3120	172		920	100	511
	1171	2770	401		2213	500	1904
	71 33	50	6014		8053	100	13211
	7295	20	6232	URANUS	77	200	34
	7369	10	6325		119	500	60
	1 3200	10	15146		166	300	100
	14000	10	16620		272	600	209
	14600	10	17734		365	500	323
	14700	10	18792	NEPTUNE	220	2300	141
					3461	200	8626

SUN	DIST	DIAM	PERIOD	Mnss (relative to earth)
MERCURY	35950	3100	2112	. 054
VENUS	67180	7700	5393	. 81
EARTH	92900	7927	8766	1.00
MARS	141500	4190	16488	.11
JUPTTER	483200	8 86 4 o	103911	316.94
SATURN	886000	74100	258420	95.20
URANUS	1782000	32 000	735840	14.70
nepiune	2793000	31 0 0 0	1445400	17.20
PLUTO	3670000	•	2172480	•

Various degrees of vagueness are possible in specifying the error distribution within clusters, with the most general being arbitrary covariance matrices within the various clusters. A suitable trial data set is Table 5.4, the numbers and losses in Civil War battles, which should be logged before analysis. Also, follow Kepler in analysis of satellite data (Table 5.5).

5.4.2 Singularities

Let the data be a single variable $\{X(I), 1 \le I \le M\}$. Let the model for a single observation be

$$f[x \mid \mu(1), \mu(2), \sigma(1), \sigma(2), p] = p \frac{\exp\left\{-\frac{1}{2}[x - \mu(1)]^2/\sigma(1)^2\right\}}{\sigma(1)\sqrt{2\pi}} + (1 - p) \frac{\exp\left\{-\frac{1}{2}[x - \mu(2)]^2/\sigma(2)^2\right\}}{\sigma(2)\sqrt{2\pi}}.$$

Show that the log likelihood is infinite at $\mu(1) = X(1)$, $\sigma(1) = 0$. More generally, for N-dimensional data with arbitrary covariances within clusters, show that there exists an infinite log likelihood whenever there is a cluster containing less than N + 1 cases.

5.4.3* A More Probabilistic Approach

Consider again the general two-cluster normal model for a single variable. Maximum likelihood is not available since the likelihood is infinite at $\sigma(1) = 0$, $\mu_1 = x(1)$. Suppose that it is assumed that $\mu(1)$ and $\mu(2)$ are randomly sampled from $N(\mu, \sigma^2)$ and that $\sigma(1)^2$ and $\sigma(2)^2$ are random sampled from ds^2/χ_d^2 . [These assumptions will rule out $\sigma(1) = 0$ or $\sigma(2) = 0$.]

The posterior density for $\mu(1)$, $\mu(2)$, $\sigma(1)$, and $\sigma(2)$, given the observations X and the parameters μ , σ^2 , s^2 , and d, is maximized when

$$\mu(J) = \frac{P(I, J)X(I)/\sigma^2(J) + \mu/\sigma^2}{M/\sigma^2(J) + 1/\sigma^2},$$
(1)

$$\sigma^{2}(J) = \frac{P(I, J)[X(I) - \mu(J)]^{2} + ds^{2}}{M + d},$$
 (2)

$$P(I, J) = C(I)P(J) \exp\left(-\frac{1}{2} \frac{[X(I) - \mu(J)]^{2}}{\sigma(J)^{2}}\right) [\sigma(J)]^{-1}$$
(3)

and

$$P(I, 1) + P(I, 2) = 1,$$

$$P(J) = \sum \{1 \le I \le M\} \frac{P(I, J)}{M}.$$
 (4)

This still leaves the parameters μ , σ^2 , s^2 , and d, but these may be determined, to maximize the posterior density, by

$$\mu = \frac{1}{2}[\mu(1) + \mu(2)],\tag{5}$$

$$\sigma^2 = \frac{1}{4} [\mu(1) - \mu(2)]^2, \tag{6}$$

$$\frac{1}{s^2} = \frac{1}{2} \left(\frac{1}{\sigma(1)^2} + \frac{1}{\sigma(2)^2} \right),\tag{7}$$

and

$$\frac{2\Gamma'(d/2)}{\Gamma(d/2)} = \log\left(\frac{ds^2}{2\sigma(1)^2}\right) + \log\left(\frac{ds^2}{2\sigma(2)^2}\right). \tag{8}$$

Alternatively, these parameters might be fixed in advance from considerations outside the data. For large M, the effects of the parameters will be minor except they prevent the infinite likelihood at $\sigma_1 = 0$ or at $\sigma_2 = 0$.

This technique generalizes in an obvious way to larger numbers of clusters and with some complications to a larger number of variables.

5.4.4 Trees

Consider a single variable $\{X(I), 1 \le I \le M\}$. For K clusters, one model for a single case is

$$f(x) = \sum p(J) f[x \mid \mu(J)],$$

where

$$f[x \mid \mu(J)] = \frac{\exp\left\{-\frac{1}{2}[x - \mu(J)]^2/\sigma_1^2\right\}}{\sigma_1\sqrt{2\pi}}.$$

The $\mu(J)$'s here are cluster means, which must be grouped in a tree approach. Therefore treat the $\mu(J)$ as observations from the mixture

 $g(x) = \sum r(K) f[x \mid \theta(K)],$

where

$$f[x \mid \theta(K)] = \frac{\exp \left[-\frac{1}{2}[x - \theta(K)]^2/\sigma_2^2\right]}{\sigma_2\sqrt{2\pi}}.$$

Finally let the $\theta(K)$ be distributed as $N(\varphi, \sigma_3^2)$, where this last "mixture" of just one distribution corresponds to the root of the tree. This model corresponds to a tree with four levels: the cases, the parameters μ , the parameters θ , and the parameter φ .

Theory for fitting the parameters awaits development.

5.4.5 Initialization

There may be many different solutions of the maximum likelihood equations. Using the iterative technique, the final solution will depend on the initial choice of "belonging probabilities" P(I, L). One method of making the initial choice is to run the K-means algorithm first; the initial "belonging probabilities" will then be a zero—one array determined by the membership of observations in clusters. If the data consist of observations on a single variable, the Fisher exact algorithm is suggested.

5.4.6 Coincidence with K Means

In one dimension, let $X(1), X(2), \ldots, X(J)$ and $X(J+1), \ldots, X(M)$ denote two clusters of observations. Assume that $X(1) \le X(2) \le \cdots \le X(M)$. Show that, if [X(J) - X(1)]/[X(J+1) - X(J)] and [X(M) - X(J+1)]/[X(J+1) - X(J)] are both sufficiently small, then K means and the mixture model with equal variances within clusters coincide in finding the two clusters $\{X(1), \ldots, X(J)\}$ and $\{X(J+1), \ldots, X(M)\}$.

PROGRAMS

MIX computes maximum likelihood fit to mixture model under various constraints on within-cluster covariances. Needs INVERT, COVOUT, MOM.

COVOUT prints output from mixture model after every five iterations.

MIXIND mixture model with variables having constant variances and zero covariances within clusters.

MIXOUT prints output for MIXIND.

```
SUBROUTINE MIX(P,W,M,N,K,C,U,X,ITER,NCOV,Q)
C....
                                                                                     .....20 MAY 1973
C.... ITERATES TO MAXIMUM LIKELIHOOD ESTIMATES IN MIXTURE MODEL, ARBITRARY MEANS
      AND COVARIANCES WITHIN CLUSTERS.
C .... NEEDS INVERT, MOM, COVOUT
C.... NEEDS INVERT, MDM, CDVDUT
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... K = NUMBER OF CLUSTERS
C.... C = N BY N BY K COVARIANCE MATRICES, ONE FOR EACH CLUSTER
C.... U = N BY K ARRAY OF CLUSTER MEANS
C.... X = M BY N BORDERED ARRAY, DATA MATRIX
C.... ITER = NUMBER OF ITERATIONS, TRY 10
C... P = M BY K BORDERED ARRAY, P(I,J) = PROBABILITY THAT ITH CASE BELONGS TO
C THE JTH CLUSTER.

C.... Q = M BY K SCRATCH ARRAY

C.... W = K BY 1 ARRAY OF MIXTURE PROBABILITIES
C.... NCDV = INTEGER DETERMINING STRUCTURE OF COVARIANCE MATRIX
               NCDV = 1
                              GENERAL COVARIANCES
               NCOV = 2 COVARIANCES EQUAL BETI
NCOV = 3 COVARIANCES EQUAL AND
NCOV = 4 COVARIANCES SPHERICAL
                              COVARIANCES EQUAL BETWEEN CLUSTERS
COVARIANCES EQUAL AND DIAGONAL
        DIMENSION P(M,K),W(K),C(N,N,K),U(N,K),X(M,N)
        DIMENSION Q(M.K)
C .... INITIALIZE P
        00 20 I=2,M
00 19 J=1,K
    19 P(I,J)=0
        J=((I-1)+K)/M+1
    20 P(I,J)=1.
C.... UPDATE MEANS AND COVARIANCES
        00 70 1T=1.ITER
00 30 J=1.K
    30 CALL MGM(U(1,J),C(1,1,J),P(1,J),X,M,N)
C... UPDATE WEIGHTS
        DD 42 J=1,K
        W(J)=0.
        DD 41 I=2, M
    41 W(J)=W(J)+P(I,J)
    42 WW=WW+H(J)
        00 43 J=1.K
    43 IF(WW.NE.O) W(J)=W(J)/WW
C... ADJUST FOR COVARIANCE STRUCTURE
IF(NCDV.EQ.1) GO TO 39
        00 32 I=2,N
00 32 II=2,N
        C(I,II,1)=W(1)+C(I,II,1)
    00 31 J=2,K
31 C(I,II,1)=C(I,1I,1)+C(I,II,J)+W(J)
        IF(NCOV.GE.3.AND.I.NE.II) C([,II,1]=0
        00 33 J=1,K
    33 C(I, II, J)=C(I, II, 1)
    32 CONTINUE
        CC=0
    00 35 I=2,N
35 CC=CC+C(I,I,1)
        CC=CC/(M-1)
        00 36 I=2,N
    36 IF(NCDV.EQ.4) C(I,I,J)=CC
39 CONTINUE
        II=IT-1
         IF((II/5)+5.EQ.II) CALL COVOUT(X,M,N,U,C.P,W,K)
C ... UPDATE BELONGING PROBABILITIES
        DD 50 J=1,K
        DET=1
        IF(NCOV.GT.2) C(1,1,1)=1./C(1,1,1)
IF(NCOV.LE.2) CALL INVERT(C(1,1,1,1),DET,N)
         IF(DET.EQ.O) RETURN
         DET=DET++0.5
        C(1,1,J)=DET
DO 50 I=2,M
         S=0.
        DD 60 L=2,N
         DO 60 LL=2.N
     60 S=S+C(L,LL,J)+(X(I,L}-U(L,J))+(X(I,LL)-U(LL,J))
         IF(S.GT.100) S=100
```

```
Q(I,J)=P(I,J)
50 P(I,J)=EXP(-S/2.)+W(J)/DET
C.... COMPUTES LOG LIKELIHOOD
                       XLL=0
                       DO 61 1=2,M
                       S=0.
            00 63 J=1,K
63 S=S+P(i,J)
                       IF(S.EQ.O.) S=10.**(-10)
                        XLL=XLL+ALOG(S)
                       DO 61 J=1,K
            61 P(I,J)=P(I,J)/S
               , WRITE(6,1) IT,XLL
1 FORMAT(13H ITERATION = .15.11HLOG LIKE = .F10.6)
                      DO 62 1=2,M
DO 62 J=1,K
                       XIT=ITER
                       A=1.+.7+IT/XIT
                       \{L, I\}p + \{L, I-A\} - \{L, I\}q + A = \{L, I\}q
                       IF(IT.6Q.5.AND.P(),J).GT.O.5) P(I,J)=1.
                        IF(IT.EQ.5.AND.P(I,J).LE.0.5) P(I,J)=0.
                        IF(P(I,J).GT.1) P(I,J)=1
                        IF(P(1,J).LT.0) P(1,J)=0
           62 CONTINUE
            70 CUNTINUE
                       RETURN
                       END
                      SUBROUTINE COVOUT(A,M,N,XA,C,XMP,XP,K)
 C.... PRINTS OUT PARAMETERS OF MIXTURE MODEL
C.... SEE SUBROUTINE MIXIND FOR ARGUMENT LIST
C.... C = N BY N BY K ARRAY, COVARIANCES WITHIN EACH CLUSTER
                                                                                                                                                                           ...... MAY 1973
                       D)MENSION A(M,N),XA(N,K),C(N,N,K),XMP(M,K),XP(K)
DIMENSION DD(100)
                WRITE(5,9) A(1,1),K
9 FORMAT(18H1MIXTURE MODEL FOR.AS,5H WITH,15,9H CLUSTERS )
 PRINTILIANIALINE HODEL FUNABOSH WITHOUSES, THE LEGISLATION OF THE LIBRARY OF THE 
 C.... PRINT MEANS
WRITE (6.6)
6 FORMAT(14H CLUSTER MEANS )
            6 FORMAT(14H CLUSTER MEANS )
DD 10 J=2,N
10 WRITE(6,4) A(1,J),(XA(J,KK),KK=1,K)
4 FORMAT(A7,3X,10F12.4)
WRITE(6,12)(C(1,1,J),J=1,K)
12 FURMAT(13H DETERMINANTS/(10X,10G12.4))
WRITE(6,1)
1 FORMAT(42H WITHIN CLUSTER VARIANCES AND CORRELATIONS )
CO 50 J=2,N
DD 50 J=1,N
DD 51 KK=1,K
Z=C(1,1,KK)*C(J,J,KK)
DD(KK)=C(J,J,KK)
             Z=C[1];K|=C[1],J;K|

DD(KK)=C[1],J;K|

IF(I.EQ.J) Z=O

51 IF(Z.NE.O) DD(KK)=C[I,J;KK)+Z**1-0.5}

IF(I.EQ.J) WRITE(6,11)

11 FORMAT(1H )
                 WRITE(6,8) A(1,1),A(1,J),(DD(KK),KK=1,K)
8 FURMAT(2A5,10F12.4)
             50 CUNTINUE
  G.... PRINT PROBABILITIES
WRITE(6,7)
7 FORMAT(24H BELCNGING PROBABILITIES )
             DO 20 1=2,M
20 WRITE(6,5) A(1,1),(XMP(1,KK),KK=1,K)
5 FORMAT(A7,3X,10F12.6)
                         RETURN
                        END
```

```
SUBROUTINE MIXIND(A,M,N,XA,XV,XMP,XP,K)
C . . . . .
C .... FITS MIXTURE MODEL, K MULTIVARIATE NORMALS, EACH VARIABLE HAVING VARIANCE
C .... CONSTANT OVER DIFFERENT CLUSTERS.
C... M = NUMBER DF FOWS
C... N = NUMBER OF COLUMNS
C.... A = M BY N BORDERED ARRAY
C.... XA = N BY K ARRAY OF CLUSTER MEANS
C.... XV = N BY 1 ARRAY OF VARIANCES WITHIN CLUSTERS
C.... XMP = M BY K ARRAY, XMP(I,K) = PROBABILITY THAT CLUSTER K CONTAINS CASE I.
C.... XP = K BY 1 ARRAY, MIXTURE PROBABILITIES
C.... K . NUMBER OF CLUSTERS
DIMENSION A(M,N),XA(N,K),XV(N),XP(K),XMP(M,K)
C.... INITIALIZE PRODABILITIES
       XMEQQQQQ.
       DO 30 KK=1.K
       KS=KK-1
C.... FIND FURTHEST CASE FROM PRESENT MEANS
       DM≃D
       IM=2
       IF(K8.EQ.0) GO TO 35
       DO 31 1=2,M
DI=10.**10
       DO 32 KL=1,KB
       DECO
       XC=0
       DO 33 J=2.N
       IF(A(I,J).EQ.XM) GO TO 33
       XC=XC+1
       DD=DD+(A(I,J)-XA(J,KL))**2 /XV(J)
       IF(DD.GT.DI*(N-1)) GO TO 32
    33 CONTINUE
       IF(XC.EQ.0) GO TO 31
       ロロ=ロロノメC
   32 IF(DD.LT.DI) DI=DD
IF(DI.LT.DM) GU TO 31
       DM=DI
       I =M I
    31 CUNTINUE
    35 CONTINUE
C.... BEGIN A NEW CLUSTER WITH THIS CASE
DD 40 J=2,N
    40 XA(J,KK)=A(IM,J)
C .... ITERATE A FEW TIMES
       XP(KK)=EXP(0.5*N)
       ITFR=5
       DO 50 IT=1, ITER
C.... UPDATE PROBABILITIES OF BELONGING
       DO 51 I=2,M
       PP=0
       DU 52 KL=1,KK
       00=0
       DO 53 J=2,N
       IF(A(I,J).EQ.XM) GO TO 53
       IF(KB.EQ.O) GO TO 53
       DD=DD+[A([,J)-XA(J,KL)] ++2/(XV(J) +2.)
    53 CONTINUE
       IF(DD.GT.100) DD=100
       XMP(I,KL)=XP(KL)*EXP(-DD)
    52 PP=PP+XMP(I,KL)
       IF(PP.EQ.0) GO TO 51
       PN=0
       DO 54 KL=1,KK
       XMP(I,KL)=XMP(I,KL)/PP
       TH= .0001
       IF(XMP(I,KL).LT.TH) XMP(I,KL)=0
       PN =PN+XMP(I,KL)
    54 CUNTINUE
    DO 91 KL=1,KK
91 XMP(I,KL)=XMP(I,KL)/PN
    51 CONTINUE
C.... UPDATE MIXTURE PROBABILITIES
       DO 60 KL=1,KK
       XP(KL)=0
        DO 60 I=2,M
    60 XP(KLJ=XP(KLJ+XMP(I,KL)/(M-1)
C .... UPDATE CLUSTER ESTIMATES, EACH ONE A WEIGHTED MEAN
```

```
DO 70 KL=1,KK
DO 70 J=2,N
       XA(J,KL)=0
DO 71 I=2,M
   71 XA(J,KL)=XA(J,KL)+A(I,J)*XMP(I,KL)
   70 IF(XP(KL).NE.O) XA(J,KL)=XA(J,KL)/(XP(KL)+(M-1))
       DO 81 J=2,N
       0=(L)VX
       00 80 I=2,M
       DD 80 KL=1,KK
   80 XY(J)=XY(J}+(A(I,J)-XA(J,KL))*+2*XMP(I,KL)
   81 XV(J)=XV(J)/(H-1)
   50 CONTINUE
       CALL MIXOUT(A, M, N, XA, XV, XMP, XP, KK)
   30 CONTINUE
       RETURN
        ENO
        SUBROUTINE MIXOUT(A.M.N.XA.XS.XMP.XP.K)
C... PRINTS OUT PARAMETERS OF MIXTURE MODEL
C... SEE SUBROUTINE MIXIND FOR ARGUMENT LIST
                                                        DIMENSION A(M,N),XA(N,K),XS(N),XMP(M,K),XP(K)
        WRITE(6,9) A(1,1),K
     9 FORMAT(18HIMIXTURE MODEL FOR, A5, 5H WITH, 15, 9H CLUSTERS )
C... PRINT VARIANCES

WRITE 10, 1) (XS(J), A(1,J), J=2,N)

1 FORMAT(25H MITHIN CLUSTER VARIANCES/5(F15.6, IH(,A4,1H)))

C... PRINT CLUSTER PROBABILITIES
       WRITE (6,2) (KK,KK=1,K)
2 FORMATIIOX, BH CLUSTER, 9(13,1x, BH CLUSTER), 13)
HRITEIO, 3)(XP(KK), KK=1, K)
3 FORMAT(22H MIXTURE PROBABILITIES/(10X, 10Fi2.6))
C.... PRINT MEANS
       WRITE(6,6)
     6 FORMAT(14H CLUSTER MEANS )
    DU 10 J=2,N

10 WRITE(6,4) A(1,J),(XA(J,KK),KK=1,K)

4 FORMAT(A7,3X,10F12.4)
C.... PRINT PROBABILITIES
     WRITE(6,7)
7 FORMAT(24H BELGNGING PROBABILITIES )
```

7 FURMALIZATI DESCRIPTION DU 20 1=2,M
20 WRITE(6,5) A(1,1),(XMP({,KK},KK=1.K)
5 FURMAT(A7,3X,10F12.6)

END

Partition by Exact Optimization

6.1 INTRODUCTION

A partition of a set of objects is a family of subsets such that each object lies in exactly one member of the family. If R(M, K) is the number of partitions of M objects into K sets, it can be seen by induction on M that

$$R(M, K) = KR(M-1, K) + R(M-1, K-1).$$

Also R(M, 1) = R(M, M) = 1. As a result, the number of partitions increases approximately as K^{M} ; for example, R(10, 3) = 9330.

Optimization techniques in clustering associate an error function e[P(M, K)] with each partition P(M, K) of M objects into K clusters and seek that partition which minimizes e[P(M, K)]. Because of the very large number of possible partitions it is usually impractical to do a complete search, so it is necessary to be satisfied with a "good" partition rather than a best one. Sometimes prior constraints or mathematical consequences of the error function e reduce the number of possible partitions, and a complete search to find the exact optimum is possible.

Such a case occurs when the data points are ordered, for example, by time, as in Table 6.1, which reports the winning times in the 100-m run in the Olympics from 1896 to 1964. The data points are ordered by the year of the Olympics. It is sensible to require each cluster to correspond to an interval of years. The partition will reveal whether or not there were periods of years when the winning times remained fairly constant. The number of possible partitions into K clusters is now $O(M^K)$ rather than $O(K^M)$, and even further reduction is possible when an error criterion is used that is additive over clusters.

6.2 FISHER ALGORITHM

Preliminaries. This algorithm is due to Fisher (1958). Objects are labeled $1, 2, \ldots, M$, and clusters are constrained to consist of intervals of objects $(I, I+1, I+2, \ldots, J-1, J)$. There are only $\frac{1}{2}M(M+1)$ possible clusters. There is a diameter D(I, J) associated with the cluster $(I, I+1, \ldots, J)$ such that the error of a partition P(M, K) into K clusters $(I_1 = 1, I_1 + 1, \ldots, I_2 - 1), (I_2, I_2 + 1, \ldots, I_3 - 1), \ldots, (I_{K-1}, \ldots, I_K - 1), (I_K, I_K + 1, \ldots, M)$ is

$$e[P(M, K)] = \sum \{1 \le J \le K\} D(I_J, I_{J+1} - 1).$$

The error of a partition is thus the sum of cluster diameters over the clusters it contains.

Table 6.1 Olympic Track 1896-1964

From The World Almanac (1966), New York World-Telegram, New York.

	In ten	ths of	seconds	(- denotes	missing)		
	100M	200M	400M	MOOB	1500M	5000 M	10000M
1896	120	, -	542	1310	2732	-	-
1900	108	222	494	1214	2460	-	_
1904	110	216	492	1160	2454	-	-
1906	112	-	532	1212	2520	-	-
1908	108	224	500	1128	2434	-	-
1912	108	217	4 82	1119	2368	8766	18808
1920	108	220	496	1134	2418	8956	19058
1924	106	216	476	1124	2336	8712	18232
1928	108	218	478	1118	2332	8780	18188
1932	103	212	4 62	1098	2312	8700	18114
1936	103	207	4 65	1129	2278	8622	18154
1948	103	211	462	1092	2298	85 76	17996
1952	1 04	207	459	1092	2252	8460	1 75 70
1956	105	206	467	1077	2212	8196	17256
1960	102	205	449	1063	2156	8234	17122
1964	100	203	451	1051	2181	8888	17044

The spring of this algorithm is the relation between optimum partitions into K clusters and optimum partitions into K-1 clusters. Let P(I, L) denote the optimum partition of objects $1, 2, \ldots, I$ into L clusters for $I \leq M$, $L \leq K$. Suppose that $P(M, K) = (I_1, \ldots, I_2 - 1), (I_2, \ldots, I_3 - 1), \ldots, (I_K, \ldots, M)$. Then necessarily $P(I_K - 1, K - 1) = (I_1, \ldots, I_2 - 1)(I_2, \ldots, I_3 - 1) \cdots (I_{K-1}, \ldots, I_K - 1)$. Since error is additive, if this were not true, e[P(M, K)] could be reduced by varying

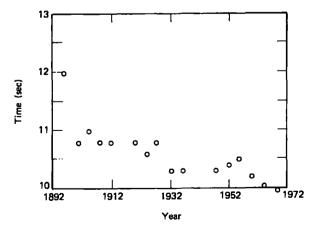


Figure 6.1 Times in the 100-m run, Olympic games.

 $I_2, I_3, \ldots, I_{K-1}$. Using this relationship, the algorithm proceeds by successively computing optimal partitions into 2, 3, 4, ..., K clusters, building on the (K-1)-partitions to find the K-partitions. This is a "dynamic programming" procedure (Bellman and Dreyfus, 1962).

STEP 1. Compute the diameter D(I, J) for the cluster (I, I + 1, ..., J), for all I, J such that 1 < I < J < M.

STEP 2. Compute the errors of the optimal partitions, $2 \le I \le M$, by $e[P(I, 2)] = \min [D(1, J - 1) + D(J, I)]$ over the range $2 \le J \le I$.

STEP 3. For each L ($3 \le L \le K$) compute the errors of the optimal partitions e[P(I, L)] ($L \le I \le M$) by

$$e[P(I, L)] = \min \{e[P(J-1, L-1)] + D(J, I)\}$$

over the range $L \leq J \leq I$.

STEP 4. The optimal partition P(M, K) is discovered from the table of errors e[P(I, L)] $(1 \le L \le K, 1 \le I \le M)$ by first finding J so that

$$e[P(M, K)] = e[P(J - 1, K - 1)] + D(J, M).$$

The last cluster is then $(J, J+1, \ldots, M)$. Now find J^* so that $e[P(J-1, K)] = e[P(J-1, K-1)] + D(J^*, J-1)$. The second-to-last cluster of P(M, K) is $(J^*, J^*+1, \ldots, J-1)$, and so on.

NOTE. The partition is guaranteed optimal, but it is not necessarily unique.

6.3 FISHER ALGORITHM APPLIED TO OLYMPIC TIMES

It is first necessary to define cluster diameter. Let X(I) be the value associated with the Ith object. A standard measure of diameter of the cluster $I, I + 1, \ldots, J$ is

$$D(I, J) = \sum \{I \le L \le J\} [X(L) - \overline{X}]^2,$$

where

$$\bar{X} = \sum \{I \le L \le J\} \frac{X(L)}{J - I + 1}$$

is the mean of the values in the cluster.

Another measure, more convenient for hand calculation, is

$$D(I,J) = \sum \{I \leq L \leq J\} |X(L) - \tilde{X}|,$$

where the median \tilde{X} is both no greater than and no less than half the values X(L) $(I \le L \le J)$.

STEP 1. Compute the diameter of all clusters. With 16 objects there are $16 \times \frac{17}{2} = 126$ diameters. For example, D(7, 12) is computed from the times 10.6, 10.8, 10.3, 10.3, and 10.4, which have median 10.4. The deviations are 0.2, 0.4, 0.1, 0.1, 0 which have a sum of 0.8, so D(7, 12) = 0.8. All diameters are given in Table 6.2.

Table 6.2 Diameters of Clusters of Olympic Times (in Tenths of Seconds)

Diameter in the interval (I, J) is the sum of absolute deviations from the median of observations $X(I), \ldots, X(J)$.

	J	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
I	1	0	12	12	14	14	14	16	16	21	26	31	35	38	44	50	57
	2		0	2	2	2	2	4	4	9	14	19	23	26	30	36	42
	3			0	2	2	2	4	4	9	14	19	23	24	28	33	39
	4				0	0	0	2	2	7	12	17	19	20	23	28	33
	5					0	0	2	2	7	12	15	17	17	20	24	29
	6						0	2	2	7	10	13	13	14	16	20	24
	7							0	2	5	8	8	9	10	12	15	16
	8								0	5	5	5	6	8	9	12	16
	9									0	0	0	1	3	4	7	11
	10										0	0	1	3	4	7	11
	11											0	1	2	4	7	11
	12												0	1	3	7	11
	13													0	3	5	8
	14														0	2	3
	15															0	1
	16																O

STEP 2. All optimal 2-partitions P(I, 2) are to be computed. It is necessary to remember only e[P(I, 2)] for later steps. As an example, e[P(4, 2)] is the minimum of

$$D(1, 3) + D(4, 4) = 12,$$

 $D(1, 2) + D(3, 4) = 12 + 2 = 14,$
 $D(1, 1) + D(2, 4) = 2.$

and

Thus e[P(4, 2)] = 2. All the errors for optimal partitions are given in Table 6.3.

STEP 3. The optimal 3-partitions are developed from the optimum 2-partitions. For example, e[P(6.3)] is the minimum of

$$e[P(5, 2)] + D(6, 6) = 2 + 0 = 2,$$

 $e[P(4, 2)] + D(5, 6) = 2 + 0 = 2,$
 $e[P(3, 2)] + D(4, 6) = 2 + 0 = 2,$
 $e[P(2, 2)] + D(3, 6) = 0 + 2 = 2,$

and

so e[P(6,3)] = 2.

Similarly, the optimal 4-partitions are developed from the optimum 3-partitions.

Table 6.3 Errors of Optimal Partitions

e[P(I, L)] is the error of optimal partition of objects 1, 2, ..., I into L clusters.

I	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
	0	12	12	14	14	14	16	16	21	26	31	35	38	44	50	57	
		0	2	2	2	2	4	4	9	14	16	17	19	20	23	27	
			0	2	2	2	2	4	4	4	4	5	7	8	11	15	
				0	0	0	2	2	4	4	4	4	5	7	8	9	
					0	0	0	2	2	2	2	3	4	5	7	8	
						0	0	0	2	2	2	2	3	4	5	6	
							0	0	0	0	0	1	2	3	4	5	
								0	0	0	0	0	1	2	3	4	
									0	0	0	0	0	1	2	3	
•										0	0	0	0	0	1	2	
											0	0	0	0	0	1	
												0	0	0	0	0	
													0	0	0	0	
													•	0	0	0	
														•	0	0	
															•	0	

STEP 4. To find the optimal partition of 16 into, say four clusters, first find J such that

$$e[P(16, 4)] = e[P(J - 1, 3)] + D(J, 16).$$

Such a J is J = 15. The last cluster is (15, 16). Now find J so that

$$e[P(14, 3)] = e[P(J - 1, 2)] + D(J, 14).$$

Thus J = 9, and the second last cluster is (9, 14).

Since e[P(8, 2)] = D(1, 1) + D(2, 8), the first two clusters are (1) and (2, 8). Thus, P(16, 4) = (1), (2, ..., 8), (9, ..., 14), (15, 16). In terms of the observations,

$$P(16, 4)$$
 = (12) (10.8 11 10.8 10.8 10.8 10.6 10.8) (10.3 10.3 10.3 10.4 10.5 10.2) (10.0 9.9).

This seems a reasonable partition of the data. Some idea of the best number of clusters may be obtained by plotting e[P(16, K)] against K, as in Figure 6.2. There are sharp decreases in error at K = 2 and K = 3, a noticeable decrease at K = 4, and trivial decreases for larger K. The correct number of clusters is 3 or 4.

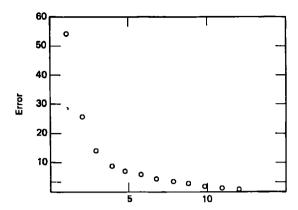


Figure 6.2 Errors of optimal K-partitions of Olympic data, using absolute deviations to measure diameter.

6.4 SIGNIFICANCE TESTING AND STOPPING RULES

Let $X(1), X(2), \ldots, X(M)$ denote the M observations in order, and consider a statistical model for a partition into K clusters:

$$(I_1 = 1, I_1 + 1, \ldots, I_2 - 1)(I_2, I_2 + 1, \ldots, I_3), \ldots, (I_K, I_K + 1, \ldots, M),$$

for which $X(1), X(2), \ldots, X(I_2 - 1)$ are independent observations from the density $f(X \mid \theta_1), X(I_2), X(I_2 + 1), \ldots, X(I_3 - 1)$ are independent observations from the density $f(X \mid \theta_2)$, and so on, up to $X(I_K), \ldots, X(M)$ are independent observations from the density $f(X \mid \theta_K)$. (Note that both X and θ may have dimension greater than 1.) The likelihood of the joint parameters $\theta_1, \theta_2, \ldots, \theta_K$ is

$$\prod \left\{1 \le L \le K\right\} \prod \left\{I_L \le J < I_{L+1}\right\} f[X(J) \mid \theta_L].$$

The maximum log likelihood of the observations is

$$LL = \sum \{1 \le L \le K\} \sum \{I_L \le J < I_{L+1}\} \log f[X(J) \mid \theta_L],$$

where θ_L is the maximum likelihood estimate of θ_L , based on observations in the Lth clusters. Note that, if D(I, J), the cluster diameter, is defined by

$$D(I, J) = -\max_{A} \sum \{I \le L \le J\} f[X(L) \mid \theta],$$

then -LL is the sum of D(I, J)'s corresponding to the clusters. Minimizing -LL means that clusters are found, and parameter values within clusters are estimated, to make the given observations most probable.

In this way, the density f, which relates the observations X to the cluster parameter θ , generates a cluster diameter and an additive error measure for partitions. For example, with the double exponential $f(X \mid \theta) = 0.5 \exp(-|X - \theta|)$, the measure of cluster diameter is

$$D(I,J) = \sum \{I \le L \le J\} |X(L) - \tilde{X}|,$$

where \tilde{X} is the cluster median. The more common normal density, $f(X, \theta) = \exp(-\frac{1}{2}(X-\theta)^2)/\sqrt{2\pi}$ leads to the familiar sum of squared deviations diameter $D(I, J) = \sum \{I \le L \le J\} [X(L) - \bar{X}]^2$, where \bar{X} is the cluster mean.

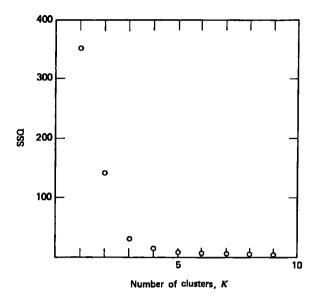


Figure 6.3 Sum of squared errors within optimal partitions of Olympic data.

The optimal partitions of the Olympic data with this criterion are shown in Table 6.4 and Figure 6.3. It will be seen that the principal decreases in the sum of squares come in the second and third partitions, and later decreases are relatively minor. This agrees with the intuition that about three clusters seem right to describe this data.

When are K+1 rather than K clusters necessary? A naive approach supposes that K distinct clusters are present in the data, and that K+1 clusters are obtained by splitting one of these clusters in two arbitrarily. [In reality, one of the clusters would be split optimally if the clusters were really distinct, and in general there will be no simple relation between the optimal K-partition and the optimal (K+1)-partition.] Then the mean square ratio

$$(N-K-1)\Big(\frac{e[P(N,K)]}{e[P(N,K+1)]}-1\Big)$$

is distributed as $F_{1,N-K-1}$ if the observations are normal. It therefore seems worthwhile to study this ratio of mean square reduction to mean square within clusters, and to take a large value of this quantity to indicate that (K+1)-clusters are necessary. For the Olympic data, the 3-cluster stands out in the mean square ratio table. (The values for K=10, 11 are large but should be ignored; in these cases the mean square error within clusters is grossly underestimated because the data are rounded to tenths of seconds.)

When is the mean square error ratio larger than would be expected from random normal observations? One approach to this is through asymptotic theory as the number of observations becomes large. It is possible to show (by an argument too long to fit in the margin) that the number of objects in the clusters alternates between very large and very small; that is, if n(L) denotes the number of objects in the Lth cluster, n(L)/n(L+1) is near zero or unity as $M \to \infty$. For example, an optimal partition

PARTITION SIZE	MSQ RATIO	Sum of Squares	PARTITION (OBSERVATION IN TENTHS OF SECONDS)
1		352,00	120 108 110 108 108 108 106 108 103 103 103 104 105 102 100 99
2	20.7	142.93	120/108 110 108 108 108 106 108 103 103 103 104 105 102 100 99
3	49.0	30.00	120/108 110 108 108 108 106 108/103 103 103 104 105 102 100 99
4	14.0	13.83	120/108 110 108 108 108 106 108/103 103 103 104 105 102/100 99
5	2.8	11.03	120/108 110 108 108 108/106 108/103 103 104 105 102/100 99
6	2.4	9.03	120/108 110 108 108 108/106 108/103 103 103/104 105/102 100 99
7	4.1	6.20	120/108 110 108 108 108/106 108/103 103 103/104 105/102/100 99
8	3.8	4.20	120/108 110 108 108 108/106/108/103 103 103/104 105/102/100 99
9	2.8	3.00	120/104 110/108 108 108/106/108/103 103 103/104 105/102/100 99
10	12.0	1.00	120/108/110/108 108 108/106/108/103 103 103/104 105/102/100 99

Table 6.4 Optimal Partitions of Olympic Data Using Sum of Squared Deviations

From Mean as Cluster Diameter

of 500 random normals into 10 clusters yielded cluster sizes 183, 3, 63, 1, 100, 2, 10, 39, 98, 1. Also the mean square error ratio slowly approaches infinity as $M \rightarrow \infty$.

120/108/110/108 108 108/106/108/103 103 103/104/105/102/100 99

120/108/110/108 108 108/106/108/103 103 103/104/105/102/100/99

11

12

5.0

0.50

0.00

Empirical sampling for moderate M shows surprising uniformity in the distributions of the root mean square ratio for various K (Table 6.5). The root mean square ratio has an expectation very close to 2 for a wide range of M and K. The variances depend on M, the total number of objects, but not much on K. The expected values increase slightly with M but are still near 2, even for M = 500. The convergence to infinity demanded by asymptotic theory is slow. The various ratios for different K are approximately independent normal variables with the same mean and variance (Figure 6.4). Therefore, under the null hypothesis that no clusters exist, the largest ratio has approximately the distribution of the largest of a number of independent normals. This reference distribution thus provides an approximate significance level for the largest ratio.

6.5 TIME AND SPACE

The Fisher algorithm requires $O(M^2K)$ additions, where M is the number of objects and K is the number of clusters. It is thus feasible for 100–1000 objects. It may be a high price to pay to get exact optimization. During the algorithm it is necessary to store $M \times K$ errors corresponding to optimal partitions P(I, L) $(1 \le I \le M, 1 \le L \le K)$.

In Table 6.4, the optimal partitions for various K almost have hierarchical structure; that is, for any two clusters in any two partitions, one cluster includes the other or they are disjoint. The only exception to this rule is the cluster (103 103 104 105 102). If it is known that the final partitions have hierarchical structure, a shorter algorithm proceeds as follows.

STEP 1. Split the sequence $1, 2, \ldots, M$ optimally into two clusters by choosing one of M possible split points.

Table 6.5 Empirical Distributions of Root Mean Square Ratio, Based on Random Normal, 500 Trials.

N = 6	K = 2	K = 3							
Expectation	2.154	2.271							
Variance	1.731	1,755							
N = 11	K = 2	K = 3	K = 4	K = 5	K = 6	K = 7			
Expectation	2.030	2.191	1.961	2.010	2,013	1.947			
Variance	•592	.586	.476	.528	.660	.658			
N = 16	K = 2	K = 3	K = 4	K = 5	K = 6	K = 7	K = 8	K = 9	K = 10
Expectation	2,020	2.260	1.992	1.968	1.963	1.893	1.932	1.871	1.898
Variance	.529	.487	• 3 59	.287	.268	.243	.361	.256	• 374
N = 50	K = 2	K = 3	K = 4	K = 5	K = 6	K = 7	K = 8	K = 9	K = 10
Expectation	2.090	2,433	2.144	2.134	2.115	2.003	2.004	1.971	1.969
Variance	.360	.295	.193	.189	.148	.113	.094	.080	.080
(200 TRIALS)									
N = 100	K = 2	K = 3	K = 4	K = 5	K = 6	K = 7	K = 8	K = · 9	K = 10
Expectation	2.184	2.528	2.246	2.285	2.211	2.179	2.216	2,105	2.108
Variance	. 294	. 242	.192	.120	.100	.094	.091	.082	.062
(50 TRIALS)									
N = 500	K = 2	K = 3	K = 4	K = 5	K = 6	K = 7	K = 8	K = 9	K = 10
Expectation	2.3	2.9	2.6	2.4	2.5	2.3	2.5	2.4	2.4
(2 TRIALS)									

(N = Number of observations in sequence; K = Number of clusters in partition)

- STEP 2. Split optimally into three clusters by choosing one of M possible split points—some in the first cluster from Step 1, the remainder in the second cluster.
- STEP 3. Split optimally into four clusters by choosing one of M possible split points, and so on. This procedure requires only O(MK) additions. This algorithm could be used to obtain good (not guaranteed best) partitions of long sequences.

6.6 THINGS TO DO

6.6.1 Running the Fisher Algorithm

This algorithm is appropriate when objects are already ordered by some overriding variable such as time. There is no particular requirement that the data be one-dimensional. Vietnam combat deaths over time (Table 6.6) might be analyzed to detect different phases of U.S. involvement.

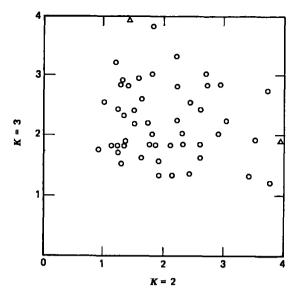


Figure 6.4 Independence of root mean square ratios, computed from 50 normal samples. For 11 observations, ratios for 2- and 3-partitions.

Table 6.6 Combat Deaths in Indochina

		US	SVN	THIRD	ENEMY		US	SVN	THIRD	ENEMY		us	SVN	THIR	D ENEMY
166	JAN	282	903	74	2 64 8	'68	1202	2905	111	15217	' <u>70</u>	343	1768	69	9187
	FED	435	1359	58	4727		2124	5025	147	39867		386	1417	36	8828
	MAR	507	1145	59	5685		1543	2570	88	1 7371		449	1674	75	10335
	APR	316	945	30	2818		1410	1922	85	12215		526	2642	79	13063
	MAY	464	961	19	4239		2169	3467	85	24086		754	2851	58	17256
	JUN	507	1185	41	4815		1146	1974	92	10319		418	2873	63	7861
	M	435	1006	32	5297		813	1409	65	6653		332	1711	71	7183
	AUG	396	914	44	5860		1080	2393	73	15478		319	1720	63	6446
	SEP	419	803	30	4459		1053	2164	58	12543		219	1734	46	6138
	OCT	340	84 4	63	5665		600	1169	70	8168		170	1491	57	5549
	Nov	475	907	87	5447		703	1408	38	9632		167	1619	48	5607
	DEC	432	981	29	3864		749	1509	67	9600		138	1846	39	6185
167	jan	520	914	77	6064	169	795	1 6 6 4	76	10955	'71	140	1616	30	6155
• /	FEB	662	865	95	7341	95	1073	2072	-	14086		221	2435	48	11704
	MAR	944	1297		9351		1316	2186	-	19805		272	3676	104	19858
	APR	710	1057		6227		847	1710		14539		226	2198	86	10457
	MAY	1233	1184	112	9808		1209	2251	-	17443		138	2091	50	9094
	JUN	830	981	74	7354		1100	1867	_	16825		108	1846	44	7648
	JUL	781	676	102	7923		638	1455	64	10237		65	1389	44	6247
	AUG	535	1068		5810		795	1625	74	12373		67	1488	32	6165
	SEP	775	1090	149	6354		477	1543	60	10369		78	1607	27	6300
	OCT	733	1066	. 96	6272		377	1597	80	8747		29	1574	20	5744
	NOA	881	1299	98	7662		446	2105	62	11639		19	1161	14	4283
	DEC	774	1199	102	7938		341	1 75 8	56	9936		17	988	26	4439

From Unclassified Statistics on Southeast Asia (1972), Department of Defense, OASD (Comptroller), Directorate for Information Operations.

6.6.2 Real-Valued Data

For clustering a single real variable to minimize the within-cluster sum of squares, the clusters must be convex, which means they must consist of points lying in an interval. The Fisher algorithm may be applied to the ordered points to find the exactly optimal partition into K clusters. This exact partition may be compared with locally optimal partitions obtained by approximate techniques, such as the K-means algorithm.

6.6.3* Estimating Densities

Given that a density is unimodal in an interval, there is a well-known maximum likelihood technique for estimating it (each point in the interval is tried for the mode, and for each modal point the density is first estimated as the reciprocal of the intervals between points and then neighboring intervals are averaged if they violate the monotonicity required by unimodality). Using the Fisher algorithm, maximum likelihood densities with K modes may be computed.

6.6.4 Sequential Splitting

As justification for the hierarchical algorithm in Section 6.5, suppose the data consist of M real values in time and that the time interval is divided into K intervals within each of which the values are constant. The error function is within-cluster sum of squares. There is a K-partition for which the error is zero, and this will be discovered by the hierarchical algorithm.

6.6.5 Updating Sums of Absolute Deviations

The median of a set of numbers $X(1), \ldots, X(M)$ is any number \tilde{X} such that $\tilde{X} \leq X(I)$ occurs at least M/2 times and $\tilde{X} \geq X(I)$ occurs at least M/2 times. Let \tilde{X}^* be the median (there may be more than one) closest to X. Then the minimum sum of absolute deviations for $X(1), \ldots, X(M), X$ is the minimum sum of absolute deviations for $X(1), \ldots, X(M)$ plus $|X - \tilde{X}^*|$.

REFERENCES

BELLMAN, R. E., and DREYFUS, S. E. (1962). Applied Dynamic Programming, Princeton U. P., Princeton N.J. On p. 15, the principle of optimality is stated. An optimal policy has the property that, whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision. A typical formulation of a dynamic programming problem is as follows: Maximize $R(x_1, x_2, \ldots, x_N) = \sum g_i(x_i)$ over the region $x_i \geq 0$, $\sum x_i = x$. Define $f_N(x)$ to be this maximum. Then

$$f_N(x) = \max_{0 \le x_N \le x} [g_N(x_N) + f_{N-1}(x - x_N)].$$

As an example on p. 104, consider the problem of meeting a series of demands in time when it is expensive to have excess capacity or to change the capacity. Thus, if the demands are r_k , the capacities are x_k , the loss due to excess capacity is $\varphi_k(x_k - r_k)$, and the loss due to a change in capacity is $\psi_k(x_k - x_{k-1})$, the problem is to minimize $\sum [\varphi_k(x_k - r_k) + \psi_k(x_k - x_{k-1})]$ subject to $x_k \ge r_k$.

FISHER, W. D. (1958). On grouping for maximum homogeneity. J. Am. Stat. Assoc. 53, 789-798. Given a set of K objects, such that each object has a weight w. and a numerical measure a_i , Fisher discusses techniques of assigning the objects to G groups so as to minimize $\sum w_i(a_i - \bar{a}_i)^2$, where \bar{a}_i is the weighted mean of a's in the group to which a, is assigned. He shows that each group must be convex in the a's; that is, each group consists of all the a's in an interval, if the optimization takes place without prior constraints. If the objects are ordered a priori, so that clusters are sequences of objects in the original order, he remarks that the additive property of the sum of squares criterion makes it possible to reduce the computation by relating optimum partitions into G clusters to optimum partitions into fewer clusters. He also notes a nonlinear programming formulation of the problem: Let x_M denote the fractional part of a_i that is assigned to group h (h = 1, 2, ..., G). Define $\bar{a}_h =$ $(\sum_i x_{hi} w_i a_i)(\sum x_{hi} w_i)^{-1}$, $S = \sum_i \sum_h w_i x_{hi} (a_i - \bar{a}_h)^2$, and minimize S subject to $x_{hi} \ge 0$, $\sum_h x_{hi} = 1$. The solutions will always have just one of $x_{hi} = 1$, $h = 1, \ldots, G$, and so will solve the grouping problem. It is not clear whether or not this formulation simplifies the solution.

PROGRAMS

FISH partitions data, consistently with input order, to maximize between cluster sum of squares.

PFISH prints output from Fisher algorithm.

```
SUBROUTINE FISH(X,SG,MG,N,K)
C.... X = M BY 1 VECTOR
          PROGRAM GROUPS REAL VALUED OBSERVATIONS X(1).
                                                                                               X(N).
THE OBSERVATIONS NEED NOT BE ORDERED, BUT THE GROUPS WILL ALL CONSIST OF SEQUENCES OF OBSERVATIONS X(II). . . X(JI.

G IF A PARTITION INTO K CLUSTERS IS REQUESTED, PARTITIONS LE K ARE AUTOMATIC PRINT OUT INFORMATION ABOUT CLUSTERS BY CALLING PFISH

C... X = N BY 1 ARRAY OF OBSERVATIONS TO BE FITTED
C.... MG = N BY K ARRAY, WHERE MG([,]) IS LOWER BOUNDARY OF JTH GROUP, IN OPTIMAL C SPLIT OF X(1) 1... X(1) 1NTO J GROUPS.

C.... SG = N BY K ARRAY, SG11,J) IS SUM OF SQUARES WITHIN GROUPS FOR C X(1),... X(1) SPLIT OPTIMALLY INTO J GROUPS.
          DIMENSION X(N), SG(N,K), MG(N,K)
C.... INITIALIZE SB.MG
          00 20 J=1.K
          MG(1, J)=1
     SG(1, J)=0.
DD 20 I=2, N
20 SG(1, J)=10.**10
C.... COMPUTE SG, MG ITERATIVELY
          DO 30 I=2,N
          SS=0.
          S=0.
          00 31 II=1,I
          [[]=[-[]+1
          SS=SS+X(III)++2
          S=S+X(III)
          SN=11
          VAR=SS-S++2/SN
          IK=III-1
          IF (IK-EQ.0) GO TO 31
          DO 32 J=1.K
IF (J.EQ.1) GO TO 32
          IF (SG(I,J).LT.VAR+SG(IK,J-1)) GO TO 32
          MG(1,J)=111
          SG(I, J)=VAR+SG(IK, J-1)
     32 CONTINUE
     31 CONTINUE
         SG(I,1)=VAR
     30 MG(I,1)=1
         RETURN
          ENO
```

```
SUBROUTINE PFISH(X,SG,MG,N,K)
C.... USES OUTPUT FRUM PROGRAM FISH TO PRINT CLUSTER DESCRIPTIONS
DIMENSION SG(N,K),MG(N,K),X(N)
WRITE(6,1) N,K
1 FORMAT('1 PARTITION OF',15," OBSERVATIONS UP TO ',15," CLUSTERS')
        00 20 J=1,K
      WRITE(6,2)JJ,SG(N,JJ)
2 FORMAT("OTHE",15," PARTITION WITH SUM OF SQUARES",F20.6)
         WRITE (6,3)
      3 FORMAT( CLUSTER NUMBER OBS MEAN
                                                                      S.D. ')
        IL=N+1
DO 21 L=1,JJ
LL=JJ-L+1
         5=0.
         SS=0.
    SS=0.

IU=IL-1

IL=MG(IU,LL)

DO 22 II=IL,IU

S=S+X(II)

22 SS=SS+X(II)++2

SN=IU=IL+1

SS=SS+X(II)++2
         S=S/SM
         SS=SS/SN-S++2
    SS=(ABS(SS))++(0.5)

WRITE(6,4) LL,SN,S,SS

4 FORMAT(15,5X,3F10.4)

21 CONTINUE

20 CONTINUE
         RETURN
         END
```

The Ditto Algorithm

7.1 INTRODUCTION

The data in Table 7.1 record the evaluation of various wines from 1961 to 1970. The evaluations are given in terms of five categories—disastrous, poor, average, good, excellent. In many statistical analyses, it is customary to quickly shuffle category variables out of sight by replacing them with interval scale variables—for example, 1, 2, 3, 4, 5 would be reasonable here because the categories are ordered. For clustering, category variables are more natural than interval variables and should be cherished and treated as they lie. A category variable partitions the set of cases. For example, the 1961 evaluations divide the wines into classes—excellent, good, and average. An overall partition of the data is thus a combination of the individual partitions. There is no more reason for a single partition to be adequate to explain the data than for the first principal component to be adequate for interval scale data.

In the ditto algorithm, the center for each cluster is equal to the mode of each variable over cases in the cluster. A measure of partition error is defined similar to that in the K-means algorithm.

In the K-means algorithm, it is necessary to fix the number of clusters in the partition; otherwise the partition of M clusters is best. In this algorithm, the error function does not necessarily decrease as the number of clusters increases, and so the partition size varies during the course of the algorithm.

7.2 DITTO ALGORITHM

Preliminaries. There are M cases, N variables, and a value A(I, J) of the Ith case for the Jth variable. Let P(M, K) denote a partition of the cases. The error of the partition P(M, K) is

$$e[P(M, K)] = M + \sum \{1 \le J \le N\} \sum \{1 \le L \le K\} \rho[B(0, J), B(L, J)] + \sum \{1 \le J \le N\} \sum \{1 \le I \le M\} \rho[A(I, J), B(L(I), J)],$$

where L(I) is the cluster containing I, $\rho(A, B) = 1$ if $A \neq B$, and $\rho(A, B) = 0$ if A = B. The vector $\{B(L, J), 1 \leq J \leq N\}$ for the Lth cluster is the center of the cluster. It will be chosen to minimize the expression e[P(M, K)]; this requirement does not uniquely determine B(L, J), but it is always possible to find B(L, J) minimizing e and equal to a mode of A(I, J) over cases I in the cluster L. The vector $\{B(0, J), 1 \leq J \leq N\}$ is the "grand mode" of the cluster centers.

Table 7.1 Evaluation of Wines 1961-1970

- D disastrous
- P poor
- A average
- G good
- E excellent

		1961	62	63	64	65	66	67	68	69	70
	Red Bordeaux										
MG	Medoc and Graves	E	G	P	G	D	G	G	P	A	G
EP	Saint Emilion and Pomerol	E	A	P	G	P	G	G	P	A	G
	White Bordeaux										
SS	Sauternes	G	G	D	D	D	A	G	P	G	G
GS	Graves	G	G	D	G	D	G	G	P	G	G
RB	Red Burgundy	E	G	A	G	P	G	A	D	G	G
	White Burgundy										
СВ	Cote de Beaune	E	G	A	G	A	G	G	A	G	G
CS	Chablis	E	G	A	G	P	G	G	A	G	G
BS	Beaujolais	E	G	P	G	D	G	A	P	G	G
	Red Rhone										
RN	North	E	G	P	G	A	G	G	A	G	G
RS	South	G	Ą	P	G	A	A	G	A	G	G
WL	White Loire	A	P	P	G	P	A	G	G	G	G
AE	Alsace	G	A	P	E	P	G	G	P	G	G
RE	Rhine	G	A	P	G	P	G	G	P	G	G
ME	Moselle	G	A	P	E	P	G	G	P	G	G
CA	California	-	_	-	P	G	A	G	G	A	G

From Gourmet Magazine (August, 1971), pp. 30-33.

There are four stages in the ditto algorithm:

- (i) selecting the initial partition;
- (ii) moving cases from one cluster to another, or creating new clusters;
- (iii) updating the modal values B(L, J) within clusters, and updating the grand mode B(0, J);
- (iv) printing out the original data, recording the value A(I, J) as a dot if it agrees with B[L(I), J], and recording B(L, J) as a dot if it agrees with B(0, J). The number of nondot values is e[P(M, K)].
- STEP 1. Initially define a different cluster center $\{B(L,J), J=1,\ldots,N\}$ for each value taken by a variable. The total number of clusters K will be the number of different values taken by each variable, summed over variables. For the Lth cluster, suppose a variable J(L) takes a value V(L). Then B(L,J) is a mode of values A(I,J) for which A[I,J(L)] = V(L).

Finally, B(0, J) is a mode of B(L, J) over all clusters L $(1 \le L \le K)$.

- STEP 2. For each case I ($1 \le I \le M$) allocate I to the first cluster L ($0 \le L \le K$) for which $\sum \{1 \le J \le N\} \rho[A(I,J), B(L,J)]$ is a minimum.
- STEP 3. Delete clusters containing no objects. Delete clusters containing one object, and allocate the object to the 0 cluster.
- STEP 4. For each cluster L, replace B(L,J) $(1 \le J \le N)$ by a mode of values A(I,J) $(I \in L)$ and the value B(0,J). If B(0,J) is a possible value of B(L,J), set B(L,J) = B(0,J). For the cluster 0, replace B(0,J) by the mode of B(L,J) over all clusters and over A(I,J) for cases allocated to 0.
- STEP 5. If any change occurs in Steps 2-4, return to Step 2. Otherwise, replace A(I,J) by a dot, if $I \in L$, A(I,J) = B(L,J) $(1 \le I \le M, 1 \le J \le N)$. Replace B(L,J) by a dot if B(L,J) = B(0,J) $(1 \le L \le K)$.

7.3 APPLICATION OF DITTO ALGORITHM TO WINES

STEP 1. There are 10 variables, taking 28 different values, so initially there are 28 clusters. The first cluster center is computed by using variable J(1) = 1 and value V(1) = E. The cases I such that A(I, 1) = E are MG EP RB CB CS BS RN. The modal values B(1, J) are

B(1, 1) = E, the mode of E E E E E E E B(1, 2) = G, the mode of G A G G G G B(1, 3) = P, the mode of P P A A A P P

and so on. The next cluster center uses J(2) = 1 and V(2) = G, the second value taken by the first variable. The matching cases are SS GS RS AE RE ME. The complete set of initial cluster values appears in Table 7.2. Some clusters, such as 20, 26, and 28, are identical. The redundant ones will be eliminated in later steps.

- STEP 2. Each case is now allocated to a cluster—the cluster whose center it best matches. For example, case 1, MG, differs from the center of cluster 4 only in the year 1969, so MG is allocated to cluster 4. The complete allocation is given in Table 7.3. There are many single clusters that will be allocated to the 0 cluster in the next step.
- STEP 3. Delete the many clusters to which no cases are allocated. For example cluster 10, having an identical center to 0, will receive no cases and be eliminated. Delete clusters such as cluster 7 that contain a single object.
- STEP 4. Recompute cluster centers. For example, cluster 4 contains MG and BS. To compute B(4, 1), use the data values E, E and the value B(0, 1) = E. The mode of these three values is B(4, 1) = E. To consider a less straightforward case, consider B(9, 4). The cluster 9 contains cases SS and GS taking values D and G in variable 4, 1964. The overall mode is B(0, 4) = G. Thus the mode of D, G, G is B(9, 4) = G.

Finally, the grand mode is recomputed by using cluster centers and cases allocated to the grand mode.

STEP 5. Steps 2-4 are repeated until there is no change in the clusters, which occurs after two allocations. The array is now prepared for display in a dot diagram. Since MG is allocated to cluster 4, A(1, 1) = B(4, 1) = E and A(1, 1) is replaced by a dot.

Table 7.2 Initial Cluster Centers Applying Ditto Algorithm to Wines

					-			9				
CIUSTER	VARIABLE	VALUE				CLUS	TER	CENT	RE			
			1961	62	63	64	65	66	67	68	69	70
1	61	E	E	G	P	G	P	G	G	A	G	G
2	61	G	G	A	P	G	P	G	G	P	G	G
3	61	A	A	P	P	G	P	A	G	Ğ	G	G
4	62	G	E	G	P	G	D	G	G	P	G	G
5	62	A	G	A	P	G	P	G	G	P	G	G
6	62	P	G	P	P	G	P	A	G	G	G	G
7	63	P	E	A	P	G	P	G	G	P	G	G
8	63	A	E	G	A	G	P	G	G	A	G	G
9	63	D	G	G	D	G	D	G	G	P	G	G
10	64	G	E	G	P	G	P	G	G	P	G	G
11	64	E	G	A	P	E	P	G	G	P	G	G
12	64	D	G	G	D	D	D	A	G	P	G	G
13	64	P	-	-	-	P	G	A	G	G	A	G
14	65	P	E	A	P	G	P	G	G	P	G	G
15	65	A	G	A	P	G	A	A	G	A	G	G
16	65	D	E	G	P	G	D	G	G	P	G	G
17	65	G	-	-	•	P	G	A	G	G	A	G
18	66	G	E	G	P	G	P	G	G	P	G	G
19	66	A	G	G	P	G	P	A	G	G	G	G
20	67	G	G	G	P	G	P	G	G	P	G	G
21	67	A	E	G	P	G	P	G	G	P	G	G
22	68	P	E	G	P	G	P	G	G	P	G	G
23	68	A	E	G	A	G	P	G	G	A	G	G
24	68	G	A	P	P	G	P	A	G	G	G	G
25	68	D	E	G	A	G	P	G	A	D	G	G
26	69	G	G	G	P	G	P	G	G	P	G	G
27	69	A	E	G	P	G	P	G	G	P	A	G
28	70	G	G	G	P	G	P	G	G	P	G	G
0			E	G	P	G	P	G	G	P	G	G

Similarly, since B(4, 1) = B(0, 1) = E, B(4, 1) is replaced by a dot. The final dotted array appears in Table 7.4.

The total number of symbols necessary to represent the data is 41, which should be compared to the 150 data values and to the 28 different values taken by all variables. The story told by the clustering is as follows. The usual grading of wine is "good." Overall there were three poor years, 1963, 1965, and 1968, and one excellent year, 1961. There is a gallimaufry of four wines, St. Emilion and Pomerol, Red Rhone North, White Loire, and California, which vary (differently) from this overall

·			CIUSTER MODE											
CIUSTER	ALLOCATION	1	1961	62	63	64	65	66	67	68	69	70		
ų	MG BS		E	G	P	G	D	G	G	P	G	G		
7	EP		E	G	P	G	P	G	G	P	G	G		
9	ss gs '		G	G	D	G	D	G	G	P	G	G		
25	RB		E	G	P	G	P	G	G	P	G	G		
8	CB CS		E	G	A	G	P	G	G	A	G	G		
1	RN		E	G	P	G	P	G	G	P	G	G		
15	RS		E	G	P	G	P	G	G	P	G	G		
24	WL		E	G	P	G	P	G	G	P	G	G		
2	ae re me		G	A	P	G	P	G	G	P	G	G		
13	CA		E	G	P	G	P	G	G	P	G	G		
0			E	G	P	G	P	G	G	P	G	G		
CIUSTER	ALLOCATION	1 2												
4	MG BS		E	G	P	G	D	G	G	P	G	G		
9	SS GS		G	G	D	G	D	G	G	P	G	G		
8	RB CB CS		E	G	A	G	P	G	G	A	G	G		
2	RS AE RE M	Œ	G	A	P	G	P	G	G	P	G	G		
0	EP RN WL C	'A	E	G	P	G	P	G	G	P	G	G		
CIUSTER	ALLOCATION	1 3	No	chan	ge.									
4	MG BS													
9	SS GS													
8	RB CB CS													

Table 7.3 Successive Passes of Ditto Algorithm on Wines

o EP RN WL CA
pattern. California particularly is quite different. There are four clusters of wines:
the Beaujolais cluster (disastrous in 1965), the Sauternes cluster (disastrous in 1963)

and 1965), the Chablis cluster (average in 1963 and 1968 when others were poor), the Moselle cluster (not as good as others in 1961 and 1962).

7.4 THINGS TO DO

7.4.1 Running the Ditto Algorithm

RS AE RE ME

This algorithm is especially appropriate for category data. Continuous variables may be converted to this form by division into classes such as low, middle, and high. Variables with large numbers of categories will have little effect on the final classification but will increase the expense of computation, so such variables should be avoided. An unusual feature of the algorithm is the presence of a gallimaufry of objects, each forming a singleton cluster.

Table 7.4	Ditto	Diagram	of	Wines
-----------	-------	---------	----	-------

	1961	62	63	64	65	66	67	68	69	70
CIUSTER 0	E	G	P	G	P	G	G	P	G	G
St. Emilion and Pomerol	•	A	•	•	•	•	•	•	A	•
Red Rhone North	•	•	•	•	A	•	•	A	•	•
White Loire	A	P	•	•	•	A	•	•	•	•
California	-	-	~	P	G	A	•	G	•	•
CIUSTER 4	<u> </u>	<u>.</u>	•	•	D	•	•	•	•	<u>.</u>
Medoc and Graves	•	•	•	•	•	•	•	•	A	•
Beaujolais	•	•	•	•	•	•	A	•	•	•
CIUSTER 9	G		D	٠	D	•	•	•	•	<u>.</u>
Sauternes	•	•	•	D	•	A	•	•	•	•
Graves	•	•	•	•	•	•	•	•	•	•
CLUSTER 8	<u>.</u>	•	A	•	•	•		A	•	<u></u>
Red Burgundy	•	•	•	•	•	•	A	D	•	
Cote de Beaune	•	•	•	•	A	•	•	•	•	•
Chablis	•	•	•	•	•	•	•	•	٠	•
CIUSTER 2	G	A	•		•	•	•	•	•	<u>.</u>
Red Rhone South	•	•	•	•	A	A	•	A	•	•
Alsace	•	•	•		•	•	•	•	•	•
Rhine	•	•	•	•	•	•	•	•	•	•
Moselle	•	•	•	E	•	•	•	•	•	•

Number of symbols = 41

Number without partitions - 150

Fill in cluster centers from cluster 0. Fill in data values from cluster centers.

A good data set for this algorithm is the sleeping pattern of seventeen monkeys in a vervet troop observed by Struhsaker (Table 7.5). Also see the metamorphosis sequences of British butterflies (Table 7.6).

PROGRAMS

SCALE converts continuous variables to category variables.

DITTO computes partition of category data to maximize matching between cases in a cluster and the cluster mode.

DITOUT using output from ditto, this program prints out dot matrix, where each dot represents an identity between a value in the matrix and the corresponding cluster mode.

Table 7.5 Vervet Sleeping Groups

I = Adult male IX = Young juvenile female

II = Older adult male X = Juvenile female

III = Adult male XI = Subadult female

IV = Adult female XII = Adult female

V = Juvenile male XIII = Two young indist. juv. males
VI = Adult female XIV = Infant male, son of IV
VII = Young juvenile female XV = Infant female, from XII
VIII = Young juvenile female XVI = Infant male, from VI

	I	II	III	IV	V	VI	VII	VIII	IX	x	XI	XII	XIII	XIV	χv	XVI	XVII
4Jan64	A	D	A	В	A	E	E	E	C	C	C	A	В	A	В		
30Jan64	В	В	В	В	В	A	A	A	A	A	B	В	В	В	B	В	
5 Fe b64	В	A	C	A	A	D	D	D	D	D	A	A	A	A	A	A	D
10Feb64	A	В	В	D	В	D	D	D	C	C	A	D	A	A	D	D	D
24 Fe b64	В	В	B	В	B	В	В	В	В	В	A	A	В	В	В	A	В
25Feb64	A	В	A	В	В	В	В	В	В	В	A	В	В	В	В	В	В
10 %a r64	C	C	В	C	C	C	C	C	C	A	В	В	В	C	C	В	C
20 Ma r 64	В	В	A	В	В	B	В	В	B	В	A	A	В	В	В	A	В
1 Apr 64	D	C	A	D	D	D	D	D	B	A	В	C	A	D	D	C	D
2Apr64	D	A	D	C	D	D	D	D	B	D	В	A	В	C	C	A	D
5Apr64	A	A	C	2	D	B	2	2	2	C	3	E	E	E	2	E	В
7Apr 64	C	C	B	A	C	B	C	В	A	B	A	В	A	A	A	В	В
1 8Apr 64	C	D	B	A	C	C	C	C	A	A	A	В	A	A	A	В	C
2 8Apr 64	A		A	D	A	D	D	D	A	A	C	B	A	D	D	В	D
1 16 3y64	В		D	A	C	C	C	C	A	A	В	В	C	A	A	В	C
500a.y 64	D		C	В	F	A	B	1	E	E	D	C	E	В	В	C	A
1 0 34 5.y64	В		B	E	B	D	D	D	A	F	A	C	A	В	Ľ	C	D
12)(ay 64	D		B	D	D	E	I	E	В	B	C	A	В	D	D	A	E
20 162 y64	A		В	D	C	C	C	C	A	C	A	C	D	C	D	C	C
22 39 3y64	E		B	r	F	A	A	A	C	F	C	D	r	F	F	D	A
2Jun 64	C		D	C	C	1	E	E	C	C	B	A	C	B	C	A	B
5Jun 64	A		D	C	A	D	D	A	D	A	В	A	C	A	C	A	D

From Struhsaker, T. T. (1967). "Behaviour of vervet monkeys and other cercopithecines." Science 156, 1197-1203.

Table 7.6 Times of Appearance of British Butterflies

O (ova); L (larva); P (pupa); I (imago)

	Jen	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
Adonis Blue	L	L	L	L	PI	II	P	PI	LI	L	L	L
Bath White	P	P	P	P	П	L	P	PI	LP	P	P	P
Black Hairstreak	0	0	0	0	L	LPI	I	0	0	0	0	0
Black-veined White	L	L	L	L	LP	PΙ	П	L	L	L	L	L
Brinstone	I	I	I	I	II	II	PΙ	PΙ	I	I	I	I
Brown Argus	L	L	L	L	L	P	PI	I	L	L	L	L
Brown Hairstreak	0	0	0	0	L	LP	PI	I	I	0	0	0
Camberwell Beauty	I	I	I	I	I	L	LP	I	I	I	I	I
Chalk Hill Blue	L	L	L	L	LPI	LP	PI	I	L	L	L	L
Chequered Skipper	L	L	L	P	P	I	0	0	L	L	L	L
Clouded Yellow	-	-	-	-	I	LI	LP	I	LI	LPI	I	-
Comina	I-	I	I	I	ш	LP	PI	П	PΙ	I	I	I
Common Blue	L	L	L	LP	I	IL	IJ	I	I	L	L	L
Dark Green Fritillary	L	L	L	L	L	LP	PI	LI	L	L	L	L
Dingy Skipper	L	L	L	LP	I	Ħ	LP	I	L	L	L	L
Duke of Burgundy Fritillary	P	P	P	P	PI	IOL	L	L	LP	P	P	P
Essex Skipper	0	0	0	OL	L	P	I	I	0	0	0	0
Gatekeeper	L	L	L	L	L	LP	I	I	L	L	L	L
Glanville Fritillary	L	L	L	LP	LPI	LPI	L	L	L	L	L	L
Grayling	L	L	L	L	L	LPI	PI	ш	IJ	L	L	L
Green Hairstreak	P	P	P	P	PI	П	LP	P	P	P	P	P
Green-veined White	P	P	P	PI	LF	LPI	LPI	LPI	LP	P	P	P
Grizzled Skipper	L	L	L	LP	I	ш	LP	I	L	L	L	L
Heath Fritlllary	L	L	L	L	L	LPI	LI	L	L	L	L	L
High Brown Fritillary	L	L	L	L	L	LP	PI	IJ	L	L	L	L
Holly Blue	P	P	P	PI	I	LP	PI	ш	LPI	LP	P	P
Large Blue	L	L	L	L	L	LI	I	L	L	L	L	L

[Ford, T. L. E. (1963). *Practical Entomology*, Warne, London, p. 181.] (A subset has been selected from the full list.)

```
SUBROUTINE SCALE(A,M,N,KL,KK)
C.... SCALES APRAY TO TAKE INTEGER OR ALPHAMERIC VALUES 1,2,3,... KL

MINIMUM AND MAXIMUM VALUES ARE COMPUTED FOR EACH VARIABLE, AND EACH VALUE

IS THEN CLASSIFIED INTO ONE OF KL INTERVALS OF EQUAL LENGTH BETWEEN THE MINIMUM AND MAXIMUM.
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... A = M BY N BORDERED ARRAY
C.... KL = NUMBER OF LEVELS
C.... KK = LEVELLING OPTION
                    KK = 1 UNIFORM OVER ALL DATA VALUES
                    KK = 2 UNIFORM WITHIN VARIABLES
KK = 3 SAME AS OPTION 1, CONVERTED TO ALPHAMERIC
KK = 4 SAME AS OPTION 2, CONVERTED TO ALPHAMERIC
          DIMENSION A(M,N)
DIMENSION CC(9)
       DATA CC/141,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9/

IF(KK.GE.3.AND.KL.GT.9) WRITE(6,1) KL

FORMAT(15,27H TOO MANY ALPHAMERIC LEVELS

IF(KK.EQ.1.OR.KK.EQ.3) GO TO 20
C .... COMPUTE MINIMUM AND MAXIMUM
           00 10 J=2,N
           XMIN=A(2,J)
           XMAX=A(2.J)
           DO 11 I=2,M
           IF(A(I,J).GT.XMAX) XMAX=A(I,J)
IF(A(I,J).LT.XM(I)XMI)
     11 CONTINUE
C... CHANGE A VALUES TO INTEGER OR ALPHAMERIC IF(XMIN.EQ.XMAX) XMAX=XMIN+.000001
           ZZ=KL/(XMAX-XMIN)
           CO 12 I=2,M
           K=(A(I,J)-XMIN)+ZZ+1
           IF(KK.EQ.4) A(I,J)=CC(K)
IF(KK.EQ.2) A(I,J)=K
      12 CONTINUE
      10 CONTINUE
             RETURN
      20 CONTINUE
C.... MINIMUM AND MAXIMUM
           XMIN=A(2,2)
           XMAX=A(2,2)
           DD 21 I=2,M
DO 21 J=2,N
IF(A(I,J).LT.XM(N) XM(N=A(I,J)
21 IF(A(I,J).GT.XMAX) XMAX=A(I,J)
C.... CHANGE A VALUES
IF(XMIN.EQ.XMAX) XMAX=XMIN+.000001
           ZZ=KL/(XMAX~XMIN)
           DO 22 I=2,M
DO 22 J=2,N
           K=[A[I,J]-XMIN]+ZZ+1.
           IF(KK.EQ.3) A(I,J)=CC(K)
IF(KK.EQ.1) A(I,J)=K
      22 CONTINUE
           RETURN
           END
```

```
SUBROUTINE OITTO(M.N.KL.KC.A.X,LC.LK.Y.Z)
C... COMPUTES PARTITION OF CATEGORY DATA TO MAXIMIZE MATCHING BETWEEN CASES IN
                A CLUSTER AND THE CLUSTER MODE.
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... N = NUMBER OF COLUMNS

C.... KL = MAXIMUM NUMBER OF DIFFERENT VALUES TAKEN BY A VARIABLE PLUS ONE.

C.... KC = KL BY N +1

C.... A = M BY N BORDERED OATA ARRAY

C.... X = KC BY N ARRAY OF CLUSTER MODES

C.... LC = 1 BY M ARRAY ASSIGNING CASES TO CLUSTERS

C.... LK = 1 BY KC ARRAY COUNTING CASES IN CLUSTERS

C.... Y = KL BY N ARRAY COUNTING FREQUENCIES IN CLUSTERS

C.... Z = KL BY N ARRAY SPECIFYING DIFFERENT VALUES OF VARIABLES
         DIMENSION A(M,N),X(KC,N),LC(M),LK(KC),Y(KL,N),Z(KL,N)
         DIMENSION CC(10)
         DATA CC/1H1,1H2,1H3,1H4,1H5,1H6,1H7,1HB,1H9,2H10/
DATA RNGE,XMOD/4HRNGE,4HMDDE/
C.... PUT LABELS IN VARIOUS ARRAYS
         DG 80 K=2,KL
KK=(K-1)-((K-2)/10)+10
     80 2(K.1)=CC(KK)
         DO 81 J=2,N
     61 Z(1,J)=A(1,J)
         Z(1,1)=RNGE
         DO 82 K=2,KC
KK=(K-1)-((K-2)/10)*10
     62 X(K,1)=CC(KK)
         LO 63 J=2,N
     83 X(1,J)=A(1,J)
         X(1,1)=XMOD
C.... FINO DIFFERENT VALUES TAKEN BY VARIABLES
         DO 9 1=2.M
      9 LC(1)=0
         00 8 K=1.KC
      8 LK(K)=1
         NC =-1
         00 10 J=2.N
         00 10 K=2,KL
     10 Z(K,J)=0
         DO 11 J=2,N
DO 12 I=2,M
OO 13 K=2,KL
         IF(Z(K,J),EQ.O) Z(K,J)=A(I,J)
         IF(Z(K,J).EQ.A(I,J)) GO TO 12
     13 CONTINUE
     12 CONTINUE
     11 CONTINUE
C... COMPUTE MODES
     70 NC=NC+1
         00 20 J=2,N
00 20 K=2,KL
         00 21 JJ=2.N
00 21 KK=2.KL
     21 Y(KK,JJ)=0
         KT=K+1+(J-2)+(KL-1)
         IF(LK(KT).EQ.0) GO TO 20
         00 23 I=2,M
         IF(NC.EQ.O.ANO.A(I,J).NE.Z(K,J)) GD TO 23
         IF(NC.NE.O.AND.LC(I).NE.KT) GO TO 23
         00 25 JJ=2.N
DO 25 KK=2.KL
     25 IF(A([,J]).EQ.Z(KK.JJ)) Y(KK.JJ)=Y(KK.JJ)+1
     23 CONTINUE
         00 26 JJ=2,N
YM=Y12,JJ)
         KM=2
         00 27 KK=2,KL
IF(Y(KK,JJ).LE.YM) GO TO 27
         YM=Y(KK,JJ)
         KM=KK
     27 CONTINUE
     26 X(KT,JJ)=Z(KM,JJ)
     20 CONTINUE
C.... COMPUTE GRAND MODE
DO 55 J=2,N
         CO 50 K=2.KL
```

```
50 Y(K.J)=0
DO 51 K=3,KT
IF(LK(K).EQ.O) GO TO 51
          DO 52 KK=2.KL
      52 IF(X(K,J).EQ.Z(KK,J)) Y(KK,J)=Y(KK,J)+1
      51 CONTINUE
      51 CUNITINGE

DO 53 KK=2;KL

YM=Y(2,J)

X(2,J)=Z(2,J)

TF(Y(KK,J).LE.YM) GD TD 53

YM=Y(KK,J)

YM=Y(KK,J)
     X(2,J)=Z(KK,J)
53 CONTINUE
     55 CONTINUE
C.... REASSIGN CASES
DO 30 I=2, M
DM=10.**10
          KM=1
          KH=1
DO 32 K=2,KT
IF(LK(K).EQ.O) GO TO 32
IF(NC.NE.O.AND.LK(K).LE.1) GO TO 32
          DD = 0
     DO 31 J=2,N
31 IF(A(I,J).NE.X(K,J)) DD=DD+1
IF(DD.GE.DM) GO TO 32
          KM=K
     DM=DD
32 CONTINUE
30 LC(1)*KM
C.... COUNT CASES IN CLUSTERS
DJ 35 K=3,KC
     35 LK(K)±0
DO 36 I=2,M
K=LC(I)
     36 LK(K)=LK(K)+1
          DO 37 K=3, KC
IF(LK(K).NE.O) GO TO 37
     DO 38 J=2,N
38 X(K,J)=0.
37 CONTINUE
          IF(NC.LT.5) GO TO 70
          RETURN
          END
```

```
SUBROUTINE DITOUT(A,M,N,X,KC,LC)
c....
                                                                                              ........20 MAY 1973
C.... PRINTS OUT DATA MATRIX WITH CLUSTER VALUES DOTTED OUT
C.... DATA MATRIX A AND CLUSTER MATRIX X ARE ALPHABETIC C.... USE AFTER PROGRAM DITTO
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... N = NUMBER OF CLUSTERS
C.... A = M BY N BORDERED ARRAY, DATA VALUES
C.... X' = KC BY N BORDERED ARRAY, CLUSTER VALUES
C.... SECOND ROW OF X CONTAINS GRAND CLUSTER
C.... LC = 1 BY M ARRAY ASSIGNING CASES TO CLUSTERS
         DIMENSION A(M,N),X(KC,N),LC(M)
DIMENSION AA(120)
         DATA DOT/1H./
         WRITE(6,1) A(1,1)
      1 FORMAT(14H100T MATRIX OF,A5)
         WRITE (6,5)
      5 FORMATO
        *63H FIRST CLUSTER IS GRAND MODE. ALL OTHER CLUSTER VALUES ARE
*63HREPLACED BY "." IF THEY AGREE WITH VALUE OF GRAND MODE
*63H WITHIN A CLUSTER VALUES ARE REPLACED BY "." IF THEY AGREE
        *63H WITH CLUSTER VALUE.
         DD 20 K=2,6
     20 WRITE (6,2) (A(1,J),J=K,N,5)
      2 FORMAT(10X, 24A5)
C.... DATA
         DO 30 K=2.KC
          NC=0
         DD 40 I=2,M
          IF(LC(I).NE.K) GO TO 40
          NC=NC+1
          DD 60 J=2,N
     60 IF(K.GE.3.AND.X(K,J).EQ.X(2,J)) X(K,J)=OOT IF(NC.EQ.1) HRITE(6,3) K,(X(K,J),J=2,N) 3 FORMAT(5HOCLUS,13,3X,120A1)
         00 50 J=2.N
(L,I)A=(L,AA
     IF(X(K,J)=EQ.ODT) X(K,J)=X(2,J)
50 IF(A(I,J)=EQ.X(K,J)) AA(J)=DDT
WRITE(6,4) A(I,1),(AA(J),J=2,N)
       4 FORMAT(3X, A5, 3X, 120A1)
     40 CONTINUE
     30 CONTINUE
          RETURN
          ENO
```

Drawing Trees

8.1 DEFINITION OF A TREE

A tree is a family of clusters such that any two clusters are disjoint or one includes the other. Thus, in the clusters of animals in Table 8.1, cluster 4 and cluster 9 are disjoint and cluster 6 contains cluster 8. It is often convenient to require the set of all objects to be a cluster and to define a single-object cluster for each object.

Table 8.1 Clusters of Animals Forming a Tree

CLUSTER 1.	HUMAN (HN)	MONKEY (MY)	HORSE (HE)	PIG (PG)
	WHALE (WE)	DOG (DG)	RABBIT (RT)	KANGAROO (KO)
	CHICKEN (CN)	PENGUIN (PN)	DUCK (DK)	TURTLE (TE)
	BULLFROG (BG)			

CLUSTER 2. HIN MY HE PG WE DG RT KO CN PN DK TE

CLUSTER 3. CN PN DK TE

CLUSTER 4. CN PN DK

CLUSTER 5. CN PN

CLUSTER 6. HN MY HE PG WE DG RT KO

CLUSTER 7. HE PG WE DG

CLUSTER 8. HE PG

CLUSTER 9. HN MY

8.2 REORDERING TO CONTIGUOUS CLUSTERS

It is always possible to order the objects so that every cluster consists of a set of objects contiguous in the order. Let O(I) $(1 \le I \le M)$ denote the name of the *I*th object in the order.

- STEP 1. Select the first object, O(1), arbitrarily.
- STEP 2. Select the second object, O(2), from the smallest cluster containing O(1) but not included in the set $\{O(1)\}$. If no such cluster exists, select the second object to be any object other than O(1).
- STEP 3. Select the Kth object, K = 3, 4, ..., M, from the smallest cluster containing O(K-1), but not contained in the set $\{O(1), O(2), ..., O(K-1)\}$. If no such cluster exists, select the Kth object to be any object not O(1), ..., O(K-1).

8.3 APPLICATION OF REORDERING TO ANIMAL CLUSTERS

The order of objects in cluster 1, Table 8.1, is such that all clusters are contiguous in the order. For example, cluster 7 = {HE, PG, WE, DG} which are the third through sixth objects, respectively, in cluster 1. To illustrate the algorithm, an object other than human will be selected to be the first object.

- STEP 1. Let O(1) = RT, rabbit.
- STEP 2. The smallest cluster containing the rabbit is cluster 6, from which the object O(2) = KO, kangaroo, is selected.
- STEP 3. The smallest cluster containing KO is again cluster 6, from which O(3) = DG. The smallest cluster containing DG is cluster 7, from which O(4) = WE. The smallest containing WE is again 7, from which O(5) = PG. The smallest containing PG is cluster 8, O(6) = HE. The smallest containing HE but not included in O(1), O(2), O(3), O(4), O(5), O(6) is cluster 6, O(7) = MY, and so on. Finally, the order of objects is RT KO DG WE PG HE MY HN PN CN DK TE BG. Every cluster is a contiguous set of objects in this order. For example, cluster 3 is the ninth through twelfth objects.

8.4 NAMING CLUSTERS

Since every cluster consists of a sequence of contiguous objects in some ordering of the objects, a natural way to name the clusters is by the first and last object in the sequence. Thus the human-turtle cluster contains all animals but the bullfrog. This naming procedure is not unique since the ordering of the objects is not unique. The two objects in the name of the cluster have the property that the smallest cluster which includes them both is the cluster named.

Given the ordering of the objects and the two names for each cluster, the complete tree may be recovered. Thus the animal clusters are determined by the order HN MY HE PG WE DG RT KO CN PN DK TE BG and by the named clusters HN-MY, HN-KO, HE-DG, CN-PN, CN-DK, CN-TE, HN-TE, HE-PG.

8.5 I-REPRESENTATION OF CLUSTERS WITH DIAMETERS

Preliminaries. Each cluster has a diameter D(C), a positive integer, such that D(C1) < D(C2) if C1 is properly included in C2. For example, let the smallest clusters have diameter 1, and let every other cluster have a diameter that is one greater than the maximum diameter of the clusters properly contained in it.

This algorithm represents the clusters graphically, using the symbols -, I, and I, although other symbols are plausible. For example, I, I, might replace I, I. There is one line for each object, with the name of the object left of the 0 position in the line and with various symbols in the positive positions on the line.

- STEP 1. Arrange the objects in order, so that each cluster is a sequence of contiguous objects.
- STEP 2. Write the name of the first object to the left of the 0 position of the first line.
- STEP 3. Let C be the largest cluster such that the first object is the first or last object in C. Write the symbol in all positions not greater than D(C).
- STEP 4. For every cluster C containing the first object, write the symbol I in position D(C) (if necessary, replace a previously written —).
- STEP 5. For all clusters C such that the present object is the last object in C, write the symbol / in position D(C).
- STEP 6. Repeat Steps 2-5 for all objects $(1 \le I \le M)$ with the names of the objects listed vertically on the left and with the symbols denoting cluster membership listed on the right.

8.6 I-REPRESENTATION OF ANIMAL CLUSTERS

It is necessary to define a diameter for each cluster to determine its horizontal position on the page. The diameter given in Section 8.5 produces a representation occupying a minimum width of page. [A more spread-out representation appropriate for small sets of objects has D(C) equal to the number of objects in C.] For the animals, the diameters are D(HN-MY) = 1, D(HE-PG) = 1, D(HE-DG) = 2, D(HN-KO) = 3, D(CN-PN) = 1, D(CN-DK) = 2, D(CN-TE) = 3, D(HN-TE) = 4, D(HN-BG) = 5. For example, $D(HN-KO) = \max [D(HE-PG), D(HE-DG), D(HN-MY)] + 1 = 3$.

- STEP 1. The order used is the order given in Table 8.1.
- STEP 2. The first object is named human.
- STEP 3. The largest cluster C such that human is first or last is HN-BG. Write the symbol in positions 1, 2, 3, 4, 5 = D(HN-BG).
- STEP 4. The clusters C that contain human are HN-MY, HN-KO, HN-TE, and HN-BG. Thus the symbol I appears in positions 1, 3, 4, 5 (replacing the symbol -).
 - STEP 5. Human is the last member of no cluster and so / does not appear.
- STEP 6. Steps 2-5 are repeated for monkey. The largest cluster containing monkey as the last object is HN-MY. So the symbol is written in position 1. The clusters

HN-MY, HN-KO, HN-TE, and HN-BG contain monkey, so the symbol *I* appears in 1, 3, 4, 5 (replacing — in position 1). The cluster HN-MY has monkey as its last object so the symbol / appears in position 1. In this way, all objects are represented in Table 8.2. Note that during the algorithm, more than one symbol may be assigned to a given position, but the latest symbol is always the one used.

To read the table, look for the symbols /. The vertical tower of I's over every / defines a cluster of objects. Each cluster corresponds to just one / in the table.

Table 8.2 I Representation of Animal Clusters

		5	DIAMETER
HUMAN	• I - I I	Ī	
MONKEY	·/ II	I	
HORSE		I	
PIG	·/III	I	
WHALE	. III	I	
DOG	·-/II	Į	
RABBIT	• II	I	
KANGAROO	·/I	I	
CHICKEN	·IIII	I	
PENGUIN	·/III	I	
DUCK	·-/II	I	
TURTLE	/ /	I	
BULLFROG		/	

Each cluster is a vertical tower of I's over a /.

8.7 TREES AND DIRECTED GRAPHS

Suppose that all objects and clusters are nodes of a graph and that each node is linked to the node corresponding to the smallest cluster which includes it, with the link directed from the lesser node to the greater. Then the set of nodes and links form a directed graph, such that each node has at most one link leaving it, and there are no cycles. Any directed graph satisfying these conditions may conversely be represented as a family of clusters. The animal clusters are represented by such a graph in Table 8.3 (see also Figure 8.1).

8.8 LINEAR REPRESENTATION OF TREES

Let D(C) be a diameter, as defined in Section 8.5, such that D(C) is a positive integer and D(C1) < D(C2) whenever $C1 \subset C2$, $C1 \neq C2$. Arrange the objects in order on the line, such that each cluster is a contiguous sequence of objects, and separate two contiguous objects by the diameter of the smallest cluster that contains them both. Clusters are recovered from such a linear representation by associating a cluster with each interval between objects, the cluster consisting of the maximal sequence of objects including the interval and containing no interval of greater size.

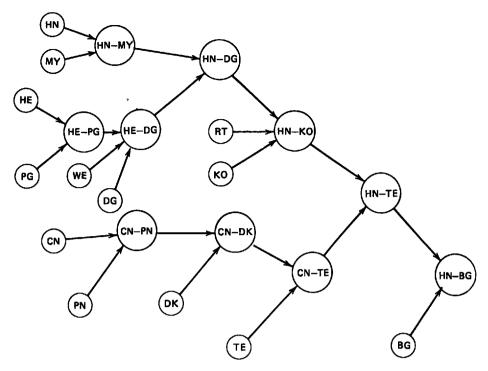


Figure 8.1 Trees and directed graphs.

Table 8.3 Animal Clusters Represented by Directed Graph

NODE	ANCESTOR	NODE	ANCESTOR
HN	HN - MY	HN - MY	HN - KO
MY	HN - MY	HE - PG	HE - DG
HE	HE - PG	HE - DG	HN - KO
PG	HE - PG	HN - KO	HN - TE
WE	HE - DG	CN - PN	CN - DK
DC	HE - DG	CN - DK	CN - TE
RT	HN - KO	CN - TE	HN - TE
ко	HN - KO	HN - TE	HN - BG
CN	CN - PN	HN - BG	
PN	CN - PN		
DK	CN - DK		
TE	CN - TE		
BG	HN - BG		

Table 8.4 Linear Representation of Animal Clusters

HN-MY---HE-PG--WE--DG---RT---KO----CN-PN--DK---TE-----BG

Н	Į	MY		HE		PG		WE		DG		RT		Ю		CN-		PN		DK		TE		BG
	I		I		I		I		I		I		I		I		I		I		I		I	
			I				I		I		I		I		I				I		I		I	
			I								I		I		I						I		I	
															I								I	
																							I	

The animal clusters are represented in this way in Table 8.4. Also in Table 8.4 is a representation where the spaces between objects are represented by a vertical column of I's. This diagram is intermediate between the linear representation and the representation in Table 8.2. The linear representation is useful when a data vector is associated with each object, and it is desired to incorporate this vector in the representation, as in Table 8.5. Blanks between lines of data indicate the clusters; as a

Table 8.5 Cost and Nutrient Contributions for Selected Foods

% OF DAILY ALLOWANCE ROW THIAMINE RIBOFLA

FOOD	COST OF SERVING	9 SIZE	PROTEIN	IRON	THIAMINE	RIBOFLAVIN	NIACIN
HAM	28	3 oz	29	21	38	11	29
PORK CHOPS	25	3 OZ	29	22	59	12	36
BEEF RIB ROAST	25	3 oz	29	22	4	9	30
BEEF CHUCK ROAST	18	3 OZ	32	22	3	10	29
HALIBUT	18	3 OZ	33	6	4	4	74
BEEF LIVER	15	3 oz	30	55	18	198	105
BGGS	10	? eggs	19	22	7	16	1
dry beans	2.	3/4 cup	16	30	8	6	12
BACON	5	2 strips	6	4	7	3	7
PEANUT BUITER	4	2 tablespoons	12	5	3	2	43

From Yearbook of Agriculture (1959).

rule of thumb, the total number of blank lines is about equal to the original number of objects.

8.9 TREES AND DISTANCES

Given a tree with cluster diameters, there are two ways of defining distances between objects. In the first, the distance between two objects is the diameter of the smallest cluster which includes them both:

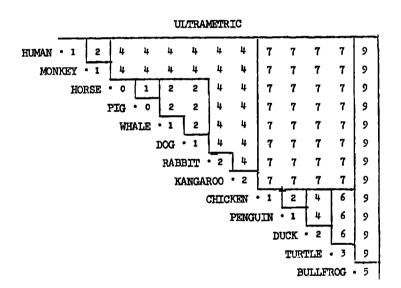
$$D(I,J)=\min \{C \mid I \in C, J \in C\} \ D(C).$$

Such a distance is an *ultrametric*; that is, it satisfies the inequality $D(I, J) \le \max[D(I, K), D(J, K)]$. Equivalently, the two largest distances in D(I, J), D(I, K), D(J, K) are equal. Conversely, any ultrametric generates a tree and cluster diameters from which it is recovered using the above definition (see Hartigan, 1967; Johnson, 1967; Jardine, Jardine, and Sibson, 1967). For example, see Table 8.6; the smallest

								-
					5		10	DIAMETER
HUMAN	•	1	I	- I	I	- I		
MONKEY		/	/	I	I	I		
HORSE	/	I	I	ľ	I	I		
PIG	/	/	I	I	,I	I		
WHALE	•	/	I	I	I	: I		
DOG	•	/	/	I	I	I		
RABBIT	•	-	/	I]	I		
KANGAROO	•	-	/	-/	1	: I		
CHICKEN	•	/	I	- I	- I I	Ι		
PENGULN	•	/	/	I	I	: I		
DUCK	•	-	/	-/	ľ	I		
TURTLE	•		-	/ -	-//	' I		

BULLFROG · - - -

Table 8.6 Distances Computed from Trees



Arbitrary diameters have been assigned to the clusters.

cluster including human and monkey is HN-MY, which has a diameter of 2. Thus D(HN, MY) = 2. The smallest cluster including human and chicken is the HN-TE cluster with a diameter of 7. Also, this cluster is the smallest including monkey and chicken. Thus D(HN, CN) = 7 and D(MY, CN) = 7. The two largest distances of D(HN, MY), D(HN, CN), D(MY, CN) are equal, as behooves an ultrametric.

Another plausible definition has the distance between two objects equal to the sum of links connecting the two objects in the directed graph described in Section 8.6. This definition will be stated in terms of cluster diameters, rather than in terms of links. It will be assumed that all simple object clusters are included in the tree and

also the full-set cluster. The link distance is defined to be

$$D(I,J) = 2D(C) - D(I) - D(J),$$

where D(I) and D(J) are diameters of objects I and J and where C is the smallest cluster containing I and J. If all single-object clusters have the same diameter, then D(I, J) is an ultrametric.

The link distance is not much different from an ultrametric. A distance D(I, J) is a link distance if and only if, for every K, D(I, J) - D(I, K) - D(J, K) is an ultrametric. It has been suggested by J. S. Farris that a set of empirical distances, thought to fit the link distance model approximately, should be transformed to

$$MD(I, J) - \sum \{1 \le K \le M\} D(I, K) - \sum \{1 \le K \le M\} D(J, K),$$

which will then fit the ultrametric model approximately.

In Table 8.6 is given a method of representing clusters directly on a distance matrix. This is very useful in the routine examination of distance or correlation matrices. The objects are first contiguously ordered relative to the tree. For a square distance matrix, each cluster corresponds to a square contiguous submatrix. This submatrix is outlined. Whenever the distance matrix is symmetrical (the usual case), one half of the matrix and the corresponding outlines are ignored. Each position in the matrix is indexed by a pair of objects. The lines partition the pairs of objects, so that within each member of the partition the pairs all have the same cluster as the minimum cluster including them both. In particular, in the ultrametric model all values within a member of the partition should be equal.

8.10 BLOCK REPRESENTATION OF TREES

There are many ways of representing trees, from the evolutionary trees seen in biology books where the width of the branches has meaning (cluster diameter is the time back to the common ancestor of objects in the cluster) to the stark trees in combinatorics (see Sokal and Sneath, 1963; Bertin, 1967; Lockwood, 1969). A slightly different representation from the *I* representation is used in biology and is superior in allowing more space in the diagram for text describing the clusters.

- STEP 1. Order the objects so that each cluster is a contiguous sequence of objects.
- STEP 2. On the $2 \times J$ th line $(1 \le J \le M)$, place the name of object J, then put the symbol I in each position D(C), where C includes J.
- STEP 3. On the $(2 \times J + 1)$ th line $(1 \le J \le M)$, put the symbol in every position K $(1 \le K < D(C))$, where C is the smallest cluster containing the objects J and J + 1.
- STEP 4. On the first and (2M + 1)th lines, put the symbol in every position $K[1 \le K < D(C)]$, where C is the cluster of all objects.

An example of a block representation appears in Table 8.7. Note that each cluster is represented by a maximal tower of I's above a —. There is also a block surrounded by I's and —'s for each cluster; within this block, descriptive material about the cluster may be written.

Table 8.7 Block Representation of Animal Clusters

		_	_	_	_	_	_			
HUMAN	•	<u>I</u>	I		I			I	I	
MONKEY	•	<u>I</u>	Ī	_	I			I	I	
HORSE	Ξ	I	I		I			I	I	
PIG	I	Ī	I		I			I	I	
WHALE	•	I	I		I			I	I	
DOG	•	Ī	I	_	I			I	I	
RABBIT	•	_	Ī	_	I			I	I	
KANGAROO	•	_	I	_	I	_	_	I	I	
CHICKEN	•	I	I		I			I	I	
PENGUIN	•	<u>I</u>	I	_	I			I	I	
DUCK	•	_	I	_	I			I	I	
TURTLE	•	_	-	I	Ī	_	_	<u>I</u> .	_ I	
BULLFROG	•	_	_	_	_	I	_	_	<u> </u>	

8.11 THINGS TO DO

8.11.1 Graphs

The term tree is used in a slightly different sense in graph theory—to denote an undirected graph with the property that there is a unique path connecting any two nodes. Selecting a particular node to be the root and directing all links toward the root produces a rooted tree, as in Section 8.6. The undirected definition goes naturally with the second distance model in Section 8.8, where the distance between the two nodes is the sum of the distances of the links connecting the two nodes. Fitting this distance model gives no hint about the root, so that a number of different clusterings may conform exactly to the same set of pairwise distances.

Trees have been investigated extensively in graph theory and combinatorics, principally by counting the number of trees of various types but also by considering characteristics of randomly generated trees.

8.11.2 Traversing Trees

A tree is a standard data structure in computing. A tree of K nodes may be represented by an ancestor array $N(1), \ldots, N(K)$, where for each I there is a single link from I to N(I). The root may be identified as the node J for which N(J) = J. A very convenient array for traversing the nodes of a tree is the two-dimensional array $\{M(1, I), M(2, I), 1 \le I \le K\}$, where M(1, I) is the next node with the same ancestor as I and where M(2, I) is the first node whose ancestor is I. Set M(1, I) = 0 and M(2, I) = 0 if no node satisfies the definitions.

The array $\{N(I), 1 \le I \le K\}$ may be used for certain operations, such as averaging, moving from the end objects toward the root. The array $\{M(1,J), M(2,I), 1 \le I \le K\}$ may be used for other operations, such as allocation of objects to the tree or moving from the root toward the end nodes. Show how to traverse all the nodes of the tree by using the arrays $\{N(I), M(1,I), M(2,I), 1 \le I \le M\}$. Show how to compute the array $\{N(I), 1 \le I \le M\}$ from $\{M(1,I), M(2,I), 1 \le I \le M\}$ and vice versa.

8.11.3. Natural trees

Leafy trees are rooted trees, except if their root system is included, when they become unrooted or undirected trees. Veins and arteries are trees directed to the heart. The nervous system is a tree directed to the brain. A river system is a tree directed to a sea, with a few multiple paths in swamps and deltas ignored. Company organization charts are frequently trees, sometimes only slightly related to real channels of power. Genealogies are trees, forward from a person to all his descendants and back to his ancestors. Since there are only two sexes, the backward tree is binary; it is also not a tree once the ancestry is traced far enough back to include relatives by birth.

Trees may be used to describe sentence structure. Trees may be used to organize a book into volumes, chapters, sections, and paragraphs. Schemes such as the Dewey decimal system are trees for naming, storing, and accessing books. It is less important that these be optimal, correct, or rational than that they be unambiguous, widely accepted, and easy to use.

REFERENCES

BERTIN, J. (1967). Semiology graphique, Gauthier-Villars, Paris. This book is a monumental work, with many beautiful graphs for all known graphical problems and with some intricate and striking tree diagrams, including a circular tree of the descendants of Genghis Khan (see p. 276).

HARTIGAN, J. A. (1967). "Representation of similarity matrices by trees." J. Am. Stat. Assoc. 62, 1140–1158. Defines a similarity matrix to have "exact tree structure" if it may be defined from a tree with cluster diameters, S(I, J), depending only on the diameter of the smallest cluster containing I and J. The matrix S is then an ultrametric.

JARDINE, C. J., JARDINE, N., and SIBSON, R. (1967). "The structure and construction of taxonomic hierarchies." *Math. Biosci.* 1, 173–179. A short sharp paper considering ultrametrics as a limiting ($\lambda \rightarrow 0$) case of λ metrics:

$$D(I, J)^{1/\lambda} \leq D(I, K)^{1/\lambda} + D(J, K)^{1/\lambda}.$$

They show that the distance defined from a tree with cluster diameters is an ultrametric, and that conversely an ultrametric generates a tree with cluster diameters. For a given metric distance D, there is a largest distance D^* that is an ultrametric and satisfies $D^*(I,J) \leq D(I,J)$ for all I,J. The corresponding tree is the one obtained from D by the single linkage algorithm.

JOHNSON, S. C. (1967). "Hierarchical clustering schemes." *Psychometrika* 32, 241–254. Discusses some joining algorithms and considers ultrametrics as the distances for which all algorithms should give the same result.

LOCKWOOD, A. (1969). *Diagrams*, Watson Guptill, New York. Some family trees and evolutionary trees and a tree substitute for bureaucratese, specifying when an old lady is allowed a pension, are given on pp. 125, 126, 127.

SOKAL, R. R., and SNEATH, P. H. A. (1963). Principles of Numerical Taxonomy, Freeman, San Francisco. Contains some samples of trees with cluster diameters, called dendrograms by the authors (pp. 197-201).

PROGRAMS

- TREE1 prints tree given tree information in boundary form (smallest and largest index of cases in each cluster).
- NBTOMT converts tree information in boundary form to tree information in pointer form, specifying for each cluster the ancestor or smallest cluster properly including it.
- CNVERT converts tree information in downward pointer form (next cluster at same level and first included cluster are specified for each cluster) to tree information in boundary form.
- BLOCK draws outlines of clusters over distance matrix.

```
SUBROUTINE TREE1(RL.M.NB.K)
                                                                                                  ..20 MAY 1973
C.... PRINTS TREE ON DBJECTS NAMED IN RL, USING BOUNDARY INFORMATION IN NB.
C.... M = NUMBER OF DBJECTS
C.... K = NUMBER OF CLUSTERS
C.... RL = 1 BY M ARRAY, RL(I) = LABEL OF ITH OBJECT.

C.... NB = 3 BY K ARRAY

C NB11,K) = FIRST OBJECT IN CLUSTER, INDEX BETWEEN 1 AND M.

C NB(2,K) = SECOND DBJECT IN CLUSTER, INDEX BETWEEN 1 AND M.

C NB(3,K) = DIAMETER OF CLUSTER, BETWEEN 0 AND 100
         DIMENSION RL(M), NB(3,K), AA(101)
DATA A,B.C.D.E/1H,,1H-,1H',1H/,1H /
C.... CHECK NB ARRAY FOR ILLEGAL VALUES
         DD 10 KK=1,K
         I=NB(1,KK)
         J=NB(2,KK)
         L=NB(3,KK)
         IF([.LT.1.DR.[.GT.J.OR.J.GT.M) WR1TE(6,1) KK,[,J,L
IF(L.LT.O.DR.L.GT.100) WRITE(6,1) KK,[,J,L
     10 CONTINUE
      1 FORMAT(17H ERROR IN CLUSTER, 14, 12HFIRST OBJ = , 13, 11HLAST DBJ =
       *, 13,7HDIAM = ,13)
C.... PRINT TREE, LINE BY LINE.
DO 20 I=1, M
         DO 21 L=1,101
    21 AA(L)=E
         DD 22 KK=1.K
         IF(NB(1,KK).GT.I) GD TD 22
         IF(NB(2,KK).LT.I) GO TO 22
         J=NB(3,KK)+1
         AA(J)=C
         1F(NB(1,KK).NE.I.AND.NB(2,KK ).NE.I) GO TO 22
         DD 23 L=1,J
     23 IF(AA(L).EQ.E) AA(L)=B
         IF(NB(2,KK).EQ.I) AA(J)=C
IF1NB11,KK).EQ.I) AA(J)=A
     22 CONTINUE
      WRITE(6,2) [,RL([],(AA(J),J=1:101)
2 FORMAT([5,4X,A4,1X,101A1)
     2D CONTINUE
         RETURN
         END
```

```
SUBROUTINE NBTOMT(NB,K,M,KT,MT)
C . . . . .
                                                                               ......20 MAY 1973
C.... CONVERTS NB DESCRIPTION OF CLUSTERS INTO MT DESCRIPTION C.... K = NUMBER OF CLUSTERS, K.GE.1
C.... NB = 3 BY K ARRAY DEFINING K CLUSTERS
C Nd(1,K)=FIRST OBJECT IN CLUSTER,GE 2
C NB(2,K) = LAST OBJECT IN CLUSTER,LE M.
              NB(3,K) = CLUSTER DIAMETER, IGNORED IN THIS PROGRAM
C.... M = NUMBER OF OBJECTS

C.... KT = M+K = NUMBER OF NOOES IN TREE

C.... KT = KT BY 1 TREE ARRAY, COMPUTED IN PROGRAM. MT(I).GT.I, EXCEPT AT I=KT
       DIMENSION NB(3,K),MT(KT)
C.... CHECK NB ARRAY
DO 20 I=1,K
        IF(N8(1,1).LT.2) WRITE(6,1) I
        IF(NB(2, I) .LT.NB(1, I) WRITE(6, 2) I
    20 IF(NB(2,1).GT.M) WRITE(6,3) 1
     1 FORMATIBH CLUSTER, 15, 25H HAS BOUNDARY LESS THAN 21
     2 FORMATIBH CLUSTER, 15,45H HAS FIRST BOUNDARY EXCEEDING SECOND BOUNDARY)
      *ARY)
     3 FORMAT(BH CLUSTER, 15, 26H HAS BOUNDARY GREATER THAN, 15)
5 - GRANISH CLUSIER, 13, 25H HA:
C.... CHECK NB ARRAY FOR OVERLAPS
DO 21 I=1,K
DO 21 J=1,I
II=NB(1,I)
I=100 II
        12=NB12,1)
        J1=NB(1,J)
        J2=NB (2, J)
    21 IF((I1-J1)*(I1-J2)*(I2-J1)*(I2-J2).LT.0) WRITE(6,4) I.J
     4 FORMAT(9H CLUSTERS, 15, 4H AND, 15, 8H OVERLAP)
C.... CONSTRUCT MT
        DO 30 I=1,KT
    30 MT(I)=0
        DO 22 I=M,KT
IF(I.EQ.M) GO TO 22
C.... FIND CLUSTER UNASSIGNED, WITH MINIMUM NUMBER OF ELEMENTS
        I M= I
        MI N=M
        DO 23 J=1,K
IF(NB(1,J).LT.0) GO TO 23
        MM=NB(2,J)-NB(1,J)+1
        IF(MM.GT.MIN) GO TO 23
        L=MI
        MI N=MM
    23 CONTINUE
        IF(MIN.EQ.M) GO TO 22
C.... FIND SMALLEST CLUSTER INCLUDED IN I. NOT YET ASSIGNED
        JL=NB(1, IM)
        JU=NB (2, IM)
        NB(1, IM) =- JL
        DO 24 J=JL.JU
        L=J
    25 IF(MT(L).EQ.0) GO TO 24
        L=MT(L)
        IF(MT(L).EQ.L) GO TO 24
    GO TO 25
24 MT(L)=I
22 CONTINUE
        MT(KT)=KT
        DO 40 I=1.K
    40 IF(NB(1, I).LT.O) NB(1, I)=-NB(1, I)
        RETURN
        END
```

```
SUBROUTINE CHVERT(LL.NC.NB.RL.M)
c . . . . .
C.... USE AFTER LETREE
C.... TRANSFORMS TREE ARRAY LL INTO CLUSTERS NB SUITABLE FOR TREE CONSTRUCTION
C.... TRANSFORMS TREE ARRAY LL INTO CLUSTERS NB SUITY
C.... LL = 3 BY NC INPUT ARRAY
C LL IS REAL NOT INTEGER
C LL(1,1) = NAME OF ITH CLUSTER
C LL(2,1) = NEXT CLUSTER WITH SAME ANCESTOR I
C... NC = NUMBER OF CLUSTERS
C NC = NUMBER OF CLUSTERS
C NC = NUMBER OF CLUSTERS
C NC = NUMBER OF CLUSTERS
C.... NG = NUMBER OF CLUSTERS
C.... NB = 3 BY NC OUTPUT ARRAY DEFINING CLUSTER BOUNDARIES, SUITABLE FOR TREEL
C NB(1,K) = INDEX OF FIRST OBJECT IN CLUSTER
C NB(2,Kl) = INDEX OF LAST OBJECT IN CLUSTER
C NB(3,Kl) = LEVEL OF CLUSTER K
C.... M = NUMBER OF OBJECTS, COMPUTED DURING PROGRAM
C.... RL = 1 BY NC ARRAY, RL(I] = NAME OF ITH OBJECT
                                                               **************************
         DIMENSION LL(3.NC).NB(3.NC).RL(NC)
         REAL LL
C.... RL(I) INITIALLY IS POSITION OF CLUSTER I IN REDROERING
         DO 10 K=1,NC
         RL(K)=0
     IF(LL(3,K).EQ.0) M=M+1
10 IF(LL(3,K).EQ.0) RL(K)=1
         DO 11 K=1,NC
KK=NC-K+1
         L2=LL(2,KK)
         IF(L2.NE.O) RL(KK)=RL(KK)+RL(L2)
         L3=LL(3,KK)
         IF(L3.NE.O) RL(KK)=RL(KK)+RL(L3)
     11 CONTINUE
         DO 12 K=1,NC
KK=LL(3,K)
         IFIKK.EQ.OJ GO TO 12
         IK=RL(K)-RL(KK)
     13 RL(KK)-RL(KK)+IK
         KK=LL(2,KK)
         IF(KK.NE.O) GD TO 13
    12 CONTINUE
C.... BOUNDARIES OF CLUSTERS
         DO 50 K=1,NC
KK=NC-K+1
         NB ( 2, KK ] = 1 0 + 6
         NB(3, KK)=0
         L3-LL(3,KK)
IF(L3.EQ.0) NB(2,KK)=RL(KK)
IF(L3.EQ.0) NB(3,KK)=RL(KK)
         1F(L3.EQ.0) GO TO 50
     51 NB(2,KK)=MINO(NB(2,KK),NB(2,L3)
         NB(3,KK)=MAXO(NB(3,KK),NB(3,L3))
         L3=LL(2.L3)
    IF(L3.NE.OJ GO TO 51
50 CONTINUE
C... LABELS BY POSITIONS
DO 60 K=1,NC
60 NB(1,K)=RL(K)
         DO 70 K=1.NC
70 RL(II=LL(1.K)
C... LEVELS OF CLUSTER
         DO 20 K-1,NC
     20 NB(1,K)=1
DO 21 K=1,NC
         KK=NC-K+1
          L2=LL (2, KK)
          L3=LL (3, KK)
          IF(L2.NE.O) NB(1,KK)=MAXO(NB(1,L2),NB(1,KK))
          IF(L3.NE.O] NB(1,KK)=MAXO(NB(1,L3)+1,NB(I,KK))
     21 CONTINUE
          DO 22 K=1,NC
          L3=LL (3,K)
          IF(L3_NE.O) NB(1,L3]=NB(1,K]-1
          LZ=LL(Z,K)
     22 IF(L2.NE.OJ NB(1,L2J=NB(1,K)
          DO BO K=1.NC
          I=NB(1,K)
          NB(1,K)=NB(2,K)
          NB(2,K)=NB(3,K)
     80 NB(3,K)=5+I
          RETURN
          END
```

```
SUBROUTINE BLOCK (A, M, N, NB, KC)
C . . . . .
                                                                    ...... 1973
C.... PRINTS OUT MATRIX A WITH BLOCKS SPECIFIED IN NB
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... A = M BY N BORDERED ARRAY. A .LT 9999
C.... KC = NUMBER OF CLUSTERS
C .... NB = 4 BY KC
              NB(1.K) = FIRST ROW IN BLOCK
              NB(2,K) = LAST ROW IN BLOCK
NB(3,K) = FIRST COLUMN IN BLOCK
              NB(4,K) = LAST COLUMN IN BLOCK
        DIMENSION A(M,N),NB(4,KC)
        DATA DD/4H--
        DIMENSION AA(26), AE(26), IA(26)
        DATA DASH, DITTO, COMMA, BLANK, STAR, DOT/1H-, 1H', 1H, , 1H , 1H+, 1H./
C... CHECK BOUNDARY ARRAY NB
DO 10 K=1.KC
        IF(NB(1,K).LT.2.OR.NB(1,K).GT.NB(2,K).OR.NB(2,K).GT.M) WRITE(6,1)<br/>
IF(NB(3,K).LT.2.OR.NB(3,K).GT.NB(4,K).GR.NB(4,K).GT.N) WRITE(6,1)K
    10 CONTINUE
     1 FORMAT(25H BAO BOUNDARY IN CLUSTER , 13)
        JPP=(N-2)/25+1
        DO 70 JP=1,JPP
JLP=25*(JP-1)+2
        JUP=25#JP+1
        IF(JUP.GT.N) JUP=N
        JR=JUP~JLP+1
G... WRITE TITLES
WRITE(6,2) A(1,1)
     2 FORMAT(15H1BLOCKED ARRAY A4)
C.... WRITE OUT ARRAY ONE LINE AT A TIME
        WRITE(6,3)(A(1,J),J=JLP,JUP)
     3 FORMAT(6X, 25(1X, A4))
        00 20 I=1,M
D0 27 L=1,26
        AE (L) = BLANK
    27 AA(L)=BLANK
        IF(I.EQ.1) GO TO 28
C.... FILL IN DATA VALUES

00 21 J=JLP,JUP

21 IA(J-JLP+1)=A(I,J)
C.... FILL IN VERTICAL BOUNDARIES
       00 23 K=1,KC
IF(NB(2,K).LT.I.OR.NB(1,K).GT.I) GD TO 23
        JL=NB(3,K)
        JU=NB (4,K)+1
        IF(JL.GE.JLP.AND.JL.LE.JUP) AA(JL-JLP+1)=DITTO
IF(JU.GE.JLP.AND.JU.LE.JUP) AA(JU-JLP+1)=DITTO
IF(JU.EQ.JLP+JR) AA(JR+1)=DITTO
    23 CONTINUE
        WRITE(6,6) A(1,1), (AA(J), IA(J), J=1, JR), AA(JR+1)
     6 FORMAT(1x, A4, 1x, 25(A1, I4), A1
       FILL IN HORIZONTAL BOUNCARIES
    28 CONTINUE
        DO 24 K=1,KC
        IF(NB(1,K).NE.I+1.ANO.NB(2,K).NE.I) GO TO 24
        JL=NB (3, K)
        JU=NB (4,K)+1
        J1=JL-JLP+1
       J2=JU-JLP+1

IF(J1.LE.O) J1=1

IF(J2.GT.26) J2=26

IF(J1.GT.26) GO TO 24
        IF(J2.LE.0) GC TO 24
        DO 25 J=J1,J2
        IF(J.EQ.JZ) GO TD 25
        AE(J)=DD
    25 IF(AA(J).EQ.BLANK) AA(J)=DASH
        IF(NB(1,K).NE.I+1) GO TO 24
       AA(J1)=COMMA
        AA (J2)=COMMA
    24 CONTINUE
     WRITE(6,7)(AA(J),AE(J),J=1,JR),AA(JR+1)
7 FORMAT(6X,25(A1,A4),A1)
    20 CONTINUE
    70 CONTINUE
        RETHEN
        END
```

Quick Tree Calculation

9.1 INTRODUCTION

The data of Table 9.1 consist of the dentition of 67 mammals. Mammals' teeth are divided into four groups with specialized functions, incisors, canines, premolars, and molars. The number of various types on upper and lower jaw provides a simple numerical basis for classifying mammals. Because teeth are likely to appear in fossil remnants, they are also very important in tracing evolutionary changes. (The pattern of cusps on each tooth is used in these evolutionary studies.)

There are a number of tree construction algorithms that are quick in computation and cheap in storage. The first of these is a generalization of the leader algorithm for partitions.

9.2 LEADER ALGORITHM FOR TREES

Preliminaries. A distance D(I,J) is given between any pair of objects $(1 \le I,J \le M)$. A decreasing sequence of thresholds $T(1), T(2), \ldots, T(KT)$ is assumed given. There will be KT levels to the tree (with the root at level 0) and a cluster at level J will be within the threshold T(J) of the cluster leader.

The Ith cluster is characterized by

- L(1, I), the leading object
- L(2, I), the next cluster with the same ancestor as I, and
- L(3, I), the first cluster included in I.

Set L(2, I), L(3, I) equal to zero if no cluster satisfies their definition.

The tree is constructed in a single pass through the set of all objects. The clusters are computed along the way. For each new cluster L(2, I) is initially zero, and this value is possibly updated once later. The complete clustering for all objects is contained in the array L, and in the array LC, where LC(I) is the leader of object I at level KT. Each object is treated by looking for the first cluster at level 1, within the threshold of whose leader it is. If there is no such cluster, the object defines a new cluster at level 1; otherwise the object is compared with the leaders of clusters at level 2 contained in the cluster at level 1 and is treated analogously at every level.

- STEP 1. Begin with object number I = 0 and total number of clusters NC = 0.
- STEP 2. Increase I to I+1. Set the level number J=1. Set the cluster number K=1. If I=1, go to Step 6. If I=M+1, go to Step 8.

Table 9.1 Dentition of Mammals

Mammal's teeth are divided into four groups, incisors, canines, premolars, and molars. In the list below, the dentition of each mammal is described by the number of top incisors, bottom incisors, top canines, bottom canines, top premolars, bottom premolars, top molars, and bottom molars. From Palmer, E. L. [1957] Fieldbook of Mammals, Dutton, New York.

opossum	54113344	pocket gopher	11001133	skunk	33113312
hairy tail mole	33114433	kangaroo rat	11001133	river otter	33114312
common mole	32103333	pack rat	11000033	sea otter	32113312
star nose mole	33114433	field mouse	11000033	jaguar	33113211
brown bat	23113333	muskrat	11000033	ocelot	33113211
silver hair bat	23112333	black rat	11000033	cougar	33113211
pigmy bat	23112233	house mouse	11000033	lynx	33113211
house bat	23111233	porcupine	11001133	fur seal	32114411
red bat	13112233	guinea pig	11001133	sea lion	32114411
hoary bat	13112233	coyote	13114433	walrus	10113300
lump nose bat	23112333	wolf	33114423	grey seal	32113322
armadillo	00000088	fox	33114423	elephant seal	21114411
pika.	21002233	bear	33114423	peccary	23113333
snowshoe rabbit	21003233	civet cat	33114422	elk	04103333
beaver	11002133	raccoon	33114432	deer	04003333
marmot	11002133	marten	33114412	moose	04003333
groundhog	11002133	fisher	33114412	reindeer	04103333
prairie dog	11002133	weasel	33113312	antelope	04003333
ground squirrel	11002133	mink	33113312	bison	04003333
chipmunk	11002133	ferrer	33113312	mountain goat	04003333
gray squirrel	11001133	wolverine	33114412	muskox	04003333
fox squirrel	11001133	badger	3311 331 2	mountain sheep	04003333

- STEP 3. Compute the distance between I and L(1, K). If this distance does not exceed T(J), go to Step 4. If this distance does exceed T(J), go to Step 5.
- STEP 4. Set KK = L(3, K), J = J + 1. If KK = 0, set LC(I) = K and return to Step 2. If $KK \neq 0$, set K = KK and return to Step 3.
- STEP 5. Set KK = L(2, K). If $KK \neq 0$, set K = KK and return to Step 3. Set L(2, K) = NC + 1.
- STEP 6. Set NC = NC + 1. Set L(1, NC) = I, L(2, NC) = 0, and L(3, NC) = NC + 1.
- STEP 7. Set J = J + 1. If $J \le KT + 1$, go to Step 6. Otherwise, set L(3, NC) = 0, LC(I) = I, and return to Step 2.
- STEP 8. The tree has been computed, but it is necessary to find an ordering of the objects which occur as leaders so that clusters will be contiguous in the ordering. An ordering vector O(1), O(2), ..., O(NC) is defined, where O(I) is the position of the Ith leader in the ordering.

- STEP 9. Set O(I) = 1 for each cluster I with L(3, I) = 0; set O(I) = 0, otherwise.
- STEP 10. For each cluster K (NC $\geq K \geq 1$) in inverse order, set O(K) = O(K) + O[L(2, K)] + O[L(3, K)], where O(0) = 0.
- STEP 11. For each cluster K ($1 \le K \le NC$) in usual order, for each K with $L(3, K) \ne 0$, set KK = O(K) O[L(3, K)]. Set J = L(3, K), and increase O(J) by KK. Set J = L(2, J) and increase O(J) by KK, continuing until J = 0.
 - STEP 12. For each $K(1 \le K \le NC)$, place the leader of cluster K in position O(K).

9.3 TREE-LEADER ALGORITHM APPLIED TO MAMMALS' TEETH

The measure of distance between two mammals is the sum of absolute deviations between the counts for various teeth types. The seven thresholds are set at 32, 16, 8, 4, 2, 1, 0.

- STEP 1. Initialize object number I = 0 and cluster number NC = 0.
- STEP 2. Increase I to 1, and set level number J = 1 and cluster number K = 1. Since I = 1, go to step 6.
- STEP 6. Set NC = 1, L(1, 1) = object 1, opossum. Set L(2, 1) = 0, L(3, 1) = 2. Increase J to 2 and set L(1, 2) = opossum, L(2, 2) = 0, L(3, 2) = 3. Continue until J = 7, L(1, 7) = opossum, L(2, 7) = 0, and L(3, 7) = 0. Return to Step 2 and set LC(I) = 1.
 - STEP 2. Increase I to 2, set level number J = 1, and set cluster number K = 1.
- STEP 3. The distance between object 2, hairy tail mole, and opossum is 7, which does not exceed T(1) = 32. Go to Step 4.
 - STEP 4. Set KK = L(3, 1) = 2, J = 2. Since $KK \neq 0$ and K = 2, return to Step 3.
- STEP 3. The distance between object 2, hairy tail mole, and object L(1, 2) = 1, opossum, is 7, which does not exceed T(2) = 16. Go to Step 4. Continuing, the distance will first exceed threshold at level J = 4; go to Step 5.
 - STEP 5. Set KK = L(2, 4) = 0. Set L(2, 4) = NC + 1 = 8. Go to Step 6.
- STEP 6. Set NC = 8, L(1, 8) = object 2, hairy tail mole, L(2, 8) = 0, L(3, 8) = 9. This assignment will continue analogously for NC = 9, 10, 11. Then set L(3, 11) = 0, LC(2) = 2, and return to Step 2.

The complete array L is given in Table 9.2, and the corresponding tree is given in Table 9.3.

A defect of the algorithm is apparent in the classification of hairy tail mole, which is in the opossum group but should be classified with house bat. At the time hairy tail mole was classified, house bat had not been classified, and so this choice did not exist. This shows that the tree-leader algorithm, like the partition leader algorithm, is decidedly sensitive to the order of presentation of objects. Some dependence seems inevitable if the objects are to be classified in a single pass.

Table 9.2 Tree-Leader Algorithm Applied to Mammals' Teeth

The cluster, the name of the cluster leader, the next cluster with the same ancestor, and the first descendant cluster are given.

CLUSTER	name	NEXT	FIRST	CLUSTER	NAME	NEXT	FIRST
1	OPOSSUM	0	2	47	COYOTE	59	48
2	OPOSSUM	28	3	48	COYOTE	51	49
3	OPOSSUM	21	4	49	COYOTE	0	50
4	OPOSSUM	8	5	50	COYOTE	0	0
5	OPOSSUM	0	6	51	WOLF	54	52
6	OPOSSUM	0	7	52	WOLF	0	53
7	OPOSSUM	0	0	53	WOLF	0	0
8	HAIRY TAIL MOLE	0	9	54	CIVET CAT	0	55
2	HAIRY TAIL MOLE	12	10	55	CIVET CAT	0	56
10	HAIRY TAIL MOIE	0	11	56	CIVET CAT	57	0
11	HAIRY TAIL MOLE	0	0	57	RACCOON	58	0
12	COMMON MOLE	15	13	58	MARTEN	0	0
13	COMMON MOLE	0	14	59	Weasel	84	60
14	COMMON MOLE	0	0	60	WEASE L	69	61
15	BROWN BAT	0	16	61	wease L	63	62
16	BROWN BAT	19	17	62	Weasel	65	0
17	BROWN BAT	18	0	63	WOLVERINE	67	64
18	SILVER HAIR BAT	0	0	64	Wolverine	0	0
19	PIGMY BAT	0	20	65	RIVER OTTER	66	0
20	PIGMY BAT	_0	0	66	SEA OTTER	0	0
21	HOUSE BAT	72	22	67	JAGUAR	77	68
22	HOUSE BAT	34	23	68	JAGUAR	0	_0
23	HOUSE BAT	81	24	69	FUR SEAL	0	70
24	HOUSE BAT	26	25	70	FUR SEAL	79	71
25	HOUSE BAT	0	0	71	FUR SEAL	0	_0
26	RED BAT	0	27	72	WAIRUS	0	73
27	RED BAT	0	28	73	WAIRUS	0	74
28	ARMADILLO	0	29	74	WALRUS	0	75
29	ARMADILLO	42	30	75	WALRUS	0	76
30 31	ARMADILLO	0	31 32	76	WALRUS	0	-0
31 32	ARMADILLO ARMADILLO	0	32 33	77 78	GREY SEAL GREY SEAL	0	78
32 33	ARMADILLO	0	0	79	ELEPHANT SEAL	0	0 80
34	PIKA	47	35	80	ELEPHANT SEAL	0	0
35	PIKA	41	36	81	PECCARY	0	82
36	PIKA	39	37	82	PECCARY	0	83
37	PIKA	38	0	83	PECCARY	0	0
38	SNOWSHOE RABBIT	0	39	84	ELK	0	85
39	BEAVER	Ö	40	85	EIK	0	86
40	BEAVER	41	0	86	ELK	Ö	87
41	GRAY SQUIRREL	0	0	87	EIK	0	0
42	PACK RAT	ō	43	88	ANTELOPE	ŏ	Ö
43	PACK RAT	Ö	44			•	•
44	PACK RAT	ō	45				
45	PACK RAT	ō	46				
46	PACK RAT	ō	0				
		-	-				

9.4 THINGS TO DO

9.4.1 Running the Tree-Leader Algorithm

It will usually be sufficient to use three or four well-chosen thresholds, but in order to choose these a first run should be made with a large number of thresholds from which the final thresholds will be selected. It is plausible to have thresholds decrease geometrically for metric distances—for example, 32, 16, 8, 4, 2, 1. The final tree will

Table 9.3 Tree for Mammals, Based on Dentition

Omitting mam mals which have identical dentition to one in tree.

DENTITIO	N		·····			
54113344	OPOSSUM	OPOSSUM	OPOSSUM	OPOSSUM	OPOSSUM	OPOSSUM
33114433	HAIRY TAIL MOIS	HAIRY TAIL MOLE	HAIRY TAIL MOLE	HAIRY TAIL MOLE		
32103333	COMMON MOTE	COMMON MOTE	COMMON MODE			
23113333	BROWN BAT	BROWN BAT	BROWN BAT			
23112333	SILVER HAIR BAT					
23112233	PIGMY BAT	PIGMY BAT				
23111233	HOUSE BAT	HOUSE BAT	HOUSE BAT	HOUSEBAT	HOUSE BAT	
13112233	RED BAT	RED BAT				
23113333	PECCARY	PECCARY	PECCARY			
21002233	PIKA	PIKA	PIKA	PIKA		
21003233	SNOWSHOE BABBIT					
11002133	BEAVER	BEAVER				
11001133	GREY SQUIRREL					
13114433	COYOTE	COYOTE	COYOTE	COYOTE		
33114423	WOLF	WOLF	WOLF			
33114422	CIVET CAT	CIVET CAT	CIVET CAT			
33114432	RACCOON		ł			
33114412	MARTEN					
33113312	WEASEL	Weasel	WEASEL	Weasel		
33114312	RIVER OTTER					
33113312	SEA OTTER					j
33114412	WOLVERINE	WOLVERINE	}			
33 11,3211	JAGUAR	JAGUAR				
32113322	CREY SEAL	GREY SEAL				
32114411	FUR SEAL	FUR SEAL	FUR SEAL			
21114411	EIEPHANT SEAL					
04103333	ELK	ELK	EIK	BIK		
04003333	ANTELOPE					
10113500	WAIRUS	WAIRUS	WAIRUS	WAIRUS	WALRUS	
8800000	ARMADILLO	ARMADILLO	ARMADILLO	ARMADILLO	ARMADILLO	ARMADILLO
11000033	PACK RAT	PACK RAT	PACK RAT	PACK RAT	PACK RAT	

generate a corresponding "contiguous" ordering of the data, and it is suggested that the algorithm be executed on the objects in this new ordering. This operation should be repeated until there are no further changes in the ordering, in order to reduce the effect of the initial order of presentation. The frequency of car repairs (Table 9.4) is suggested as a trial data set.

9.4.2 Sorting

Suppose that variables are given, each of which takes a small number of different values over the various cases. The first variable partitions the complete set of cases into a number of clusters, the second variable partitions each of these clusters into a number of smaller clusters, and so on, constructing a tree of clusters. Of course, the difficulty here is selecting the variables to be used at various levels of the tree.

Table 9.4 Frequency of Car Repairs

ER = brake system, FU = fuel system, EL = electrical, EX = exhaust, ST = steering, EM = engine, mechanical, RS = rattles and squeaks, RA = rear axle, RU = rust, SA = shock absorbers, TC = transmission, clutch, WA = wheel alignment, OT = other.

	er fuel ex	st em RS RA	RU SA TC WA	OT
AMC Ambassador 8	+	+		-
Buick Special 6		+ -	+	+
Buick Special 8		+ -	- + - +	+
Buick 8 Full	+	- + + -	+ + - +	-
Buick Riviera	+ +	- -	- +	-
Cadillac				
Chevy II	- +	+ - + +	+ +	-
Chevelle 6		- + + -	+	-
Chevelle 8	- + - +	+ - + -	+ + = +	-
Chevrolet Full	- + + +	+ - + +	+ + + +	-
Corveir 6	- +	+ + - +	- + + +	+
Corvette	+	+ +	+ -	-
Chrysler Newport	+			-
New Yorker	+	+		+
Dodge Full Size	+	+ -	- +	-
Falcon 6		+ -	+ +	-
Fairlane 6		+ -		-
Fairlane 8	+	+ +	+	-
Ford, Full Size	+	+	- + - +	+
Thunderbird	+ -	+ +	+	+
Mercury Full			+	-
Olds Full	+ +	+ -	- + - +	-
Plymouth Full	+			-
Pontiac Tempest	- +	+ -	+ + - +	-
Pontiac Full	+ + + -	+ -	+ + - +	-
Rambler Rebel 6	+ -	+	+ -	+
Mercedes			- +	-
MG 1100	+ +			-
Peugeot			+ -	_
Porsche				_
Renault			+ -	-
Volvo	+	+		-
VW bug	+ - + +	+ +	+ -	-
W Bus	+ -	- +	+ - + -	-

[From Consumer Reports Buying Guide (1969).] A + means greater than average frequency of repair in 1962–1967.

If the data consist of many category variables (for example, the dentition data where each variable takes values $0, 1, \ldots, 8$), then one solution to the problem is to select the splitting variable at each level from these. The first variable is that one which best predicts the remaining variables. Let $V(1), V(2), \ldots, V(N)$ denote the variables, and let P[V(I) = K, V(J) = L] denote the proportion of times V(I) = K and V(J) = L. A measure of predictive power of variable V(I) for variable V(J) is the information

$$\sum \{K, L\} P[V(I) = K, V(J) = L] \log P[V(I) = K, V(J) = L]$$

$$- \sum \{K\} P[V(I) = K] \log P[V(I) = K]$$

$$- \sum \{L\} P[V(J) = L] \log P[V(J) = L].$$

The overall measure of predictive power of V(I) is the sum of this quantity over $J \neq I$, and I is chosen to minimize this sum. At the second level, a variable is chosen that best predicts the remaining variables, given the value of the first variable. And so on.

With this careful selection of variables, more than one pass through the data is required. Actually, one pass will be required for each level of the tree. A version of the above technique for continuous variables selects the first variable to be that variable most correlated with all others, selects the second variable to be most correlated with others given the first, and so on. It is also plausible for continuous variables to select that linear combination of the variables most correlated with all variables to be the first splitting variable. This means that the first splitting variable is the first eigenvector, the second splitting variable is the second eigenvector, and so on. Both the continuous techniques require one pass through the data for variable selection and one pass for classification.

9.4.3 Differential Sorting

There is no particular reason, except perhaps descriptive convenience, to use the same variable for splitting all the clusters at the second level. Thus, for category data, the first variable is selected to best predict all others. This step is then repeated on each of the clusters obtained, giving in general a different splitting variable for each cluster.

In the continuous case, the first eigenvector is used for the first sp.it, and the residual variables, after prediction by the first eigenvector, are retained. Within each cluster, a new first eigenvector is obtained that best predicts these residual variables within the cluster. This procedure is repeated at every level.

9.4.4 Filtering Algorithm

A version of the K-means algorithm appropriate for trees begins with a set of cluster centers, one for each cluster. Suppose that the initial tree of clusters is binary. Each object is successively added to the tree by *filtering*; it is first assigned to the cluster of all objects. This cluster splits into two clusters, and the object is assigned to whichever of these cluster centers it is closest to. This cluster splits in two, and the object is then assigned to whichever of these two cluster centers it is closest to. And so on.

After a complete assignment of all objects, each cluster center is updated to be the mean of all objects in the cluster. The objects are then reassigned. It will be seen that a K-means-type algorithm operates at each division of a cluster into two clusters.

A typical initialization of cluster centers might go as follows. The first cluster center is the mean of all objects. The second cluster center is the mean of all objects that

exceed the first cluster center on at least half of the variables, and the third cluster center is the mean of all objects which exceed the first cluster center on at most half of the variables. Each of these two clusters generates two new cluster centers in a similar way, and the process continues until all cluster centers are initialized.

PROGRAMS

LETREE constructs clusters using the tree-leader algorithm.

```
SUBROUTINE LETREE(X,N,LL,KC,TH,NT,Y,CN,NC)
C.... CONSTRUCTS LEAGER TREE WITH DISTANCE BETWEEN PAIRS OF OBJECTS SPECIFIED 1\
C FUNCTION DIST. THE VARIOUS LEVELS IN THE TREE ARE DETERMINED BY
C THE THRESHOLDS IN ARRAY TH. THRESHOLDS MUST DECREASE.
C... N = NUMBER OF ELEMENTS IN DATA VECTOR
C... X = N-VECTOR, FIRST ELEMENT IS CASE NAME
C THE PROGRAM ACCOMMODATES VECTORS IN SEQUENCE, UPDATING THE NODE
ARRAY WHICH DEFINES THE TREE. AND STATING UNITED NAME
                  ARRAY WHICH DEFINES THE TREE, AND STATING WHICH NODE EACH VECTOR IS
                  ASSIGNED TO.
C.... LL = 3 BY KC NODE ARRAY, COMPUTED BY PROGRAM
                  LL IS REAL NOT INTEGER
                  LL(1,K) = NAME OF NODE
                  LL(2,K)=NEXT NODE WITH SAME ANCESTOR AS K
LLIZ, N,=NEAT NODE WITH SAME ANCESTOR AS K

LLIZ, K)= FIRST NODE WITH ANCESTOR K

C.... KC = NUMBER OF NDDES

C.... TH = THRESHOLD ARRAY

C.... Y = N BY KC LIST OF DATA VALUES OF NODES

C.... NC = ACTUAL NUMBER OF CLUSTERS AFTER PASSING THROUGH PROGRAM
C.... CN = NAME OF CLUSTER WHICH OBJECT IS ASSIGNED.
         DIMENSION X(N), LL(3,KC), Y(N,KC)
         DIMENSION THINT)
         REAL LL
C.... LABELS
         DATA YN, XL/4HLEAD, 4HNODE/
         Y(1,11=YN
         LL(1,1)=XL
         DATA IC/O/
IF(IC.EQ.O) NC=D
          IC=IC+1
         KK=1
         LEV=1
IF(NC.EQ.O) GO TO 25
C... ASSIGN OBJECT TO TREE
20 CONTINUE
     22 K=KK
         NN=N-1
         D=D1ST(X(2),Y(2,K),NN,1,2.)
         1F(D.GT.TH(LEV)) GO TO. 21
         LEV=LEV+1
         KK=LL(3,K)
         IF(KK.EQ.0) CN=Y(1,K)
         IF(KK.EQ.D) RETURN
         60 TO 22
    21 KK=LL(2,K)
C.... MAKE A NEW LEADER
         IF(KK.NE.O) GO TO 22
     25 CONTINUE
         IF(NC.GT.O) LL(2,K)=NC+1
         DO 27 KK=LEV,NT
         NC=NC+1
         IF(NC.GT.KC) WRITE(6.1) KC
       1 FORMAT(15,17H NOT ENOUGH NODES)
         LL(1,NC)=X(1)
         LL(2,NC)=0
         LL(3,NC)=NC+1
         DO 23 J=1,N
23 Y(J,NC)=X(J)
          27 CONTINUE
              LL(3,NC)=0
              CN=Y(1.NC)
              RETURN.
              END
```

Triads

10.1 INTRODUCTION

In clustering the hardware in Figure 10.1, you could seize the nettle and declare the tree to be

((NF)T)((PS)B).

This tree consists of certain similarity judgments (obviously subjective) about the hardware. Following the data matrix approach, you might list properties of the various objects, define a measure of distance between the vectors of properties, making weighting decisions for each of the properties, and then use a tree construction algorithm to obtain a tree. This procedure is no less subjective than the original one, with the subjective choice of properties to measure and the subjective weighting of properties in the distance function. The properties selected will be based on informal similarity judgements and informal clusterings. For example, the ratio of diameter to length might be used because it is noticed that this measure discriminates well between nails and screws, or whether or not the head is indented might be used because it discriminates well also.

The data matrix approach differs from the direct similarity judgement approach in being more explicit about the factors subjectively selected as important in the clustering. An intermediate form of data, between the data matrix and the tree, are the triads in Table 10.1. For each triple of objects, a judgement is made about which pair are most similar. The algorithm in this section constructs a tree from such triadic data. Direct triadic judgements are not common, partly because M(M-1)(M-2)/6 judgements are necessary for M objects. However, triads can be constructed from other forms of data, such as distances or data matrices.

10.2 TRIADS ALGORITHM

Preliminaries. It is necessary to measure the error between a given set of triads and a tree. The given set of triads will be a series of judgements (IJ)K; I and J are more similar to each other than either is to K.

A tree may be interpreted as the set of triads: (IJ)K whenever the smallest cluster including I and J is properly included in the smallest cluster containing I and K. This set of triads will include every triple just once only if there are M-1 distinct clusters on M objects—that is, if the tree of clusters is binary.

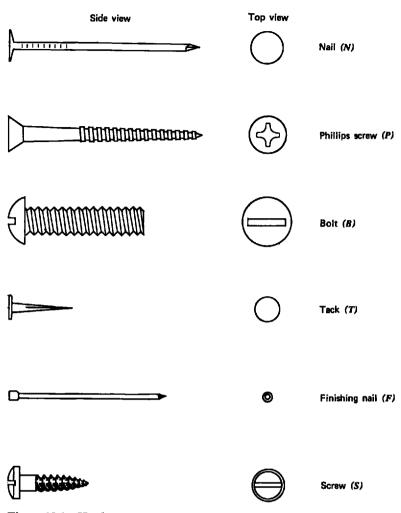


Figure 10.1 Hardware.

Table 10.1 Triads Based on Hardware

(AB)C denotes that A, B are most similar in the triple A, B, C.

NAIL (N)
PHILLIPS SCREW (P)
BOLT (B)
TACK (T)
FINISHING NAIL (F)
SCREW (S)

(PB)N (NT)P (NF)P (PS)N (NT)B (NF)B (BS)N (NF)T (NT)S (NF)S (PB)T (PB)F (PS)B (TF)P (PS)T (PS)F (TF)B (BS)T (BS)F (TF)S

INITIAL TRE	ee (PN)		
ADD B	(PN)B	(PB)N	
ERROR	1	-1	
ADD T	(((PB)N)T)	((PB)(NT))	
ERROR	0,	_4	
ADD F	(((PB)(NT))F)	((PB)((NT)F))	((PB)((NF)T))
ERROR	0	-8	-10
ADD S	(((PB)((NF)T))S)	(((PB)S)((NF)T))	(((PS)B)((NF)T))
ERROR	-6	-18	-20

Table 10.2 Trees Obtained During Triads Algorithm (Application to Hardware)

The tree triads will—some of them—agree with the given triads, and others will disagree. The ones that agree will be called true triads and the ones that disagree false triads. Let T be the number of true triads and F the number of false triads. If T is maximized, a tree with M-1 clusters will be produced. If F is minimized, a tree with just a few clusters will be produced. An error function intermediate between these is F-T, and this will be minimized (locally) in the algorithm.

- STEP 1. Begin with an initial tree containing three clusters on the first two objects, the clusters $\{1\}$, $\{2\}$, $\{1, 2\}$. Let I, the object to be assigned, be set initially at I = 2.
 - STEP 2. Increase I by 1. If I > M, stop.
- Let C_1 be the cluster of all objects so far in the tree, 1, 2, ..., I-1. Add the clusters $\{C_1, I\}$ and $\{I\}$ to the tree.
- STEP 3. Compute the number of false minus true triads for each of the following changes to the tree:
 - (i) no change;
 - (ii) delete C_1 ;
- (iii) replace C_1 by $\{C^*, I\}$, where C^* is a maximal cluster properly included in C_1 . Such a cluster will be called a maximal subcluster of C_1 .
 - If (i) or (ii) have the least error (the least value of F T), return to Step 2.
- STEP 4. Let C^* be the maximal subcluster of C_1 for which the error with C_1 changed to $\{C^*, I\}$ is a minimum. If C^* consists of a single object, return to Step 2. Otherwise, set $C_1 = C^*$, add $\{C_1, I\}$ to the tree, and return to Step 3.

10.3 TRIADS ALGORITHM APPLIED TO HARDWARE

The given triads are in Table 10.1.

- STEP 1. The tree consists of the clusters (N, P), (N), (P).
- STEP 2. First add the object B to the tree. Initially $C_1 = (N, P)$, and $\{N, P, B\}$ and $\{B\}$ are added to the tree.
- STEP 3. (i) The tree with no change is (B), (P), (N), (N, P), (N, P, B). This implies the triad (NP)B, which is false. The error is 1.

- (ii) Deleting C_1 produces a tree (B), (P), (N), (N, P, B), which generates no triads and has error 0.
- (iii) There are two subclusters of $C_1 = (N, P)$ —namely, (N) and (P). If C_1 is changed to (N, B), the triad implied is (NB)P, which is false. If C_1 is changed to (P, B), the triad implied is (PB)N, which is true, and so this tree has error -1.
 - STEP 4. Change C_1 to (P, B), move on to the next object, and return to Step 2. For object T, Step 2 begins with $C_1 = (P, B, N)$.
- STEP 3. (i) The tree with no change is (((PB)N)T) which implies the triads (PB)N, (PN)T, (BN)T, and (PB)T, two false and two true, so the error is 0.
- (ii) The tree with C_1 deleted is ((PB)NT) which implies (PB)N, (PB)T for an error of -2.
- (iii) If C_1 is replaced by (PBT), the tree is (((PB)T)N), which has error 0. If C_1 is replaced by (NT), the tree is ((PB)(NT)), which has error -4.
- STEP 4. Since $C^* = N$ is such that replacing C_1 by (C^*, T) gives minimum error, this replacement is carried out, and the next object is brought in and added to the tree, beginning again at Step 2.

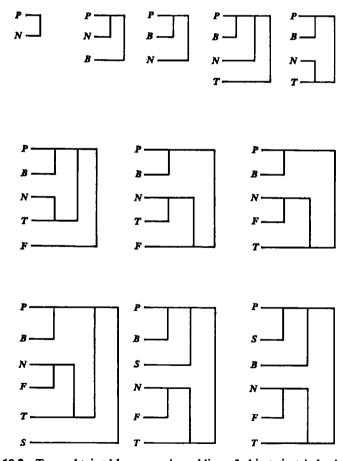


Figure 10.2 Trees obtained by successive adding of objects in triads algorithm.

The complete sequence of trees obtained during the addition process is given in Table 10.2 and also in Figure 10.2. By chance the tree ((PS)B((FN)T)) fits exactly.

10.4 PROPERTIES OF TRIADS ALGORITHM

The triads algorithm is a local optimization algorithm in defining a measure for error for each tree and in then searching, not exhaustively, through the set of all trees for a satisfactory tree, guided by the error measure. Other measures of error, other search procedures, will be discussed later.

The triads algorithm is very expensive computationally since there are M(M-1)(M-2)/6 triads, and each triad is examined at least once. The final tree depends on the initial ordering of the data, which is another unsatisfactory feature. If there exists a tree that will generate the observed triads, then this tree will be constructed by the algorithm, so that at least the algorithm works well for "perfect data."

Triads are rather rare as real data. They can be derived from distances in an obvious way. (IJ)K is $D(I, J) \leq D(I, K)$, D(J, K). They can also be derived directly from data matrices, with one triad possible for I, J, K for each variable in the data. The total number of observed triads will then be M(M-1)(M-2)/6 by N, where N is the number of variables.

The principal difficulty of the triads algorithm is the very large number of triads that must be checked. What is needed is a leader-type algorithm that would allow a single object to represent all the objects in a cluster and so make it unnecessary to look at all objects in the cluster when a new object is assigned to the tree.

10.5 TRIADS-LEADER ALGORITHM

Preliminaries. A binary tree is constructed, with 2M-1 clusters on M objects. Each of the objects $2, 3, \ldots, M$ is a leader object for just one of the M-1 clusters containing more than one object. It is convenient to specify the tree by listing for each leader object I the leader objects J, K of the maximal clusters properly included in the cluster for which I is the leader. Write $P(I) = \{J, K\}$; the objects J, K are the progeny of I. If a maximal subcluster of I consists of a single cluster—say, J—the progeny of I will be written $\{-J, K\}$, where K is the leader of the other maximal subcluster of I. This notation distinguishes the object J when it appears as a singleton cluster from the object J when it appears as the leader of a multiple cluster. The algorithm assigns each object in turn to the tree, beginning at the largest cluster and moving towards the smaller clusters, branching according to the leading object the object is closest to.

STEP 1. Begin with a tree consisting of the first and second objects, with P(2) = (-1, -2).

```
STEP 2. If (12)3, define P(3) = (2, -3).

If (13)2, define P(3) = (-1, -3), P(2) = (-2, 3).

If (23)1, define P(3) = (-2, -3), P(2) = (-1, 3).

Let I, the number of objects in the tree, be set to I = 3.
```

STEP 3. Increase I to I+1. If I>M, stop. Find that object J (1 < J < I) such that $J \in P(K)$ for no K ($1 \le K < I$). (This object is the leading object of the largest cluster.)

STEP 4. Suppose P(J) = (K, L). If (KL)I and there exists an object JJ such that P(JJ) = (J, KK) for some KK, redefine P(JJ) = (-I, KK). If (KL)I, set P(I) = (J, -I) and return to Step 3.

STEP 5. If (KI)L set J = K, and if (LI)K set J = L. If J < 0, set P(I) = (-I, J) and return to Step 3. Otherwise, return to Step 4.

NOTE. This algorithm requires only $O(M \log M)$ triads, so if they are being computed from data or distances do not compute them in advance.

10.6 APPLICATION OF TRIADS-LEADER ALGORITHM TO EXPECTATION OF LIFE

In Table 10.3, find the expectations of life for a number of cities, males and females, at ages 0, 25, 50, 75. Triads for three cities might plausibly be computed from the euclidean distances between them with (IJ)K if D(I,J) < D(I,K), D(K,J). It is quicker to compute triads directly from the data. The triad (IJ)K holds if K is most frequently the furthest from I and J, counting over the eight variables. Consider the cities 1, 2, 3, or Montreal, Toronto, and Vancouver. For the first variable, the expectation of males at age 0, the values are respectively 67, 68, 68, so Montreal is furthest for this variable. For the second variable, the values are 44, 45, 46, so Montreal and Vancouver are both "furthest." This appears in the Montreal count as 0.5.

Table 10.3 Expectations of Life in Various Cities (by Age and Sex)

					MAI	Æ			FE	MALE	
	CITY & YEAR	?	AGE	0	25	50	75	0	25	50	75
1.	MONTREAL	66		67	44	22	7	73	51	28	9
2.	TORONTO	66		68	45	23	8	75	53	29	10
3.	VANCOUVER	66		68	46	23	8	75	53	30	11
4.	KAOHSTUNG	66		66	43	. 22	8	71	49	26	9
5.	TAIPEI	66		69	46	24	8	72	50	27	9
6.	DJAKARTA	61		##	36	18	6	46	37	19	6
7.	COPENHAGEN	66		68	46	23	8	75	56	28	9
8.	HELSINKI	66		66	42	21	7	73	50	27	8
9.	EAST BERLIN	61		66	45	22	7	71	49	27	8
A.	WEST BERLIN	61		66	45	22	7	72	50	27	9
в.	WEST BERLIN	67		67	45	22	7	73	50	27	9
C.	DUSSELDORF	66		67	45	22	8	74	51	28	9
D.	HAMBURG	66		68	46	23	7	74	51	27	9
E.	STOCKHOLM	60		69	46	23	7	75	52	28	9
F.	LONDON	67		69	47	23	8	77	54	30	12
G.	Sydney	66		67	ĦĦ	22	7	73	50	27	9

From N. Keyfitz and W. Flieger (1971). Population, Freeman, San Francisco.

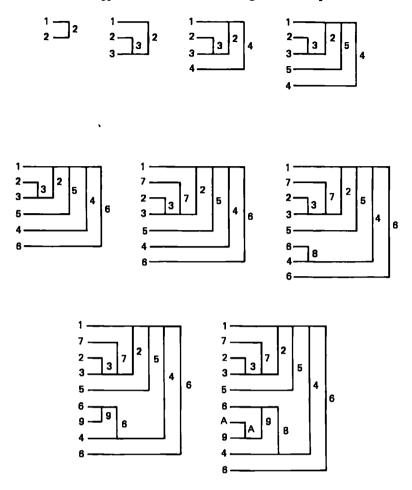


Figure 10.3 Trees obtained during application of triads-leader algorithm.

Overall, Montreal is furthest in (1 + 0.5 + 1 + 1 + 1 + 1 + 0.5 + 0.5) = 6.5 cases, so the triad (23)1 holds. (See Figure 10.3 for the sequence of trees obtained.)

STEP 1. Define $P(2) = \{-1, -2\}$.

STEP 2. Since Montreal is most dissimilar among Montreal, Toronto, and Vancouver, (23)1 is the triad. Thus $P(3) = \{-2, -3\}$ and P(2) is changed to $\{-1, 3\}$.

STEP 3. To add object 4, first find the object J such that $J \in P(K)$ for no K. This object is J = 2.

STEP 4. $P(J) = \{1, 3\}$. The triad (13)4 holds. Therefore define $P(4) = \{2, -4\}$ and return to Step 3. (The city Kaohsiung is dissimilar to both leading objects Montreal and Vancouver, and so a new branch for Kaohsiung is defined at the highest level.) There is no object JJ such that $P(JJ) = \{2, KK\}$.

Adding object 5 at Step 3, set J = 4. At Step 4, $P(4) = \{2, -4\}$. The triad $\{25\}4$ holds; go to Step 5. (Surprisingly, Taipei is more similar to Vancouver than it is to Kaohsiung.) Set J = 2.

Return to Step 4. Here $P(J) = P(2) = \{-1, 3\}$. The triad $\{13\}$ 5 holds. The object JJ = 4 has $P(4) = \{2, -4\}$. Therefore $P(4) = \{5, -4\}$ and $P(5) = \{2, -5\}$. Return to Step 3, adding object 6. A full history of the tree construction is given by the record of P as each object is added. At each stage, the most recently defined value of P is the correct one (see Figure 10.3).

10.7 REMARKS ON TRIADS-LEADER ALGORITHM

This algorithm is fast but sloppy. The final clusters are not invariant under the change of order of objects. A binary tree is produced by the algorithm (M-1) non-trivial clusters for M objects), so there is some difficulty in interpreting the large number of final clusters.

The leader of a cluster is selected arbitrarily, which is harmless when the clusters are very distinct but may be important in the common case where clusters are quietly present.

Triads are not frequently used in collecting similarity perception data because of the very large number of triads required for even a few objects [see Levelt, 1967 for an example of triads data (Table 10.4)]. Yet triads are an attractive way to extract

Table 10.4 Relatedness Values in "The Boy Has Lost a Dollar"

Frequencies with which a pair is judged more highly related than other pairs, over many triads and subjects from Levelt (1967).

	the	роу	has	lost	а	dollar
the	•	.99	.43	.29	.19	.16
boy			.63	.65	.16	.31
has				.86	.31	.40
lost					.42	.70
6.						.94
dollar						

similarity information because three objects are the minimum number on which to base comparisons between pairwise similarities. How similar is a duck to a pig? Some similarity scale is necessary before a sensible transportable answer can be made. Which does not fit in: a duck, a pig, and a bee? The scale is carried in the question, and the triad (duck, pig) bee can be declared. A child might say (duck, bee) pig since a duck and a bee have wings. This opinion is valid also. Infants' textbooks are full of triads—pick from a hat, a shoe, and a bird the dissimilar object.

The triads-leader algorithm could be used to extract similarity perceptions from subjects without forcing the subjects to respond to all possible triads. The experimenter, in person or through carefully written instructions, must guide the subject into placing objects on the tree. Probably the easiest technique will be to ask the subject to actually construct a tree as in Section 10.3. For just a few objects, all possible trees could be laid out and the subject could be directed to choose among them.

For example, for a four-object questionnaire (which admittedly has only four triads), the instructions might be as follows:

Look at ABC.

If (AB)C, look at BCD.

If (BD)C, look at BAD and then stop.

If (BC)D or (CD)B, stop.

If (AC)B, look at BCD.

If (CD)B, look at CAD and then stop.

If (BC)D or (BD)C, stop.

If (BC)A, look at CAD.

If (CD)A, look at BCD and then stop.

If (CA)D or (DA)C, stop.

There is not much of a reduction with four objects, but there would be substantial reductions with, say, seven.

10.8 THINGS TO DO

10.8.1 Running the Triads Algorithm

The triads algorithm should be used on sets containing a few objects—say, $M \le 10$. On the first 10 typewriters in Table 10.5, construct triads as outlined in Section 10.4. A good experiment requires a trusting friend who will be requested to make triadic similarity judgements directly on six candy bars or six politicians. There will be thirty-five triads from which a tree may be constructed.

Now ask him to place the objects successively in a tree using the technique in Section 10.7. How different are the two trees?

10.8.2 Complete Searches

Since the triads are so numerous and complete searches are also very time consuming, except for small numbers of objects, it is practicable to think of evaluating the true and false triads for every tree and choosing the best ones. This technique will only be used for small numbers of objects.

Let the array $\{A(I), 1 \le I \le K\}$ define a tree with K nodes, where A(I) > I for I < K and A(I) is the ancestor of the node I. For a tree on M objects, the first M nodes will be the objects, and so A(I) > M for $I \le M$. The number of arrays such that A(I) > I for I < K, A(I) > M for $I \le M$, and A(K) = K is $(K - M)^M (K - M - 1)!$. Each tree corresponds to at least one array (although the correspondence is not one to one). Thus all trees on M objects may be generated simply by generating the arrays A.

The array A is also useful in searching through trees. For example, the best ancestor for the node I may be found by looking at all trees with M, $I < A(I) \le K$. The best ancestor for each node is found in succession, until no improvement occurs by change of ancestor of any single node. (This is analogous to the K-means algorithm, with more clusters available for objects or clusters to be attached to.)

10.8.3* Axioms

For any tree, for any four objects I, J, K, L,

 $(IJ)K \Rightarrow (JI)K$

and

 $(IJ)K, (JL)I \Rightarrow (JL)K.$

Table 10.5 Portable Typewriters

	되	-		0	0		-	-	0	0	-	-	-		-			-	-		-
	Æ	0	0	0	0			-	0	0	0	-		-		0	0	0	0	0	H
	1	0		-				~4,	-			_	, -	0	0			H		_	0
	댎	-		-		-						-	-	-				-	0	-	-
	H	н	-	-			0	0		0	-	0	0	_			-	-		0	-
					_	_	_	_		_		_	_	_	_	_	_	_	_	_	
	E		_	_	_	_	_	_	_		_	_	_		_	_	_			_	
	2	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
	H	-	-	_	-	-	Ö	•	_	u	Ü	•	0	٠	•	Ü	•	-	٠	Ü	•
	H	-	-	0	-	-	-	-	0	_	+	-	-	~	-	-	-	-	_	-	-
	田田	-		1	_	-	-	_	•	-	-	-	_	_		_	-			-	_
	Ħ	-	-	-4	-	-1	-	-	-	н	-	-	+	0		H	-	н	-	-	0
	Ţ	-	-	-	-	-	~		-	-	-	-	-	~	-	-		0	-	-	-
ing the	Ħ	-			-			-	~1		-			0	-	-		-	-	-	0
type spacing contro f spacii ator	出	-	Н	-	-	-	-	-	-	-		-	-			-	-	-		-	-
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	23	11	*	‡	‡	‡	*	††	‡ ‡	†	† †	‡	‡	† ‡	† †	£	43	†	1 3	₽	* 1
r elite ttor pressur r releas nutal ha nud indil guide bail		38	25	<u></u>	<u> </u>	2	<u> </u>	 8	n		<u>_</u>	<u></u>	 82	E.	.75	-2	8	E.		.5	'n
or ellical ha lator press in press contal contal contal suide bail	되	19.3	13.	11,88	11.88	9.75	9.88	12,88	9.13	10	9.88	12.88	9.38	<u>.</u>	6	6	9.3	9.6	%	9.	9.
pica or elite vertical half tabulator touch pressure platen release horizontal hal page end indic paper guide paper suide	WI		.5	.5	•5	•	.5		.5	• 5	_	.5	_				5	.5	5	.5	
	<u> </u>	21	25	19	19	17	19	21	17	17	18	19	21	12	15	21	21	20	11	7	11
######################################	띥	7.75	ထ	9	9	9	6.5	6.5	9	6.75	5.5	6.5	6.5	3.5	5.5	7.5	6.5	7.75	4.25	6.25	0.4
				15	12	25	25			15	0	52	25	Ŋ	25	2				22	
to	¥	15	19	17.	17.	13.	16.	19.	15.	16.	17.	16.	19.	12.	17.	1	14	15.	12,	13.	12,
ease	目	15.75	16.0	٠,	5	•25	14.75	0	5	.25	14.75	14.75	5.0	12.75	14.0	17.25	٠,	15.5	14,25	14.75	0°E
ches hes hes unds h ys e rel	=	15	16	7.	7	<u>†</u>	7.	15	7.	15	*	†	15	12	†	17	17	15	<u>*</u>	7	13
n in inc inc inc f ke plat iage elea				12)					SI.											•	
ht in the carretary in relationship.		6	3	ONA (8			ONA	ARI.		8	02		E4	⇉	21	Ħ	32	107	82
height in inches depth in inches depth in inches weight in pounds platen length number of keys erasure plate two carriage releases margin release carriage lock		IACI	Z Z	ř Ü	(12)	33	510	513	Š	SAE		照 9	83 9	ន	1 1 1 1 0	H	H	HOLE	H	HOLE	3R 8
		OLYMPIA (10	OLYMPIA (13	SMITH C. ROWA (12)	SEARS (12)	HERMES 3000	WARDS 510	WARDS 513	SMITH CORONA	ROYAL SAFARI	FACIL	BROTHER 900	BROTHER 905	OLYMPIA	WARDS 44 of	OLIVETTI 44	OLIVETTI	RELUCTION	OLIVETTI 32	REMINGTON 1040	BROTHER 885
		Ö	o	SZ.	5 2	日	3	Z	ĸ	ጟ	Ē	超	岡	Ö	M	Ö	õ	呂	Ö	置	ద

From Consumers' Reports Buying Guide, (1967), Consumers' Union, Mount Vernon, N.Y.

If a set of triads satisfies these conditions, is there necessarily a tree that implies all the triads?

10.8.4* Ranks

Show that a tree generates for each I an ordering \leq of all objects by their similarity to I. (Different objects J, K may have $J \leq K$, $K \leq J$). Suppose that you are given such an ordering for each object I; when is the ordering such that a tree might have generated it?

These orderings, by similarities to various objects, are more efficient than triads and so might be a better way to extract similarity judgements in psychological experiments. A good algorithm is needed for constructing a tree from a set of orderings.

10.8.5 Probability Models

Suppose a diameter D(C) is associated with each cluster C in a tree. The probability of observing the triad (IJ)K is 1 - D(I,J)/D(I,K), where D(I,J) denotes the diameter of the smallest cluster containing D(I,J) and $D(I,J) \le D(I,K) = D(J,K)$. For any given tree, the diameters may be estimated by maximum likelihood. Over many different trees, the maximum likelihood for each tree may be used as a criterion.

REFERENCES

LEVELT, W. J. M. (1967). "Psychological representations of syntactic structure," in *The Structure and Psychology of Language*, T. G. Bever and W. Weksel, eds., Holt, Rinehart and Winston, New York. The sentence "The boy has lost a dollar" was presented to 24 students. They were instructed to judge the degrees of relationship between the words in the sentence by selecting the pair out of each triplet of words that were most strongly related and also by selecting the least strongly related pair. For each word pair, the frequency is computed with which the pair is judged more highly related than some other pair over all triads and students. These frequencies appear in Table 10.4. The frequencies conform to the intuitive grammatical tree structure

((the boy)((has lost)(a dollar))).

PROGRAMS

SEARCH searches through trees, changing ancestor of each node in succession, to most reduce $\alpha T - (1 - \alpha)F$, where T is the number of given triads predicted by the tree and F is the number of given triads incorrectly predicted.

TRIAD used by SEARCH to compute the number of true and false triads predicted by a tree.

MTREE quick tree printing routine.

TRDIST produces triads from a distance matrix.

ULTRA computes ultrametric from tree.

```
C.... SEARCHES THROUGH TREES, MOVING ONE NODE AT A TIME, TO MAXIMIZE

C A+TRUE-(1-A)*FALSE, WHERE TRUE IS THE NUMBER OF TRIADS IN T CORRECTLY

C PREDICTED BY THE TREE. USES MTREE AND TRIAD.

C.... MT = 1 BY K ARRAY, MT(1).GT.I IS ANCESTOR OF I EXCEPT MT(K)*K.

C.... M = NUMBER OF DBJECTS

C.... K = NUMBER OF NODES, GREATER THAN M

C.... T = M BY M BORDERED TRIAD ARRAY

C.... A = VALUE BETWEEN O AND 1, SAY A = 0.5

C.... TR = M BY M BORDERED ARRAY, ULTRAMETRIC CONFORMING TO MT.
            SUBROUTINE SEARCH(MT,M,K,T,A,TR)
            OIMENSION MT(K) .T(M,M,M) .TR(M,M)
C.... INITIALIZE TREE
DO 10 I=1,K
      10 MT(I)=K
00 11 I=2,M
TR(I,I)=I
            DO 11 J=2,M
11 IF(I.NE.J) TR(I,J)=K
C.... FIND BEST ANCESTOR FOR EACH OBJECT
            DO 20 I=2,K
            MM=M+1
            EE=-10.**10
            JJ=MT(I)
            00 21 J=I,K
IF(J.LE.M) GO TD 21
IF(J.LE.I) GO TO 21
            L=(I)TM
            CALL TRIAD(I, MT. M, K, TR, T, TT, FT)
            EJ=A+TT-(1.-A)+F7
            IF(EJ.LE.EE) GO TO 21
            EE=EJ
            しゃしし
       21 CONTINUE
            FT=FT/3
            WRITE(6,1) I,JJ,FT,TT
            FORMAT(IS , 13H HAS ANCESTOR, 15, 7H FALSE=, F5.0, 6H TRUE=, F5.0)
CALL MTREE(MT, M, K)
        1 FORMAT(15
       20 CONTINUE
            RETURN
```

ENO

```
SUBROUTINE TRIAD(II, MT, M, K, TR, T, TT, FT)
C . . . . .
                                                                            .....20 MAY 1973
C.... COMPUTES FALSE TRIADS AND CORRECT TRIADS IN ARRAY T, ACCORDING TO ARRAY TR
C COMPUTES ERRORS INVOLVING II TH OBJECT.
C COMPUTES EFRORS FOR ALL OBJECTS IF II.GT.M.
C.... II = OBJECT
C.... II = OBJECT
C.... M = NUMBER OF OBJECTS
C.... TR = M BY M BORDERED ARRAY, ULTRAMETRIC FROM MT
C.... T = M BY M BY M BORDERED ARRAY
C T(I,J,K)=NUMBER OF TIMES IJ ARE MOST SIMILAR OF IJ,IK,KJ.
C.... FT = NUMBER OF FALSE TRIADS
C.... TT = NUMBER OF TRUE TRIADS
                                                   DIMENSION MT(K), TR(M, M), T(M, M, M)
        IL=II
        II=UI
        IF(II.GE.2.AND.II.LE.M) GO TO 60
        IL=2
        IU=M
    60 CONTINUE
        FT=0
        TT=0
C.... UPDATES ULTRAMETRIC TR
        00 20 I=IL, IU
        CALL ULTRA(I, TR, MT, M, K)
    20 CUNTINUE
        DO 10 I=IL, IU
DO 10 J=2, M
DO 10 L=2, M
        IF(I.EQ.J.DR.J.EQ.L.OR.L.EQ.I) GO TO 10
        IF(TR(I,J).LT.TR(I,L)) TT=TT+T(I,J,L)
IF(TR(I,J).LT.TR(I,L)) FT=FT+T(I,L,J)+T(L,J,I)
IF(TR(J,L).LT.TR(I,J)) TT=TT+T(L,J,I)+0.5
        IF(TR(L,J).LT.TR(I,J)) FT=FT+(T(I,L,J)+T(I,J,L))+0.5
    10 CONTINUE
        RETURN
        END
        SUBROUTINE MTREE(MT,M.K)
C - - - - - -
                          C.... QUICK TREE PRINT-OUT
C.... M = NUMBER OF OBJECTS
C.... K = NUMBER OF NODES OF TREE, COUNTING OBJECTS
C.... MT = K BY 1 ARRAY DEFINING TREE, MT(I).GT.I EXCEPT FOR I=5.
                             DIMENSION MT(K)
        DIMENSION MS(50)
        NC=1
        00 20 I=2,M
    20 MS(I]=I
    30 WRITE(6.1)(MS(I).I=1.M)
      1 FORMAT(5012)
        IF(NC.EQ.O) RETURN
        NC=0
        00 21 I=2,M
        J=MS(I)
        MS(I)=MT(J)
        IF(MS(I)-LE-J.AND.J.NE.K) RETURN
     21 IF(MS(I).NE.K) NC-1
        GO TO 30
```

END

```
SUBROUTINE TRDIST(D,M,T)
C . . . . . .
                                                      ....... 1973
C.... PRODUCES TRIADS FROM A DISTANCE MATRIX
C.... M = NUMBER OF ROWS
C.... D = M BY M BORDERED DISTANCE MATRIX
C.... T = N BY M BY M BORDERED TRIADS
        DIMENSION D(M,M),T(M,M,M)
        00 20 1=2,M
00 20 J=2,M
00 20 K=2,M
        T(I,J,K)=0
IF(D(I,J).LT.D(J,K).AND.D(I,J).LT.O(K,I)) T(I,J,K)=1
    20 CONTINUE
        RETURN
        END
        SUBROUTINE ULTRA(I,O,MT,M,K)
                                                                           ...... 1973
C.... COMPUTES ULTRAMETRIC FROM MT, ITH ROW AND COLUMN
C.... D = M BY M BORDERED ARRAY, ULTRAMETRIC
C.... MT = K BY 1 TREE ARRAY
                                       DIMENSION DIM. MJ, MT(K)
        1=T1
        DD 20 J=2,M
        II-IT
    11-1.

JJ=J

21 IF(II.LT.JJ) II=MT(II)

IF(II.GT.JJ) JJ=MT(JJ)

IF(II.NE.JJ) GO TO 21
    20 D(IT.J)=II
        RETURN
```

Single-Linkage Trees

11.1 INTRODUCTION

It causes eye strain to look at a distance matrix like Table 11.1, the airline distances between principal cities of the world. A correct approach to representing these data would associate each city with a position on the globe, thus reducing the present $30 \times 29/2$ distances to the 30×2 coordinate values. The usual data for clustering form a data matrix with many objects and some variables measured on them. The first step in clustering defines distances between each pair of objects. Thus the first step in understanding the data is backward, in that many more numbers are required for the distances than for the original data matrix!

Correlation matrices may be converted to distances by setting 1 - correlation = distance. This distance is the square of the euclidean distance between standardized variables. More generally, if COV(I, J) denotes the covariance between variables I and J, COV(I, I) + COV(J, J) - 2COV(I, J) is the square of euclidean distance between variables with means removed. Correlation and covariance matrices are the most frequent sources of distance matrices for clustering variables.

A standard approach to clustering separates the question of defining distances from the question of constructing clusters based on the distances (see, for example, Sokal and Sneath, 1963; Johnson, 1967; Hartigan, 1967, Jardine et al., 1967; Gower and Ross, 1969; Estabrooke, 1966; Sneath, 1957). The algorithms assume a distance matrix to be given. Of these algorithms, the oldest, the most famous, and the most fruitful mathematically is the single-linkage algorithm. The algorithm joins together the two closest objects to form a cluster, then the next two closest objects to form a cluster, then the next two closest objects to be joined lie in different clusters obtained in previous steps, the two clusters are joined instead. The term single linkage is used because two clusters are joined if any of the distances between the objects in the different clusters is sufficiently small—that is, if there is a single link between the clusters. The algorithm is explicitly described in Sneath (1957).

11.2 SINGLE-LINKAGE ALGORITHM

Preliminaries. The M objects will be arranged in order so that each cluster is a contiguous sequence of objects. The Ith object in this new order will be denoted by O(I). A gap G(I) is associated with the Ith object in the order. These gaps determine the boundaries of the clusters.

Table 11.1 Airline Distances Between Principal Cities of the World

```
AZORES . | AZ
                                     PY 54 33 59 33 31 37 93 88 84
       BAGHDAD • 39 BD
        BERLIN . 22 20 BN
                                        PS 57 7 56 72 50 57105 61
                                           RO 57 66 18 69113 84115
       BOMBAY - 59 20 39 BY
                                              RE 63 74 57 57101 61
  BUENOS ATRES • 54 81 74 93 BS
                                                 SF 59 7 61 74 52
         CAIRO - 33 8 18 27 73 CO
      CAPETOWN • 57 49 60 51 43 45 CN
                                                     50 64117 71107
       CHICAGO • 32 64 44 81 56 61 85 CH
                                                       SE 57 77 48
                                                          SI 49 11
          GUAM - 89 63 71 48104 71 88 74 GM
      HONOLULU • 73 84 73 80 76 88115 43 38 HU
                                                             SY 48
      ISTANBUL - 29 10 11 30 76 8 52 55 69 81 IL
                                                                TO
        JUNEAU - 46 61 46 69 77 63103 23 51 28 55 JU
        LONDON . 16 25 6 45 69 22 60 40 75 72 16 44 IN
       MANTIA • 83 49 61 32111 57 75 81 16 53 57 59 67 MA
     MELBOURNE . 120 81 99 61 72 87 64 97 35 55 91 81105 39 ME
   MEXICO CITY . 45 81 61 97 46 77 85 17 75 38 71 32 56 88 84 MY
      MONTREAL - 24 58 37 75 56 54 79 8 77 49 48 26 33 82104 23 ML
        MOSCOW - 32 16 10 31 84 18 63 50 61 70 11 46 16 51 90 67 44 MW
  NEW ORLEANS - 36 72 51 89 49 68 83 8 77 42 62 29 46 87 93 9 14 58 NS
      NEW YORK • 25 60 40 78 53 56 78 7 80 50 50 29 35 85104 21 3 47 12 NY
   PANAMA CITY - 38 78 59 97 33 71 70 23 90 53 68 45 53103 90 15 25 67 16 22
         PARTS . 16 24 5 44 69 20 58 41 76 75 14 47 2 67104 57 34 16 48 36
RIO DE JANEIRO • 43 69 62 83 12 61 38 53116 83 64 76 57113 82 48 51 72 48 48
         ROME - 21 18 7 38 69 13 52 48 76 80 9 53 9 65 99 64 41 15 55 43
 SAN FRANCISCO • 50 75 57 84 64 75103 19 58 24 67 15 54 70 79 19 25 59 19 26
      SANTIAGO - 57 88 78100 7 80 49 53 98 69 81 73 72109 70 41 54 88 45 51
       SEATTLE • 46 68 51 77 69 68102 17 57 27 61 9 48 67 82 23 23 52 21 24
      SHANGHAI • 72 44 51 31122 52 81 70 19 49 49 49 57 12 50 80 70 42 77 73
        SYDNEY - 121 83100 63 73 90 69 92 33 51 93 77106 39 4 81100 90 89100
         TOKYO . 73 52 56 42114 60 92 63 16 39 56 40 60 19 51 70 65 47 69 68
```

From The World Almanac (1966), p. 510 (in hundreds of miles).

- STEP 1. Let O(1) be any object. Let $G(1) = \infty$.
- STEP 2. Let O(2) be the object closest to O(1). Let G(2) be the distance between O(2) and O(1).
- STEP 3. For each I $(3 \le I \le M)$ let O(I) be the object, not among O(1), $O(2), \ldots, O(I-1)$, that is closest to one of $O(1), O(2), \ldots, O(I-1)$. That is, for some K $(1 \le K \le I-1)$

$$D[O(I), O(K)] \leq D(J, L),$$

where J ranges over $O(1), \ldots, O(I-1)$ and L ranges over the remaining objects. The gap G(I) is set equal to this minimum distance D[O(I), O(K)].

STEP 4. The cluster O(L1) - O(L2), containing objects O(L1), O(L1 + 1), ..., O(L2 - 1), O(L2) is associated with gap G(I), where (L1, L2) is the maximal interval including I, such that $G(I) \le G(I)$ for all I with $I \le I \le I$. If all gaps are different, there will be I = I such clusters; if some gaps are equal, there may be less.

11.3 APPLICATION OF SINGLE-LINKAGE ALGORITHM TO AIRLINE DISTANCES

Initially, only the last five cities from Table 11.1 will be considered. The searching of the distance matrix is shown in Table 11.2. The ordering of the objects and construction of the tree is shown in Table 11.3. The reordered distance matrix appears in Table 11.4.

Table 11.2 Application of Single-Linkage Algorithm, to Airline Distances—Searching the Matrix

SANTIAGO	SO					80					
SEATTLE	64	SE				64	37.				
SHANGHAI	117	5 7	SI			117	57	SI			
SYDNEY	71	7 7	49	sy		71	77	49	SY		
TOKYO	107	48	11	48	TO	107	48	11	48	TO	
		BEGI	N WITH	H SE						TO SE, V	MICH
						IS T	O MI	TH GAI	Y 48		

SO					
64	SE				
117	57	SI			
71	77	49	SY		
107	48	11	48	1 Ø	

ELIMINATE DISTANCES BETWEEN SELECTED OBJECTS. FIND OBJECT CLOSEST TO SE, TO, WHICH IS SI. GAP = 11.

64	8E			
117	37	BI		
71	77	49	SY	
107	¥Ø	77	48	_x00

đ٨

ELIMINATE DISTANCES BETWEEN. FIND CLOSEST OBJECT, SY. GAP = 48.

Table 11.3 Application of Single-Linkage Algorithms to Airline Distances—Constructing Tree

SE - - - I - - I 0(1) G(2) 48 I I 0(2) TO - I I I G(3) 11 I I I 0(3) SI - / I Ι G(4) 48 I I 0(4) SY - - - / I 64 I G(5) 0(5) SO - - -

- STEP 1. The first object is selected arbitrarily to be SE. Set O(1) = SE, $G(1) = \infty$.
- STEP 2. The distances of SE to the other objects are 64, 57, 77, 48. The smallest of these is 48, D(SE, TO). Thus, O(2) = TO, G(2) = 48.
- STEP 3. First find that object which is closest to SE or TO. Eliminate the distance D(SE, TO), but check all other distances to SE and TO (underlined in Table 11.2), 64, 57, 77, 107, 11, 48. The smallest of these is 11, D(TO, SI). Thus O(3) = SI, G(3) = 11. Now eliminate the distances D(SE, SI) and D(TO, SI) and check all other distances to SE, TO, SI (underlined in Table 11.2), 64, 117, 107, 77, 49, 48. The smallest of these is 48, D(TO, SY). Thus O(4) = SY, G(4) = 48. Finally, O(5) = SO, G(5) = 64.
- STEP 4. The ordered objects and gaps are listed in Table 11.3. There is a cluster corresponding to each gap. For the gap G(3) = 11, the cluster is the largest sequence O(L1) O(L2) such that $L1 \le 3 \le L2$ and $G(J) \le G(I)$ for all J ($L1 < J \le L2$). For L1 = 2 and L3 = 3, these conditions are satisfied, but for no larger interval. The cluster corresponding to G(3) = 11 is TO-SI. The cluster corresponding to G(2) = 48 is SE SY, and this is also the cluster corresponding to G(4) = 48. This is a case when clusters coincide for two equal gaps, although gaps may be equal without the coincidence of corresponding clusters. Finally, the cluster SE SO corresponds to the gap G(5) = 64.

The single-linkage algorithm is applied to the airline data for 30 cities in Table 11.5. The overall clustering conforms to known geography. There are five principal clusters of cities in Europe, North America, Asia, South America, South Africa, and

Table 11.4 Reordered Distance Matrix—Single Linkage Applied to Airline Distances

SEATTLE	SE				
TOKYO	48	TO			
SHANGHAI	57	11	SI		
SYDNEY	77	48	49	SY	
SANTIAGO	64	107	117	71	SO

	DIAMETER								
	5	10	15	20 25	30:	35 40			
AZORES •			I	II	I	II			
PARIS •	- I I ·	- I I I	Ī	ĪĪ	Ī	ĪĪ			
LONDON •	-/ I	I II	I	I I	I	II			
BERLIN -	/	I II	I	I I	I	ΙI			
ROME •		-/ II	I	I I	I	II			
MOSCOW .		/I	I	I I	I	11			
istanbul •		I I	I	I I	I	ΙI			
CAIRO •		I I	I	I I	r	ΙI			
BHAGDAD •		//-	/	I I	r	ΙI			
BOMBAY •				/ I	I	II			
MONTREAL •	I	- I I I	I - I	I	I	II			
NEW YORK •	/	III	I I	I	I	ΙΙ			
CHICAGO •		-/II	II	I	I	ΙI			
NEW ORLEANS .		- <i>-</i> /I	II	I	I	ΙI			
MEXICO CITY •		/	II	I	I	ΙI			
PANAMA CITY •			/ I	I	I	ΙI			
Seattle •		- I - I	I	I	I	ΙI			
SAN FRANCISCO •		-/ I	I	I	I	ΙΙ			
Juneau •		/	/	I	I	ΙI			
HONOLULU -				/	I	ΙI			
shanghai •		- <i></i> II	I		I	II			
TOKYO •		/I	I		I	II			
MANIIA •		/	I		I	II			
GUAM .			/		I	ΙI			
SANTIAGO •	~	- I I			I	ΙI			
Buenos aires •		-/ I			Į	I I			
RIO DE JANEIRO •		- /			/	ΙĪ			
CAPE TOWN •						/I			
SYDNEY •	I					Į			
MELBOURNE •	/-					/			

Table 11.5 Single-Linkage Algorithm Applied to Airline Distances between 30 Cities

Australia. These clusters must be picked out from a confusing array of 27 clusters. (There would have been 29 except for two coincidences of gap values.) The usual output of the single-linkage algorithm is a binary tree of M-1 clusters (of more than one object) for M objects. The binary tree is convenient to construct but difficult to interpret, since many of the clusters differ only slightly for each other. For example, in the European cluster there is the sequence of clusters

((((Paris, London) Berlin) Rome) Moscow).

Should all of these be accepted as different clusters, or should only the European cluster (Paris, London, Berlin, Rome, Moscow) be offered? This question will be discussed later in Section 11.12.

11.4 COMPUTATIONAL PROPERTIES OF SINGLE LINKAGE

The single-linkage algorithm produces clusters invariant under reordering of the objects, although the initial object may be selected arbitrarily. For example, if the first object selected in Table 11.5 were San Francisco, the next would be Seattle, then Juneau, then one of Montreal-Panama City, and so on. The computations require $O(N^2)$ comparisons; roughly, each element in the distance matrix is looked at once. It is not necessary to store and compute the whole distance matrix before beginning the algorithm—for 3000 objects and three variables, you had better compute the distances as you need them.

The clusters obtained are invariant under monotonic transformation of the distance matrix.

11.5 SPIRAL SEARCH ALGORITHM

Preliminaries. In many clustering algorithms, including the single-linkage algorithm, the principal computing expense is in finding the closest object of some set to a given object. Normally this requires O(MN) computations, where M is the number of objects searched over and N is the number of variables used in the distance calculations. The spiral search technique avoids computation of the larger distances entirely by searching over objects that are close to the given object on all variables. It is most useful for M very large and N small.

The object which is Ith largest on the Jth variable is denoted by O(I, J). At each stage, there will be two candidate objects O(I, J), O(I, J) corresponding to the Jth variable. All objects closer than these to the given object on the Jth variable will have been considered. If the minimum distance of O(I, J), O(I, J) to the given object is O(I, J) on the Jth variable, then all objects not considered have a distance overall which exceeds $O(I, J) + \cdots + O(I, J)^{2}$. The search therefore stops when an object already considered has a distance to the given object less than this lower bound.

STEP 1. For $1 \le J \le N$, let the rank of the given object on the Jth variable be K(J). Initial candidate objects for the Jth variable are

O1(J) = O[K(J) - 1, J]

and

$$O2(J) = O[K(J) + 1, J].$$

The closest of these to the given object in the Jth variable is distant T(J). Initially the closest object overall to the given object is not defined, so set DMIN = ∞ . Also, if $K(J) - 1 \le 0$, assume that O1(J) is infinitely distant and, if K(J) + 1 > M, assume that O2(J) is infinitely distant.

STEP 2. For each J in succession $(1 \le J \le N)$, select O1(J) or O2(J), whichever is closer to the given object on the Jth variable. If the distance overall, of this selected object from the given object is less than DMIN, set OMIN equal to this object, and set DMIN equal to this new minimum distance. If O1(J) is used, redefine O1(J) to be the next lowest object on the Jth variable. If O2(J) is used, redefine O2(J) to be the next highest object on the Jth variable. Redefine T(J) to be the minimum distance of O1(J) and O2(J) to the given object on the Jth variable. If $DMIN^2 \le T(1)^2 + \cdots + T(N)^2$, stop. Otherwise, continue repeating Step 2.

NOTE. Since ordering the objects on all variables takes $O(M \log M)N$ comparisons, the above calculation saves time only when many searches for closest objects must be made, all using the same initial orderings of the objects.

11.6 APPLICATION OF SPIRAL SEARCH ALGORITHM TO BIRTHS AND DEATHS

The birth and death rates of 70 countries are given in Table 11.6. The orders of countries by birth and death rates are given in Table 11.7. In the single-linkage algorithm, the first step would be to find the closest object to some initial country—say, Algeria, object 1. Apply the spiral search algorithm as follows:

Table 11.6 Birth and Death Rates per 1000 Persons

		BIRTH	DEATH			BIRTH	DEATH
1,	ALGERIA	36.4	14.6	36.	ARGENTINA	21.8	3.1
2.	CONGO	37.3	8.0	37.	BOLIVIA	17.4	5.8
3.	EGYPT	42.1	15.3	38.	BRAZIL	45.0	13.5
4.	GHANA	55.8	25,6	39.	CHILE	33.6	11.8
5.	IVORY COAST	56.1	33.1	40.	COLOMBIA	44.0	11.7
6.	MALAGASY	41.8	15.8	41.	ECUADOR	44.2	13.5
7.	MOROCCO	46.1	18.7	42.	PERU	27.7	6.5
8.	TUNISIA	41.7	10,1	43.	URUGUAY	22.5	7.8
9.	CAMBODIA	41,4	19.7	44.	VENEZUELA	42.8	6.7
10.	CEYLON	35.8	8.5	45.	AUSTRIA	18.8	12.8
11.	CHINA	34.0	11.0	46.	BELGIUM	17.1	12.7
12.	TAIW A N	36.3	6.1	47.	BRITAIN	18.2	12.2
13.	HONG KONG	32.1	5.5	48.	BULGARIA	16.4	8.2
14.	INDIA	20.9	8.8	49.	CZECHOSLOVAKIA	16.9	9.5
15.	INDONESIA	27.7	10.2	50.	DENMARK	17.6	19.8
16.	IRAQ	20.5	3.9	51.	FINLAND	18.1	9.2
17.	ISRAEL	25.0	6.2	52.	FRANCE	18.2	11.7
18.	JAPAN	17.3	7.0	53.	E. GERMANY	17.5	13.7
19.	JORDAN	46.3	6,4	54.	W. GERMANY	18.5	11.4
20.	KOREA	14.8	5.7	55.	GREECE	17.4	7.8
21.	MALAYSIA	33.5	6.4	56.	HUNGARY	13.1	9.9
22.	MONGOLIA	39.2	11.2	57.	IRELAND	22.3	11.9
23.	PHILLIPINES	28.4	7.1	58,	ITALY	19.0	10.2
24.	SYRIA	26.2	4.3	59.	NETHERLANDS	20.9	8.0
25.	THAILAND	34.8	7.9	60.	NORWAY	17.5	10.0
26.	VIETNAM	23.4	5.1	61.	POLAND	19.0	7.5
27.	CANADA	24.8	7.8	62.	PORTUGAL	23.5	10.8
28.	COSTA RICA	49.9	8.5	63.	ROMANIA	15.7	8.3
29.	DOMINICAN R	33.0	8.4	64.	SPAIN	21.5	9.1
30.	GUATEMALA	47.7	17.3	65.	SWEDEN	14.8	10.1
31.	HONDURAS	46,6	9.7	66.	SWITZERLAND	18.9	9.6
32.	MEXICO	45.1	10.5	67.	U.S.S.R.	21.2	7.2
33.	NICARAGUA	42.9	7.1	68.	YUGOSLAVIA	21.4	8.9
34.	PANAMA	40.1	8.0	69.	AUSTRALIA	21.6	8.7
35.	UNITED STATES	21.7	9.6	70.	NEW ZEALAND	25.5	3.8

From Reader's Digest Almanac (1966).

	1 adie	11./ Cou	ntries Ora	erea by	Dirin Kates	and Dea	III NAICS	
BIRTH	DEATH	RANK	BIRTH	DEATH	RANK	HTRIE	DEATH	POSITION
56	16	70	67	48	46	12	11	22
20	24	69	68	63	45	1	22	21
65	26	68	64	29	44	2	54	20
63	13	67	69	10	43	22	40	19
14.8	20	66	35	28	42	54	52	18
49	37	65	36	49	41	9	39	17
46	12	64	57	69	40	8	57	16
18	17	63	43	14	39	6	47	15
37	19	62	26	55	38	3	46	14
55	21	61	62	70	37	44	45	13
53	44	60	27	68	36	33	38	12
60	18	59	17	64	35	40	41	11
50	23	58	70	51	34	41	53	10
51	33	57	24	35	33	38	1	9
47	67	56	15	66	32	32	3	8
52	61	55	42	31	31	7	6	7
54	27	54	23	56	30	19	30	6
45	43	53	13	60	29	31	7	5
66	25	52	29	В	28	30	9	4
58	2	51	⁻ 21	65	27	28	50	3
61	34	50	39	15	26	4	4	2
16	59	49	11	58	25	5	5	1
14	36	48	25	32	24			
59	42	47	10	62	23			

Table 11.7 Countries Ordered by Birth Rates and Death Rates

Country 56, Hungary, is 70th in birth rate. (See Table 10.6)

STEP 1. Algeria is 21st in birth rates and 9th in death rates, so K(1) = 21, K(2) = 9. Initial candidate objects are

and
$$O1(1) = 12,$$
 $O2(1) = 2,$ $T(1) = 0.1$ $O2(1) = 53,$ $O2(2) = 3,$ $T(2) = 0.7.$

These are the objects immediately adjoining Algeria in birth and death rates.

STEP 2. For J=1, the closest object is O1(1)=12. Then D(1, 12)=8.5. The new object O1(1)=10, T(1)=0.6, DMIN = 8.5 and $[T(1)^2+T(2)^2]^{1/2}=0.9$, so Step 2 is repeated. For J=2, the closest object is O2(2)=3. Then D(1,3)=5.7, O2(2)=6, and T(2)=0.9. Set DMIN = 5.7. For J=1, the closest object is O1(1)=10, which is further from object 1 than 5.7. Set O1(1)=25, T(1)=0.9. Continuing in this way, no change in DMIN occurs until object 11 is reached, DMIN = 4.3. This is still greater than the stopping threshold, so the spiral continues. Then again at object 39, DMIN = 3.9. After several more objects are checked, arrive at O1(1)=29,

O1(2) = 34, O2(1) = 47, and O2(2) = 30. The thresholds are T(1) = 3.4, T(2) = 2.4, and now

$$DMIN^2 \le T(1)^2 + T(2)^2$$
,

so the search stops. The closest object to Algeria is object 39, Chile. The total number of objects considered was 17, which is a substantial reduction on the 70 required without spiraling.

11.7 SINGLE-LINKAGE CLUSTERS FROM PARTITIONS

The gaps obtained in the single-linkage algorithm of Section 11.2 may be interpreted as diameters of the clusters corresponding to them. If a cluster C corresponds to a gap G, any pair of objects I, J in the cluster C are connected by a chain of objects—say, $I = I(1), I(2), \ldots, I(K) = J$ —such that $D[I(L), I(L+1)] \leq G$ for every L ($1 \leq L < K$). Another way of generating single-linkage clusters is to link any pair of objects whose distance is no greater than G. The objects and links form a graph whose maximal connected components are single-linkage clusters. At each gap level G, these components form a partition of the data. For example, at G = 26 in Table 11.5 the partition of cities would be Europe and North America, Asia, South America, South Africa, and Australia. The clusters at gap level G^* (< G) will each be included in a cluster at gap level G. (For if two objects are connected by links of length no greater than G^* , they are also connected by links of length no greater than G.)

Single-linkage clusters are the outcome of exact optimization of a partition P(M, K) using the error function (contrived for the occasion)

$$e[P(M, K)] = \max_{1 \le L \le K} D[AM [C(L)],$$

where DIAM(C) is the minimum value of G such that all pairs of objects in C are connected by a chain of links no greater than G. The optimal partition will be the maximal connected components of the graph, with objects linked when their distance is no greater than G for some G.

Single-linkage clusters comprise optimal partitions with the error function $e[P(M, K)] = \sum_{L} \text{DIAM}[C(L)]$ but not with the error function $e[P(M, K)] = \sum_{L} \text{DIAM}[C(L)]$, where NUMB(C) is the number of objects in the cluster C. This last error function is the most natural analog to the sum-of-squares criterion used in the K-means algorithm.

11.8 JOINING AND SPLITTING

Begin with M clusters, each consisting of a single object. Define the distance between any two clusters as the minimum distance among pairs of objects, one in each cluster. Find the closest pair of clusters, and construct a new cluster by joining them. Thus at each step the total number of clusters is reduced by one, and after M-1 steps a single cluster consisting of all objects remains. During the steps, 2M-1 clusters will have been computed (ignoring the annoying case when two (or more) clusters are closest to another cluster and are both joined to it in one step), and these are just the single-linkage clusters. This way of approaching single-linkage clusters is conceptually simple but not convenient for computation, because it does not provide an order for the objects in which clusters are contiguous sequences of objects. Other

"joining" algorithms suggest themselves, with the distance between clusters defined as the maximum distance among pairs of objects in the two clusters, or the average distance, or other combinations of distances (see, for example, Sokal and Sneath, 1963; Johnson, 1967; Lance and Williams, 1966).

In the other direction, consider splitting the set of all objects into two clusters such that the distance between the clusters (defined as the minimum over pairs) is maximized. Then split each of these clusters in the same way, and so on until only clusters consisting of single objects remain. The clusters obtained in this way also are single-linkage clusters. Note that joining and splitting give the same clusters with this minimum distance between clusters, but the clusters are not necessarily the same with other definitions of distance between clusters.

11.9 ULTRAMETRICS

Define the chain distance between any two objects as the minimum value G such that the objects are connected in the graph obtained by linking objects no more than G apart. Denote this by DCH(I, J). Single-linkage clusters are then characterized by the property that, for every I, J in C and every K in C and L not in C,

$$DCH(I, J) < DCH(K, L)$$
.

The diameter of a cluster C is the maximum value of DCH(I, J) over I and J in C. The chain distance is an ultrametric (see Chapter 8); that is, for any triple I, J, K,

$$DCH(I, J) \le max [DCH(I, K), DCH(J, K)].$$

The tree corresponding to the ultrametric is just the single-linkage tree with the definition of cluster diameter given above.

Which ultrametric D^* best approximates the given distance D? The measure of error considered in Hartigan (1967) is $e(D, D^*) = \sum_{I,J} [D(I,J) - D^*(I,J)]^2$, which corresponds to the distance between clusters being equal to the average distance between pairs of objects in the two clusters. Suppose that $D^*(I,J) \leq D(I,J)$. For any error $e(D, D^*)$ that is increasing with $D(I,J) - D^*(I,J)$, the ultrametric minimizing $e(D, D^*)$ is $D^* = D$ CH. The single-linkage tree is thus optimal, but under the rather unusual constraint that $D^*(I,J) \leq D(I,J)$. This result is hinted at in Hartigan (1967), but it is stated and demonstrated more explicitly in Jardine, Jardine, and Sibson (1967).

11.10 STRUNG-OUT CLUSTERS

Single-linkage clusters are famously strung out in long sausage shapes, in which objects far apart are linked together by a chain of close objects. Of course, the clusters are not necessarily convex. A cluster of objects may, on the average, be close to some other cluster, but because of a few "bridge" objects it may be connected to some far-off third cluster (see Figure 11.1). This problem can be approached by using the joining algorithm with both minimum and average definitions of distance.

Sometimes clusters are far-flung sausage shapes with high densities of objects within each cluster. The single-linkage algorithm will be better at discovering such shapes than the average or maximum method.

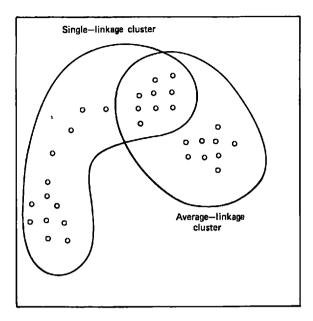


Figure 11.1 Strung-out single-linkage clusters.

11.11 MINIMUM SPANNING TREES

A number of cities are to be connected by a road network, consisting of links between selected pairs of cities, which has a fixed cost per mile. What is the network of minimum cost, such that a path exists between every pair of cities? First, it is clear that there will be only one path between each pair of cities, because otherwise a link between cities could be removed, which would reduce costs. The network is thus an undirected tree. This should not be confused with directed trees of clusters.

The tree contains M-1 links for M cities, and the minimum spanning tree is the tree for which the sum of the distances over the M-1 links is a minimum (see Kruskal, 1956).

For objects and distances between them, a minimum spanning tree may be constructed by selecting an arbitrary object, linking to it the closest object to it (giving a tree on two objects), linking to this tree whichever object among the remainder is closest to an object in the tree (giving a tree on three objects), and so on, building up the tree one object at a time. The minimum spanning tree is not necessarily unique, because the closest object to the present tree at each stage in the algorithm may not be unique. Note that the order in which objects are added to the tree is the order in which the clusters are contiguous in the single-linkage algorithm of Section 11.2.

The single-linkage clusters may be obtained from the minimum spanning tree by a number of methods (Gower and Ross, 1969). For example, by deleting all links from the tree of length greater than G, the maximal single-linkage clusters of diameter no greater than G are obtained. To obtain all the single-linkage clusters, remove the largest link from the tree to obtain two connected clusters, then the second largest to obtain two more clusters, and so on. (There will be a division into three or more clusters if the largest link is not unique.)

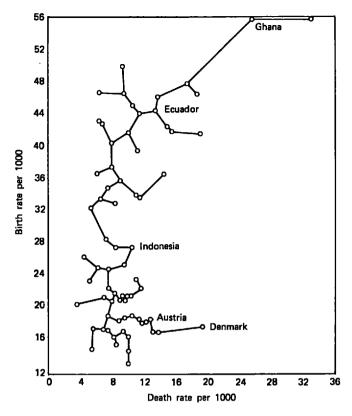


Figure 11.2 Minimum spanning tree for births and deaths (Table 11.6).

In just two dimensions, the judgment of closest distances by eye makes it feasible to construct minimum spanning trees and thence single-linkage clusters, for up to 100 points by hand. The birth and death rates data are so treated in Figure 11.2. All 69 single-linkage clusters may be constructed from this tree by removing links in order of their sizes. There are perhaps two or three real clusters in the data: (Ghana and Ivory Coast) with extremely high birth and death rates, the developing countries with high birth rates, the developed countries with low birth rates.

11.12.* REALITY OF CLUSTERS

An important, difficult, and unsolved problem is the selection of just a few significant clusters from the many produced by the single-linkage and other joining algorithms. In particular, are there any "real" clusters other than the set of all objects? Is the tree different from those obtained from objects randomly selected from a multivariate normal distribution?

Estabrooke (1966) proposes a measure of isolation for a single cluster C, which he calls the "moat" of C, equal to the diameter of the smallest cluster including C minus the diameter of C. A similar measure, with distances converted to ranks, is proposed by Ling in an unpublished Ph.D. thesis (Yale University). Ling, using results on connectedness of random graphs due to Erdos and Renyi (1961), obtains exact and approximate distribution theory for his isolation index under the null hypothesis

that any of the [M(M-1)/2]! permutations of the ranked distances are equally probable. He acknowledges that this null hypothesis is not the most plausible one, since D(I, J) and D(J, K) small imply D(I, K) small for a metric distance and this property is violated by the uniform distribution over permutations.

To test the reality of the tree overall, it is necessary to use all the cluster diameters in some way. A sequence of cluster diameters arises naturally from the algorithm in Section 11.2 in the gaps $G(2), \ldots, G(M)$. This sequence is not unique because the initial object may be arbitrarily chosen. Suppose that the objects were sampled from a unimodal distribution and that the initial object were chosen at the mode. Except for sampling errors, the gaps will be steadily increasing as objects are successively added from regions where the density of the distribution is decreasing. On the other hand, if the objects were sampled from a bimodal distribution, the gaps will increase as objects at the outside of the first cluster are brought in, then decrease as objects in the second cluster are brought in, and then increase again. The reality of the clusters may thus be tested by checking departures from monotonicity of the gap sequence. (See Figure 11.3, for the relation between the modality of distribution and the modality of the gap sequence.)

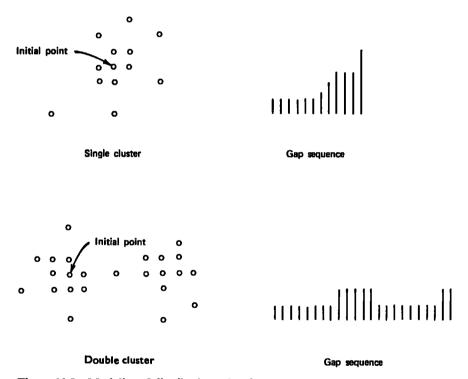


Figure 11.3 Modality of distribution related to gap sequence.

For M cases and N variables, assume that the gap powers $G^N(2), \ldots, G^N(M)$ are independent exponentials with $G^N(I)$ having expectation A(I), where $A(2) \le \cdots \le A(M)$. (This assumption is justified for large samples from a unimodal distribution; DMIN, the smallest distance from a given point to one of the sample points, is the minimum of a large number of independent random variables, from which it

follows that DMIN^N times the density is approximately exponentially distributed with constant expectation. Nearly all the gaps are such minimum distances.) The log likelihood of the observed gaps is $\sum -\log A(I) - G^N(I)/A(I)$. This log likelihood is maximized by averaging neighboring gaps (following Barlow et al., 1972).

STEP 1. Initially set
$$A(I) = G^{N}(I)$$
 ($2 \le I \le M$).

STEP 2. For each I(1 < I < M), if $A(I) \le A(I+1)$ increase I by one and go back to Step 2; if A(I) > A(I+1), find the minimal I such that $A(I) \ge A(I+1) \ge \cdots \ge A(I)$ and the maximal I such that $A(I+1) \ge A(I+2) \ge \cdots \ge A(I)$, and replace each of $A(I), A(I+1), \ldots, A(I)$ by the average value of $A(I), \ldots, A(I)$. Set I = I - I, and begin Step 2 again.

The log likelihood under this monotonic constraint, subtracted from the log likelihood without constraint, is $\sum \log [A(I)/G^N(I)]$. The larger this value, the less plausible is the monotonic hypothesis; the value is always nonnegative, and it is zero only if the sequence is nondecreasing. The criterion for departure from monotonicity is then $\sum \log [A(I)/G^N(I)]$, where the A(I) are selected as above. The actual distribution of this quantity will depend on the real distribution of gaps rather than the exponentials hypothesized. Under the exponential model, its asymptotic distribution [given that the A(I)'s are nondecreasing but that only a finite number of different A(I)'s occur] is normal with mean $M\alpha_1$ and variance $M\alpha_2$, where $\alpha_1 = -\int_0^\infty (\log x)e^{-x} dx$, and $\alpha_2 = \int_0^\infty (\log x)^2 e^{-x} dx - \alpha_1^2$. These are well-known integrals derivable from the gamma function; $\alpha_1 = \gamma = 0.577$ (Euler's constant) and $\alpha_2 = \pi^2/6 = 1.645$.

Thus,

$$\sum \log \left[A(I)/G^{N}(I) \right] \approx N(\gamma M, \, \pi^{2}M/6).$$

To test this procedure on the cities data (Table 11.1), begin with the modal city Paris. The best monotonic fit to the squares gaps is computed by averaging over sequences of neighboring values that are monotonically decreasing. The tree can be redrawn with these new diameters; there are the small clusters {[(Paris) London] Berlin}; then a large cluster, Europe; a still larger cluster, Europe and North America;

	Table	11.8	Gaps i	n Sin	gle-Lin	kage	Tree on	Cities	(From Table 10.5)
									OBSERVED GAPS
2	5	7	10	11	8	8	16	20	24
24	9	7	16	15	9	8	7	4	31
16	12	11	31	7	38	39	4		
									OBSERVED GAPS SQUARED
4	25	49	100	121	64	64	256	400	576
576	81	49	256	225	81	64	49	16	9 61
256	144	121	961	49	1444	1521	16		
									MONOTONIZED GAPS
4	25	49	87	87	87	87	219	219	219
219	219	219	219	219	219	219	219	219	300
300	300	300	505	505	994	994	994		

then South America is added on; and finally Australia and South Africa are added. The monotonicity of the fitted gaps forces the clusters also to be monotonic (see Table 11.8).

11.13 DENSITY-CONTOUR TREE

If objects are points distributed in an N-dimensional space (one dimension for each variable), clusters may be thought of as regions of high density separated from other such regions by regions of low density. It is easiest to first formalize this definition for a distribution of points (consisting of an infinite number of points), characterized by a density f(x) at each point x. The number f(x) is proportional to the number of objects per unit volume at the point x. A density-contour cluster at level f_0 is a subset C of the N-dimensional space, such that C is maximal among connected sets satisfying $f(x) \ge f_0$ for $x \in C$. It is easy to show that such clusters form a tree. For a cluster C at level f_0 , the density inside C is no less than f_0 , but for every path connecting x in C to y outside C the density somewhere on the path is less than f_0 . The cluster C thus conforms to the informal requirement that C is a high-density region surrounded by a low-density region. An example of density-contour clusters is given in Figure 11.4.

As the level f_0 is reduced, the cluster C at level f_0 gradually expands until suddenly, at some splitting level f_0^* , it coalesces with other clusters to form a much larger cluster. These "rigid" clusters, which cannot be expanded smoothly, are important in determining the tree structure. For example, if there is only one such cluster, the density is unimodal. A cluster C is rigid if every cluster properly including it contains a cluster disjoint from C. The rigid density-contour clusters form a tree that is a subset of the tree of all density-contour clusters.

The essential components of the above definitions are the density f, defined at each point, and the paths between points in the space. The definitions may be generalized to spaces in which these two components are present, and such a generalization is

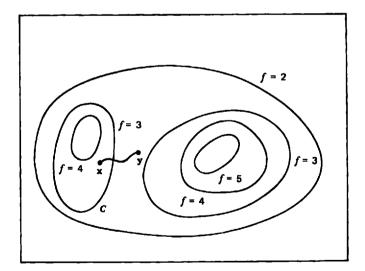


Figure 11.4. Density-contour clusters. C is a density-contour cluster at level 3. All densities inside C are no less than 3 and, for x in C and y outside C, some density on every path between x and y is less than 3.

advisable because the infinite number of points do not appear in practical clustering problems. Consider then a space S of a finite number of objects with some pairs of objects linked together. (This is just an undirected graph.) A path between object I and object J is a sequence $I = I(1), I(2), I(3), \ldots, I(K) = J$ such that I(L) is linked to I(L+1) for each L ($1 \le L < K$). A connected set C is a set of objects such that each pair of objects in the set are linked by a path whose members all lie in the set C. With these definitions of path and connectedness, the definitions of density-contour cluster and rigid cluster apply to finite sets of objects, provided that a density is given for each object.

Table 11.9 contains per capita income in the 50 states. The density is supposed to be proportional to the number of points per unit volume. Here each dollar earned in a state corresponds to a point in that state, and the volume of a state is the number of people in it. The volume measurement is always chosen as some comparable count to the point count, so the density is a ratio of two counts. There is no need for the density to refer to the objects to be clustered in any particular way, in order for the

Table 11.9 U.S. Per Capita Income, 1964 (in Dollars)

DE	DELAWARE	3426	NB	NEBRASKA	2302
CT	CONNECTICUT	3250	FL	FIORIDA	2280
NV	NEVADA	3248	VΑ	VIRGINIA	2224
ny	NEW YORK	31 39	AZ	ARIZONA	2218
AK	ALASKA	3128	Mľ	MONTANA	2183
CA	CALIFORNIA	3092	TX	TEXAS	2175
IL.	ILLINOIS	3003	ШĄ	UTAH	2174
ŊJ	NEW JERSEY	2962	VT	VERMONT	2144
MA	MASSACHUSETTS	2922	æ	MAINE	2130
MD	MARYIAND	2888	OK	OKTAHOMA	2095
MI	MICHIGAN	2733	ND	NORTH DAKOTA	2012
AW	WASHINGTON	2634	D	IDAHO	2012
OH	OHIO	2623	NM	NEW MEXICO	2010
OR	OREGON	2602	WV	WEST VIRGINIA .	1962
MO	MISSOURI	2595	GA	GEORGIA	1933
CO	COLORADO	2591	NC	NORTH CAROLINA .	1900
HI	HAWAII	2579	IA	loùisiana	1864
PA	PENNSYLVANIA .	2575	I	Tennessee	1852
IN	INDIANA	2529	SD	SOUTH DAKOTA	1832
WI	Wisconsin	2492	KY	KENTUCKY	1811
RI	RHODE ISLAND	2479	ΑĻ	ALABAMA	1737
WY	WYOMING	2475	SC	SOUTH CAROLINA .	1647
MN	MINNESOTA	2373	AR	ARKANSAS	1 633
IA	IOWA	2370	MS	MISSISSIPPI	1444
MH	NEW HAMPSHIRE	2340			
KS	KANSAS	2311			

algorithm to be applicable. In this case, the density is the ratio of the number of dollars to the number of people, but the objects to be clustered are states and the connectivity properties are defined on states. The contour-density clusters will be regions of neighboring states where the densities are high surrounded by regions of states where the densities are low.

In general, there will be M objects, a density F(I) $(1 \le I \le M)$ for each object, and links specified between some pairs of objects. This information is converted to a distance

 $D(I, J) = -\min [F(I), F(J)]$ if I and J are linked, = 0 if I and J are not linked.

The single-linkage clusters will be the maximal connected sets of objects of density greater than C, say. The single-linkage algorithm thus generates the density-contour clusters with this measure of distance.

From per capita income in Table 11.9 and from the links between neighboring states in Table 11.10, the single-linkage algorithm produces the clusters in Table 11.11. Only

Table 11.10 Links between States

	Table 11.10 Links bet	weel States	
STATE	BORDERS ON	STATE BORDERS ON	
DE NJ PA	MD	KS MO OK CO NB	
CT NY MA	RI	NB CO WY SD IA MO KS	
NV CA OR	ID UT AZ	FL GA AL	
NY PA VT	MA CT NJ	VA KY WV MD TN NC	
AK		AZ NM UT NV CA	
CA OR AZ	NV	MT ND SD ID WY	
IL IA WI	IN KY MO	TX NM OK AR LA	
NJ DE PA	NY	UT AZ NV ID WY CO	
MA RI CT	NY VT NH	VT NY MA NH	
MD VA WV	PA DE	ME NH	
MI WI IN	OH	OK TX NM CO KS MO AR	
WA OR ID		ND MT SD MN	
OH IN MI	PA WV KY	ID UT NV OR WA MT WY	•
OR WA ID	NV CA	NM TX OK CO AZ	
MO IL TN	AR OK KS NB IA KY	WV VA KY OH PA MD	
CO NM UT	WY KS OK NB	GA FL AL TX NC SC	
HI		NC SC GA TN VA	
PA NJ DE	MD OH NY WV	IA AR MS TX	
IN IL MI	OH KY	TN MS AR KY VA NC GA	AL MO
WI IA MN	MI IL	SD NB WY MT ND MN IA	
RI CT MA		KY TN MO IL IN OH WV	VA
WY CO UT	ID MT SD NB	AL MS TN GA FL	
MN ND SD	IA WI	SC GA NC	
IA NB MO	IL WI MN SD	AR LA MS TX OK MO TN	
NH VT ME	MA	MS LA AR TN AL	
See Table 10.9 for	r state code.		

Table 11.11 Rigid Clusters of States from Density-Contour Algorithm Applied to Per Capita Income

-GAP	STATE	-GAP	STATE	
0	DE IIIIII	2174	AZ I	ΙI
2962	NJIIIIII	2218	M I	ΙI
2962	NYIIIIII	3092	CA I	ΙI
31 39	CTIIIIII	2602	ORI	ΙΙ
2922	MAIIIII	2602	WA /	ΙI
2888	MD / IIIII	2144	VT	ΙΙ
2575	PA IIIII	2130	ME	ΙΙ
2575	OHIIIIII	2095	OK	I I
2733	MI//IIII	2095	Tχ	ΙΙ
2529	IN IIII	2012	ND	ΙI
2529	ILI IIII	2012	ID	ΙI
2595	MO / IIII	2010	MM	ΙI
2492	WI IIII	1962	WV	/ I
2479	RI IIII	1900	NC	I
2373	MN IIII	1 900	GA I	I
2370	IV IIII	1933	FL /	I
2340	NH /III	1864	IA	I
2311	KS III	1852	TM	I
2311	COIIII	1832	SD	I
2475	WY / III	1811	KY	r
2302	NB III	1737	L A	I
2224	III AV	1647	SC	I
2183	MT /II	1633	AR	I
2174	ur II	1444	MS	/
		0	AK	
		0	HI	

the rigid clusters are shown; each rigid cluster is such that the smallest cluster properly including it contains a cluster disjoint with the rigid cluster. The principal features of the tree are a northeastern cluster of Delaware through Michigan, a northern cluster of Delaware through Montana, a western cluster of Arizona through Washington, and the isolated clusters of Alaska and Hawaii. (Sorry, Alaska and Hawaii!)

11.14 DENSITIES AND CONNECTEDNESS, DISTANCES GIVEN

Given a set of objects and links between some pairs of them, a natural measure of density at object I is the number of objects J to which it is linked. Thus density-contour clusters may be constructed from any set of objects on which links are defined. In particular, if the distance is given for all pairs of objects, each pair of objects will be linked if their distance is less than some threshold DO. As a rule of thumb, DO

might be the minimum distance which connects the data (that is, the maximum gap in the single-linkage algorithm.)

An example of density-contour clusters in two dimensions is given in Figure 11.5. Note that there are only two rigid clusters, which corresponds to the intuitive visual clustering.

11.15 THINGS TO DO

11.15.1 Running the Single-Linkage Algorithm

This algorithm requires a distance between every pair of points. It costs about M^2 comparisons between distances, so it is practicable only for small numbers of points—say, M < 1000. It is possible to avoid some of the M(M-1)/2 distance calculations by trickery like spiral searches. The clusters obtained have several global characterizations that make them easier to understand than many clusterings. A definite defect is that the single-linkage clustering depends only on the small distances in the distance matrix, and so it will be relatively unstable if these distances are not accurately determined. The average joining algorithm gives more compact and more stable clusters.

Mutation distances (Table 11.12) and stock yields (Table 11.13) are proposed as trial data sets.

Table 11.12 Mutation Distances

MAN	0.
MONKEY	1, 0.
DOG	13,12. 0.
HORSE	17.16.10. 0.
DONKEY	16.15. 8. 1. 0.
PIG	13.12. 4. 5. 4. 0.
RABBIT	12.11. 6.11.10. 6. 0.
KANGAROO	12.13. 7.11.12. 7. 7. 0.
PEKIN DUCK	17.16.12.16.15.13.10.14. 0.
PICEON	16.15.12.16.15.13. 8.14. 3. 0.
CHICKEN	18.17.14.16.15.13.11.15. 3. 4. 0.
KING PENGUIN	18.17.14.17.16.14.11.13. 3. 4. 2. 0.
SNAPPING TURTLE	19.18.13.16.15.13.11.14. 7. 8. 8. 8. 0.
RATTIESNAKE	20.21.30.32.31.30.25.30.24.24.28.28.30. 0.
TUNA	31.32.29.27.26.25.26.27.27.27.26.27.27.38. 0.
SCREWWORM FLY	33.32.24.24.25.26.23.26.26.26.26.28.30.40.34. 0.
MOTH	36.35.28.33.32.31.29.31.30.30.31.30.33.41.41.16. 0.
BAKER'S MOULD	63.62.64.64.64.64.62.66.59.59.61.62.65.61.72.58.59. 0.
BREAD YEAST	56.57.61.60.59.59.59.58.62.62.62.61.64.61.66.63.60.57. 0.
skin fungus	66.65.66.68.67.67.67.68.66.66.65.67.69.69.65.61.61.41. 0.

From Fitch and Margoliash, *Science* (1967). A distance between two species is the number of positions in the protein molecule cytochrome-c, where the two species have different amino acids.

Table 11.13 Yield of Stocks

Yield equals the cash dividend by the average price of stock (from Moody's Handbook of Common Stocks).

	59	60	61	62	63	64	65	66	67	68	69
Aetna Life & Casualty	1.4	1.6	1.2	1.4	1.2	1.0	1.2	1.5	2.1	2.1	2.6
Allied Chemical	2.8	3.4	3.1	3.9	3.6	3.3	3.6	4.5	4.8	4.5	3,9
American Airlines	3.5	4.7	4.3	5.1	3.7	2.6	2.2	2.1	2.0	2.7	2.6
American Broadcasting Company	3.7	2.7	1.9	2.8	3.0	2.9	2,4	2.1	1.9	2.7	2.6
American Cyanamid	2.9	3,2	3.6	4.0	3.3	3.2	2.8	3.2	3.9	4.4	4.3
American Express	2,6	2,6	2.0	2.5	2.8	3.2	2.3	1.7	1.0	1.0	1.4
American Motors	3.9	4.5	5.8	6.6	5.1	6.3	5.6	0	0	0	0
American Telephone & Telegraph	3.8	3.5	8.5	3.1	2.8	8.5	3.1	3.9	3.9	4.5	4.5
Anaconda Company	3.7	4.5	4.6	5.7	5.3	5.1	5.4	5.7	5.1	4.3	4.7
Atlantic Richfield Co.	5.3	4.3	4.8	4.5	4.0	3.5	3.4	3.1	1.9	0	1.8
Bank America	4.1	4.3	3.3	3.7	3.2	2.9	3,3	3.8	4.0	2.9	3.2
Bethlehem Steel	4.4	5.1	5.4	6.1	4.7	4.0	3.9	5.3	4.3	5.1	5.6
Burroughs Corporation	2.7	3.0	2.8	2.6	3.6	3.9	2.6	1.4	0.7	0.5	0.4
Chase Manhattan	3.8	3.9	3.2	3.4	2.9	2.6	2.9	3.5	3.4	3.0	3.5
Chrysler	1.6	2.7	2.1	1.8	1.3	1.9	2.4	4.4	4.5	3.3	4.5
Coca Cola	4.5	3.7	2.6	8.5	2.7	2.4	2.1	2.3	1.9	1.6	1.7
Columbia Broadcasting	3.0	3.5	3.8	3.6	2.4	2.5	3.0	2,3	2.2	2.7	2.8
Consolidated Edison	4.4	4.7	3.8	4.0	3.9	3.7	4.0	4.8	5.4	5.4	6.0
Dow Chemical	1.4	1.6	1.9	2.8	2.6	2.4	2.4	3.0	2.8	3.0	3.4
Du Pont	4.6	4.8	5.3	5.1	4.2	3.3	2.5	3.0	3.1	3.4	3.9
Firestone	1.9	2.5	2.3	2.7	2.8	2.7	2.6	3.0	2.8	2.6	2.8
Ford	3.9	3.9	3.3	3.8	3.6	3.6	3.7	5.0	5.1	4.4	5.1
General Electric	2.3	2.4	2.8	3.0	2.5	2.6	2.2	2.6	2.8	2.9	3.0
General Foods	2.8	2.2	1.8	2.3	2.3	2.3	2.5	3.0	3.3	3.1	3.3
General Mills	3.0	4,2	3.4	4.3	3.2	2.8	2.6	2.5	2.3	2.1	2,4
General Motors	3.3	3.7	3.8	5.2	5.9	4.8	5.6	6.6	6.5	4.2	3.8
A& P	2.4	2.8	2.5	2.7	3.8	3.8	3.8	4.7	5.2	4.9	4.3
Greyhound	4.9	4.6	4.6	4.0	3.1	2.6	3.4	4.6	4.7	4.3	4.8
Gulf Oil	2.5	3.1	2.9	3.9	3.6	3.1	3.3	3.8	3.6	3.4	3.9
Imperial Chemical	2.0	2.5	2.3	3.0	2,2	2.6	3.1	3.3	4.9	3.2	3.2
I.B.M.	0.5	0.6	0.5	0.7	1.0	1.1	1.3	1.3	0.9	0.8	1.1
International Harvester	4,1	5.4	4.9	4.8	4.3	3.7	3.7	4.1	4.9	5.2	5.8
International Tel. & Tel.	2.5	1.9	2.2	2.1	1.8	2.0	2.0	1.5	0	1.6	1.8
Johnson & Johnson	1.3	1.5	1.1	1.2	1.1	1.1	1.0	1.0	0.8	0.7	0.6

11.15.2 Density Contour and Single Linkage

If all densities are unity and two objects are linked if their distance is less than some threshold DO, then the clusters obtained are all single-linkage clusters. If the density at object I is the number of objects within some threshold distance of object I, the clusters will not be single-linkage clusters but will differ from them in inhibiting the formation of long thin clusters. Two objects will lie in the same density-contour

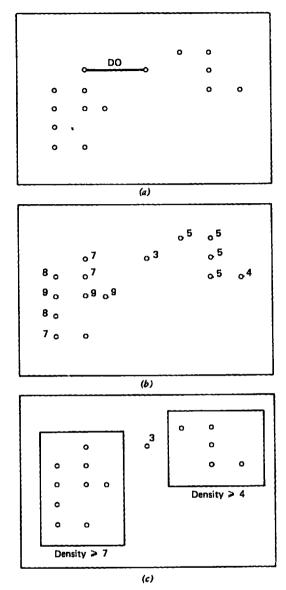


Figure 11.5 Rigid density-contour clusters from distances. (a) Choose threshold DO to be minimum connecting distance. (b) Density equals number of objects within threshold. (c) Rigid density-contour clusters.

cluster if they may be connected by a chain of objects in which each object is close to its predecessor and also has sufficiently high density. See Figure 11.5.

These facts should be demonstrated by constructing an example in two dimensions.

11.15.3 Modes

For a set of objects $I(1 \le I \le M)$, densities F(I) are given and each object is connected to some other objects. An object is a mode if its density is a maximum of the densities of the objects to which it is connected. Show that the maximal density-contour

cluster containing a specific mode, and no other, is a rigid cluster, if such a cluster exists.

11.15.4 Density Estimates

A natural density estimate is the number of objects within a threshold distance of the given object. Another natural density estimate is the inverse of the threshold distance necessary to find K objects within threshold. This second estimate is more satisfactory in sparse regions of the distribution where the first estimate will produce undiscriminating unit densities for all objects.

11.15.5 Reducing the Number of Clusters

A possible way to reduce the number of single-linkage clusters is to consider only rigid clusters. Another way is to truncate the original distance matrix to just a few levels—say, $D(1), \ldots, D(L)$. Thus, if $D(K1) < D(I, J) \le D(K2)$, the value of D(I, J) is changed to D(K2). Show that all the clusters obtained from the new distance matrix are single-linkage clusters.

11.15.6* Convexity

Single-linkage clusters are serpentine, and average distance clusters tend to be globular. An intermediate restraint on clusters is that they be convex. A joining algorithm that constructs convex clusters goes as follows. Begin with a number of convex sets $C(1), \ldots, C(K)$ containing $N(1), \ldots, N(K)$ points, respectively. The diameter of a cluster C(I) is N(I) log [N(I)/V(I)], where V(I) is the volume of the Ith cluster. Joining C(I) and C(J) produces a new cluster C^* , the smallest convex set containing C(I) and C(J). Those clusters are joined which least increase the total cluster diameter, and the joins are continued until a single cluster remains. Initializing $C(1), \ldots, C(K)$ is tricky. Try this technique in one dimension.

11.15.7 Avoiding distance calculations

If a distance D is a metric, much distance calculation may be avoided by first using a quick partition algorithm of the leader type. If the threshold is T, and I has leader L(I), then $D(I, J) \ge D(L(I), L(J)) - 2T$. In looking for small distances, it will usually be sufficient to know only the distances between leaders.

REFERENCES

BARLOW, R. E., BARTHOLOMEW, D. J., BREMNER, J. M., and BRUNK, H. D. (1972). Statistical Inference under Order Restrictions, Wiley, New York.

ERDÖS, P., and RENYI, A. (1961). "On the evolution of random graphs." Bull. Inst. Int. Stat., Tokyo, 343-347. Graphs are built up by randomly adding links. They consider many probabilistic problems, such as the number of links required for the graph to have K connected components.

ESTABROOKE, G. J. (1966). "A mathematical model in graph theory for biological classification." J. Theor. Biol. 12, 297-310. A cluster is c-connected if connected in the graph obtained by linking points of similarity greater than c. A c-cluster is c-connected, but not c'-connected for c' > c. The moat of C is the difference between c and the smallest value of c' such that the cluster is c'-connected.

GOWER, J. C., and ROSS, G. J. S. (1969). "Minimum spanning trees and single linkage cluster analysis." *Appl. Stat.* 18, 54-64. The single-linkage clusters may be obtained from the minimum spanning tree by successively eliminating links, largest first. The clusters are the maximal connected components at each step.

HARTIGAN, J. A. (1967). Representation of similarity matrices by trees. J. Am. Stat. Ass. 62, 1140-1158.

JARDINE, C. J., JARDINE, N., and SIBSON, R. (1967). "The structure and construction of taxonomic hierarchies." *Math. Biosci.* 1, 173–179. The relationship between a tree of clusters and an ultrametric is established. The single-linkage ultrametric d^* , using chain distance, minimizes $\sum F(d^* - d)$, where F is decreasing, under the constraint $d^* \le d$.

JOHNSON, S. C. (1967). "Hierarchical clustering schemes." Psychometrika 32, 241–254. A one-to-one relationship is established between a tree of clusters with diameters and the ultrametric distance, defined, between two objects, as the diameter of the smallest cluster containing them. Joining algorithms are considered—one in which the distance between clusters is the minimum, the other with maximum distance. These produce clusters whose diameters are, in the first case, the chain diameter and, in the second, the maximum distance between pairs of objects in the cluster. These two algorithms are invariant under monotonic transformation of the distances. KRUSKAL, J. B. (1956). "On the shortest spanning subtree of a graph, and a traveling salesman problem." Proc. Amer. Math. Soc. 7, 48–50. The minimum-length spanning tree is constructed by adding the shortest link, then the second shortest, and so on,

LANCE, G. N., and WILLIAMS, W. T. (1966). "A general theory of classificatory sorting strategies. 1. Hierarchical systems." Comp. J. 9, 337-380. Many hierarchical procedures are "joining" algorithms in which two objects I and J are amalgamated to form a new object IJ whose distance to any other object K is given by a rule of form

omitting a link whenever it introduces a cycle.

$$D(IJ, K) = \alpha D(I, J) + \beta D(I, K) + \gamma D(K, J),$$

where α , β , and γ may depend on the number of objects already amalgamated into I, J, and K.

LING, R. (1971). Ph.D. thesis, Yale University. A set C of objects is a (K, r)-cluster if each object in C is a distance less than r from K other objects in C, if each pair of objects are connected by a chain of objects in C with successive objects less than r apart, and if no cluster including C has these two properties. Single-linkage clusters are (1, r)-clusters.

Considerable probability theory is given for the evolution of (1, r)-clusters from randomly ranked distances, and some empirical results are presented in the K-linked case.

McQUITTY, L. L. (1960). "Hierarchical syndrome analysis." Educ. Psychol. Meas. 20, 293-303. He describes an algorithm in which two objects are joined and the similarity of the new coalesced objects to any other object is the minimum similarity of the two combined objects. In distance terms, this corresponds to the distance between clusters as the maximum distance over pairs of objects in the two clusters.

SNEATH, P. H. A. (1957). "The application of computers to taxonomy." J. Gen. Microbiol. 17, 201–206. The measure of similarity used between two strains of bacteria is the number of characters held in common, divided by the total number of

characters held by either. The two most similar strains are joined, then the next most similar, and so on. If the next most similar lie in groups already formed, the groups are coalesced.

SOKAL, R. R., and SNEATH, P. H. A. (1963). Principles of Numerical Taxonomy, Freeman, San Francisco. On p. 180, a description of the single-linkage algorithm: The most similar objects are coalesced, then the next most similar, and so on, with two groups coalesced whenever any pair of objects in them are the next most similar. On p. 182, it is suggested that the distance between clusters should be the average distance between the pairs of objects, rather than the minimum. On p. 192, there is a discussion of the serpentine character of single-linkage clusters.

WISHART, D. (1969). "A generalization of nearest neighbor which reduces chaining effects," in *Numerical Taxonomy*, A. J. Cole, ed. Academic, London. Ball-like clusters, such as arise in the K-means algorithm or in the joining algorithms with a maximum distance between clusters, sometimes result in cluster boundaries cutting across regions of high density. An example is given for the Hertzprung-Russell diagram, plotting color against brightness, which clusters stars into four types, main sequence, super giants, giants, and dwarfs. These are long sausage clusters which are not detected at all by a ball-oriented algorithm.

On the other hand, the single-linkage algorithm can easily join quite different clusters if a few "bridge" objects are fortuitously placed between them. To reduce the effect of these noisy objects, use the following algorithm:

- (i) Select a frequency threshold K.
- (ii) Associate with each object I the distance PMIN(I), the smallest distance such that K objects are within distance PMIN(I) of object I.
 - (iii) Begin a new cluster with the object for which PMIN(I) is a minimum.
- (iv) Incorporate objects in the tree in the order of the PMIN(I). When object I is incorporated, there will be a number of clusters partitioning objects already incorporated. Begin a new cluster with object I and amalgamate any pair of clusters which are linked by a distance less than PMIN(I).
 - (v) All clusters formed along the way form the tree.

PROGRAMS

SLINK computes single-linkage tree, reorders distance matrix according to order of objects consistent with tree.

```
SUBROUTINE SLINK (D. M. NB)
C . . . . .
                                                                                                           .. 20 MAY 1973
C.... COMPUTES SINGLE LINKAGE TREE FROM DISTANCE MATRIX D. REORDERS DISTANCE .

.... M = NUMBER OF OBJECTS
C.... D = M BY M BORDERED SYMMETRIC ARRAY
C.... N8 = 3 BY M CLUSTER ARRAY
C.... N8 = 3 BY M CLUSTER ARRAY
C.... N8(1,K) = FIRST OBJECT IN CLUSTER
C.... N8(2,K) = LAST OBJECT IN CLUSTER
C.... NB(3,K) = CLUSTER DIAMETER
C... NB(3,K) = CLUSTER DIAMETER
C... NB(3,K) = CLUSTER ADE ADDROSCE
C.... ONLY M-2 CLUSTERS ARE PRODUCED
         DIMENSION D(M.M),NB(3,M)
DO 30 NEXT = 1,M
          J=NEXT+1
          IF(NEXT.EQ.11'GO TO 50 IF(NEXT.EQ.M) GO TO 30
          DMI N= 10. **10
          IMIN-NEXT
         DO 31 I=2, NEXT
IF(D(I,I).GE.DMIN) GO TO 31
UMIN=D(I,I)
          IMIN=I
     31 CONTINUE
          NB(3, J)=100.+OMIN
          I=D(1,IMIN)
C... INTERCHANGE OBJECT I AND J
         DO 32 K=1,M
          A=D(I.K)
         C(I,K)=D(J,K)
     32 D(J,K)=A
DO 33 K=1,M
          A=DIK,II
          D(K, 1)=D(K, J)
     33 D(K, J)=A
          DO 36 K=2,NEXT
IF(D(1,K).EQ.I) D(1,K)=2
36 IF(DI1,K1=EQ.J) D(1,K1=I
C... UPDATE CLOSEST OBJECT TO GRABBED OBJECTS
50 CONTINUE
          DD 34 I=2.J
          0(1,3)=3
          IF(D(1,1).GT.J) GO TO 34
          D(1,1)=
          D(I,I)=10.**10
          DO 35 K=J,M
IF(K.EQ.J) GO TO 35
IF(D(I,K).GE.D(I,I)) GO TO 35
          DII.II=DII.KI
          D(1.1)=K
     35 CONTINUE
     34 CONTINUE
     30 CONTINUE
C.... FINO BOUNDARIES OF CLUSTERS
         N8(3,2)=10++1D
         NB(1,K)=K

NB(1,K)=K

NB(2,K)=K

NB(2,K)=K

DO 41 L=K,M

IF(1,EQ,K) GO TO 41

IF(1,B(3,L),GT,NB(3,K)) GD TO 42
     41 NB(2,K)=L
     42 CONTINUE
         DO 43 L=2,K
         LL=K-L+2
If(L.Eq.2) GO TO 43
If(Nb(3,LL).GT.Nb(3,K)) GO TO 44
     43 CUNTINUE
     44 NB[1.K]=LL
     40 CONTINUE
         MM=M-2
DO 45 K=1, MM
CO 45 L=1,3
    45 NB(L,K)=NB(L,K+2)
C.... SET MAXIMUM DIAMETER EQUAL TO 100
         NMAX = 0
         DO 46 K=1,MM
     46 IF(NMAX.LT.NB(3,K)) NMAX=NB(3,K)
     DO 47 K=1,MM
47 NB(3,K]=(NB(3,K]+100]/NMAX
C.... REPAIR DISTANCE MATRIX
         DO 60 I=1.M
         D(1, I)=D(I, I)
     60 IF(I.NE.1) D(I,I)=0
         RETURN
          END
```

Distance and Amalgamation Algorithms

12.1 INTRODUCTION

In Table 12.1, the outcome is given of the first five matches of each of the Ivy League colleges in the 1965 football season. In order to predict future matches, it is desirable to identify similar colleges; for example, if Brown is similar to Yale, it might be predicted that Dartmouth will beat Yale about 35-9, since it has already beaten Brown by this amount.

The single-linkage technique proceeds by computing distances, somehow, between every pair of colleges, joining the closest pair, and then treating this cluster in later steps as a single object by defining its distance to all other objects in some way.

A generalization of this technique assumes the following to be given:

- (i) a rule for computing a distance between any pair of objects;
- (ii) a rule for amalgamating any two objects to form a third object. Algorithms using these two rules will be called distance and amalgamation algorithms. There still remains to be specified the exact method of tree construction. The first method considered is a joining technique, which finds the two closest objects using the distance rule, then amalgamates these two objects to form a new object using the amalgamation rule, and repeats the step on the reduced set of objects.

12.2 JOINING ALGORITHM

Preliminaries. It is assumed that a rule is given for computing distances between any two objects, and another rule is given for amalgamating any two objects to form a third object. The algorithm proceeds by finding the closest pair of objects, removing them from the set of objects, and replacing them by a single amalgamated object. There are two difficulties—the first is the problem of searching over all pairs of objects at each step, the second is keeping track of the sequence of amalgamations so the tree can be conveniently reconstructed. A number of clusters will be constructed by amalgamation in the course of the algorithm. Initially, each object is regarded as a cluster. At each step, the value IMIN(I) denotes the closest cluster to the Ith one (among clusters not yet amalgamated), and the value DMIN(I) denotes the distance of I to IMIN(I). Once the Ith cluster is removed by amalgamation, DMIN(I) = ∞ and IMIN(I) equals the cluster absorbing I.

Table 12.1 Ivy League Football, First Half of 1965 Seas	Table 1:	2.1 Ivv	League Football.	First Half	of 1965	Season
---	----------	---------	------------------	------------	---------	--------

BROWN EN	HOLY CROSS HC
BUCKNELL BL	LAFAYETTE LE
COLGATE CE	Lehigh Lh
CONNECTICUT CT	PENNSYLVANIA PA
COLUMBIA CA	Princeton Pn
CORNELL CL	RHODE ISLAND RI
DARTMOUTH DH	RUTGERS RS
HARVARD HD	Tufts Ts
NEW HAMPSHIRE - NH	YALE YE

```
6-14(RI) 0- 7(PA) 0- 3(YE) 9-35(DH) 6- 0(CE)
BROWN
                 0-14(LE) 0-31(PN) 6-21(HD) 21- 7(YE) 12- 7(RS)
COLUMBIA----
                 0- 0(CE) 49-13(LH) 27-36(PN) 3- 3(HD) 14-24(YE)
CORNELL----
               56- 6( ) 27- 6(HC) 24-19(PA) 35- 9(BN) 14- 0(HD)
DARTMOUTH----
               17- 7(HC) 33- 0(TS) 21- 6(CA) 3- 3(CL) 0-14(DH)
HARVARD----
               20-14(LH) 7- 0(BN) 19-24(DH) 16-13(BL) 0-51(PN)
PENNSYLVANIA--
               32-6(RS) 31-0(CA) 36-27(CL) 27-0(CE) 51-0(PA)
PRINCETON----
                6-13(CT) 0- 7(CE) 3- 0(BN) 7-21(CA) 24-14(CL)
YALE-----
```

- STEP 1. For each I ($1 \le I \le M$) let IMIN(I) be that object which is closest to I, and let DMIN(I) be its distance to I. Set K = M.
- STEP 2. Let DM be the minimum value of DMIN(I) $(1 \le I \le K)$. Let J, L be clusters (J < L) such that IMIN(J) = L, IMIN(L) = J, and DMIN(J) = DMIN(L) = DM.
- STEP 3. Define a new cluster, the (K+1)th, to contain all objects in cluster J or cluster L. Set $DMIN(J) = DMIN(L) = \infty$, IMIN(J) = IMIN(L) = K + 1.
- STEP 4. Let D(K+1, I) be the distance between the (K+1)th cluster and the Ith cluster, computed whenever $DMIN(I) < \infty$. If D(K+1, I) < DMIN(I), set DMIN(I) = D(K+1, I), IMIN(I) = K+1. Let DMIN(K+1) be the minimum value among the D(K+1, I) and let IMIN(K+1) be the corresponding I value.

For each I ($1 \le I \le K$) with DMIN(I) $< \infty$, if IMIN(I) = J or IMIN(I) = L, recompute the closest cluster IMIN(I) and its distance DMIN(I).

- STEP 5. Increase K by 1 and return to Step 2 unless K = 2M.
- STEP 6. Initially, POS(I) = 1 for $1 \le I \le M$, and POS(I) = 0 for M < I < 2M. Eventually POS(I) is the position of the Ith object in the ordering, such that each cluster is contiguous.

- STEP 7. For each $I(1 \le I < 2M 1)$ replace POS[IMIN(I)] by POS[IMIN(I)] + POS(I). After this step, POS(I) is the number of objects in the Ith cluster.
- STEP 8. For each I $(2M-1>I\geq 1)$, in reverse order, replace POS(I) by POS[IMIN(I)], and change POS[IMIN(I)] to POS[IMIN(I)] POS(I).

12.3 JOINING ALGORITHM APPLIED TO IVY LEAGUE FOOTBALL

The distance is computed between each pair of schools as the average squared difference between the scores over those schools which they have both played. For example, the distance between Brown and Cornell, since they played only Yale in common, is $\left[\frac{1}{2}(0-14)^2+\frac{1}{2}(3-24)^2\right]$. Notice that the score by the opposing school and the score against the opposing school are both included, although it might be plausible to use only the difference of the scores.

To amalgamate a pair of schools, associate with the amalgamated schools all scores of all schools played by either amalgamated school. If a school was played by both, list both scores. If the amalgamated schools played each other, list the score in each order.

For example, to amalgamate Cornell and Harvard, the list is

0-0(CE)	49-13(LH)	27-36(PN)	3-3(HD)	14-24(YE)
17-7(HC)	33-0 (TS)	21-6 (CA)	3-3(CL)	0-14(DH).

With this amalgamation rule, the distance may be simply computed between clusters. Suppose cluster I is amalgamated with cluster J, cluster I has R scores in common with cluster K, and cluster J has S scores in common with cluster K. Then the amalgamated cluster—L, say—is distance D(L, K) from K, where (R + S)D(L, K) = RD(I, K) + SD(J, K). The distance matrix may thus be updated directly without reference to the lengthening list of scores for each cluster. It is actually more convenient to work with the sums of squares RD(I, K) and the number of common opponents R, since the updating is then by simple addition.

- STEP 1. For the first object, BN, the closest object is object 8, YE, which is distance 51.5 from BN. (All distances are given in the first matrix in Table 12.2.) Therefore IMIN(1) = 8, DMIN(1) = 51.5. The closest object to object 2, CA, is object 8, YE, and its distance is 392. Therefore IMIN(2) = 8, DMIN(2) = 392. The list of closest objects and corresponding distances is given in Table 12.3. Set K = 8.
- STEP 2. The minimum value of DMIN(I) ($1 \le I \le 8$) is 0. Clusters 3 and 5 both have this minimum distance to each other. So J = 3, L = 5.
- STEP 3. The ninth cluster is now defined, consisting of clusters 3 and 5, the objects CL and HD. Set DMIN(3) = DMIN(5) = ∞ , IMIN(3) = IMIN(5) = 9. Clusters 3 and 5 will not be considered again in the amalgamation process, but the final value of IMIN is used later in reconstructing the tree.
- STEP 4. It is necessary to compute D(9, I) $(1 \le I \le 8)$, the distance of the new cluster to all other clusters except the ones removed by amalgamation. For the definitions of amalgamation and distance used in this problem, these new distances may be computed by weighted averages of the old. For example, cluster 3, CL, played two

Table 12.2 Sequence of Distance Updates in Applying Joining Algorithm to Football Data (Table 12.1)

Sum of squared differences between scores/number of commi	SUM OF	uared differences between	SCORES/NUMBER O	F COMMON	OPPONENTS
---	--------	---------------------------	-----------------	----------	-----------

DOM OF	Deforting DT		DESTRUCTION OF	OCTODY NO.		A-E-1011 OI	COUNTILD		
	****	~		•		704		150	
BN	BIN O	CA	CL	DH	HD	PA	PN	YE	
CA	457/1	0							
CL	673/2	1425/3	0						
DH		505/1		•					
			130/1	0					
HD	522/1	450/1 400/1	0/1	493/2	0 461/1				
PA			1796/2			0	_		
PN	3091/2	2323/2	891/2	1090/1	1801/2	5202/1		_	
AR	103/2	392/1	249/2	1105/1	983/2	16/1	2108/3	0	
AMAIGAM	ATE CL and	Ш							
BN	BN	CA	CL-HD	DH	PA	PN	YE		
CA	457/1	0	_						
CL-H		1875/4	0						
DH	2072/2	505/1	623/3	0					
PA	319/2		2257/3	915/2	0				
PN	3091/2		2692/4	1090/1		٥			
YE		392/1	1232/4	1105/1		21 08/3	0		
AMALGAM	ATE YE and	PA							
BN	BN	CA	CL-HD	DH	PA-YE	PN			
CA	457/1	0							
CL-H	D 1195/3	1875/4	0						
DH	2072/2	505/1	623/3	0					
PA-Y	E 422/4	792/2	3489/7	2020/3	0				
PN	3091/2	2323/2	2692/4	1090/1	7310/4	0			
AWATGAM	ATE HN end	DA _979							
		TV 470							
BN-Y	e en-ye	CA	CL-HD	DH	PN				
CA	1249/3								
CL-H	D 4684/10	1875/4	0						
DH	4092/5	505/1	623/3	0					
PN	10401/6	2323/2		1 09 0/1	0				
AMALGAM	ATE DH and	CL-HD			AM	a igamati	CA and	HN-YE	
BN-Y	e en-ye	CA	CL-DH	PN		BN-CA	BN-CA	CL-DH	PN
CA	1249/3	0					11156/20		- 41
	H 8776/15		0				12724/8	3782/5	
PN	10401/6	2323/2	3782/5	0		-14	12-70	210-77	
LM	- 0704/0	- 1-112	7102/3	v					

schools in common with cluster 1, BN, and cluster 5, HD, played just one school in common with cluster 1, BN. Thus,

$$4D(9, 1) = 2D(3, 1) + D(5, 1)$$

and

$$D(9, 1) = 1195/3.$$

The updated distance matrices, after each amalgamation, are given in Table 12.2.

With the particular definitions of distance used here, it is not possible for D(9, I) to be less than DMIN(I), since D(9, I) is a weighted average of distances not less than DMIN(I).

The value DMIN(9) is the minimum of the D(9, I), which from Table 12.2 shows DMIN(9) = 208, IMIN(9) = 4.

Some clusters have one of the amalgamated clusters 3 or 5 as their closest cluster, and a new closest cluster must be discovered. Clusters 4, DH, and 7, PN, are both closest to 3. They are both closest to the new cluster 9, so IMIN(4) = IMIN(7) = 9, and DMIN(4) = 208, DMIN(7) = 673.

The full record of these changes in IMIN and DMIN due to amalgamation is carried in Table 12.3.

STEP 5. Increase K to 9 and return to Step 2.

REPEAT STEPS 2-5. The minimum value of DMIN(I) is 16 for J=6, PA, and L=8, YE. The 10th cluster consists of PA and YE. The distance matrix is updated by weighted averaging. The closest cluster to 10 is cluster 1, BN, DMIN(10) = 105. Clusters 1 and 2 originally had cluster 8 as their closest cluster, and it is replaced by cluster 10. Increase K to 10, and return to Step 2.

Eventually, a single cluster will remain; the amalgamations in order are 9 = (3, 5), 10 = (6, 8), 11 = (1, 10), 12 = (4, 9), 13 = (11, 2), 14 = (12, 13), and 15 = (7, 14). These amalgamations, in their order, may be discovered from the final values of IMIN. For example, IMIN(3) = IMIN(5) = 9, IMIN(6) = IMIN(8) = 10, and so on.

STEP 6. Initially, POS(I) = 1 for $1 \le I \le 8$, and POS(I) = 0 for 8 < I < 16.

STEP 7. For I = 1, IM1N(1) = 11, so POS(11) is replaced by POS(11) + POS(1) = 1. For I = 2, IM1N(I) = 13 and POS(13) becomes 1. At I = 3, POS(9) becomes 1. At I = 4, POS(12) becomes 1. At I = 5, POS(9) becomes 2. Eventually POS(I) = 1 for $1 \le I \le 8$, and POS(9) = 2, POS(10) = 2, POS(11) = 3, POS(12) = 3, POS(13) = 4, POS(14) = 7, and POS(15) = 8.

STEP 8. At I = 14, POS(14) becomes 8, POS(15) becomes 1. At I = 13, POS(13) becomes 8, POS(14) becomes 4. At I = 12, POS(12) becomes 4, POS(14) becomes 1. Eventually POS(1) = 6, POS(2) = 5, POS(3) = 3, POS(4) = 2, POS(5) = 4, POS(6) = 7, POS(7) = 1, and POS(8) = 8. These are the positions of the objects such that the clusters are contiguous; the objects are ordered

7 4 3 5 2 1 6 8.

The tree can be quickly reconstructed from the IMIN array. Here

[7([4(35)]{2[1(68)]})].

In conclusion, with these data, there are about three clusters, {Princeton}, {Cornell, Dartmouth, Harvard}, and {Brown, Columbia, Pennsylvania, Yale}, that might vividly be described as the powerhouse, the pretenders, and the pushovers. The use of the clusters is in giving an extended list of scores in making predictions. For example, how well will Dartmouth do against Princeton? The only school similar to Dartmouth that Princeton has played is Cornell (the score, 36-27). So, the prediction is Princeton 36, Dartmouth 27. As it turned out, the score was Princeton 14, Dartmouth 28. Note, how accurately the Dartmouth score is predicted!

Table 12.3	Sequence of Closest Distances in Applying Joining Algorithm to Football
	Data (Table 12.1)

	INITIALLY			JOIN CL and HD			JOIN PA and YE			
	CLUSTER	IMIN	DMIN	CLUSTER	IMIN	DMIN	CLUSTER	IMIN	DMIN	
BN	1	8	52	1	8	52	1	10	1 05	
CA	2 ,	8	392	2	8	392	2	10	396	
CL	3	5	0	3	9	6	3	9	æ	
DH	4	3	130	4	9	208	4	9	208	
HD	5	3	0	5	9	ω	5	9	∞	
PA	6	8	16	6	8	16	6	10	w	
PN	7	3	445	7	9	673	7	9	673	
YE	8	6	16	8	6	16	8	10	ω	
				9	4.	208	9	4	208	
							10	1	105	

JOIN BI	and PA	-YE	JOIN C	-HD and	1 DH	JOIN BN-	YE and	CA
CLUSTER	IMIN	DMIN	CLUSTER	IMIN	DMIN	CLUSTER	IMIN	DMIN
1	11	\$	1	11	Φ.	1	11	ω
2	11	412	2	11	412	2	13	6
3	9	6	3	9	∞	3	9	co
1†	9	208	1¢	12	•	14	12	æ
5	9	w	5	9	æ	5	9	8
6	10	လ	6	10	œ	6	10	8
7	9	673	7	12	756	7	12	756
8	10	800	8	10	co	8	10	¢:
9	14	208	9	12	œ	9	12	•
10	11	60	10	11	œ	ìo	11	0
11	2	412	11	2	412	11	13	€
			12	2	476	12	13	656
						13	12	656

JOIN BN-CA and CL-DH JOIN BN-DH and PN

IMIN(12) = IMIN(13) = 14 IMIN(7) = IMIN(14) = 15

What about Harvard-Yale? Against Harvard cluster schools, Yale has 24-14 (Cornell). Against Yale-cluster schools, Harvard has 21-6 (Columbia). The suggestion is Harvard-Yale, 14-24 or 21-6; to make a single estimate, 17.5-15. The actual score was 13-0.

With the distance and amalgamation rules used, it was unnecessary to refer to the actual scores once the initial distance matrix was computed. The amalgamation rule

implies the updating of the distance matrix (by using also the number of schools played by each team). For very large numbers of schools—say, 500—the 500×500 distance matrix would be impractical, and it would be cheaper to store the data and compute distances when they are needed directly from the data.

12.4 REMARKS ON JOINING ALGORITHM

The joining algorithm, with various definitions of distance and amalgamation rules, includes many common types of algorithms. In particular, the single-linkage algorithm is a joining algorithm. The data for each object are a vector of distances to all other objects. When two objects are combined, the new vector is the minimum distance to each object of the two amalgamated objects. Other amalgamation rules take weighted or unweighted averages of the two distances or take the maximum. A general class of amalgamation rules on distances has been described by Lance and Williams (1966).

The algorithm is not really suitable for large data sets, since M^2 distances must be computed and examined (although only the smallest distances need be looked at, so there may be some savings in using the spiral search technique). The final tree is invariant under permutation of the original objects, provided all distances computed during the algorithm are different. If all objects were originally identical, the binary tree would depend on their order.

The algorithm produces 2M-1 clusters, which must be reduced somehow. There is the automatic pruning which eliminates all clusters except the "rigid" clusters; the size of the minimum cluster properly including a rigid cluster exceeds the size of the rigid cluster by at least 2. It would be better to be stingy in constructing the tree in the first place. The basic joining operation, instead of joining two objects, would join many. The distance between two objects is an acceptable basis for joining two, but something more is necessary in joining many—a definition of cluster diameter. The algorithms would proceed—find the cluster of smallest diameter, amalgamate the objects in the cluster to form a new object, and repeat. It is only rarely possible to search over all 2^n clusters for that of smallest diameter, which makes this method computationally less clear cut than the distance methods. Sometimes the definition of diameter reduces the number of possible clusters.

In one dimension, let $X(1), \ldots, X(M)$ denote the ordered objects. Let C have diameter max $\{I, J \in C\} | X(I) - X(J)| / N(C)$, where N(C) is the number of elements in the cluster C. The only clusters which need be considered are convex, consisting of objects $\{X(I), X(I+1), \ldots, X(J)\}$ in an interval, and there are only M(M-1)/2 of these.

12.5 ADDING ALGORITHM

Preliminaries. It is assumed that a rule is given for computing the distance between any pair of objects and that a rule is given for amalgamating two objects to become a new object. The adding algorithm builds up a tree by successively adding objects to it. The objects are added in the order initially given, and, as a result, the tree may depend on this initial order.

After the construction, there will be 2M - 1 clusters; the original objects will be numbered $1, 2, \ldots, M$ and the clusters $M + 1, \ldots, 2M - 1$. There will be representative objects associated with each cluster. The tree structure is described by the

vector C1(I), C2(I) which specifies for the Ith cluster the two maximal proper subclusters (M < I < 2M). The algorithm adds the Ith object by branching down the tree from the root, at each step moving toward that cluster to which it is closest. Its operation is similar to that of the triads- and tree-leader algorithms.

- STEP 1. Define C1(M+1)=1, C2(M+1)=2. Amalgamate 1 and 2 to form the object M+1.
 - STEP 2. Add the Ith object (3 < I < M). Set KK = K = M + I 2.
 - STEP 3. Set JJ = C1(KK), LL = C2(KK).
- (i) If $KK \le M$ or $\min\{D(I, JJ), D(I, LL)\} \ge D(JJ, LL)$, define C1(M + I 1) = KK, C2(M + I 1) = I; if C1(K) = KK, set C1(K) = M + I 1; if C2(K) = KK, set C2(K) = M + I 1. Amalgamate KK and I to form the new object M + I 1. Return to Step 2.
 - (ii) Otherwise, set K = KK.
- STEP 4. Amalgamate I with K to form a new object K. Define J = C1(K), L = C2(K).

If $D(I, J) \le D(I, L)$, set KK = J. If D(I, J) > D(I, L), set KK = L. Return to Step 3.

12.6 ADDING ALGORITHM APPLIED TO QUESTIONNAIRE (TABLE 12.4)

Since some questions were asked positively ("The course content was about right") and some negatively ("I would prefer not to have my work criticized in public"), it is reasonable to prescale the questions so that they are all answered positively. A negative variable V is therefore transformed to 6 - V. Squared euclidian distance is then used on the transformed variables (or questions). Two variables are amalgamated by weighted averaging. The variable corresponding to a cluster will be the average of all variables in the cluster.

- STEP 1. M = 31, C1(32) = 1, C2(32) = 2. The object 32 is the average of variables 1 and 2 for each of the eight students.
 - STEP 2. Add the third object, I = 3. Set K = KK = 32.
 - STEP 3. Set JJ = C1(32) = 1, LL = C2(32) = 2.
 - D(1, 2) = 7, D(1, 3) = 15, D(2, 3) = 17, which is equivalent to choice (i).

Thus $D(JJ, LL) \le D(I, JJ)$, D(I, LL). Define C1(33) = 32, C2(33) = 3. Amalgamate 32 and 3 to form object 33, (11 15 11 15 9 14 13 11)/3. Return to Step 2. The tree is now [(12)3].

STEP 2 REPEATED. Add the fourth object, I = 4. Set K = KK = 33.

- STEP 3. Set JJ = C1(33) = 32, LL = C2(33) = 3.
- D(4, 3) = 20, D(4, 32) = 13.75, D(3, 32) = 14.75.

The otherwise choice (ii) occurs, K = 33.

STEP 4. Amalgamate 33 and 4 to form a new object 33, (16 18 13 19 13 19 17 15)/4. Set J = C1(33) = 32. Set L = C2(33) = 3. Since D(4, 32) < D(4, 3), set KK = 32. Return to Step 3.

Table 12.4 Questionnaire About Data Analysis Course

This questionnaire was given to eight students after a data analysis course in 1969. The responses are coded as follows: 1, strongly disagree; 2, disagree; 3, neutral; 4, agree; 5, agree strongly.

	QUESTIONS		I	Œ	P	M	ES	;	
1.	I learned a lot.	4	5	ų	5	4	5	4	키
2.	Statisticians can get along without most of this stuff.	4	1	2	1	3	2	2	2
3.	If I had known what it was like I wouldn't have taken it.	1	1	3	1	4	1	1	4
4.	The course should be given before consulting work.	5	3	2	4	4	5	4	5
5.	I think I will be able to use most of the material.	4	4	4	4	Ħ	5	4	4
6.	The course was interesting.	5	5	4	4	4	5	5	4
7.	I was thrown into the computer without preparation.	4	1	2	7	3	3	1	2
в.	A working knowledge of Fortran should be a prerequisite.	4	5	4	2	3	4	5	3
9.	More emphasis should be placed on complete packages.	3	2	3	1	3	3	2	2
10.	My mathematical background was sufficient.	5	5	¥	5	3	5	5	4
11.	I didn't know enough statistical theory to understand.	2	1	2	1	4	2	1	2
12.	Too much was assumed about elementary data analysis.	3	2	2.	2	4	2	2	2
13.	I was adequately prepared.	3	5	4	7	2	4	5	3
14.	I had to do too much work myself	3	3	5	2	1	2	1	3
15.	I spent too much time at the Computer Center fiddling.	4	5	5	4	1	4	1	3
16.	The computing was more fun than the statistics.	3	4	3	3	5	5	1	3
17.	There weren't enough interesting data sets.	,	4	5	4	3	4	2	4
18.	There should be more packaged programs	,	2	3	1	¥	4	2	2
19.	I want to write my own subroutines	4	4	1	2	2	2	3	4
20.	We shouldn't waste a session on student projects.	1	. 1	4	2	2	2	1	3
21.	I would prefer not to have my work criticized in public.	1	1	3	2	1	2	1	2
22.	The level of student participation is about right.	4	4	1	4	3	4	3	3
23.	We went through too much, too fast, to grasp anything.	4	5	¥	4	5	4	1	2
24.	I want more correlations, and factor enalysis.	4	2	3	4		ų	2	3
25.	We spent too much time on clustering.	,	2	4	2	4	4	2	2
26.	We should consider only real variables, let 0-1, category go.	,	4	4	2	1	2	1	3
27.	We need to discuss time series.	4	3	3	4	1	4	4	4
28.	Too much emphasis on trivial data analysis like plots.	2	2	4	4	1	2	2	2
29.	More time on regression and analysis of variance.	4	4	2	3	1	5	3	4
30.	A more mathematical treatment please.	3	4	¥	3	4	4	3	4
31.	The course content was about right.	4	4	4	3	4	4	ų	4

STEP 3. Set JJ = C1(32) = 1, LL = C2(32) = 2. Then D(1, 2) = 7, D(1, 4) = 10, D(2, 4) = 24. Therefore (i) holds, with $D(1, 2) \le D(1, 4)$, D(2, 4). Set C1(34) = 32, C2(34) = 4, amalgamate 32 and 4 to form 34, (11 13 10 14 11 14 12 14)/3. Since C1(33) = 32, set C1(33) = 34. Return to Step 2.

The algorithm proceeds by adding each object in turn to the tree, beginning at the root and branching at each choice toward the closest cluster. An object is computed for each cluster, which at each stage is the average of all original objects in the cluster.

These constructed objects are necessary in the allocation of new objects, but they are also useful in interpreting the final clusters.

The result of the algorithm for the first eight questions are given in Table 12.5. There are about two clusters: first, the questions 1, 5, 6, 8, the first three of which all ask for an overall evaluation of the course and naturally go together. The second cluster contains questions 2, 7, 9. Questions 7, 9 both ask about computer preparation. The algorithm has been successful in identifying similar groups of questions.

Table 12.5 Output Tree of Adding Algorithm on Questionnaire (Table 12.4) Responses marked with a dash reflected about 3.

	CL	USTER NUMBER 35 36 38 37 39	32	34	33
	1.	LEARNED/-III	-I-	-I-	-I
	5.	USE/-/ I I	I	I	I
	6.	interest/ I	I	I	I
	8.	FORTRAN/	I	I	I
-	2.	WITHOUT	I	I	I
-	7.	THROWN/ I	I	I	I
-	9.	PACKAGES/	-/	I	I
	4.	CONSULTING-/		/	I
_	3.	TAKEN/			-/

OBJECTS CORRESPONDING TO CLUSTERS (ORIGINAL OBJECTS UNDERLINED) RESPONSES

01	4	5	4	5	4	5	4	5
05	4	4	4	4	4	5	4	4
-35	4	4.5	4	4.5	4	5	4	4.5
06	5	5	4	4	4	5	5	4
36	4.3	4.7	4	4.3	4	5	4.3	4.3
08	4	_5	4	2	3	Ļ	5	3
38	4.3	4.5	4	3.8	3.8	4.6	4.5	4
02	2	5	4	5	3	4	4	4
07	2	5	4	3	3	3	5	4
-37	2	5	4	4	3	3.5	4.5	4
09	3	4	3	5	3	3	4	4
39	2.3	4.7	3.7	4.3	3	3.7	4.3	4
32	3.4	4.7	3.9	4.0	3.4	4.1	4.4	4
04	5	3	2	4	4	5	4	5
34 -	3.6	4.5	3,6	4.0	3.5	4.3	4.4	4.1
03	5	5	3	5	2	5	5	2
35	3.8	4.6	3.6	4.1	3.3	4.3	4.4	3.9

Table 12.6 Sequence of Trees in Applying Adding Algorithm to Questionnaires (first Eight Questions)

```
1 --32--33
                                           1 --32--34--33
         1 --32
                                          2 --32--34--33
         2 -- 32
                         2 -- 32 -- 33
                                          4 -----34--33
                         3 ----33
                                           3 -----33
                                       1 -- 35 -- 36 -- 32 -- 34 -- 33
1 --35--32--34--33
                                       5 -- 35 -- 36 -- 32 -- 34 -- 33
5 -- 35 -- 32 -- 34 -- 33
2 -----32--34--33
                                       6 ----36--32--34--33
                                       2 ----32--34--33
4 ----34--33
                                       4 ----34--33
3 -----33
                                       3 -----33
                                       1 --35--36--38--32--34--33
1 --35--36--32--34--33
                                       5 -- 35 -- 36 -- 38 -- 32 -- 34 -- 33
5 -- 35 -- 36 -- 32 -- 34 -- 33
6 ----36--32--34--33
                                       6 ----36--38--32--34--33
2 -- 37 ---- 32 -- 34 -- 33
                                       8 -----38--32--34--33
                                       2 -- 37 ---- 32 -- 34 -- 33
7 -- 37 -- -- - 32 -- 34 -- 33
                                       7 -- 37 -- -- -- 32 -- 34 -- 33
4 ----34--33
                                       4 -----34--33
3 ----33
                                       3 -----33
1 -- 35 -- 36 -- 38 -- 32 -- 34 -- 33
5 -- 35 -- 36 -- 38 -- 32 -- 34 -- 33
6 ----36--38--32--34--33
8 ----38--32--34--33
2 -- 37 -- 39 -- -- - 32 -- 34 -- 33
7 -- 37 -- 39 -- -- -- 32 -- 34 -- 33
9 -----39-----32--34--33
4 ----34--33
3 -----33
```

The clusters may be interpreted by looking at the object corresponding to each cluster—here the mean over all original objects in the cluster. For example, cluster 36 containing 1, 5, 6 corresponds to an object, or question, with responses between 4 and 5 indicating that the course was acceptable, overall, to all students. The responses for the "computer preparation" cluster are all about 4, except for the first student, who was dissatisfied, and the fifth student, who was neutral. For the cluster of all questions, the responses are simply averages over all questions. (Note that this average

would be senseless if the negative questions are not reflected about 3.) The fifth student has a neutral response on average, but it is much more revealing to find out what aspects of the course displease him and which please him, and for this it is necessary to identify clusters of questions and examine averages over the clusters.

It is natural to think of clustering students, as well as questions, and to try to relate the clusters of students to clusters of questions. One group of students wants more mathematical treatment, another group wants more time on linear methods, and so on. Two-way clustering techniques to perform this analysis will be discussed in later chapters.

12.7 THINGS TO DO

12.7.1 Running Distance and Amalgamation Algorithms

These algorithms are applicable to a very wide variety of data types, with the user specifying distance functions and amalgamation rules appropriate to the data type. The amalgamation rule results in a representative object for each cluster that is very useful in interpreting the results.

The joining algorithm is the recommended procedure for less than 100 objects. Its principal defect is the binary tree necessarily obtained; 99 clusters will rarely be justified by the data and will confuse interpretation. The adding algorithm is recommended for more than 1000 objects, since it completes the classification in one pass. The results will be dependent on input order of the objects; this dependence might be reduced by an initial ordering by distance from a mean object. Another trick for reducing order dependence is to add the objects, say, three times and then to eliminate all but the latest set of objects. (See nails and screws, Table 12.7, and cakes, Table 12.8, for trial data sets.)

12.7.2 Weighted and Unweighted Averages

The first-thought distance between points is euclidean distance, and the corresponding amalgamation rule is the average of the two points. The K-means algorithm and analysis-of-variance techniques would suggest weighting the average by the number of original objects in the clusters corresponding to the points. The unweighted average is more attractive because clustering philosophy suggests discounting points discovered very similar to other points. This it might be argued that, if 10 original data points were identical, only one should be used in the clustering. The weighted-averages technique is more likely to split a single dense cluster into two clusters. The difference between these distances should be explored by considering examples in two dimensions.

12.7.3 Contingency Tables

A variable V1 takes values $1, \ldots, M$, and a variable V2 takes values $1, \ldots, K$. The number of times V1 = I and V2 = J is N(I, J). The measure for dependence is the log likelihood ratio

$$\sum \{1 \le I \le M, \ 1 \le J \le K\} \log [N(I,J)N(\cdot,\cdot)/N(I,\cdot)N(\cdot,J)],$$

$$N(I,\cdot) = \sum \{1 \le I \le K\} N(I,J),$$

$$N(\cdot,J) = \sum \{1 \le I \le M\} N(I,J),$$

and

where

$$N(\cdot,\cdot)=\sum\left\{1\leq I\leq M\right\}N(I,\cdot).$$

Table 12.7 Nails and Screws

Codes. Thread: YES=Y NO=N

Head: FIAT=F CUP=U CONE=O ROUND=R CYLINDER=Y

Head Indentation: NONE=N STAR=T SLIT=L

Bottom: SHARP-S FIAT-F

Length: (HALF INCHES)

Brass: YES-Y NO-N

	THREAD	HELAD	HEAD INDENTATION	BOTTOM	LENGTH	BRASS
TACK	N	F	n	S	1	N
NAIL1	N	F	N	S	4	N
NAIL2	N	F	N	S	2	N
NAIL3	N	F	N	S	2	N
NAIL#	N	F	N	s	2	N
NAIL5	N	F	n	S	2	n
NAIL6	N	U	N	S	5	N
NAIL7	N	U	N	ន	3	N
NAIL8	N	U	N	S	3	N
SCREW1	Y	0	T	S	5	N
SCREW2	Y	R	L	S	4	N
SCREW 3	Y	Y	L	S	Ħ	N
SCREW4	Y	R	L	S	2	N
SCREW 5	Y	Y	L	S	2	74
BOLT1	Y	R	L	F	4	N
BOITS	Y	0	${f L}$	F	1	n
BOLT3	Y	Y	${f L}$	F	1	N
BOLT4	Y	¥	L	F	1	N
BOLT5	Y	¥	L	F	1	n
воіл6	Y	Y	L	F	1	N
TACK1	n	F	N	S	1	Y
TACK2	N	F	n	S	1	Y
NAILB	N	F	N	S	1	Y
SCREWB	Y	0	L	S	1	¥

The distance between two rows is the reduction in log likelihood ratio due to combining two rows, which is just the log likelihood ratio for the part of the table consisting of the two rows. The amalgamation rule adds the two rows.

The joining algorithm may be applied to the rows, or to the columns, or to both at once.

12.7.4 Decreasing Diameters

The diameter of a cluster is the distance between objects joined to form the cluster. For some measures of distance, the diameter may not increase with the cluster. Consider the unweighted-averages euclidean distance rule.

Table 12.8 Ingredients in Cakes

From The New York Times Cookbook (1961), Craig Claiborne, Ed., Harper and Row, New York.

legend:	UNIT ING	EDIENT :	EGEND:	UNIT INGREDIENT
Æ:	Teaspoon, alm	nond essence	IR:	teaspoon, lemon rind
BM:	cup, buttermi	uk	MK:	cup, milk
BP:	teaspoon, bak	ing powder	NG:	teaspoon, nutmeg
BR:	cup, butter		MS:	cup, nuts
BS:	one, bananas		RM:	ounce, rum
CA:	tablespoon, o	COCOR	SA:	teaspoon, soda
CC:	pounds, cotte	ge cheese	SC:	cup, sour cream
Œ:	ounce, chocol	ate	SG:	tablespoon, shortening
CI:	cup, crushed	ice	SR:	cup, gra ulated sugar
DC:	tablespoon, d	ried currents	SS:	quart, strawberries
EG:	one, eggs		ST:	teaspoon, salt
EY:	one, egg yolk	•	VE:	teaspoon, vanilla extract
EW:	one, egg whit	ie .	WR:	cup, water
FR:	cup, sifted f	lour	YT:	ounce, yeast
GN:	tablespoon, g	gelatin	ZH:	ounce, zwiebach
HC:	cup, heavy cr	ean	CS:	cup, crumbs
LJ:	tablespoon, 1	emon juice	CT:	teaspoon, cream of tartar
SWEET CH BUCHE DE CHEESRCA RUM CHEE BLENDER CINE BOWI RED DEVI SCUR CRE HUNGARIA CRUMB AN SPICED F STRAWBER SAVARIN BANANA S	RHUM : OCOLATE : NOE L : SECAKE : CHESSECAKE : GHOCOLATE : L'S FOOD : AM FUDGE : M FUDGE : D NUT : OUND : RY ROLL :	4CE .5WR 1BR 2SR 420 1FR 0.5ST 1.3SR 420 6ZH 1SR .25BR 1.5CC 2GN 1SR .25ST 2EG 1GN 1LJ 1LR 0.5WR 0.5WR 0.5FR 1.5SR 0.3CA 2FR 2BP 0.5SA 0.25S 1.75FR 1.5SR 0.3CA 2FR 1.5ER 1SA 1ST JFR JBP 1ST JEG 1 1SG 1SR 4EG 2VE 3C 1BR 1.5HG 0.5ST 1.5HG 7.5SI 1TT 0.25WR 1.5FR .5FR .5FR 0.5ST 4BP .13EJ	2 5WR 2E LEG 1VE 1 1VE 2 1VE 2 125E 1 MK 1L .3GS 2 ET 10CA 1.25SA 0.35G 0.35G 0.35G 5AE 2V CS 1NS 1SE 5EG R 1VE 06SR 0.6BR .2CC	Y .25SR 1EG .5IR 2DC 1.75FR 2RM 2.5FR 1SA 0.5ST 1BK .25ST 6EG 1SC 1IR 1LJ R 1LJ 1RM 1.5CC 1HC EY 0.5CC 1CI 1SC 1.5SR 10SG .5WR .7MK 2EG 1VE 1ST 0.5SG 1MK 2EG 1VE 1SC 3CE 2EG 1VE .25WR E 1.5SR 2HC 3BP 1MK 2FR .75FR 0.5CC 1SS 5ST 3EG .25MK .7BR 1IR 1MK 3BS 1HC .12ER 1EG 0.5MK 1SS 1SC

12.7.5 Probability Models

An initial log likelihood is given for each observation—say, L(I, 0) for the Ith observation. The distance between I and J is

$$\max_{\theta} L(I, \theta) + \max_{\theta} L(J, \theta) - \max_{\theta} [L(I, \theta) + L(J, \theta)].$$

The amalgamation rule specifies $L(I, \theta) + L(J, \theta)$ as the log likelihood for the new cluster.

REFERENCES

LANCE, G. N., and WILLIAMS, W. T. (1966). "A general theory of classification sorting strategies 1. Hierarchical systems." Comp. J. 9, 373-380. Clusters are constructed by joining, beginning with M clusters each consisting of a single object and ending with a single cluster containing M objects. The pair of clusters joined at each stage is the closest pair available at that stage. The distance between clusters, given the distance between objects, may be defined in a number of ways. A clustering strategy is "combinatorial" if, for the cluster k obtained by joining clusters i and j, the distance d_{hk} between k and any other cluster h is a function only of d_{hi} , d_{hj} , d_{ij} , and of n_i , the number of objects in i, and n_i , the number of objects in j.

A particular form of this function, which includes many standard algorithms, is

$$d_{hk} = \alpha_i d_{hi} + \alpha_j d_{hj} + \beta d_{ij} + \gamma |d_{hi} - d_{hj}|.$$

For example, $\alpha_i = \alpha_j = -\gamma = 0.5$, gives

$$d_{hk} = \min (d_{hi}, d_{hi}),$$

the single-linkage amalgamation rule. Or, $\alpha_i = \alpha_i = \gamma = 0.5$ gives

$$d_{hk} = \max (d_{hi}, d_{hi}).$$

PROGRAMS

JOIN successively joins closest rows of a matrix.

AMALG gives a rule for combining two rows to form a new row.

DIST See program in Chapter 2.

```
J=NB(3,1)
73 RL(J)=A(I,1)
C... DEFINE LAST TWO CLUSTERS, AND CLUSTER DIAMETERS
DMAX=0
D0 40 I=1,KC
40 IF(DM(I).GT.DMAX) DMAX=DM(I)
WRITE(6,1) DMAX
1 FORMAT(27H MAXIMUM JOINING DISTANCE =,F20.6)
D0 50 I=1,KC
50 NB(3,I]=(DM(I)/DMAX)*100
D0 6D J=1,3
D0 60 K=KC,M
60 NB(J,K)=NB(J,KC)
RETURN
END
```

DO 73 I=2.M

	SUBROUTINE AMALG(X,Y,MM,N,P)
c	
c	AMALGAMATES X AND Y VECTORS TO BE EQUAL
c	MM = LENGTH OF VECTOR
C	M = SKIP FACTOR, TO BE USED WHEN X AND Y ARE ROWS OF A MATRIX(SEE DIST)
c	X = FIRST VECTOR
c	Y = SECOND VECTOR
	P = PARAMETER OF JOIN
c	
	DIMENSION X(MM),Y(MM)
	DO 20 I=1,MM,N
	X(I)=(X(I)+Y(I))/2.
20	Y(I)=X(I)
	RETURN
	END

Minimum Mutation Methods

13.1 INTRODUCTION

From Imms (1957), "In the embryo of most insects, evident rudiments of paired abdominal appendages appear at some stage during development.... A variable number of these appendages may become transformed into organs that are functional during postembryonic life, while the remainder disappear. The most conspicuous of the persistent appendages are the cerci of the 11th segment, which exhibit wide diversity of form, and may even be transformed into forceps, as in the Japygidae, and the earwigs."

The cerci of each insect order is recorded as segmented, unsegmented, or absent, in Table 13.1. Given the tree connecting the insect orders (which is not well established), it would be desirable to predict for each cluster the cerci status of the most recent ancestor of the cluster. For example, the ancestral endopterygota probably had no cerci. A simple and plausible criterion for interpolating ancestral values is the minimum mutation requirement. Values are assigned to the ancestors so that a minimum number of mutations (or changes of value between an object and its most recent ancestor) occur. Rules for assigning values to minimize the mutations were given for a binary tree by Fitch (1971) and for a general tree, with optimality proofs, by Hartigan (1972). Prior structure sometimes exists on the values. For example, it might be specified that the only possible mutations of cerci are in the order segmented -unsegmented → absent. This case has been considered by Camin and Sokal (1965) and, with a more general partial order on the values, by Estabrooke (1968). With these prior structures, the interesting problem is construction of the tree, not the interpolation of values given the tree; the value of any ancestor is simply the most primitive value among the descendants.

13.2 MINIMUM MUTATION FITS

Preliminaries. A variable V has values V(1), V(2),...,V(M) on objects $1, 2, \ldots, M$. A tree of clusters $1, 2, \ldots, NC$ is given on the objects, specified by an ancestor function T. For each cluster I, T(I), the ancestor of I, is the smallest cluster properly including I. The function T is defined for all I ($1 \le I < NC$), but it is not defined for the cluster NC, the cluster of all objects. The numbering of clusters is such that I < T(I) for each I ($1 \le I < NC$).

During the algorithm, the quantity V(I) is a subset of values corresponding to the Ith cluster. For $1 \le I \le M$, V(I) will be the value of variable V for object I. At first,

Table 13.1 Presence of Cerci (Tail Appendages) in Insects

S, segmented cerci; A, cerci absent; U, unsegmented cerci (From Imms, 1957).

8	1.	THYBANURA (Bristle tail)			36.	APTERYGOTA
B	2.	DIPLURA				
A	3.	PROTURA				
A	4.	COLIEMBOIA (Spring tail)				
8	5.	EPHEMEROPIERA (May flies)	30. PAIAEOPIERAN	34. Exopierygoza	37.	PTERYGOTA
A	6.	ODONODATA (Dragon flies)				
8	7.	PIECOPTERA (Stoneflies)	31. ORTHOPTEROID			
8	8.	GRYLLOBIATTODEA				
ש	9.	ORTHOPTERA (grasshoppers)				
ט	10.	PHABMIDA (Stick insect)			ļ	
ט	11.	DERMAPTERA (earwig)				
8	12.	embioptera			ł	
B	13.	DICTYOPIERA (cockroaches)		Ì		
ט	14.	IBOPTERA (termites)			1	
U	15.	ZORAPTERA			}	
A	16.	PROCOPTERA (book lice)	32. HEMIPTEROID			
1		MALLOPHAGA (bird lice)				
A	18.	SIPHUNCULATA (sucking lice)				
A	19.	HEMIPTERA (plant bugs)				
A	20.	THYSANOPTERA (thrips)	<u> </u>		1	
A	21.	NEUROPIERA (lacewings)	33. PANORPOID	35. ENDOPTERYGOTA	1	
A	22.	MECOPTERA (scorpion flies)				
A	23.	LEPIDOPTERA (butterflies)				
A	-	TRICHOPTERA (Caddis flies)				
A	25.	DIPTERA (true flies)				
A	26.	SIPHONAPTERA (fleas)				
A	27.	HYMENOPIERA (ants)				
A	28.	COLEOPTERA (beetles)				
A	29.	STREPSIPTERA	<u> </u>			

V(I) is constructed to be the set of values at cluster I compatible with a minimum mutation fit to the tree below cluster I (the tree consisting of clusters included in I and of I itself). Later, V(I) is the set of values at cluster I compatible with a minimum mutation fit to the whole tree. This terminology is illustrated in Table 13.2.

STEP 1. For each I in turn $(M < I \le NC)$ find the set of clusters $I(1), I(2), \ldots, I(J)$ such that T[I(K)] = I $(1 \le K \le J)$. Then V(I) is the set of values of V which occur with maximum frequency in $V[I(1)], V[I(2)], \ldots, V[I(J)]$.

STEP 2. For each I in turn (M < I < NC), beginning with I = NC - 1 and decreasing I by 1 at each step, if $V(I) \supset V[T(I)]$, set V(I) = V[T(I)]. If $V(I) \Rightarrow V[T(I)]$, find the set of clusters $I(1), I(2), \ldots, I(J)$ for which I is the ancestor. Then V(I) is the set of values of V which occurs with maximum frequency or frequency one less than maximum in $V[I(1)], V[I(2)], \ldots, V[I(J)], V[T(I)]$.

Table 13.2 Illustration of Terminology Used in Minimum Mutation Fit

```
V
V(1) = A 1---I--I
V(2) = B 2---/ I I
V(3) = A 3--I I I
V(4) = C 4--/--/ I
V(5) = A 5---I I
```

6---/

V(6) = A

```
CIUSTERS
           7={1,2}
                       8=(3,4)
                                    9={5,6}
                                                10={1,2,3,4} 11=(1,2,3,4,5,6)
ANCESTORS
            T(1)=T(2)=7 T(3)=T(4)=8 T(5)=T(6)=9 T(7)=T(8)=9 T(9)=T(10)=11
INITIAL V V(7)=(A,B) V(8)=(A,C)
                                    V(9)=\{A\}
                                                 V(10)=(A)
                                                              V(11)={A}
FINAL V
           V(7)=\{A\}
                       V(8)=\{A\}
                                    V(9)={A}
                                                 V(10)={A}
                                                              V(11)=(A)
```

- NOTE 1. To obtain easily a single minimum mutation fit, in Step 2 change V(I) to V[T(I)] if $V(I) \supset V[T(I)]$, and otherwise change V(I) by dropping all but one value.
- NOTE 2. It is never necessary to change the values V(I) originally given for the objects $1, 2, \ldots, M$.

13.3 APPLICATION OF MINIMUM MUTATION ALGORITHM TO CERCI IN INSECTS

The T values specifying tree structure may be recovered from Table 13.1. For example, for the four orders of Apterygota, T(1) = 36, T(2) = 36, T(3) = 36, and T(4) = 36.

STEP 1. The first cluster considered is 30, Palaeopteran. The set of clusters whose ancestor is Palaeopteran are 5 and 6, so I(1) = 5 and I(2) = 6. Since V(5) = S and V(6) = A, the values S and A occur with maximum frequency. Therefore V(30) = (S, A). The next cluster is 31, Orthopteroid, for which I(1) = 7, I(2) = 8, ..., I(9) = 15. The corresponding V values are S, S, U, U, U, S, S, U, U. The value U occurs 5 times and the value S occurs only 4, so V(31) = U. Continuing, V(32) = A and V(33) = A. A new situation arises with 34, Exopterygota, ancestor of 30, 31, 32. The corresponding V's are $\{S, A\}$, $\{U\}$, $\{A\}$. Among these V's, A is maximal, so V(34) = A.

At the conclusion of Step 1, V(30) = (S, A), V(31) = U, V(32) = A, V(33) = A, V(34) = A, V(35) = A, V(36) = (S, A), V(37) = A, and V(38) = A.

STEP 2. Running through the clusters in reverse order, cluster 37 is treated first. Since T(37) = 38, $V(37) = A \supset V(38) = A$, so V(37) = A without change. For cluster 36, $V(36) = \{S, A\}$ includes V(38) = A, so V(36) = V(38) = A. The next interesting cluster is 31, V(31) = U. Since T(31) = 34, $V(31) = U \Rightarrow V(34) = A$, so the second option is necessary. Thus V(31) becomes the set of values which are

maximal or submaximal in V(7), V(8), ..., V(15) and V(34). The value U occurs five times, the value S four times, and the value A once. Thus V(31) = U.

Finally, after Step 2 is completed,
$$V(30) = A$$
, $V(31) = U$, $V(32) = A$, $V(33) = A$, $V(34) = A$, $V(35) = A$, $V(36) = A$, $V(37) = A$, and $V(38) = A$.

The minimum mutation fit thus gives value A to all insect ancestors, except the orthopteroids, which are assigned value U. It must be admitted that this violates the accepted theory, which is that cerci are primitive appendages, so that segmented \rightarrow unsegmented \rightarrow absent would be the expected order of evolution. [A slightly different tree would produce this as a possible sequence. For example, if the orthopteroid cluster were omitted, $V(34) = \{U, S\}$, $V(37) = \{U, S, A\}$, and $V(38) = \{S, A\}$. A minimum mutation sequence would then have all ancestors with segmented cerci, except Endopterygota (absent) and Hemipteroid (absent).]

The total number of data values is 29, but these are represented in the minimum mutation fit by nine symbols (the ancient A, the orthopteroid U, and the seven present-day objects differing from these).

13.4 SOME PROBABILITY THEORY FOR THE NUMBER OF MUTATIONS

If just a few mutations will explain a large number of values, the tree is validated. To make this precise, it is necessary to know how many mutations would be expected, if there were no relation between the tree and the data—that is, if the data values were assigned at random to the objects at the end of the tree.

Suppose there are K different data values, and M objects. The probability theory is easiest if the data values are assigned independently to the M objects, with the Ith object taking the Ith data value with probability I(I). [This I(I) might be estimated by the proportion of objects taking the Ith value.] For the Ith cluster, the set I(I) will be defined, as in the algorithm of Section 13.2, as the set of values assigned to cluster I compatible with a minimum mutation fit to the tree below I. The number of mutations may be determined from the I(I). Also I(I) = I, where I is some subset of values of I, may be determined by recurrence relations from these probabilities for all the clusters whose ancestor is cluster I. In this way, the distribution of the number of mutations may be obtained for any given probabilities I(I), I = I, ..., I(I) and any given tree. If there are many objects, this number of mutations is approximately normally distributed.

This procedure will be followed for the simple case when only two values are possible and when the tree is binary. Let the values be denoted by X and Y. Suppose that a cluster I is ancestor to clusters J and K. Then

$$V(I) = X$$
 if $V(J) = X, V(K) = X$
or $V(J) = XY, V(K) = X$
or $V(J) = X, V(K) = XY,$
 $V(I) = Y$ if $V(J) = Y, V(K) = Y$
or $V(J) = XY, V(K) = Y$
or $V(J) = X, V(K) = XY,$
 $V(I) = XY$ if $V(J) = X, V(K) = Y$
or $V(J) = Y, V(K) = X$
or $V(J) = XY, V(K) = XY.$

A mutation will occur from I to J or from I to K, if and only if V(J) = X, V(K) = Y or V(K) = X, V(J) = Y. Events in J and K are independent since they contain different objects. Therefore

$$P[V(I) = X] = P[V(J) = X] P[V(K) = X] + P[V(J) = XY] P(V(K) = X] + P[V(J) = X] P[V(K) = XY]$$

with similar expressions for P[V(I) = Y] and P[V(I) = XY]. The probability that a mutation occurs from I to J or from I to K is P[V(J) = X]P[V(K) = Y] + P[V(J) = Y]P[V(K) = X]. Thus the expected number of mutations is

$$\sum \{P[V(J) = X] P[V(K) = Y] + P[V(J) = Y] P[V(K) = X]\}$$

summed over all clusters I. [Complex recurrence relations on the number of mutations in the tree below I when V(I) = X, when V(I) = Y, and when V(I) = XY may be used to determine the distribution of mutations in the whole tree and the variance of this number of mutations. Since the number of mutations is approximately normal for many objects, the mean and variance are sufficient to determine the distribution approximately. For clusters far from the ends of the tree, it may be shown that $P[V(I) = X] = P[V(I) = Y] = P[V(I) = XY] = \frac{1}{3}$, approximately. This is not much use in determining the asymptotic distribution of mutations, since most mutations occur near the ends of the tree.]

For a small and simple tree, the probabilities P[V(I) = X], P[V(I) = Y], P[V(I) = XY] and the expected number of mutations and the distribution of mutations are computed in Table 13.3. A typical recurrence relation occurs in computing P[V(11) = X] by using probabilities for clusters 9 and 10:

$$P[V(11) = X] = P[V(9) = X] P[V(10) = X] + P[V(9) = X] P[V(10) = XY] + P[V(9) = XY] P[V(10) = X]$$

$$= \frac{1}{9} \times \frac{1}{9} + \frac{1}{9} \times \frac{8}{27} + \frac{1}{9} \times \frac{4}{9} = \frac{23}{243}.$$

The expected number of mutations is the sum of the probabilities of a mutation at each join. The actual distribution of mutations is computed here by enumeration over the 64 patterns of X's and Y's possible for the end objects.

The mathematics goes nicely when the variable takes only two values, X and Y, and when the tree is ternary (every cluster is an ancestor of just three clusters). In this case, the set V(I) is either X or Y but cannot be XY. If I is ancestor to J, K, L,

$$P[V(I) = X] = P[V(J) = X] P[V(K) = X] P[V(L) = X]$$

$$\times \left(\frac{1}{P[V(I) = X]} + \frac{1}{P[V(J) = X]} + \frac{1}{P[V(K) = X]} - 2\right).$$

13.5 REDUCED MUTATION TREE

Preliminaries. This algorithm successively amalgamates "closest" pairs of clusters, beginning with M clusters each consisting of a single object and stopping when a single cluster containing all objects remains. The tree structure at each stage is determined by an ancestor function T defined for every cluster. For clusters I that still remain to be amalgamated, T(I) = 0. For a cluster I that has been amalgamated, T(I) denotes the cluster I was amalgamated into.

Table 13.3 Expected Number of Mutations

```
1. --I--I
2. --/ I I
3. --I I I
4. --/--/ I
            I
5. --I
6. --/----/
CIUSTERS. 7=(1,2), 8=(3,4), 9=(5,6), 10=(1,2,3,4), 11=(1,2,3,4,5,6)
X occurs with probability 1/3; Y occurs with probability 2/3.
                   P[V(7)=Y] = 4/9
                                        P[V(7)=XY] = 4/9
P[V(7)=X] = 1/9
                                                            P[MUTATION] = 4/9
P[V(8)=X] = 1/9
                   P[V(8)=Y] = 4/9
                                        P[V(8)=XY] = 4/9
                                                            P[MUTATION] = 4/9
P[V(9)=X] = 1/9
                   P[V(8)=Y] = 4/9
                                        P[V(8)=XY] = 4/9
                                                            P[MUTATION] = 4/9
P[V(10)=X] = 1/9
                   P[V(10)=Y] = 16/27
                                        P[V(10)=XY] = 8/27
                                                            P[MUTATION] - 8/81
P[V(11)=X] = 23/243 P[V(11)=Y] = 160/243 P[V(11)=XY] = 60/243 P[MITATION] = 28/243
EXPECTED NUMBER OF MUTATIONS = 376/243 = 1.547 .
P[MUTATIONS = 0] = 65/729
P[MUTATIONS = 1] = 264/729
P[MITATIONS = 2] = 336/729
P[MJTATIONS = 3] = 64/729
```

Used in computing similarities between clusters, the set V(I, J), defined for cluster I and variable J, is the set of values of variable J compatible with a minimum mutation fit of variable J to the tree of clusters included in cluster I (including I itself). After the tree is completed, the quantities V(I, J) for all I determine a minimum mutation fit to the whole tree (this fit is not necessarily unique).

This algorithm is essentially a joining algorithm with distances and amalgamation rules specified on the sets V(I, J).

STEP 1. Initialize V(I,J) $(1 \le I \le M, 1 \le J \le N)$ to be the value of the Jth variable on the Ith object. The number of clusters so far considered is K = M. Initialize T(I) = 0 $(1 \le I \le M)$.

STEP 2. Compute the distance between clusters I and L as

$$1 - (\sum \{1 \le J \le N\} \# [V(I,J) \cap V(L,J)])(\sum \{1 \le J \le N\} \# [V(I,J) \cup V(L,J)]^{-1}.$$

Here #(S) denotes the number of values in the set S. For clusters which are single objects, this distance is just the proportion of mismatches between the two objects for the N variables. Let the pair of clusters I, L with T(I) = 0, T(L) = 0, which are closest in this distance, be IM, LM.

STEP 3. Increase K by 1; define T(IM) = T(LM) = K. Set

$$V(K,J) = V(IM,J) \cap V(LM,J)$$
 if $V(IM,J) \cap V(LM,J) \neq \emptyset$,

$$V(K,J) = V(IM,J) \cup V(LM,J)$$
 if $V(IM,J) \cup V(LM,J) = \emptyset$.

If K < 2M - 1, go to Step 2.

STEP 4. The tree is now complete. Identify a minimum mutation fit in each variable by dropping all but one value (arbitrarily selected) from V(2M-1,J); then for any I for which V[T(I), J] contains a single value, replace V(I, J) by V[T(I), J] if $V(I, J) \Rightarrow V[T(I), J]$, and drop all but one value (arbitrarily selected) from V(I, J) if $V(I, J) \Rightarrow V[T(I), J]$.

NOTE. The minimum mutation fit obtained in Step 4 is not necessarily unique, since an arbitrary choice of values in the sets V(I,J) is sometimes necessary. The following technique does not yield a minimum mutation fit, but it does produce a unique specification of values on the tree from the V(I,J) obtained in Step 3. For all I,J, if V[T(I),J] consists of a single element and if $V(I,J) \supset V[T(I),J]$, set V(I,J) = V[T(I),J]. Now for each $I(1 \le I < 2M - 1)$ set $V(I,J) = \emptyset$ if V(I,J) = V[T(I),J] or if V(I,J) contains more than one element.

13.6 APPLICATION OF REDUCED MUTATION ALGORITHM TO AMINO ACID SEQUENCES

The data used are the amino acid sequences in the protein molecule cytochrome-c for a number of vertebrates, given in Table 13.4. Only the species man, monkey, chicken, duck, kangaroo, and rattlesnake will be considered. The sequence of joins is displayed in Table 13.5.

- STEP 1. The initial values of V(I, J) $(1 \le I \le 6, 1 \le J \le 22)$ are just the data values. The cluster number is K = 6. Initially T(1) = 0, T(2) = 0, T(3) = 0, T(4) = 0, T(5) = 0, and T(6) = 0, which indicates that these clusters are available for joining.
- STEP 2. The distance between 1, human, and 2, monkey, is $1 \frac{21}{23}$ since they fail to match only in position 102. The distance between 3, chicken, and 4, duck, is $1 \frac{20}{24}$ since they fail to match in two positions. Over all 15 pairs of clusters, 1 and 2 are closest, so IM = 1, LM = 2.
- STEP 3. Now K = 7, T(1) = T(2) = 7, and the values V(7, J) must be defined. For J = 1 (position 3), V(1, 1) = V and V(2, 1) = V. Thus $V(1, 1) \cap V(2, 1) \neq \emptyset$. Therefore $V(7, 1) = V(2, 1) \cap V(1, 1) = V$. And so it goes until J = 20 (position 102), where V(1, 20) = T, V(2, 20) = A, and $V(1, 20) \cap V(2, 20) = \emptyset$. Therefore $V(7, 20) = V(2, 20) \cup V(1, 20) = \{T, A\}$. Return to Step 2.

STEP 2 REPEATED. There is some novelty in computing distances between the new cluster 7, and the remaining clusters. For example, the distance between 7 and 3 is $1 - \frac{1}{3}\frac{1}{4}$. Here there are 11 variables which match, including $V(7, 20) = \{A, T\}$ and V(3, 20) = T. The closest pair are chicken and duck, joined to make cluster 8. Then cluster 8 and kangaroo, joined to make cluster 9. Then clusters 9 and 7 joined to make cluster 10. And finally, the rattlesnake is admitted to the collection.

Table 13.4 Amino Acid Sequence in Cytochrome-c for Vertebrates

[From Dickerson, R. E. (1972). "The structure and history of an ancient protein," Sci. Amer. (No. 4), 222, 58-72.] Each letter denotes an amino acid. Only positions which vary over the vertebrates are recorded.

```
1 1 1 1 1
           1 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 6 6 6 8 8 8 8 8 9 9 9 0 0 0 0 0
        34912 50283 64670 48012 56135 68923 501234
MAN----- VEIIM SVKTH FPYSA NIGED MEIVI KKEAD IKATNE
MONKEY---- VEIIM SVKTH FPYSA NIGED MEIVI KKEAD IKAANE
HORSE---- VEIVQ AVKTH FPFTD NTKEE MEIVI KKTED IKATNE
DONKEY---- VEIVQ AVKTH FPFSD NTKEE MEIVI KKTED IKATNE
PTC----- VEIVQ AVKTH FPFSD NTGEE MEIVI KKGED IKATNE
DOG----- VEIVQ AVKTH FPFSD NTGEE MEIVI KTGAD IKATKE
RARBIT---- VEIVQ AVKTH FVFSD NTGED MEIVI KKDAD IKATNE
WHALE----- VEIVQ AVKTH FVFSD NTGEE MEIVI KKGAD IKATNE
KANGAROO--- VEIVQ AVKTN FPFTD NIGED MEIVI KKGAD IKATNE
CHICKEN---- IEIVQ SVKTH FEFSD NTGED MEIVI KKSVD IDATSK
PIGEON---- IEIVQ SVKTH FEFSD NTGED MEIVI KKAAD IQATAK
DUCK----- VEIVQ SVKTH FEFSD NTGED MEIVI KKSAD IDATAK
TURTIE---- VEIVQ AVKTN IEFSE HTGEE MEIVI KKAAD IDATSK
RATTLESHAKE VEIVQ SVKTH FVYSA NIGED MEVTL SKKTN IEKTAA
BULLFROG--- VEITM ACKVY IAFSD NTGED MEIVI KKGQD ISACSK
TURA----- VATVQ AVNVW FEYSD SVNND MEIVI KKGQD VSATS-
DOGFTSH---- VEVVQ AVNTS FQFSD STQQE RIIVL KKSQD IKTAAS
```

Table 13.5 Application of Reduced Mutation Algorithm to Amino Acid Sequences of Man, Monkey, Chicken, Duck, Kangaroo, Rattlesnake

(Only positions that vary are recorded.)

CLUSTER POSITION /	3	11	12	15	33	44	46	47	50	58	B1	83	85	86	B9	92	93	100	101	1 02	103	104
1. HUMAN (HN)	v	I	M	S	H	P	¥	S	A	I	I	v	I	ĸ	E	A	D	K	A	T	N	E
2. MONKEY (MY)	V	I	M	S	H	P	Y	S	A	I	I	¥	I	ĸ	E	A	D	K	A	A	N	E
). CHICKEN (CN)	I	V	Q	S	H	E	F	s	D	T	I	V	I	ĸ	s	A	D	D	A	T	S	K
4. DUCK (DK)	V	v	Q	S	H	Z	F	S	D	T	I	V	I	K	S	A	D	D	A	T	A	ĸ
5. KANGAROO (KO)	V	V	Q	A	N	P	F	T	D	I	I	V	I	K	G	A	D	K	A	T	n	E
6. RATTLESNAKE (RE)	¥	V	Q	S	H	v	Y	S	A	I	V	T	L	S	K	T	N	E	K	T	A	A
VALUES OF V(I,J)																						
7. HN-MY	V	I	M	S	H	P	Y	S	A	I	I	V	I	K	E	A	D	K	A	TA	N	E
8. CN-DK	IV	¥	Q	S	Ħ	E	F	S	D	T	I	V	I	K	S	A	D	D	A	T	SA	K
9. CN-KO	V	V	Q	SA	ИH	EP	F	ST	D	TI	I	¥	I	ĸ	SG	A	D	KD	A	T	nsa	EK
10. HN-KO	V	٧I	QM	S	H	P	YF	S	DA	I	I	V	I	K	ESG	A	D	K	A	T	N	E
11. ALL	V	V	Q	S	H	PV	Y	8	A	I	IV	VT	ΙL	sk	esgk	ΑT	DN	KE	AK	T	NA	EA
VALUES OF V(I,J) IN	I MC	ונאם	A UM	MUT	ITAT	ON I	TT	то	CO	4PUT	ED 1	TE T	:									
11. ALL	¥	V	Q	s	H	P	Y	S	A	I	I	V	I	K	E	A	D	K	A	T	N	E
10. HN-KO	V	V	Q	8	H	P	Y	S	A	I	I	V	I	K	E	A	D	K	A	T	N	E
9. CN-KO	V	V	Q	S	H	P	F	S	D	I	I	V	I	K	S	A	D	K	A	T	N	E
7. HN-MY	V	I	M	5	H	P	¥	s	A	I	I	V	I	K	E	A	D	K	A	T	N	E
8. CN-DK	V	V	Q	S	H	E	F	S	D	T	I	V	I	K	S	A	D	D	A	T	S	ĸ

STEP 4. To identify a minimum mutation fit to the constructed tree, begin with the full cluster, 11. Consider only the variable 15 (position 89). Then V(11, 15) = ESGK. All but one value must be dropped, so set V(11, 15) = E. Now at I = 10, $V(10, 15) = ESG \supset V(11, 15) = E$. Therefore, change V(10, 15) to E. At I = 9, $Z(9, 15) = SG \Rightarrow E$. The second option applies, so all but one value are dropped to set V(9, 15) = S. When this is done for all clusters and variables, the resulting values of V(I, J) constitute a minimum mutation fit in every variable.

According to the Note in Section 13.5, a cluster takes a value for a given variable only if this value is uniquely determined in the minimum mutation fit. This procedure does not necessarily lead to a minimum mutation fit, but it does allow a unique summary representation of the data, given in Table 13.6.

3 = V	12 . Q	33 = H	47 = S	58 = I	
11 = V	15 = S	46 = Y	50 = A	102 - T	
44 = P	85 = I	93 = D	103 = N		44 = A
81 - I	86 - K	100 = K	104 = E		81 - V
83 = V	92 – A	101 = A			83 - T
11 = I	89 – E	46 - F	50 - D		85 - L
HUMAN	102 = A	44 = E	89 - S	15 = S	86 - S
L		58 = T	100 - D	33 = H	89 - K
	MONKEY		104 = K	47 - T	92 - T
		3 = I	103 = A	89 = G	93 = N
		103 - S	DUCK	KANGAROO	100 - E
	•	CHICKEN			101 = K
		***************************************			103 - A
					104 = A

Table 13.6 Representation of Amino Acid Data on Reduced Mutation Tree

RATTLESNAKE

13.7 THINGS TO DO

13.7.1 Using Minimum Mutation Techniques

The fitting algorithm is to be used with category data and a tree already computed. It results in a representation of the data with a minimum number of symbols. A typical use might be a summary representation of the votes of U.S. congressmen. An initial clustering of congressmen into blocs is necessary. Then each vote is reduced to a list of votes of the various blocs, with an individual congressman appearing only if he votes differently to the smallest bloc including him. (See Table 13.7 for such data and Table 13.8 for data on Indo-European languages.)

13.7.2 Uniqueness

The minimum mutation fit is not necessarily unique. There may be more than one value assigned to a node, which is consistent with a minimum mutation fit. However,

Table 13.7 Congressmen by Bills (90th Congress)

Code: 1, yes; 2, pair yes; 3, announced yes; 4, announced no; 5, pair no; 6, no; 7, general pair; 8, abstain; 9, absent; 0, sponsor absent.

SPONSOR BILLS

ASPINALL 1. Auth. Biscayne National Monument in Florida

PERKINS 2. Promote health and safety in building trades

PATMAN 3. Sr. extend 2 Yrs. auth. reg. interest and dividend rates

DINCELL 4. Rel. Dev. Fish Protein concentrate

PERKINS 5. Establish commission on Negro History and Culture

ASPINALL 6. Designate parts of Morris City, N.J., as Wilderness

UDALL 7. Provide overtime and standby pay for Trans. Dept.

EDWARDS 8. Amd. Bill for relief of sundry claimants

GROSS 9. Amd. Omnibus claims bill

GROSS 10. Strike Title 8 of omnibus claims bill

HALL 11. Strike Title 9 of commibus claims bill

GROSS 12. Strike Title 10 of commibus claims bill

HALL 13. Strike Title 11 of commibus claims bill

TAICOTT 14. Strike Title 14 of omnibus claims bill

POAGE 15. Take FD and AG ACT AMD SPKRS TBLE AGREE S CONF

	1	<u> 2</u>	_3_	4_	_5_	_ 6_	7	8	_9_	10	11	12	13	14	15
ABERNETHY	1	1	6	1	1	6	1	1	1	6	1	6	1	1	1
ALHERT	1	1	1	1	1	1	1	1	6	6	6	6	6	6	6
WIDNALL	1	1	1	1	7	1	7	7	9	9	9	9	9	9	9
andrews	1	1	6	1	1	6	6	1	1	6	1	1	6	1	1
ARENDS	1	6	6	1	6	1	1	1	1	1	1	6	1	6	1
WILSON	1	5	7	1	7	1	7	1	9	9	9	9	9	9	9
ASHMORE	7	7	5	1	1	7	7	7	9	9	9	9	9	9	9
ASPINALL	1	1	1	1	1	1	1	6	6	6	6	6	6	6	6
AYRES	1	1	1	1	1	1	1	6	6	6	6	6	6	1	1
BARING	8	1	6	7	7	7	1	1	1	9	1	1	1	1	1
ANDERSON	1	1	6	1	1	1	1	1	1	6	6	6	1	9	1
ASHBROOK	1	5	5	7	7	7	7	7	1	1	1	1	1	1	1
BATTIN	5	6	6	1	6	1	1	1	9	6	1	1	1	1	1
RELL	1	1	1	1	1	1	1	1	1	9	9	9	9	9	9
CLANCY	1	6	6	1	6	1	1	1	1	6	1	1	6	1	1
DAVIS	1	1	1	1	1	6	6	1	1	6	6	6	6	6	6
DOLE	1	6	6	1	1	1	1	1	1	6	1	1	6	6	1

Table 13.8 Indo-European Languages

A subset of data belonging to Professor Dyen, Linguistics Department, Yale University.

u	^		٠	
-	m	н	4	١

LANGUAGE	All	Bad	Belly	Black	Bone	Day	Die	Drink
Russian	vse	ploxoj	zivot	cernyj	kost	den	umirat	pit
French	tout	mauvais	ventre	noir	05	jour	mourir	boire
Spanish	todo	mal	vientre	negro	hueso	dia	morir	beber
Italian	tutto		ventre	nero	0880	giorno	morire	bere
German	alle	schlect	bauch	schwarz	knochen	tag	sterben	trinken
Swedish	all	dalig	buk	svert	ben	dag	do	dricks
English	all.	bad	belly	black	bone	day	die	drink
Welsh C	pawb	drwg	bola	đu	asgwrn	dydd	marw	yfed
Greek	olos	kakos	kilya	mavros	kokalo	mera	petheno	pino
Irish	vile	olc	bolg	dubh	chaimh	la	doluidh	olaim
Persian	hame	bad	shekam	siah	ostokhan	ruz	mordan	nushidan
Bengali	sob	bad	pei	kalo	har	din	mora	khaoa
Hindi	sob	khorab	pei	kala	hoddi	din	MOTTA	pina

LANGUAGE	Ear	Eat	Egg	Eye	Father	Fish	Five	Foot
Russian	uxo	est	jojco	glaz	otec	ryba	pjat	noga
French	oreille	manger	oeuf	oeil	pere	poisson	cinq	pied
Spanish	oreja	comedere	heuvo	ojo	padre	pez	cinco	pie
Italian	orecchio	mangiare	novo	occhio	padre	pesce	cinque	pie
German	opr	essen	ei	auge	vater	fische	funf	fuss
Swedish	ora	ata	agg	ogs.	fader	fisk	fem	fot
English	ear	eat	egg	eye	father	fish	five	foot
Welsh C	clust	bwyta	Wy	llygad	tad	piagodyn	bramb	troed
Greek	afti	troo	avgho	mati	pateras	psari	pende	podki
Irish	cluas	ithim	ubh	suil	athair	iasc	cuigear	cos
Persian	gush	khordan	tokhm	chashm	pedar	mahi	panz	pa
Bengali	kan	khaoa	onda	cok	baba	mac	pac	pa.
Hindi	kan	khana	onda	akh	реъ	mocchi	pac	per

the number of mutations in the fit, in the part of the tree descended from a node *I*, is equal to the minimum number of mutations when only this part of the tree is considered or to one more than this minimum.

13.7.3 Probability Models

A mutation occurs from X at node I to Y at node J, one of the descendants of I, with probability P(X, Y). Assume that P(X, X) = p for all values X and that P(X, Y) = r for all $X \neq Y$. Show that, if $p \geq r$, then a minimum mutation fit and a maximum likelihood fit coincide.

13.7.4 Dittoing

where a dot signifies that a character is identical to the previous character. Such identities are the stuff of clustering. Another coding is

with the even positions counting the number of times the previous value is to be repeated. This can produce large gains in storage and understanding if the neighboring members of the data sequence are highly correlated.

In this technique, which is well known in communications theory, each value is connected to the previous one for prediction purposes.

One generalization is to allow the *I*th object to be linked to the *J*th object, where J is greater than I but J is not necessarily I + 1. (It is convenient to number the objects from the right.)

In this case, J = MT(I) > I is the predictor for the *I*th object. Of course, the predictor array MT defines a tree. If the positions that make predictions are initially empty, the assignment of values to positions is the minimum mutation problem.

Another natural generalization allows transformations of values; for example, if neighboring values were negatively correlated, a one would be predicted to follow a zero. Such transformations may also be used with a tree prediction structure.

13.7.5 Unrooted Trees

The minimum mutation fit assigns values to the nodes of the tree to minimize the number of changes between neighboring nodes. For many variables, the error associated with a tree is $\sum \rho(I, J)$, where I and J are neighboring nodes and ρ is the number of mismatches, summed over all variables, between nodes I and J. This measure of error is the same whichever node is the root. Thus the "best" minimum mutation tree will have no preferred root; the search is for an unrooted tree.

13.7.6* Real Variables

For a real variable, values V must be assigned to each node (or cluster) I to minimize $\sum \rho[V(I), V(J)]$, summed over neighboring nodes I and J. First, choosing $\rho(x, y) = (x - y)^2$ leads to optimal V(I) which are solutions of certain linear equations. These solutions may be obtained, in minimum mutation style, as follows. Associate with each cluster I a pair A(I), B(I) such that V(I) = A(I), V[T(I)] + B(I). For the objects at the ends of the tree, set A(I) = 0, B(I) = V(I). Define A(I) and B(I) iteratively, if I is the ancestor of $J(1), \ldots, J(K)$, by

$$A(I) = (K + 1 - \sum \{1 \le L \le K\} A(J(L)))^{-1},$$

$$B(I) = A(I) \sum \{1 \le L \le K\} B(J(L)).$$

At the root, compute V(I) = B(I)/[1 - A(I)] and compute each V value successively by using the equation

$$V(I) = A(I)V[T(I)] + B(I).$$

Choosing $\rho(x, y) = |x - y|$ permits a solution following the minimum mutation method, and the two problems coincide for 0-1 variables. Associate with each cluster I an interval [U(I), V(I)] within which the optimal value lies. For the objects at the end of the tree, U(I) = V(I). If cluster I is the ancestor of $J(1), \ldots, J(K)$, define [U(I), V(I)] from $[U[J(1)], V[J(1)]], \ldots, [U[J(K)], V[J(K)]]$ to be the interval of values X for which the number of U values greater than X equals the number of V values less than X. (It is true, but not obvious, that these maximal X values form an interval. If U = V always, X will be the median.) Now, moving from the root toward the ends, choose any value in the interval [U(I), V(I)] at the root. Then, for each I, choose the value in [U(I), V(I)] which is closest to the fitted value for the ancestor of I.

13.7.7 Iteration

In the real case with $\rho(x, y) = (x - y)^2$ [or $\rho(x, y) = |x - y|$], it is simple to program an iterative procedure for computing the nodal values. Each nodal value is replaced by the mean (or median) of the neighboring nodal values. This works especially quickly for the median. The iteration converges to an optimal solution by a standard convexity argument, although this solution may not be unique in the case of the median.

A similar iterative procedure does not necessarily converge in the category-variables matching-distance case.

REFERENCES

CAMIN, J. H., and SOKAL, R. R. (1965). "A method for deducing branching sequences in phylogeny." *Evolution* 19, 311–326. Each character is assumed to evolve through a known sequence of values. The goodness of a tree, constructed on objects with known values, is measured by the number of mutations in all characters. Some approximate methods of constructing the tree are applied to data on modern and ancient horses.

CAVALLI-SFORZA, L. L., and EDWARDS, A. W. F. (1967). "Phylogenetic analysis—models and estimation procedures." Amer. J. Human Genetics 19, 233-257. Some distance models are discussed in which the distance between any two objects is the sum of the distances of the links in the unique chain connecting the two objects. A minimum-distance tree connecting all objects is one for which the total of the link distances is a minimum. This is a continuous-variable version of the minimum-mutation tree. No solution is cheaply available to the complete problem, but, given the tree structure, the optimal link distances and positions of ancestral nodes may be computed.

ESTABROOKE, G. F. (1968). "A general solution in partial orders for the Camin-Sokal model in phylogeny." J. Theor. Biol. 21, 421-438. Instead of an order on the values taken by each character, each character evolves through a specified tree of values. The tree is a partial order with the requirement that any set of values have a unique most recent ancestor.

FITCH, W. M. (1971). "Toward defining the course of evolution: minimum change for a specific tree typology." *Systematic Zool.* 20, 406-416. The correct rules for finding minimum-mutation fits to a given binary tree are stated (without proof).

FARRIS, J. S. (1970). "Methods for computing Wagner trees." Systematic Zool. 19, 83-92. Consider objects as points in N-dimensional space and the ancestors also as points. For a given tree, the ancestors are positioned to minimize the sum of distances between each object or ancestor and its ancestor. If the distance

$$D(X, Y) = \sum \{1 \ge J \ge N\} |X(J) - Y(J)|$$

is used, recurrence relations similar to those in Section 13.2 determine the optimal positions of the ancestors.

This procedure applies to category variables taking only two values.

An algorithm for constructing the tree begins with the closest two objects and adds the other objects one at a time, at each stage adding that object which least increases the sum of link distances of the tree.

HARTIGAN, J. A. (1972). "Minimum mutation fits to a given tree." Biometrics 29 53-65. Rules are proved for finding all the minimum-mutation fits to an arbitrary given tree.

IMMS, A. D. (1957). A General Textbook of Entomology, Methuen, London.

PROGRAMS

MMFIT minimum-mutation fit to a given tree.

LINK constructs tree by adding objects in succession to minimize sum of link distances.

MIDDLE amalgamates three objects to form a single object.

DOT represents an array in a dot matrix, using minimum-mutation fits.

```
SUBROUTINE MMFIT(X,M,MT,K,XM,NVAL)
C.... FINDS MINIMUM MUTATION FIT OF VARIABLE X TO TREE MT .
C.... INPUT VALUES OF X GIVEN IN INDICES I, I .LE. M, OUTPUT VALUES I, I .GT. M.
C.... M = NUMBER OF OBJECTS, FIRST OBJECT IGNORED
C.... K = NUMBER OF NODES OF TREE, K.GT.M.
C.... X = 1 RV K ADDAY
C... X = 1 BY K ARRAY
C... X = 1 BY K ARRAY

C ON INPUT X(I) IS REAL BUT TAKES INTEGER VALUES, 1.LE.X(I).LE.NVAL.

C ON OUTPUT, X CONTAINS VALUES FITTED TO NODES

C... MT = 1 BY K TREE ARRAY, MT(I).GT.I EXCEPT AT I=K.

C... XM = K BY NVAL, SCRATCH ARRAY

C... NVAL = MAXIMUM VALUE OF X(I)
                                                        DIMENSION X(K), XM(K, NVAL), MT(K)
C.... CHECK RANGE OF X(I)
         DO 20 I=2.M
         NC=0
         IF(X(I).GE.1.AND.X(I).LE.NVAL) GO TO 20
        WRITE(6,1) I
        NC = 1
    20 CONTINUE
      1 FORMAT(I5,33HTH VALUE OF VARIABLE OUT DF RANGE)
         IF(NC.NE.O) RETURN
C... OPTIMAL ASSIGNMENT TO NODES IGNORING REST OF TREE
        DO 29 I=M,K
    29 IF(I.GT.M) X(I)=0.
        DO 30 I=2,K
DO 30 J=1,NVAL
    0=(L,1)MX 0E
    00 31 I=2,M
J=X(I)
31 XM(I,J)=1
         00 32 I=2,K
         XMAX=G
         DO 33 J=1,NVAL
    33 IF(XM(I, J).GT.XMAX) XMAX=XM(I,J)
         DO 34 J=1, NVAL
         IF(XM(I,J).LT.XMAX) XM(I,J)=0
    34 IF(XM(I,J).NE.O). XM(I,J)=1
IF(I.EQ.K) GO TO 32
         (I) TM=II
         DO 35 J=1, NVAL
    11,1)MX+(L,11)MX=(L,11)MX 35
    32 CONTINUE
C.... FIND OPTIMAL ASSIGNMENT OVER WHOLE TREE
         DO 40 I=2.K
         I I=K-I+2
         IT=MT(II)
         DO 40 J=1.NVAL
    40 If((X(II).EQ.O.OR.X(IT).EQ.J).AND.XM(II,J).EQ.1.) X(II)=J
         RETURN
         END
```

```
SUBROUTINE LINK(A,K,N,MT,DD,P)
C . . . . .
                                                           ....... 44 1973
C.... K = 2*NUMBER DF OBJECTS
C.... N = NUMBER DF COLUMNS
L.... N = NUMBER DF COLUMNS

C.... A = K BY N BORDERED ARRAY

C.... MT = 1 BY K TREE ARRAY, MT(1) NDT NECESSARILY GREATER THAN I.

C.... DD = 1 BY K ARRAY, DD(1)=DISTANCE OF OBJECT I AT AMALGAMATION

C.... P = PARAMETER SPECIFYING TYPE OF LINKAGE

C P=2., MEANS
               P=1. MEDIANS
               P=0., MATCHING
                                      DIMENSION MT(K),A(K,N)
             DIMENSION DOLK!
        DATA CL/4HCLUS/
        M=K/2
        DO 10 I=M.K
        IF(I.EQ.M) GO TO 10
        ALI,11=CL
    10 CONTINUE
        00 19 I=2,K
   19 MT(I)=0
C.... INITIALIZE TREE
        MM=M+(N-2)+1
        CM=10.**10
        1M=2
        JM=3
        00 20 I=2,M
00 20 J=1,M
        1F(J.EQ.1) GO TO 20
        MM=K+(N-2)+1
        CALL MIDDLE(A(1,2),A(J,2),A(I,2),A(K,2),O,MM,K,P)
CALL MIDDLE(A(1,2),A(J,2),A(J,2),A(K,2),D1,MM,K,P)
         D3=0+C1
        IF(D3.GE.DM) GO TO 20
        IM=I
        JM=J
        DM≃03
    20 CONTINUE
        ML = (ML ) TM
        MT(IM)=JM
C .... FIND DISTANCES TO INITIAL LINK
        10 25 L=2,N

IF(MT(L).GT.01 GO TO 25

CALL MIDDLE(A(IM,2),A(JM,2),A(L,2),A(K,2),CD(L),MM,K,P)
        MT(L)=-IM
   25 CONTINUE
C.... CUNSTRUCT CLUSTERS
        KK=K-3
        LG 3D I=M,KK
IF(I.EQ.M) GD TO 30
DM=10.++10
        11=2
        12=2
C.... FIND BEST OBJECT TO ADD TO TREE
        DU 50 L=2,M
IF(MT(L).GT.0) GG TD 50
        IF(DD(L).GE.DM) GG TO 50
        II=-MT(L)
I2=MT(II)
        13=L
        DM=DD(L)
    50 CONTINUE
        CALL MIDULE(A(11,21,A(12,21,A(13,21,A(1,21,D,MM,K,P)
        MT(13)=1
        MT([]=12
        MTIII I=I
C.... UPDATE DISTANCE ARRAY
        DO 60 L=2.M
        IFIMTILE.GT.O) GG TO 60
        CALL MIODLE(A(11,2),A(1,2),A(L,2),A(K,2),D1,HM,K,P)
        CALL MIDDLE(A(12,2),A(1,2),A(L,2),A(K,2),D2,MM,K,P)
CALL MIDDLE(A(13,2),A(1,2),A(L,2),AIK,2I,D3,MM,K,P)
IF(I1.EQ.-MT(L)) DD(L)=10.**10
        ## IF (01.LT.DD(L)) MT(L)=-11
## IF (D1.LT.DD(L)) DD(L)=-01
        IF(D2.LT.DD(L)) MT(LI=-I
        IF(D2.LT.DD(L)) DD(L)=D2
        1F(D3.LT.DD(LI) MT(L)=-13
IF(D3.LT.DD(L)) DC(L)=D3
    60 CONTINUE
    30 CONTINUE
        RETURN
        END
```

```
SUBROUTINE MIDDLE(X,Y,Z,U,D,M,N,P)
C . . . . .
                                                                                            .......20 MAY 1973
C.... COMPUTES MICOLE OF THREE VECTORS X,Y,Z, AND DISTANCE FROM MIDOLE
C.... X = M BY 1 VECTOR
C.... Y = M BY 1 VECTOR
C.... Z = M BY 1 VECTOR
C.... U = M BY 1 VECTOR
C.... D = M BY I VELIUM

C.... D = DISTANCE OF X,Y,Z, FROM U

C.... M = NUMBER OF ELEMENTS IN VECTOR

C.... N = SKIP FACTOR, FOR USE WITH ROWS OF MATRIX. SEE DIST.

C.... P = PARAMETER SPECIFYING DISTANCE MEASURE
                P = 2.. MEANS
P = 1.. MEDIANS
P = 0.. MATCHING
Ç
Ç
                                                     ............
         DIMENSION X(M),Y(M),Z(M),U(M)
         DO 20 I=1, M, N
IF(P.EQ.2) GO TO 21
         IF((x(I)-x(I))*(x(I)-z(I)).LE.O.) U(I)=x(I)
IF((x(I)-x(I))*(y(I)-z(I)).LE.O.) U(I)=y(I)
         IF((Z(I)-X(I))+(Z(I)-Y(I)).LE.O.) U(I)=Z(I)
         GO TO 20
     21 U(1)=(X(1)+Y(1)+Z(1))/3.
     20 CONTINUE
         0=0
         00=0
         DO 30 I=1.M.N
         DD=00+1
         IF(P.EQ.0) GO TO 31
         D=0+(ABS(X(I)-U(I)))++P+(ABS(Y(I)-U(I)))++P+(ABS(Z(I)-U(I)))++P
    GO TO 30
31 IF(X(I).NE.U(I)) D=0+1
IF(Y(I).NE.U(I)) D=0+1
         IF(Z(I).NE.U(I)) D=0+1
     30 CONTINUE
         D=D/DD
         RETURN
         ENO
```

```
SUBROUTINE DOT(A,M,N,MT,K,XM,NVAL)
C . . . . .
                                                              ...... MAY 1973
C.... REPRESENTS AN ARRAY A, IN A DOT MATRIX, USING THE TREE MT.
C.... THE VALUE AT CASE I IS DOTTED IF IT AGREES WITH THE VALUE AT THE SMALLEST
      CLUSTER INCLUDING I.
C.... A = M BY N BORDERED ARRAY, TAKING INTEGER VALUES BETWEEN 1 AND NVAL.LE.35.
C.... M = NUMBER OF RDWS
C.... N = NUMBER OF CDLUMNS
C.... MT = 1 BY K TREE ARRAY, MT(1).GT.1 EXCEPT AT 1=K. K.LE.100.
C.... K = NUMBER OF NODES OF TREE, K.GT.M.
C.... XM = K BY NVAL SCRATCH ARRAY
       DIMENSION ALM, NI, MT(K), XMEK, NVAL)
       DIMENSION X(10G)
       DIMENSION AA(36)
       DATA AA/1H., 1H1, 1H2, 1H3, 1H4, 1H5, 1H6, 1H7, 1H8, 1H9, 1HA, 1HB,
      *IHC.1HD, IHE.1HF, IHG, IHH, IHI, IHJ, IHK, IHL, IHM, IHN,
      *1HU,1HP,1HQ,1HR,1HS,1HT,1HU,1HY,1HW,1HX,1HY,1HZ/
C.... CHECK RANGE OF A
       DD 20 I=2,M
DD 20 J=2,N
    20 IF(A(I,J).LT.1.OR.A(I,J).GT.NVAL) WRITE(6,1) I,J
1 FORMAT115,2H .,15,27H TH DATA VALUE OUT OF RANGE C.... COUNT NUMBER IN EACH CLUSTER
       DO 70 I=2,K
       XM(1,1)=0
    70 IF(I.LE.M) XM(I,1)=1.
       DO 71 I=2.K
       IF(1.EQ.K) GO TO 71
       XM(J,1) = XM(J,1) + XM(I,1)
    71 CONTINUE
       WRITE (6,3)
     3 FORMATISHOTREE
C... PRINT TREE, A LINE AT A TIME.
DO 80 1=2,M
       .l=K
       XM(J, 1) = XM(J, 1) - 1
       X(K)=AA(25)
       DO 81 L=2,K
       LL=K-L+2
       IF(LL.EQ.K) GG TO 81
       IF(XM(LL,1).GT.0) XM(LL,1)=-XM(LL,1)
       XILL)=AA(I)
       IF(MT(LL).NE.J) GO TO 81
IF(XM(LL,1).EQ.Q) GO TO 81
       J=LL
       XM(LL,1)=-XM(LL,1)-1.
X(J)=AA(25)
    81 CONTINUE
       WRITE(6,7) J,A(J,1),(X(L),L=2,K)
    80 CONTINUE
C.... GO THROUGH VARIABLES, DNE AT A TIME
       WRITE (6,4) ((1, J=1,10), I=1,9)
     4 FORMAT(22X, 18(511, 1X))
       wR(TE(6,5)((I,I=1,9),J=1,10)
     5 FGRMAT(9X,10(2H 0,411,1X,5111)
       hRITE(6,6)
       6 FORMAT(10X,120(1H-))
         DO 50 JJ=2,N
DD 30 1=2,M
      30 X(()=A(I,JJ)
CALL MMFIT(X,M,MT,K,XM,NVAL)
          DG 41 1=2,K
IF(1.EQ.K) GD TD 40
          II=MT(I)
          IF(X(1).Eq.X(II)) X(1)=0.
      40 CONTINUE
          J=x(I)+1.
          IF(J.LT.1) J=1
IF(J.GT.35( J=36
          X(1)=AA(J)
      41 CONTINUE
          WRITE(6,7) JJ,A(1,JJ),(X(I),I=2,K)
        7 FORMAT([4,A5,3X,20(3A1,1X,2A1)]
      SO CONTINUE
          RETURN
          END
```

Direct Splitting

14.1 INTRODUCTION

For Table 14.1, the percentage Republican vote for president in the Southern States in 1900–1968, it is natural to seek clusters of states and also clusters of years. For example, Kentucky, Delaware, and Maryland have similar voting patterns over all years, and also 1932, 1936, 1940, 1944, the Roosevelt years, have similar votes in all states.

In Table 14.2, the years have been clustered using euclidean distance, averaging squared differences over states. For example, $D(32, 40) = \{[(2-1)^2 + (4-3)^2 + (7-11)^2 + (40-42)^2 + (36-41)^2 + (35-48)^2]/6\}^{1/2}$. The states have been similarly clustered using euclidean distance, averaging squared differences over years. The clusters of years and states are plausible. For example, KY, MD, MO are very close together, SC, LA, MS are not quite so close to each other, and there are large distances between the two groups.

Yet the clusters are somewhat removed from the original data, since they refer to distances rather than data. It would be much more useful to describe the clusters of states in terms of their behavior in different years and similarly to describe the clusters of years in terms of their behavior in different states.

What is needed is a model for clusters that expresses interaction between the clusters of states and clusters of years. For a general data matrix, in which all values in the matrix are expressed on the same scale, such a model is given in Table 14.3. In this model, there are three types of clusters: the row clusters, the column clusters, and the data clusters. Each data cluster is the subset of data values indexed by the rows in a row cluster and the columns in a column cluster. The data clusters partition the data matrix, whereas the row and column clusters each form a tree. Within each cluster, the data values are identical. The data matrix could thus be reduced by specifying a single value for each data cluster, as in the second matrix in Table 14.3.

A direct splitting algorithm, for identifying clusters according to the above model was first given by Hartigan (1972). Procedures for clustering variables and then clustering cases (in order, rather than simultaneously) are given in Tryon and Bailey (1970). In Sonquist (1971), a single target variable is predicted by splitting the sample into two clusters according to a known binary variable, splitting one of these two clusters by a further binary variable, and so on. At each stage, that split is chosen which most reduces prediction error. Procedures of this type are applicable to two-way (or many-way) clustering models when all the margins are of size 2. For example the

'Table 14.1 Republican Vote for President

Southern states by twentieth century years, in percentages (From Peterson, S. (1963) A Statistical History of the American Presidential Elections, Ungar, New York).

STATES	00	04	08	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68
ALABAMA (AL)	35	21	24	8	22	31	27	48	14	13	14	18	19	35	39	42	70	14
ARKANSAS (AR)	35	40	37	20	28	39	29	39	13	18	21	30	21	44	46	43	44	31
DELAWARE (DE)	54	54	52	33	50	56	58	65	51	43	45	45	5 0	52	55	49	39	45
FLORIDA (FL)	19	21	22	8	18	31	28	57	25	24	26	30	34	55	57	52	48	41
GEORGIA (GA)	29	18	31	4	7	29	18	43	8	13	15	18	18	30	33	37	54	30
KENTUCKY (KY)	49.	47	48	25	47	49	49	5 9	40	40	42	45	41	50	54	54	36	44
LOUISIANA (LA)	21	10	12	5	7	31	20	24	7	11	14	19	17	47	53	29	57	23
MARYLAND (MD)	52	119	49	24	45	5 5	45	5 7	36	37	41	48	49	55	60	46	35	42
MISSISSIPPI (MS)	10	5	7	2	5	14	8	18	4	3	4	6	3	40	24	25	87	14
MISSOURI (MO)	46	50	49	30	47	55	50	56	35	38	48	48	42	51	50	50	36	45
NORTH CAR. (NC)	45	40	46	12	42	43	55	29	29	27	26	33	33	46	49	48	44	40
SOUTH CAR. (SC)	7	5	6	1	2	4	2	9	2	1	¥	4	4	49	25	49	59	39
TENNESSEE (IN)	45	43	46	24	43	51	44	54	32	31	33	39	37	50	49	53	44	38
TEXAS (TX)	31	22	22	9	17	24	20	52	11	12	19	17	25	53	55	49	37	40
VIRGINIA (VA)	44	37	38	17	32	38	33	54	30	29	32	37	41	56	55	52	46	43
WEST VIRGINIA (WV)	54	55	53	21	49	55	49	58	44	39	43	45	42	48	47	54	32	40

model in Table 14.4, is correctly analyzed by this technique. In extending the technique to marginal variables taking many values, the clusters of marginal values obtained may possibly overlap, so that no simple representation of the data matrix is possible, with a reordering based on the marginal clusters.

The two-way splitting algorithm given here combines the discipline on marginal clusters in Table 14.3 with the generality of the Sonquist procedure (it is applicable to many marginal variables). The outcome of the algorithm is a partition of the response variable, specified by a hierarchial clustering of each of the marginal variables.

14.2 BINARY SPLITTING ALGORITHM

Preliminaries. This algorithm is the basic component of the one-way and two-way splitting algorithms. It may be studied independently as a method of dividing a set of cases into two clusters. It is assumed that data values A(I,J) $(1 \le I \le M, 1 \le J \le N)$ are given, where I denotes a case and J denotes a variable. Weights W(I,J) are given for the Ith case and Jth variable, where W(I,J) is the number of observations combined in the data value A(I,J). The two clusters of cases to be constructed are C(1) and C(2). The weighted averages of the Jth variable over the two clusters are B(1,J) and B(2,J). Thus

$$B(1,J) = (\sum \{I \in C(1)\} \ W(I,J)A(I,J))(\sum \{I \in C(1)\} \ W(I,J))^{-1}.$$

The error of a partition is based on the difference between the weighted averages,

$$e[P(M, 2)] = \left(-\sum \{1 \le J \le N\} \left[B(1, J) - B(2, J)\right]^{2}\right) \left(\frac{1}{D(1, J)} + \frac{1}{D(2, J)}\right)^{-1},$$
 where

 $D(L, J) = \sum \{I \in C(L)\} \ W(I, J).$ he case whose removal from the rest mo

The algorithm finds the case whose removal from the rest most decreases the error and begins a cluster with this case. Next, that case is transferred to the new cluster which most reduces the error (the error may increase, but the case is transferred nevertheless). This procedure continues until all cases have been transferred. The split that has the smallest error during the M transfers is the final split. The error after the Kth transfer is E(K).

Table 14.2 Marginal Trees on Percentage Republican in Presidential Elections

VEARS

		-					
		1932	1936	1940	1960	1964	1968
STATES	SC	2	1	14	49	59	39
	MS	L _L	3	4	25	87	14
	LA	7	11	14	29	57	23
	KY	40	40	42	54	36	44
	MD	36	37	41	46	35	42
	MO	35	38	48	50	36	45

DISTANCES BETWEEN YEARS

(ROOT OF AVERAGE SQUARED DIFFERENCE, OVER STATES)

32					
3	40				
6	5	36			
25	23	24	60		
18	18	18	8	68	
50	45	47	30	34	64

DISTANCES BETWEEN STATES (OVER YEARS)

STEP 1. Initially,

$$\begin{split} &D(1,J) = \sum \left\{ 1 \le I \le M \right\} \, W(I,J), \\ &B(1,J) = \sum \left\{ 1 \le I \le M \right\} \, \frac{W(I,J)A(I,J)}{D(1,J)} \, , \end{split}$$

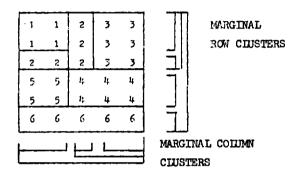
and

$$D(2, J) = B(2, J) = 0.$$

Set K = 0. E(0) = 0.

Table 14.3 Direct Partition Model

DATA CLUSTER



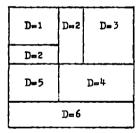


Table 14.4 The Sonquist Technique

$$C = 1$$
 $C = 2$
 $R = 1$ 1 2 1 3

$$Y = 1$$

 $Y = 1$
 $Y = 2$
 $X = 3$
 $X = 2$
 $X = 2$
 $X = 2$

SPLIT FIRST ON COLUMNS, SPLIT SECOND ON ROWS WITHIN FIRST COLUMN. STEP 2. The decrease in error due to transferring case I from cluster 1 to cluster 2 is

$$\begin{aligned} \text{EE} &= \sum \left\{ 1 \le J \le N \right\} \left[A(I,J) - B(1,J) \right]^2 \frac{D(1,J)W(I,J)}{D(1,J) - W(I,J)} \\ &- \sum \left\{ 1 \le J \le N \right\} \left[A(I,J) - B(2,J) \right]^2 \frac{D(2,J)W(I,J)}{D(2,J) + W(I,J)} \, . \end{aligned}$$

The case I, not equal to $I(1), \ldots, I(K)$, is transferred, which maximizes EE.

STEP 3. Increase K by 1 and set I(K) = I, E(K) = E(K - 1) - EE. Update cluster means and cluster weights:

$$D(1, J) = D(1, J) - W(I, J),$$

$$B(1, J) = B(1, J) + W(I, J) \frac{B(1, J) - A(I, J)}{D(1, J)},$$

$$D(2, J) = D(2, J + W(I, J),$$

$$B(2, J) = B(2, J) - W(I, J) \frac{B(2, J) - A(I, J)}{D(2, J)}.$$

If K is less than M, return to Step 2.

STEP 4. Set $C(2) = \{I(1), I(2), \ldots, I(K)\}$, where E(K) is a minimum over all K $(1 \le K \le M)$.

14.3 APPLICATION OF BINARY SPLITTING ALGORITHM TO VOTING DATA WITH MISSING VALUES

Table 14.5 was derived from Table 14.2 by setting each value missing with probability 0.5. In terms of the algorithm in Section 14.2, W(I, J) = 1 if the Ith year is present for the Jth state, and W(I, J) = 0 if the value is missing. Note that years are treated as objects or cases and states are the variables.

STEP 1. Initially, D(1, J) is the sum of weights for variable J, and B(1, J) is the average of values present for variable J. For example, for J = 1, SC, there are four years present with values 2, 1, 59, and 39, so D(1, 1) = 4, B(1, 1) = (2 + 1 + 59 + 39)/4 = 25. The other values of D(1, J), D(2, J), B(1, J), and B(2, J) are given in Table 14.5 beneath the line K = 0.

STEP 2. The object whose transfer to the second cluster most reduces the error is 1964, the fifth year, I = 5.

STEP 3. Increase K by 1, so K = 1, I(1) = 5, E(1) = -6041. Cluster means and cluster weights are updated. For example,

$$D(1, 1) = D(1, 1) - W(5, 1) = 4 - 1 = 3,$$

 $B(1, 1) = 25 + (25 - 59)/3 = 14.$

Since $K = 1 \le 6$, return to Step 2.

STEP 2 REPEATED. The next object to be transferred is 1960, I = 4. And then, successively, 1968, 1932, 1940, and 1936. Note that after 1936 is transferred the error

Table 14.5 Binary Splitting Algorithm on Small Voting Matrix with Missing Values (50%, at Random)

YEARS

(3)

(1)

(8)

(4)

(6)

(5)

		(,	1 (6)	17)	` '	,	, . ,		
		193	1936	1940	1960	1964	1968		
		SC 2	1			59	39	7	
		MS	3	4	25	87	14	}	
		LA	11		29			}	
		КУ 40)	42	54		44	}	
		MD 36	37					1	
		MO 35	38	48	50			ŀ	
								_	
	K = 0	E = 0			K = 1	I(1) - 5	E6	041
	B(1,J)	D(1,J)	B(2,J)	D(2,J)	B(1, J)) D(1,J)	B(2,J)	D(2,J)
ãc	25	4	0	o	14		3	59	1
MS	27	5	0	0	12		4	87	1
LA	20	2	0	0	20		2	0	0
ΚY	45	4	0	o	45		4	0	0
MD	37	2	0	0	37		2	0	0
МО	43	4	0	0	43		4	0	0
	K = 2	I(2) = 4	E = -4	679	K = 3	I(3) = 6	E4	27 0
	B(1,J)	D(1,J)	B(2,J)	D(2,J)	B(1,J) D(1,J)	B(2,J)	D(2,J)
	14	3	59	1	1		2	49	2
	7	3	56	2	3		2	42	3
	11	1	29	1	11		1	29	1
	42	3	54	1	41		2	49	2
	37	2	0	0	37		2	0	0
	40	3	50	1	40		3	50	1
	K = 4	I(4) = 1	E = -2	674	K = 5	I(5) = 3	E1	
	B(1,J)	D(1,J)	B(2,J)	D(2,J)	B(1, J) D(1,J)	B(2,J)	D(2,J)
	1	1	33	3	1		1	33	3
	3	2	42	3	3		1	33	14
	11	1	29	1	11		1	29	1
	42	1	46	3	0		0	45	14
	37	1	36	1	37		1	36	1
	43	2	43	2	38		1	44	3

should again be zero. This requirement checks the hand calculations. (There is a small rounding error in Table 14.5, so that the final error is 30 rather than zero.)

STEP 4. The smallest error occurs at K = 1, so the second cluster consists of 1964 alone.

This algorithm is a refinement of the K-means algorithm, takes $O(M^2)$ computations, and so is appropriate only for moderate data sets. It is superior to the K-means algorithm in being more likely to reach the globally optimal partition. It is guaranteed to reach the global optimum for objects in one dimension.

14.4 ONE-WAY SPLITTING ALGORITHM

Preliminaries. A data matrix A(I,J) $(1 \le I \le M, 1 \le J \le N)$ is given and a threshold T. Clusters are to be constructed so that all variables have a within-cluster variance of no greater than T. (Different thresholds for different variables are accommodated by scaling the variables.) During the algorithm, the data matrix is reordered so that each cluster is a contiguous sequence of objects. The clusters 1, 2, 3, ..., KC are constructed with cluster I determined by MIN(I), MAX(I) the two clusters it splits into. For a minimal cluster I, MIN(I) and MAX(I) are defined to be the first and last objects in cluster I. Also, after the algorithm is complete, define V(I) to be the set of variables which meet threshold within I but not within any larger cluster. The algorithm proceeds by progressively splitting clusters. At the Kth step, there will be K clusters $I(1), I(2), \ldots, I(K)$ partitioning the objects, the minimal clusters in the set 1, 2, 3, ..., 2K-1. During the algorithm, V[I(J)] is the set of variables that do not meet threshold for any larger cluster. A binary split is performed on some I(J), using only the variables in V[I(J)] that exceed threshold. The two new clusters, 2Kand 2K + 1, have V(2K) = V(2K + 1) defined to be the set of variables in V(I(J)), which exceed threshold in I(J). Then V[I(J)] is changed to be the variables in V[I(J)]which do not exceed threshold in I(J), and the splitting continues. The splitting stops when every V[I(J)] contains only variables which meet threshold in I(J).

The basic idea is that only variables which exceed threshold within a given cluster are used in splitting that cluster.

- STEP 1. Define MIN(1) = 1, MAX(1) = M. Set K = 1, I(1) = 1, L = 1. Define $V(1) = \{1, 2, ..., N\}$.
- STEP 2. Try splitting I(L). Compute the variance of each variable $J \{J \in V[I(L)]\}$ over the cases in the cluster I(L). If none of these variances exceed T, go to Step 4. Otherwise, go to Step 3.
- STEP 3. Let VV be the set of variables whose variance, over the cases in I(L), is greater than T. Apply the binary splitting algorithm to the cases I, $MIN[I(L)] \le I \le MAX[I(L)]$, over the variables in VV. Reorder the cases so that the first cluster consists of objects IL, $IL + 1, \ldots, II$ and the second consists of objects $II + 1, \ldots, IU$. Define two new clusters K + 1 and K + 2 with MIN(K + 1) = IL, MAX(K + 1) = II, MIN(K + 2) = II + 1, MAX(K + 2) = IU. Define MAX[I(L)] = K + 2, MIN[I(L)] = K + 1. Define V(K + 1) = V(K + 2) = VV, and change V[I(L)] to V[I(L)] VV. Set I(L) = K + 1, I(K + 1) = K + 2, increase K by 1, and return to Step 2.
 - STEP 4. Increase L by 1 and, if $L \le K$, go to Step 2. Otherwise, stop.

14.5 ONE-WAY SPLITTING ALGORITHM APPLIED TO REPUBLICAN PERCENTAGES

Either states or years may be treated as variables. In this problem years will be variables. The threshold variance is 25. As in other clustering techniques, a small threshold will give too many small clusters and a large threshold will give too few large clusters. A threshold of 25 corresponds to a standard deviation of 5, which seems a reasonable error between similar states.

- STEP 1. MIN(1) = 1, MAX(1) = 6. K = 1, I(1) = 1, L = 1. $V(1) = \{1, 2, 3, 4, 5, 6\}$.
- STEP 2. Try splitting I(1) = 1. All variables have a variance exceeding 25, obviously.
- STEP 3. The set of variables to be used in the split, VV, is $\{1, 2, 3, 4, 5, 6\}$. The binary splitting algorithm produces two clusters, $\{SC, MS, LA\}$ and $\{KY, MD, MO\}$. New clusters 2 and 3 are defined with MIN(2) = 1, MAX(2) = 3 and MIN(3) = 4, MAX(3) = 6. Redefine MIN(1) = 2, MAX(1) = 3. Define $V(2) = V(3) = \{1, 2, 3, 4, 5, 6\}$, set $V(1) = \emptyset$, I(1) = 2, I(2) = 3, I(3) = 3, and return to Step 2.
- STEP 2 REPEATED. Try splitting I(1) = 2. All variables except J = 1 have a variance exceeding 25.
- STEP 2 REPEATED. Then $VV = \{2, 3, 4, 5, 6\}$, and the binary splitting algorithm produces clusters $\{MS\}$ and $\{SC, LA\}$. New clusters 4 and 5 are defined with MIN(4) = 1, MAX(4) = 1, MIN(5) = 2, MAX(5) = 3, MIN(2) = 4, MIN(2) = 5. Define $V(4) = V(5) = \{2, 3, 4, 5, 6\}$, set $V(2) = \{1\}$, I(1) = 4, I(3) = 5, K = 3, and return to Step 2.
- STEP 2 REPEATED. Since I(1) = 4 contains only one object, the variances for all variables are zero; go to Step 4.
 - STEP 4. Set L=2. Since $L\leq 3$, go to Step 2.
- STEP 2 REPEATED. The cluster I(2) = 3 consists of objects KY, MD, MO. All variables have a variance less than 25. Go to Step 4.
 - STEP 4 REPEATED. Set L=3, and go to Step 2.
- STEP 2 REPEATED. The cluster I(3) = 5 consists of objects SC, LA. The relevant variables V(5) are $\{2, 3, 4, 5, 6\}$. Of these, all but J = 5 exceed threshold. The cluster splits into two single-object clusters $\{SC\}$ $\{LA\}$. These two clusters are 6 and 7, with MIN(6) = 2, MAX(6) = 2, MIN(7) = 3, MAX(7) = 3, MIN(5) = 6, MAX(5) = 7. Define $V(6) = V(7) = \{2, 3, 4, 6\}$, V(5) = 5, I(3) = 6, I(4) = 7, K = 4; return to Step 2.

No further splits take place. The history of the splits is represented in Table 14.6. A method of using the splitting information to summarize the table is given in Table 14.7. This method is analogous to the representation of category data by using minimum-mutation fits. The novelty of the one-way splitting algorithm lies in the association with each cluster of the variables approximately constant over the cluster.

Table 14.6 One-Way Splitting Algorithm Applied to Republican Percentages

,	32	36	40	60	64	68
SC	2	1	4	49	59	39
Ms	4	3	4 14	25	87	14
LA	7	11	14	29	57	23
KY	40	40	42	54 ,	36	44
MD	36	37	41	46	35	42
MO	35	38	48	50	36	45

]	rirst	SPLE		
	32	36	40	60	64	68_
SC	2	1	4	49	59	39
MS	4	3	4	25	87	14
LA	7	11	14	29	57	23
KY	40	40	42	54	36	44
MD	36	37	41	46	35	42
MO	35	38	48	50	36	45

(outlined values ignored in later steps)

	SECOND SPLIT									
	32	36	40	60	64	68				
MS	14	3	4	25	87	14				
SC	2	1	4	49	59	39				
ΙA	7	11	14	29	57	23				
KY	40	40	42	54	36	44				
MD	36	37	41	56	3 5	42				
MO	35	38	48	50	36	45				

		THIRD SPLIT									
	32	36	40	60	64	68					
MS	4	3	4	25	87	14					
SC	2	1	4	49	59	39					
LA	7	11	14	29	57	23					
KY	40	40	42	54	36	44					
MD	36	37	41	46	35	42					
MO	35	38	48	50	36	45					
	L										

Table 14.7 Representation of Data Using One-Way Splitting Algorithm

VARIABLE 1 = 1932

VARIABIE 2 = 1936

VARIABLE 3 = 1940

VARIABLE 4 = 1960

VARIABLE 5 = 1964

VARIABLE 6 = 1968

1 = 37	3 = 44	5 = 36	1 = 4		
2 = 39	4 = 50	6 = 44	5 = 58		2 = 3
MO	MD	KY	2 = 11	2 = 1	3 = 4
			3 = 14	3 = 4	4 = 25
			4 = 29	4 = 49	5 = 87
			6 = 23	6 = 39	6 = 14
		·	IA	SC	MS

14.6 TWO-WAY SPLITTING ALGORITHM

Preliminaries. A model for which the two-way splitting algorithm is appropriate is given in Table 14.3. There is a data matrix A(I,J) ($1 \le I \le M$, $1 \le J \le N$) with entries comparable among both rows and columns. The algorithm computes row clusters $1, 2, \ldots, KR$, column clusters $1, 2, \ldots, KC$ and data clusters $1, 2, 3, \ldots, KD$. The data cluster K is the submatrix of data values with rows in the row cluster IR(K) and with columns in the column cluster IC(K). Each data point lies in just one data cluster, so these clusters partition the matrix. The row clusters $1, 2, \ldots, KR$ form a tree. The structure of the tree is described by a pair MINR(I), MAXR(I), which specify the two largest clusters properly included in I, except for minimal clusters, when they specify minus the first and last row in cluster I. The matrix is reordered during the algorithm so that row clusters are contiguous sequences of rows. Similarly, for columns, the column clusters are $1, 2, \ldots, KC$, forming a tree described by the pair MINC(I), MAXC(I), which for the minimal clusters are minus the first and last columns in cluster I. Minus values of MINC and MAXC thus identify minimal clusters.

During the algorithm, the quantity VR(K) is the average variance of columns in the Kth data cluster, and the quantity VC(K) is the average variance of rows in the Kth data cluster. The quantity VR(K) is set zero if all column variances are less than a threshold T, and the quantity VC(K) is set zero if all row variances are less than T. At the conclusion of the algorithm, all VR(K) and VC(K) are zero.

At each step an average variance is computed for the *I*th row cluster by averaging over all VR(K) for which $VR(K) \neq 0$, IR(K) = I. Similarly, an average variance is computed for the *I*th column cluster by averaging over all VC(K) for which $VC(K) \neq 0$, IC(K) = I. That row or column cluster which has a maximum average variance is split by using the binary splitting algorithm. If the *I*th row cluster is split, the data used will be the data clusters K such that IR(K) = I, $VR(K) \neq 0$. After the split, each of these clusters will be replaced by two clusters, and two new row clusters will exist. New values of VR and VC are computed within the new clusters, and the next step is performed.

The terminology is illustrated in Table 14.8.

STEP 1. Initially KD = 1, MINR(1) = -1, MAXR(1) = -M, MINC(1) = -1, MAXC(1) = -N. Also KR = 1, KC = 1, IR(1) = 1, IC(1) = 1. The quantity VR(1) is the average variance of columns,

$$VR(1) = \sum \{1 \le J \le N\} \{1 \le I \le M\} \frac{[A(I, J) - AVE(J)]^2}{(M-1)N}$$

where $AVE(J) = \sum \{1 \le I \le M\} A(I, J)/M$. If all column variances are less than T, set VR(1) = 0. Similarly define VC(1), the average variance of rows.

STEP 2. For each L ($1 \le L \le KR$), define the quantities RSUM(L) and RDF(L) as follows. Initially set RSUM(L) = RDF(L) = 0 ($1 \le L \le KR$). For all K ($1 \le K \le KD$), if $VR(K) \ne 0$, increase RSUM[IR(K)] by $VR(K)\{MAXC[IC(K)] - MINC[IC(K)] + 1\}$ and increase RDF[IR(K)] by MAXC[IC(K)] - MINC[IC(K)] + 1. The quantity RSUM(L)/RDF(L) is then the average variance of the Lth row cluster over all data clusters with row margin equal to L and variances exceeding threshold.

Table 14.8 Two-Way Splitting Terminology

```
COLUMNS

1 2 3 4 5

ROWS 1 1 2 3 4 5

2 3 4 5 6
```

```
: 1 = \{1\}, 2 = \{2\}, 3 = \{1,2\}, 4 = \{3,4\}.
ROW CLUSTERS
COLUMN CLUSTERS: 1 = \{1,2\}, 2 = \{3\}, 3 = \{1,2,3\}, 4 = \{4,5\}.
DATA CIUSTERS : 1 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}
2 = \{(1,4), (1,5)\}, 3 = \{(2,4), (2,5)\}, 4 = \{(3,1), (3,2), (4,1), 4,2)\},
5 = \{(3,3), (4,3)\}, 6 = \{5,4\}, (3,5), (4,4), (4,5)\}.
                              : IR(1) = 3, IR(2) = 1, IR(3) = 3, IR(4) = 4,
DATA CHISTERS - ROW CHISTERS
                                 IR(5) = 4, IR(6) = 4.
DATA CHUSTERS - COLUMN CHUSTERS: IC(1) = 3, IC(2) = 4, IC(3) = 4
                                 IC(4) = 1, IC(5) = 2, IC(6) = 4.
                    : MINR(1) = 1 , MAXR(1) = 1
ROW TREE STRUCTURE
                       MINR(2) = 2, MAXR(2) = 2
                       MIR(3) = 1, MAXR(3) = 2
                       MIR(4) = 3, MAXR(4) = 4
COLUMN TREE STRUCTURE: MINC(1) = 1 , MAXC(1) = 2
                       MINC(2) = 3, MAXC(2) = 3
                       MHIC(3) = 1, MAXC(3) = 2
                       MEC(4) = 4, MAXC(4) = 5.
```

- STEP 3. Similarly, compute for the Lth column cluster the average variance of rows in data clusters with column margin equal to L and row variances exceeding threshold. Let this average be CSUM(L)/CDF(L).
- STEP 4. If the maximum value over all row and column clusters of RSUM(L)/RDF(L) and CSUM(L)/CDF(L) is zero, stop. Otherwise, choose that row or column cluster with maximum variance—say, the row cluster, L. Necessarily, L will be a minimal row cluster. Consider the data matrix obtained by combining data clusters K for which IR(K) = L, $VR(K) \neq 0$. The binary splitting algorithm is applied to the rows of this matrix to yield row clusters [after reordering of the rows MINR(L), MINR(L) + 1, ..., MAXR(L)] $\{I1, I1 + 1, ..., I2\}$ and $\{I2 + 1, I2 + 2, ..., I3\}$.

STEP 5. Now the clusters are updated as a result of the split. First, two new row clusters KR + 1 and KR + 2 are defined, with MINR(KR + 1) = -I1, MINR(KR + 2) = -I2 + 1, MAXR(KR + 1) = -I2, MAXR(KR + 2) = -I3. Also redefine MINR(L) = KR + 1, MAXR(L) = KR + 2. Each cluster K ($1 \le K \le KD$) with IR(K) = L, $VR(K) \ne 0$ is itself destroyed, and generates two new clusters. Define IR(K) = KR + 1, increase KD by one, and define IR(KD) = KR + 2, IC(KD) = IC(K). Also compute new average cluster variances VR and VC within the new clusters K and KD. Increase KR by E0. Return to Step E2. (Step 5 is analogous if a column cluster is split.)

14.7 TWO-WAY SPLITTING ALGORITHM APPLIED TO REPUBLICAN VOTE FOR PRESIDENT

(See Table 14.9 to follow the sequence of splits.) Choose a threshold variance, T = 25.

STEP 1. Initialize the number of clusters, KD = 1, and the cluster boundaries MINR(1) = -1, MAXR(1) = -6, MINC(1) = -1, MAXC(1) = -6. The number

Table 14.9 Sequence of Splits of Republican Vote for President

	INI	TIAL	DAT	A				FIR	ST S	PLIT						SEC	OND	SPLI	T		
	32	36	40	60	64	68		32	36	40	60	68	64			32	36	40	60	68	64
sc	2	1	4	49	59	39	sc	2	1	14	49	39	59]	SC	2	1	4	49	39	59
M	4	3	4	25	87	14	м	4	3	4	25	14	87		M	4	3	4	25	14	87
ΙA	7	11	14	29	57	23	IA	7	11	14	29	23	57	1	IA	7	11	14	29	23	57_
KY	40	40	42	54	36	44	KY	40	40	42	54	44	36		KY	40	40	42	54	44	36
MD	36	37	41	46	35	42	MD	36	37	41	46	42	35	ĺ	ЖD	36	37	41	46	42	35
МО	35	38	48	50	36	45	МО	35	38	48	50	45	36	l	МО	35	38	48	50	45	36
	THI	rd s	PLIT					FOU	RTH	SPLI	T					FIF	TH S	PLIT			
	32	36	40	60	64	68		32	36	40	60	68	64			32	36	40	60	ćВ	64
м	4	3	4	25	14	87	м	4	3	4	25	14	87	į	M	4	3	4	25	14	67
sc	2	1	4	49	39	59	sc	2	1	4	49	39	59	1	sc	2	1	4	49	39	59
ĪΑ	7	11	14_	29	23	57	IA	7	11	14	29	23	57	Ì	IA	7	11	14	29	23	57
KY	40	40	42	54	44	36	KY	40	40	42	54	44	36		KY	40	40	42	54	44	36
MD	36	37	41	46	42	35	MD	36	37	41	46	42	35		MD	36	37	41	46	42	35
мо	35	38	48	50	45	36	мо	35	38	48	50	45	36]	МО	35	38	48	50	45	36
	SIX	TH S	PLIT					SEV	ENTH	SPL	TT					FIN	AL (= SE	VENT	H) S	PLIT
	32	36	40	60	68	64		32	36	40	60	68	64			32	36	40	60	68	64
М	ų	3	4	25	14	87	м	4	3	4	25	14	87	1	М	4	3	4	25	14	87
sc	2	1	4	49	39	59	SC	2	1	4	49	39	5 9	(sc	5	1	4	49	39	59
IA	_7	11	14	29	23	57	ĪΑ	7	11	14	29	23	57_		IA	7	11	14	29	23	57
KY	40	40	42	54	44	36	KY	40	40	42	54	44	36	i	KY	40	40	42	54	44	36
MD	36	37	41	46	42	35	MD	36	37	41	46	42	35	ŀ	MD	36	37	41	46	42	35
мо	35	38	48	50	45	36	мо	35	38	48	50	45	36]	мо	35	38	48	50	45	36

ROW CIUSTERS (MS)((SC)(IA))(KY PD MO)
COL CIUSTERS ((32 36)(40))((60)(68))(64)

- of initial row clusters is KR = 1, and the number of initial column clusters is KC = 1. The row cluster corresponding to data cluster 1 is IR(1) = 1. The column cluster corresponding to data cluster 1 is IC(1) = 1.
- STEP 2. The quantity RSUM(1) is the sum of all above-threshold variances within columns in data clusters whose marginal row cluster is 1. Thus RSUM(1) = 1827. The quantity RDF(1) is the number of such variances, RDF(1) = 6. Then RSUM(1)/RDF(1) = 304.
 - STEP 3. For column cluster 1, CSUM(1)/CDF(1) = 365.
- STEP 4. The maximum value of RSUM(L)/RDF(L) and CSUM(L)/CDF(L) is 365. The cluster to be split is thus column cluster 1. The data clusters involved in the split consist of the single data cluster, 1. The binary splitting algorithm splits the columns into years {1932, 1936, 1940, 1960, 1968} and {1964}. After reordering, the clusters are {1, 2, 3, 4, 5} and {6} in the order 1932, 1936, 1940, 1960, 1968, 1964.
- STEP 5. Two new column clusters 2, 3 are constructed with MINC(2) = -1, MAXC(2) = -5, MINC(3) = -6, MAXC(3) = -6. Redefine MINC(1) = 2, MAXC(1) = 3, denoting that column cluster 1 has divided into column clusters 2 and 3. The data cluster 1 is destroyed and replaced by two new data clusters. For the new data cluster 1, IR(1) = 1, IC(1) = 2, so that the new marginal column cluster is 2. For the new data cluster 2, IR(2) = 1, IC(2) = 3. Finally the average variances of rows and columns are computed in the new clusters: VR(1) = 281, VR(2) = 350, and VC(1) = 133, VC(2) = 0. The second-row variance VC(2) is zero because the rows in cluster 2 consist of a single element. Increase KC to 3 and KD to 2. Return to Step 2.
 - STEP 2 REPEATED. There is a single row cluster with RSUM(1)/RDF(1) = 304.
- STEP 3 REPEATED. There are three column clusters, 1, 2, 3. Initially CSUM(L) = CDF(L) = 0 (1 $\leq L \leq$ 3). For all K (1 $\leq K \leq$ 2), increase CSUM[IC(K)] by VC(K){MAXR[IR(K)] MINR[IR(K)] + 1} and increase CDF[IC(K)] by MAX[IR(K)] MINR[IR(K)] + 1. That is, with K = 1, increase CSUM(2) by 133 \times 5 and increase CDF(2) by 5, and with K = 2, since VC(2) = 0, make no change. The optimal value of CSUM(L)/CDF(L) is therefore 133 for L = 2.
- STEP 4. The row or column cluster with maximum average column or row variance is row cluster 1, for which the average is 304. The binary splitting algorithm yields row clusters {SC, MS, LA} and {KY, MD, MO} or, without changing the ordering, rows {1, 2, 3} and {4, 5, 6}.
- STEP 5. The clusters are updated by first adding row clusters 2,3 with MIN(2) = -1, MAXR(2) = -3, MINR(3) = -4, MAXR(3) = -6. The row cluster 1 splits into MINR(1) = 2 and MAXR(1) = 3. Each data cluster K (1 $\leq K \leq$ 2) is destroyed and generates two new clusters. The cluster 1 has IR(1) = 2, IC(1) = 2. Increase KD to 3 with IR(3) = 3, IC(3) = 2. Compute VR(1) = 116, VC(1) = 268, VR(3) = 0, VC(3) = 31. Note that VR(2) = 0 because all columns in the third data cluster have variance less than the threshold, 25. In later row splits, the third data cluster will be ignored. For K = 2, IR(2) = 2, IC(2) = 3. Increase KD to 4 with IR(4) = 3, IC(4) = 4. Compute VR(2) = 281, VC(2) = 0, VR(4) = 0, VC(4) = 0. Increase KR to 3. Return to Step 2.

	32	36	40	60	68	64
MS		4		25	14	87
sc		?		49	39	58
IA		11		2		
KY	38		44	50	43	36
1400						
мо						

Table 14.10 Reduced Representation of Republican Vote Based on Two-Way Split

STEP 2 REPEATED. There are three row clusters, for which RSUM(L) = 0, RDF(L) = 0, initially. There are contributions from the four data clusters: for K = 1, IR(1) = 2, VR(1) = 116, so RSUM(2) becomes 698, RDF(2) becomes 5; for K = 2, IR(2) = 2, VR(2) = 281, so RSUM(2) becomes 979, RDF(2) becomes 6; for K = 3 and K = 4, VR = 0, so no change in RSUM occurs. The maximum value of RSUM(L)/RDF(L) = 163 at L = 2.

STEP 3 REPEATED. The maximum value of CSUM(L)/CDF(L) = 149 at L = 2.

STEP 4 REPEATED. Split row cluster 2. The clusters involved in the split are those with IR(K) = 2—that is, K = 1, K = 2. The split is into rows $\{MS\}$ and $\{SC, LA\}$, or, after reordering the rows, $\{1\}$ and $\{2, 3\}$.

STEP 5 REPEATED. New row clusters 4 and 5 are defined, with MINR(4) = -1, MAXR(4) = -1, MINR(5) = -2, MAXR(5) = -3. Redefine MINR(2) = 4, MAXR(2) = 5. Each of the clusters 1 and 2 is destroyed and replaced by two new clusters. Define IR(1) = 4, IC(1) = 2, IR(5) = 5, IC(5) = 1, increasing KD to 5. The new average variances are VR(1) = 1, VC(1) = 90, VR(5) = 82, VC(5) = 85. For cluster 2, define IR(2) = 4, IC(2) = 3 and IR(6) = 5, IC(6) = 3, increasing KD to 6. The new average variances are all zero. Increase KR to 5 and return to Step 2.

The splitting continues in this way until all within-cluster variances of rows and columns are within threshold. The complete sequence of splits for this data set is given in Table 14.9, and a reduced representation of the data on the fifteen final clusters is given in Table 14.10. The basic conclusions are that KY, MD, and MO are similar in all years. The years 1932, 1936, and 1940 are similar in each of the states MS, SC, and LA, but {1932, 1936} differ from {1940} in the states KY, MD, and MO.

14.8 THINGS TO DO

14.8.1 Running the Splitting Algorithm

The binary splitting algorithm is a more rigorous version of the K-means algorithm, applicable to the same types of data. Use, for example, the mammal's milk or the New Haven school data. The one-way splitting algorithm treats variables and cases differently, ending with a hierarchical clustering of cases in which each cluster is characterized by certain variables being approximately constant within the cluster. The variables may be measured on different scales, but they should be rescaled before application of the algorithm so that an error of one unit means the same for each variable. Acidosis patients (Table 14.11) are suggested as a trial data set.

Table 14.11 Acidosis Patients

FIRST VARIABLE - PH IN CEREBROSPINAL FIUID (nanomol/litre)

SECOND VARIABLE - PH IN BLOOD (nanomol/litre)

THIRD VARIABLE - HCO3 IN CEREBROSPINAL FILID (millimoles/litre)

FOURTH VARIABLE - HCO3 IN BLOOD (millimoles/litre)

FIFTH VARIABLE : - CO2 IN CEREBROSPINAL FLUID (mm mercury)

SIXTH VARIABLE - CO2 IN BLOOD (mm mercury)

39.8	38.0	22.2	23.2	38.8	36.5
53.7	37.2	18.7	18.5	45.1	28.3
47.3	39.8	23.3	22.1	48.2	36.4
41.7	37.6	22.8	22.3	41.6	34.6
44.7	38.5	24.8	24.4	48.5	38.8
47.9	39.8	22.0	23.3	46.2	38.5
48.4	36.7	21.0	21.3	44.5	32.6
48.4	35.1	23.9	24.0	50.6	35.0
48.4	45.7	18.6	14.9	39.4	28.8
41.7	81.3	9.8	4.2	17.8	12.9
46.2	42.7	15.5	15.0	31.3	26.8
48.4	42.2	19.6	18.7	41.6	32.6
49.6	55.0	14.6	11.3	31.8	25.7
47.3	59.4	10.4	7.5	21.5	18.6
42.7	49.0	15.3	9.5	26.9	19.0
38.5	47.9	13.7	9.4	23.0	18.7
46.2	36.1	23.2	27.3	46.9	39.8
51.3	39.6	23.1	26.8	52.3	43.3
49.0	40.1	18.9	20.0	40.4	32.4
46.0	41.4	18.9	20.0	44.8	40.1
50.9	40.8	23.3	25.5	52.0	42.3
50.0	41.4	24.6	25.2	53.8	42.3
49.0	39.5	24.5	26.4	52.4	42.3
49.4	40.9	22.9	28.5	53.1	47.2
47.2	38.5	27.2	26.4	54.9	40.9
47.7	38.0	26.2	29.2	53.5	44.6
49.0	41.9	27.6	28.9	58.0	49.0
53.1	39.4	26.2	33.0	59.9	52.2
52.5	53.8	29.4	32.0	66.2	56.9
51.3	41.7	28.4	31.1	62.6	52.4
52.7	43.8	30.4	34.6	69.0	61.4
48.2	38.6	29.4	34.0	60.6	52.6
42.7	37.2	20.7	18.6	38.6	29.2
44.2	33.9	20.7	19.1	40.3	26.8
43.6	35.5	21.9	21.8	41.7	32.2
49.0	33.9	22.4	23.3	46.9	30.6
54.9	33.8	22.9	34.8	45.1	32.1
46.6	37.3	22.5	24.9	44.8	37.4
47.5	36.4	22.3	22.9	45.4	33.3
44.3	32.8	22.8	24.8	42.8	32.5

Table 14.12 Profitability of Sectors of U.S. Economy

Profit as a percentage of stockholders' equity.

- 2 ALL MANUFACTURING CORPORATIONS (EXCEPT NEWSPAPERS)
- 3 TOTAL CURABLE
- 4 MOTOR VEHICLES AND EQUIPMENT.
- 5 ELECTRICAL MACHINERY, EQUIPMENT, AND SUPPLIES.
- 6 MACHINERY (EXCEPT ELECTRICAL).
- 7 FABRICATED METAL PRODUCTS
- 8 PRIMARY IRON AND STEEL INDUSTRY
- 9 PRIMARY NON-FERROUS METAL INDUSTRIES.
- 10 STONE, CLAY, AND GLASS PRODUCTS
- 11 FURNITURE AND FIXTURES.
- 12 HUM ER AND WOOD PRODUCTS (EXCEPT FURNITURE).
- 13 INSTRUMENTS AND RELATED PRODUCTS.
- 14 MISCELLANEOUS MANUFACTURING (INCLUDING ORDNANCE).
 - 2 TOTAL NON-DURABLE
 - 5 FOOD AND KINDRED PRODUCTS
- 4 TOBACCO MANUFACTURES.
- 5 TEXTILE MILL PRODUCTS
- 6 APPAREL AND RELATED PRODUCTS
- 7 PAPER AND ALLIED PRODUCTS.
- 8 PRINTING AND PUBLISHING (EXCEPT NEWSPAPERS).
- 9 CHEMICAIS AND ALLIED PRODUCTS.
- 10 PETROLEUM REFINING.
- 11 RUBBER AND MISCELLANEOUS PLASTIC PRODUCTS.
- 12 LEATHER AND LEATHER PRODUCTS.

		59	60	61	62	63	64	65	66	67	68
2	ALL	10.	9.	9.	10.	10.	12.	13.	13.	12.	12.
3	TOTA	10.	9.	8.	10.	10.	12.	14.	14.	12.	12.
4	MOTO	14.	14.	11.	16.	17.	17.	20.	16.	12.	15.
5	ELEC	13.	10.	9.	10.	10.	11.	14.	15.	13.	12.
6	MACH	10.	8.	8.	9.	10.	13.	14.	15.	13.	12.
7	FABR	8.	6.	6.	8.	8.	10.	13.	15.	13.	12.
8	PRIM	8.	7.	6.	5.	7.	9.	10.	10.	8.	8.
9	PRIM	8.	7.	7.	8.	8.	10.	12.	15.	11.	11.
10	STON	13.	10.	9.	9.	9.	10.	10.	10.	8.	9.
11	FUR	9.	7.	5.	8.	8.	10.	13.	14.	12.	12.
12	IUM	9.	4.	4.	6.	8.	10.	10.	10.	9.	15.
13	Ins	13.	12.	11.	12.	12.	14.	18.	21.	18.	17.
14	MIS	9.	9.	10.	9.	9.	10.	11.	15.	13.	12.
2	ATOT	10.	10.	10.	10.	10.	12.	12.	13.	12.	12.
3	FOOD	9.	9.	9.	9.	9.	10.	11.	11.	11.	11.
14	TOBA	13.	13.	14.	13.	13.	13.	14.	14.	14.	14.
5	TEXT	8.	6.	5.	6.	6.	9.	11.	10.	8.	9.
6	APPA.	9.	8.	7.	9.	8.	12.	13.	13.	12.	13.
7	PAPE	10.	9.	8.	8.	8.	9.	9.	11.	9.	10.
8	PRIN	11.	11.	9.	10.	9.	13.	14.	16.	13.	13.
9	CHEM	14.	12.	12.	12.	12.	14.	15.	15.	13.	13.
10	PST	10.	10.	10.	10.	11.	11.	12.	12.	13.	12.
11	RUB	11.	9.	9.	10.	9.	11.	12.	12.	10.	12.
12	IEA	9.	6.	4.	7.	7.	11.	12.	13.	12.	13.

Table 14.13 Connecticut Votes for President

From Scammon, R. M. (1965). America at the Polls, University of Pittsburgh, Pittsburgh.

		1920			1924			1928			
	Rep.	Dem.	Other	Rep.	Dem.	Other	Rep.	Dem.	Other		
FAIRFIELD	55251	24761	3101	58041	18815	10791	71410	55491	1047		
HARTFORD	54 04 6	30287	4646	61 38 1	28139	9622	75997	65789	1169		
LITCHFIELD	14405	6938	504	15499	6645	3129	19157	10766	1 38		
MTDDLESEX	8447	4170	3 31	9383	4009	995	11205	7380	115		
NEW HAVEN	65938	37977	5559	69164	36247	15108	80952	82657	1439		
NEW LONDON	17422	9209	889	18205	8615	2386	21378	16299	292		
CKALLOT	51 35	2308	322	5161	2239	885	6502	4256	126		
WINDHAM	8594	5071	207	9488	5475	974	10040	9447	66		
		1932			1936			1940			
	72238	64 367	8092	67 84 6	87329	8088	91190	93688	829		
	72611	72322	5220	65652	103450	7216	88155	114336	462		
	18682	1 34 69	660	18850	17468	875	22956	19537	119		
	10770	9286	344	10925	12294	359	1 3447	1 3044	39		
	79019	86826	P296	76614	117308	10€89	103100	126072	517		
	19721	19576	858	21 367	24999	1 3 37	23389	28286	98		
	5857	4985	455	5965	6676	488	7503	7669	25		
	9522	1 08 01	206	11466	12605	857	12079	14989	43		
		1944			1948			1952			
	103693	99181	2423	118636	90767	7669	167278	106403	1814		
	95274	127841	1153	105262	124874	5157	150332	146551	832		
	24019	19212	248	26848	18628	823	35735	20163	107		
	14315	13551	176	16119	14609	537	22157	15722	74		
	108883	123450	1811	120769	121591	6633	165917	136476	1149		
	24153	29304	285	27416	29425	973	38148	31 374	148		
	8208	7721	117	9012	7970	347	1 34 66	9425	52		
	12032	14886	104	1 3692	15433	328	17979	15535	74		
		1956			1960			1964			
	199841	84890	116	167778	146442	6	125576	194782	261		
	175894	126923	25	136459	195403	2	88811	240071	622		
	40029	17226	6	34 04 3	29062	3	20834	40172	62		
	25496	1 3851	8	2 2045	22158	1	14697	30517	71		
	191215	112208	36	136852	188685	2	97656	218743	171		
	43453	27317	11	38070	40625	1	24391	54 5 5 1	49		
	15880	9111	1	15386	14575	Ď	9951	22195	58		
	20029	1 3553	2	15180	20105	0	9080	25233	19		

The two-way splitting algorithm produces more beautiful pictures, but it treats variables and cases symmetrically. Thus the data must be prescaled so that all data values are comparable. (This requirement restricts the range of data types to which the algorithm may be applied.) Suitable data sets are the profitability of various sectors of the economy (Table 14.12) and the votes for President in Connecticut (Table 14.13). The votes should be converted to percentage Republican.

14.8.2 Missing Values

The two-way splitting algorithm permits an estimation of missing values once the clustering is complete. A missing value is estimated by the mean of the smallest data cluster containing it.

14.8.3 Error Analysis

An informal error analysis is provided by repeating the algorithm on the data several times, at each run declaring each value missing with probability 0.5. Clusters that are stable or reliable will reappear (with perhaps a little change) in most of the runs. This technique prevents finding and interpreting excessive numbers of clusters.

14.8.4 Range

Instead of using variance to measure spread within a cluster, it is plausible to use the range or the mean deviation from the median. These measures will be less sensitive to a few large values, which might dominate the choice of the first few splits, even though they will be isolated in small pockets later. Both measures are more convenient than the variance for small hand calculations.

14.8.5 Binary Splits and Range

Divide a set of M points in N dimensions into two clusters to minimize the sum of the ranges within clusters summed over all variables. Show that the division conforms to order for at least one variable, so that each value of the variable in one cluster is less than or equal to each value of the variable in the other cluster. Using the range in the one-way splitting algorithm thus allows identification of a few variables for each split which conform to the split.

14.8.6 Experiments

It would be interesting to know whether the binary split algorithm often produces better clusters than the K-means algorithm. This should be tried for various numbers of cases, numbers of variables, and data types. Various normal mixtures would be plausible trial data.

For the two-way splitting algorithm, begin with an 8×6 data matrix divided into four data clusters. In each cluster the value is constant plus normal noise for each data value. See how well the data clusters are recovered for various choices of constants and noise variance.

14.8.7 One-Way Model

The one-way splitting algorithm partitions the data matrix into data clusters in which values are constant, but the corresponding marginal column cluster always consists of a single variable. This is necessary because values are not directly comparable between variables.

REFERENCES

FISHER, W. D. (1969). Clustering and Aggregation in Economics, Johns Hopkins Book, Baltimore, Md. Input-output matrices in economics are data matrices in which both rows and columns refer to industrial sectors. In reducing such a matrix, it is necessary to cluster rows and columns simultaneously; thus, if rows 1 and 2 are joined, columns 1 and 2 must also be joined. Fisher studies an algorithm for this called the "lockstep" progressive merger procedure.

GOOD, I. J. (1965). "Categorization of classifications." Mathematics and computer science in biology and medicine, H.M. Stationery Office, London. Good suggests removing row and column means from a two-way table and then generating a two-way

split (into four data clusters) of the residuals by maximizing $\sum r_i c_j A_{ij}$, where $\{r_i\}$ is a row vector of ± 1 's, corresponding to row clusters, $\{c_j\}$ is a column vector of ± 1 's corresponding to column clusters, and $\{A_{ij}\}$ is the residual matrix. This technique is to be repeated on each of the clusters obtained.

HARTIGAN, J. A. (1972). "Direct clustering of a data matrix." J. Am. Stat. Assoc. 67, 123-129. An algorithm similar to the two-way splitting algorithm is proposed. At each stage in the algorithm, the matrix is divided into a number of clusters, each of which is a submatrix corresponding to a row cluster and a column cluster. A single one of these clusters is split, by rows or by columns, at each stage in the algorithm.

SONQUIST, J. A. (1971). Multivariate Model Building: The Validation of a Search Strategy. Institute for Social Research, The University of Michigan, Ann Arbor, Mich. The automatic interaction detection technique, quoting from p. 20: "The technique is a step-wise application of a one-way analysis of variance model. Its objective is to partition the sample into a series of non-overlapping subgroups whose means explain more of the variation in the dependent variable than any other such set of subgroups." A set of objects is given on which are defined a dependent variable Y and a number of independent variables X_1, X_2, \ldots, X_p . During the algorithm, a partition $1, 2, 3, \ldots, K$ of the objects is constructed by successively splitting.

- STEP 1. Begin with an initial partition consisting of the set of all objects, K = 1.
- STEP 2. If all members of the partition have a sum of squared deviations of Y less than P, stop. If K > R, stop.
- STEP 3. Choose an arbitrary member of the partition not tried before—say, I. For each variable X_J ($1 \le J \le P$) consider splits of I into two clusters, in the first of which $X_J \in A_J$ and in the second of which $X_J \notin A_J$. (The possible forms of the set A_J depend on the type of variable A_J . If X_J is a category variable, A_J is any subset of the possible values of X_J ; if X_J is an ordered variable, A_J is of form $\{X_J \mid X_J \le C_J\}$.) The split with largest between-cluster sum of squares over all X_J and over all A_J is executed, provided this between-cluster sum of squares exceeds Q. Return to Step 2.

This algorithm has been applied to a large number of problems, especially in the social sciences. The book contains a number of real examples, some careful studies validating the technique (using random data), and comparisons with other techniques.

TRYON, R. C., and BAILEY, D. E. (1970). Cluster Analysis, McGraw-Hill, New York. Variables are first clustered in a factor analytic approach, and a few factors are obtained. By using these factors as variables in the euclidean distance calculations, objects are clustered by algorithms of the K-means type.

PROGRAMS

SPLIT splits rows into two clusters to approximately minimize the within-cluster sum of squares averaged across the columns.

270 Direct Splitting

SPLIT1 splits rows until all variables have sufficiently small variance within all clusters.

OUT1 prints output from SPLIT1.

SPLIT2 partitions data matrix into blocks within which all row and column variances are sufficiently small.

CSPLIT splits columns in SPLIT2.

RSPLIT splits rows in SPLIT2.

```
SUBROUTINE SPLITI(A, W.M.N, NB, K, KC, TH, NC, XX)
C . . . . .
                                                                            ...... YAM CS.....20 MAY 1973
C.... SPLITS ARRAY A INTO THO ROW CLUSTERS, THEN SPLITS EACH OF THESE,
C.... CONTINUING UNTIL EVERY VARIABLE HAS VARIANCE LESS THAN THE THRESHOLD TH
C.... WITHIN EACH CLUSTER.
C.... A = M BY N BORDERED DATA MATRIX, PERMUTED ON OUTPUT
C.... A = M BY N BORDERED WEIGHT MATRIX ( SET W(I, J)=0 FOP MISSING VALUES)
C.... NB = 4 BY K BLOCK ARRAY, EACH BLOCK IS A ROW CLUSTEP BY A VARIABLE
C NB(1, K)=FIRST ROW IN BLOCK
C NB(2, K)=LAST ROW IN BLOCK
C.... USES SUBROUTINE SPLIT.
                                            AFTER RUNNING SPLITI. USE OUT1 FOR PRINTING BLOCKS
                NB(3,K)=NB(4,K)=COLUMN IN BLOCK
С
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... K = NUMBER OF BLOCKS, NEVER EXCEEDS M*N.
C.... K = NUMBER OF BLOCKS
C.... KC = ACTUAL NUMBER OF BLOCKS
C.... NC = 2 BY M SCRATCH ARRAY
C.... XX = 4 BY N SCRATCH ARRAY
C.... TH = THRESHOLD VARIANCE FOR VARIABLES WITHIN CLUSTERS
C . . . . . . .
         DIMENSION A(M,N),W(M,N),NB(4,K),NC(2,M)
DIMENSION XX(4,N)
C.... INITIALIZE CLUSTER OF ALL ROWS
         NC(1,11=2
         NC (2, 1) = M
         KR=0
         KC=0
     50 KR=KR+1
         IF (KR.EQ.O) RETURN
         SP=0
         IL=NC(1.KR)
IU=NC(2, KR)
C.... IDENTIFY VARIABLES WITHIN THRESHOLD WITHIN CLUSTER, DEFINE BLOCKS.
         00 20 J=2,N
         w(1,J)=1
         S1=0
         S2=0
         S3=0
         DO 21 I=IL. IU
         IF(W(I,J).EQ.0) GO TO 21
         S1=S1+4(I,J)
         $2=$2+#(I,J)*A(I,J)
         S3=S3+#(I,J)*A(I,J)**2
     21 CONTINUE
                  IF(S1.EQ.O) GO TO 19
         S2=S2/S1
         S3=S3/31-S2**2
         IF(S3.GT.TH) SP=1
         IF(S3.GT.TH) GO TO 20
         KC=KC+1
         NB(1.KC)=I(
         NB(2,KC)=IU
         NB(3,KC)=J
         No (4, KC) = J
         DO 22 I=IL, IU
     22 W(I,J)=0
     19 w(1,J)=D
    20 CONTINUE
C.... SPLIT CLUSTER KR IF NECESSARY
         IF(SP.EQ.0) KR=KR-2
IF(SP.EQ.0) GO TO 50
         CALL SPLIT( , A, m, N, 1L, IU, IM, XX, OM)
         NC (2, K++1) = NC (2, KR)
         NC(2,KR)=IM
         AC(1,KR+1)=IM+1
         GO TO 50
         END
```

```
SUBROUTINE SPLIT(W, A, M, N, IL, IU, IM, XX, OM)
C . . . .
                                                                                        ....20 MAY 1973
C.... USED IN SPLIT1 TO SPLIT A ROW CLUSTER ON SELECTED VARIABLES
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... A = M BY N BORDERED ARRAY
C.... XX = 4 BY N MEANS MATRIX
C.... XX = 4 BY N MEANS MATRIX
C.... DM = REDUCTION IN WITHIN CLUSTER SUM OF SQUARE
C.... W = M BY N WEIGHT MATRIX
C.... W(I,J)=0 MEANS A(I,J) WILL BE IGNORED

W(I,J)=0, I NOT ASSIGNED (SPECIFIED ON INPUT)
C W(I,J)=1, I IN FIRST CLUSTER, SPECIFIED ON OUTPUT
C W(J,1)=2, I IN SECOND CLUSTER, SPECIFIED ON OUTPUT
       DIMENSION W(M,N),A(M,N),XX(4,N)
C.... FIND MEAN OF ALL CASES
        TH=10.**(-6)
        00 30 J=2,N
        XX(1, J)=0
        XX(3, J)=0
        XX(2,J)=TH
        XX (4, J)=TH
    30 CONTINUE
        DD 32 J=2.N
        IF(W(1,J).EQ.O) GO TO 32
        00 31 I=IL,IU
        (L, I) W * (L, I) A + (L, I) XX = (L, I) XX
         XX(2,J)=XX(2,J)+W(1,J)
    33 XX(1, J) = XX(1, J) / XX(2, J)
    32 CONTINUE
        0=M0
        00=0
        00 50 IC=IL,IU
        II=IU-IC+IL
        DMAX=-10.##10
        IMAX=II
C.... EFFECT OF MOVING ITH CASE
        60 51 I=IL, II
        D=0
        00 57 J=2.N
        IF(W(1,J).EQ.O) GO TO 57
        IF(XX(2,J).P3,W(1,J),XX(2,J)=+(1,J)+TH
D=D+W(1,J)*X1(2,J)=+(1,J)+X+(2,J)-W(1,J);
        D=D-W(I, J)*XX(4, J)*(A(I, J)-XX(3, J))**2/(XX(4, J)+W(I, J))
    57 CONTINUE
        IF(D.LE.DMAX) GD TD 51
        I MAX= I
        DMAX=D
    51 CONTINUE
        DD=DD+DMAX
IF(OD.GT.OM) IM±II-1
IF(OD.GT.OM) OM=DO
C.... UPDATE MEANS OF TWO CLUSTERS
        I=IMAX
        W(IMAX,1)=2
        DO 55 J=2.N
        IF(W(1.J).EQ.0) GU TO 55
        XX(2, J)=XX(2, J)-W(I, J)
        IF(XX(2,J).LT.TH) XX(2,J)=TH
        XX(1,J)=XX(1,J)+(XX(1,J)-A(I,J))+W(I,J)/XX(2,J)
        XX(4, J) = XX(4, J) + W(I, J)
        (L,4)XX\(L,1)W*((L,1)A-(L,8)XX)-(L,8)XX=(L,8)XX
    55 CONTINUE
C .... INTERCHANGE SELECTED ROW WITH LAST FEASIBLE ROW
        DO 56 J=1,N
        C=A[I,J]
        (L,II)A=(L,I)A
        A(II.J)=C
        C=W(I,J)
        (L.II)W=(L,I)W
    56 WIII, J)=C
    50 CONTINUE
C.... DEFINE CLUSTERS
        RETURN
        END
```

```
SUBROUTINE OUT1(A,M,N,NB,KC)
C . . . . . . . .
C... USE AFTER SPLITI.
C... PRINTS DUT MATRIX A WHEN BLOCKS NB EACH CONTAIN ONLY ONE COLUMN
C... A = M BY N BORDERED ARRAY
C... M = NUMBER OF ROWS
C... N = NUMBER OF COLUMNS
C.... NB = 4 BY KC BLOCK ARRAY
C NB(1,K)=FIRST ROW
                 NB(2,K)=LAST ROW
                 NB(3,K)=NB(4,K)=CDLUMN
C.... KC = NUMBER OF BLOCKS
                                                   DIMENSION A(M,N),NB(4,KC)
DIMENSION AA(2D)
         DATA BLANK DASH 4H
                                           . 4H----/
      WRITE(6,1)A(1,1)
1 FORMAT(18H ONE WAY SPLIT OF ,A4)
         NN= (N-11/2D+1
         DO 70 LL=1,NN
         JL=(LL-1) +2D+1
         JU=LL+2D
         IF(JU.GT.N) JU=N
     IF(JU.GT.N) JU=N
WRITE(6,2)(A(1,J),J=JL,JU)
WRITE(6,2)(DASH,J=JL,JU)
2 FORMAT(2X,2D(A4,2X1)
DD 6D I=2,M
WRITE(6,3)(A(I,J),J=JL,JU)
3 FORMAT(1X,A4,1X,2DF6.2/(7X,20F6.2))
         DO 5D L=1,2D
     5D AA(L)=BLANK
         NC=D
         DO 3D K=1,KC
         L=D
         IF(NB(2,K).EQ.I) L=NB(3,K)
    IF(L.GE.JL.AND.L.LE.JU) AA(L-JL+1)=OASH
30 IF(L.ME.D) NC=1
    IF(NC.EQ.D) GD TO 6D
    MRITE 16,2)(AA(L),L=1,2D)
     60 CONTINUE
         WRITE (6,5)
      5 FORMAT(1H1)
     7D CONTINUE
         RETURN
         END
```

```
SUBROUTINE SPLITZ(A.M.N.NB.KO.KA.XR.XC.TH.ICPD)
C . . . . .
                                                                      .......20 MAY 1973
C.... SPLITS ARRAY A BY ROWS AND COLUMNS SIMULTANEOUSLY. ALL DATA VALUES SHOULD C.... BE COMPARABLE. MISSING VALUES AFF FEFRESENTED BY A(1,J)=99999.
C .... USES NSPLIT, CSPLIT
C.... A = M BY N BORDERED ARRAY
C .... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... KO = MAXIMUM NUMBER OF BLOCKS(NEVER EXCEEDS M*N)
C.... KA = COMPUTED NUMBER OF BLOCKS
XR(6,1) = NUMBER OF COLUMNS IN ITH ROW OF PRESENT COLUMN SPLIT
XR(7,1) = MEAN OF ITH ROW, FIRST COLUMN CLUSTER
c
             XR(8,1)= NUMBER OF COLUMNS, SECOND CLUSTER
             XA(9,1) = MEAN OF ITH ROW, SECOND CLUSTER
C.... XC = 9 BY N SCRATCH ARRAY, USED LIKE XR
C.... TH = THRESHOLD (EACH ROW AND COLUMN VARIANCE WITHIN A BLOCK LESS THAN)
             IORO = D ROWS AND COLUMNS PERMUTED
             IURO = 1 LEAVE ROW ORDER
IORO = 2 LEAVE COLUMN ORDER
IURD = 3 LEAVE ROW AND COLUMN DRDER
       DIMENSION A(M,N),NB(4,KD),XR(9,M),XC(9,N)
C.... INITIALIZE BLOCKS AND ROW AND COLUMN CLUSTERS
       XR(1,1)=2
       XR(2,1)=M
       XC(1,1)=2
       XC(2,1)=N
       KR=1
       KC=1
       KA=1
       NB(1,1)=2
       NB(2,1)=M
NB(3,1)=2
       NB (4.1)=N
       IR#1
       IC=1
       K=KD
       CALL RSPLIT(A, M, N, NB, K, KA, XR, XC, TH, IR, IORO)
       CALL CSPLIT(A, M, N, NB, K, KA, XR, XC, TH, IC, IGRD)
   70 CONTINUE
C.... FIND BEST ROW OR COLUMN SPLIT
       18=1
       XB = D
       00 60 I=1,KR
       IF(XR(3, I).LE.XB) GD TO 6D
       XB=XR(3.I)
       I B = I
   6D CONTINUE
       00 61 J=1,KC
IF(XC(3,J).LE.XB) GO TO 61
       X8=XC(3,11
       IB=J+M
   61 CONTINUE
      IF(X8.EQ.D) GO TO 80
C.... SPLIT ROW CLUSTER
      KKC=KA
       IF(IB.GT.M) GO TO 64
       IL=XR(1, IB)
       IU=XR(2, IB)
       IM=XR (4, IB)
      00 62 K=1,KA
       (F(NB(1,K).NE.IL.OR.NB(2,K).NE.IU) GO TO 62
      KKC=KKC+1
      NB(1,KKC)=IM+1
      NB(2, KKC J=NB(2, K)
      NB ( 2, K) = IM
      NB(3,KKC)=NB(3,K)
      NBI4.KKCI=NB(4.K)
   62 CONTINUE
      KA=KKC
      XR(2,18)=1M
```

```
KR=KR+1
        XR(1,KR)=IM+1
        XR(2,KR)=IU
CALL RSPLIT(A,M,N,NB,KD,KA,XR,XC,TH,IB,IORD)
         CALL RSPLIT(A,M,N,NB,KD,KA,XR,XC,TH,KR,IORD)
        GO TO 70
    64 CONTINUE
54 CUMITADE

C..., SPLIT COLUMN CLUSTER

JB=B=M

JL=XC(1,JB)

JU=XC(2,JB)

JM=XC(4,JB)
        00 65 K=1,KA
IF(NB(3,K).NE.JL.OR.NB(4,K).NE.JU) GO TO 65
         KKC=KKC+1
         NB(3,KKC)=JM+1
         NB(4,KKC)=NB(4,K)
         NB(4,K)=JM
          NB(1,KKC)=NB(1,K)
         NB(2,KKC)=NB(2,K)
     65 CONTINUE
         KA=KKC
         XC(2, JB)=JM
KC=KC+1
         XC(1,KC)=JM+1
XC(2,KC)=JU
         CALL CSPLIT(A,M,N,NB,KO,KA,XR,XC,TH,KC,IORD)
CALL CSPLIT(A,M,N,NB,KO,KA,XR,XC,TH,JB,IORD)
     GO TO TO
BO CONTINUE
     00 81 K=1,KA

D0 81 J=1,4

81 IF(NB(J,K).LT.Q) NB(J,K)=-NB(J,K)
         RETURN
         END
```

```
SUBROUTINE CSPLIT(A,M,N,NB,KO,KA,XR,XC,TH,IR,IORD)
c . . . . .
                                                                              ----- 1973
C.... SPLITS COLUMNS, FOR ARGUMENT DESCRIPTION SEE SPLITZ.
        DIMENSION A(M,N),NB(4,KD),XR(9,M),XC(9,N)
        XM=99999.
DO 23 I=2,M
23 XR(5,1)=0
C... LOOK FOR BLOCKS WITHIN THRESHOLD
        JL=XC(1, IR
        JU=XC(2, 1R)
        00 20 K=1,KA
IF(NB(3,K).NE.JL.OR.NB(4,K).NE.JU) GO TO 20
        IL=NB(1.K)
IF(IL.LT.O) IL=-IL
[U=NB(2,K)
C.... COMPUTE VARIANCES
        NC=D
        DO 21 I=IL, IU
        51=0
        $2=0
        S3=0
        DO 22 J=JL, JU
1F(A(I,J).EQ.XM) GO TO 22
        51=51+1
        $2=$2+A(I,J)
        S3=S3+A(1,J)**2
    22 CONTINUE
        XR(6,1)=51
        IF(S1.NE.O) XR(7,I]=S2/S1
IF(S1.NE.O) S3=S3/S1-(S2/S1)**2
        IF(53.6T.TH) XR(5,1)=1
IF(53.GT.TH) NC=1
    21 CONTINUE
    IF(NC.EQ.O) NB(3,K)=-NB(3,K)
20 CUNTINUE
C... FIND BEST COLUMN SPLIT
DO 30 I=2,M
XR(8,1)=0
    30 XR(9,1)=0
        DM=0
        XC(3, IR)=0
        XC(4, [R)=JL
        DO 31 J=JL,JU
IF(J.Eq.JU) GO TO 31
        リリ=リローリ+リド
        JD=JJ
        00=-10.**30
        DO 32 L=JL.JJ
IF(IORD.GE.2.AND.L.NE.JJ) GO TO 32
        DL=0
        DC 33 1=2,M

IF(XR(5,1),Eq.0) GD TO 33

IF(A(I,L),EQ.XM) GD TO 33

DC=DL+(A(I,L),XR(7,1))+224(XR(6,1)+1)/XR(6,1)
        DL=DL-(A(1,L)-XR(9,1))**2*XR(8,1)/(XR(8,1)+1.)
    33 CONTINUE
        IF(DL.LE.DD) GO TO 32
00=DL
        J∂≃L
    32 CONTINUE
    34 CONTINUE
C.... INTERCHANGE JD AND JJ
        DO 35 I=1,M
        C=A(1,JJ)
        ICL, I)A=ILL, I)A
35 A(I,JD)=C
C... UPDATE MEANS
DO 36 I=2,M
IF(XR(5,I)=EU.O) GO TO 36
IF(A(I,J)=EQ.XM) GO TO 36
XR(6,I)=XR(6,I)=1
        IF(XR(6,1).NE.O) XR(7,1]=XR(7,1)+(XR(7,1)-A(1,JJ))/XR(6,1)
        XR(8,1)=XR(8,1)+
        XR(9, I) = XR(9, I) - (XR(9, I) - A(I, JJ)) / XR(8, I)
    36 CONTINUE
        DM=DM+DD
    IF(OM.LT.XC(3,IR)) GO TO 31
XC(3,IR)=DM
XC(4,IR)=JJ-1
31 CONTINUE
        RETURN
```

```
SUBROUTINE RSPLIT(A,M,N,NB,KD,KA,XR,XC,TH,IR,IGRD)
                                                                                    ....20 MAY 1973
Ç . . . . .
C.... FIND OPTIMAL ROW SPIT, FOR ARGUMENT DESCRIPTION SEE SPLIT2
DIMENSION A(M.N),NB(4,KD),XR(9,M),XC(9,N)
        XN=99999.
DD 23 J=2.N
23 XC(5,J)=0
C.... LUOK FOR BLOCKS WITHIN THRESHOLD
        IL=XR(1,IR)
        IU=XR(2, 1R)
        DD 20 K=1,KA
IF(NB(1,K).NE.IL.OR.NB(2,K).NE.IU) GO TD 20
        JL=NB(3,K)
JU=NB(4.K)
IF(JL.LT.0) JL9-JL
C.... COMPUTE VARIANCES
        NC=0
        DO 21 J=JL,JU
        51=0
        S2=0
        S3=0
        DO 22 I=IL, IU
        IF(A(I,J).EQ.XM) GO TO 22
        S1=S1+1
        52=52+A(I,J)
    $3=$3+A(1,J)**2
22 CONTINUE
        CUNITADE

XC(6,J)=S1

IF(S1.NE.O) S3=S3/S1-(S2/S1)++2

IF(S1.NE.O) XC(7,J)=S2/S1

IF(S3.GT.TH) XC(5,J)=1

IF(S3.GT.TH) NC=1
    21 CONTINUE
        IF(NC.EQ.O) NB(1,K) =-NB(1,K)
    20 CONTINUE
C.... FIND BEST ROW SPLIT
       DO 30 J=2,N
XC(8,J)=0
    30 XC(9, J) =0
        DM=0
        XR(3, IR)=0
        XR(4, IRI=IL
        DO 31 I= IL, IU
        IF(I.Eq.IU) GO TO 31
        II=IU-I+IL
        II=OI
        DD=-10.**30
        DO 32 L=IL,II
IF(IORD.EQ.1.OR.IORD.EQ.3.AND.L.NE.II) GO TO 32
        DL=0
        DO 33 J=2,N
        DU 33 3-2,4
IF(XC(5,J).EQ.O) GO TO 33
IF(A(L,J).EQ.XM) GO TO 33
DL=DL+(A(L,J)-XC(7,J)]**2*(XC(6,J)+1]/XC(6,J)
        L=DL-(A(L,J)-XC(9,J))++2+XC(8,J)/(XC(8,J)+1)
    33 CONTINUE
        IF(DL._E.DD) GO TO 32
UD=DL
        ID=L
    32 CONTINUE
    37 CONTINUE
C .... INTERCHANGE ID AND II
        DO 35 J=1.N
        (LIII)A=D
        A(II,J)=A(ID,J)
35 A(ID.J)=C
C.... UPDATE MEANS
        00 36 J=2.N
IF(XC(5,J).Eq.0) GD TO 36
IF(A(II.J).Eq.XM) GD TO 36
        XC(6, J) = XC(6, J)-1.
        IF(XC(6,J).NE.O) XC(7,J)=XC(7,J)+(XC(7,J)-A(1),J))/XC(6,J)
        XC(8, J) = XC(8, J) +1
        KC(9,J)=XC(9,J)-(XC(9,J)-A(II,J)/XC(8,J)
    36 CONTINUE
        DM=DM+DD
        IF(DM.LT.XR(3,IR)) GO TO 31
        XR(3, IR)=DM
XR(4, IR)=II-1
    31 CONTINUE
        RETURN
        END
```

Direct Joining

15.1 INTRODUCTION

In Table 15.1, a number of species of the yeast candida are distinguished by their production of acid with various carbohydrates. It is desired to cluster the species and to characterize each cluster by its oxidation-fermentation behavior. It is also desirable to cluster the carbohydrates (if, for example, two carbohydrates always produced the same reaction, it would be unnecessary to use both). It is therefore necessary to construct clusters simultaneously on the species and on the carbohydrates.

The three-tree cluster model postulates clusters of rows, clusters of columns, and clusters of the data values themselves. Each of the three types of clusters forms trees. (The change from the clustering model used in Chapter 14 is that here the data clusters form a tree rather than a partition.) This model is exemplified in Table 15.3. The responses within a data cluster C are all equal, once values corresponding to clusters properly included in C are removed. This model for two-way tables can obviously be generalized to many-way tables.

The candida data are of a specialized type, in which a comparable response is induced on all combinations of candida and carbohydrates. This wide homogeneity of the response simplifies the simultaneous clustering of candida and carbohydrates. The more general type of data structure is the cases-by-variables structure, in which responses are comparable between cases for the same variable but not (without some prescaling) between variables for the same case. There is a correspondence between the two data structures shown in Table 15.2. In general, consider an N-way table with a response variable Y. The Jth margin of the table has a number of possible classes, and so it is a category variable—say, V(J). Each entry in the table is identified by a response Y and the values of the margins, V(1), V(2), ..., V(N). Each entry in the table is a case from a data matrix with N+1 variables, corresponding to the response variable Y and the N+1 marginal variables.

The many-tree clustering model on a data matrix with N marginal category variables and a response variable Y constructs clusters in each of the marginal variables and clusters on the cases themselves, so that (i) the response variable Y is equal within clusters of cases (after proper subclusters are removed), and (ii) each cluster of cases is the set of cases corresponding to a product of clusters of values in the marginal

Table 15.1 Oxidation-Fermentation Patterns in Species of Candida

[From Hall, C. T., Webb, C. D., and Papageorge, C. (1972).] Use of an oxidation-fermentation medium in the identification of yeasts, *HSMHA Health Rep.* 87, 172–176.] The oxidation-fermentation of various carbohydrates is used in differentiating various strains of yeast in the species *Candida*.

(+ means oxidative production of acid; - means no acid production).

variables. For example, if variable 1 takes values A, B, C and variable 2 takes values X, W, Z, U, then a data cluster would be the set of cases corresponding to the clusters (A, B) and (X, Z, U)—that is, to the set of cases $\{V(1) = A, V(2) = X\}$, $\{V(1) = A, V(2) = Z\}$, $\{V(1) = A, V(2) = U\}$, $\{V(1) = B, V(2) = X\}$, $\{V(1) = B, V(2) = Z\}$, $\{V(1) = B, V(2) = U\}$.

It will be seen in the above model that the clusters are evaluated by the response variable Y, but they are constrained by the marginal variables $V(1), \ldots, V(N)$. In regression, Y would be the dependent variable and $\{V(J), 1 \le J \le N\}$ would be the independent variables. The above showed that an N-way table may be treated as a data matrix with N+1 variables. Conversely, a data matrix may be treated as an N-way table.

Specifically, consider an arbitrary data matrix of category variables. Each variable is a partition of the cases, so the basic problem is the construction of an overall tree of cases that conforms as best as possible to the original partitions. Some combinations of values of the category variables will appear in the data matrix, and some will not. Make an enlarged data matrix with one case for each combination of values and a response for each case equal to the number of times that combination of values appeared in the original data. This new data matrix is equivalent to an N-way table with responses equal to the number of times a particular combination of values appears. The outcome of the many-way clustering will be trees on each of the marginal variables and a clustering of cases.

The algorithm to perform this construction is a joining algorithm that joins two values of one of the category variables at each step.

Table 15.2 Candida Data in Cases-by-Variables Form

Note that there are four columns of cases.

ACID PRODUCTION	YEAST SPECIES	CARBO HYDRATE	AP	Ys	СН	ΑP	Ys	СН	AP	Ys	Ch
+	1	1	+	3	1	+	5	1	+	7	1
+	1	2	-	3	2	+	5	2	~ ′	7	2
+	1	3	-	3	3	+	5	3	+	7	3
-	1	4	-	3	4	-	5	4	+	7	4
+	1	5	-	3	5	+	5	5	+	7	5
-	1	6	-	3	6	+	5	6	-	7	6
-	1	7	-	3	7	+	5	7	+	7	7
-	1	8	-	3	8	-	5	8	-	7	8
-	1	9	-	3	9	+	5	9	+	7	9
-	1	10	-	3	10	+	5	10 .	+	7	10
+	1	11	-	3	11	+	5	11	-	7	11
-	1	12	-	3	12	+	5	12	-	7	12
+	2	1	+	4	1	+	6	1	+	8	1
+	2	2	+	ħ	2	+	6	2	-	8	2
+	2	3	+	4	3	-	6	3	-	8	3
-	2	4	-	4	4	-	6	4	-	8	4
+	2	5	+	4	5	+	6	5	-	8	5
-	2	6	-	4	6	-	6	6	-	8	6
+	2	7	-	4	7	-	6	7	-	8	7
-	2	8	-	4	8	-	6	8	-	8 -	8
+	2	9	+	4	9	+	6	9	-	8	9
-	2	10	-	4	10	-	6	10	~	8	10
+	2	11	+	4	11	+	6	11	-	8	11
-	2	12	-	4	12	-	6	12	-	8	12

15.2 TWO-WAY JOINING ALGORITHM

Preliminaries. The data matrix $\{A(I,J), 1 \le I \le M, 1 \le J \le N\}$ consists of zeroes or ones. The outcome of the clustering is a tree of clusters of the data entries, each of which is the set of data in the matrix corresponding to a cluster of rows and a cluster of columns. Denoting the data clusters by $1, 2, \ldots, KD$, let IR(K) be the row cluster corresponding to the Kth data cluster and let IC(K) be the corresponding column cluster. The row clusters are $1, 2, \ldots, KR$, and the tree structure is specified by the function JR(I), which is the smallest cluster properly including I. Similarly, the column clusters are $1, 2, \ldots, KC$ and the column tree structure is specified by JC(I), the smallest column cluster properly including column cluster I.

The algorithm at each step joins that pair of rows or columns that are closest in a certain measure of distance. The closest pair of rows, for example, are joined to make

Table 15.3 Three-Tree Model

CARBOHYDRATES

CANDIDA

	1	2	3	4
1	+	+	+	-
2	<u> </u>	+	+	-
3	+	-	-	-

ACID	CANDIDA	CARBOHYDRATES		
+	1	1		
+	1	2		DATA
+	1	3		CIUSTERS
+	2	1		
+	2	2		
+	2	3		
+	3	1		
-	3	2		
-	3	3		
-	1	ħ		
-	2	4	į	
-	3	4		

CANDIDA CIUSTERS

CARBOHYDRATE CIUSTERS

1	\Box
2	
3	

a new row by using a certain amalgamation rule, possible data clusters are identified wherever the two rows do not match, and the algorithm proceeds to the next step.

STEP 1. Initially KD = 0, KR = M, KC = N, JR(I) = 0 (1 $\leq I \leq M$), and JC(I) = 0 (1 $\leq I \leq N$).

STEP 2. For each pair of row clusters $(1 \le I, J \le KR)$ with JR(I) = JR(J) = 0, compute the distance $(n_{01} + n_{10})/(n_{00} + n_{11} + n_{01} + n_{10})$, where n_{XY} is the number of columns K, with JC(K) = 0, and with A(I, K) = X and A(J, K) = Y. Similarly compute the distance between each pair of column clusters $(1 \le I, J \le KC)$ with JC(I) = JC(J) = 0.

STEP 3. Join the closest pair of rows or columns—say the closest pair of rows, I, J. Increase KR to KR + 1, define JR(I) = JR(J) = KR and JR(KR) = 0. For each column K, JC(K) = 0, define A(KR, K) to be $A(I, K) \cap A(J, K)$, if $A(I, K) \cap A(J, K) \neq \emptyset$, and to be $A(I, K) \cup A(J, K)$ otherwise. If $A(I, K) \cap A(J, K) = \emptyset$, define IR(KD + 1) = I, IC(KD + 1) = K and IR(KD + 2) = J, IC(KD + 2) = I

- K, which thus generates two new data clusters. Increase KD by 2. Return to Step 2, unless there is only one row, $(1 \le I \le KR)$ with JR(I) = 0 and one column $(1 \le I \le KC)$ with JC(I) = 0.
- STEP 4. Reorder the data matrix in rows and columns so that row and column clusters consist of contiguous sequences of rows and columns.
- STEP 5. Consider the data values $\{A(I,J), 1 \le I \le M, 1 \le J \le N\}$ with respect to the data clusters $1 \le K \le KD$. For each cluster K, define A(K) to be the set of values (either $\{0\}, \{1\}, \text{ or } \{0, 1\})$ which occur maximally in A(J), where J runs over the maximal proper subclusters of K. Define A(K) = A(I,J) on clusters consisting of a single data value.
- STEP 6. For the data cluster K of all data values, if $A(K) = \{0, 1\}$, set $A(K) = \{1\}$. Eliminate the cluster K if the minimal cluster L including K has $A(L) \subseteq A(K)$. The final number of clusters is (KD + 1)/2.

15.3 APPLICATION OF TWO-WAY JOINING ALGORITHM TO CANDIDA

The value in the data matrix will be + or - rather than 0 or 1. (See Tables 15.4 and 15.5 for the final results.)

- STEP 1. Initially specify the number of clusters, KD = 0, the number of row clusters, KR = 8, and the number of column clusters, KC = 12. The structure is initialised by JR(I) = 0, $1 \le I \le 6$ and JC(I) = 0 ($1 \le I \le 12$).
- STEP 2. Distances are computed between each pair of row clusters I, J with JR(I) = JR(J) = 0. For example, with I = 1, J = 2, $n_{++} = 5$, $n_{+-} = 0$, $n_{-+} = 2$, $n_{--} = 5$. These numbers, of course, add to 12 which is the number of columns. The distance is $\frac{2}{12}$. Similarly, distances are computed for each pair of columns.
- STEP 3. There are some pairs of rows and columns that are identical, and these will be joined first. The algorithm does not specify the order of joining. Taking first columns 6 and 12, increase KC to 13, define JC(6) = 13, JC(12) = 13, JC(13) = 0. Define A(K, 13) = A(K, 6) for $1 \le K \le 8$, since $A(K, 6) \cap A(K, 12) = A(K, 6)$ always. Because of this identity, no data clusters are generated. Return to Step 2 and join identical columns 11 and 2 to make column cluster 14, and then join identical rows 3 and 8 to make row cluster 9. Return to Step 2.
- STEP 2 REPEATED. Compute distances between row clusters I, J ($1 \le I, J \le 9$), excluding I, J equal to 3 and 8 since JR(3) = JR(8) = 9. The distance between I = 1 and J = 2 uses the counts $n_{++} = 4$, $n_{+-} = 0$, $n_{-+} = 2$, $n_{--} = 4$, so the distance is $\frac{2}{10}$, whereas it was $\frac{2}{12}$ before the joining of the two identical column pairs. This is the mechanism for interaction between the row clustering and the column clustering. For example, two identical (or very similar) columns will have reduced weight in the clustering of rows because they will be joined early on. The closest pair of rows or columns is the pair of rows I = 4, J = 6, whose distance is $\frac{1}{10}$.
- STEP 3. Join row 4 and row 6. Increase KR to 10, define JR(4) = JR(6) = 10, JR(10) = 0. For column 1, A(4, 1) = +, A(6, 1) = +, so $A(4, 1) \cap A(6, 1) = +$, and therefore A(10, 1) = +. Column 2 is not considered because JC(2) = 14. For

	4	8	6	12	11	2	_7_	10	9	5	3	1
7	Ð		-	-	-	•	+	+	+	+	+	+
8	-	-	-	-	-	_	1 -	-	-	-	-	+
3	-	-				-	-	-				+
1	-	-	-	-	+	+	-	-	-	+	+	+
6	-	-	-	-	+	+	-	- 1	+	+	-	+
4	-	-	-	-	+	+	-	_	+	+	+	+
2	-	-	_		+	+	+		+	+	+	+

5 | - - | + + + + | | + + + + + + |

Table 15.4 Preliminary Outcomes of Joining Algorithm
CARBOHYDRATES

	ROW C	iusters col ciusters						DATA CIUSTERS							
I	JR(I)	I	JR(I)	I	JC(I)	I	JC(I)	ĸ	IR(K)	IC(K)	ĸ	JR(K)	JC(K)		
1	12	9	13	1	19	13	20	1	4	3	13	13	17		
2	11	10	11	2	14	14	20	2	6	3	14	13	19		
3	9	11	12	3	15	15	19	3	2	7	15	3	20		
4	10	12	13	4	18	16	17	4	10	7	16	14	20		
5	15	13	14	5	15	17	21	5	1	9	17	15	21		
6	10	14	15	6	13	18	22	6	11	9	18	15	22		
7	14			7	16	19	21	7	7	4	19	15	23		
8	9			8	18	20	22	8	7	8					
				9	17	21	23	9	9	1					
				10	16	55	23	10	9	15					
				11	14			11	12	13					
				12	13			12	12	14					

column 3, A(4,3) = +, A(6,3) = -, so $A(10,1) = \pm$. Also construct two new data clusters with IR(1) = 4, IC(1) = 3, IR(2) = 6, IC(2) = 3. Increase KD to 2. Return to Step 2.

STEP 2 REPEATED. In distance calculations between row clusters, the value \pm is ignored entirely. For example, between row 1 and row 10, $n_{++} = 3$, $n_{+-} = 0$, $n_{-+} = 1$, $n_{--} = 5$, with the third column ignored entirely. The algorithm continues until a single row cluster and a single column cluster remain. The final clusters of data, rows, and columns are given in Table 15.4. Each data cluster corresponds to a mismatch in two joined row or column clusters.

STEP 4. The data matrix has been reordered in Tables 15.4 and 15.5, so that data clusters are represented as contiguous blocks.

		4	8	6	12	11	2	7	20	9	5	3	1
CANDIDA	7	+	_	_	-	-	-	+	+	+	+	+	+
	8		-	-	-	-	-	-		-	-	-	+
	3	-		-	-	-	-	-	-	-	-	-	+
	1	_	-	-	- [+	+		-	-	+	+	+ }
	6	-	-	-	-	+	+	-	- 1	+	+]	-	+
	4	-	-	-	-	+	+	-	_	+	+	+	+
	2	-	-	-	-	+	+			+	+	+	+
	5	-	-	+	+	+	+	+	+	+	+	+	+

Table 15.5 Final Data Clusters from Joining Candida
CARBOHYDRATES

STEP 5. In Table 15.4, there are nineteen data clusters within which data values are constant. Many of these clusters are unnecessary; for example, the cluster at (7, 8) may be dropped because this value is already implied by the larger cluster including it. These next steps prune away the unnecessary clusters by using the same techniques as in the minimum-mutation fit.

For K = 4, the subclusters are (4, 7) and (6, 7), for each of which A = -; thus A(4) = -. For K = 13, the subclusters are K = 3, 4, 1, 11 and 11 single points. The value - occurs 13 times, and the value + occurs twice. Thus A(13) = -.

STEP 6. In Step 6, unnecessary data clusters are pruned away. The largest cluster has $A(19) = \pm$; set A(19) = +. Since $A(18) = + \supset A(19)$, eliminate cluster 18. Similarly, $A(13) = + \supset A(19)$, and so cluster 13 is eliminated. The final data clusters appear in Table 15.5, where it will be seen that only ten data clusters are necessary; this reduction in the number of clusters to (KD + 1)/2 always occurs.

An overall criterion for this type of data is the representation of the data values exactly in a minimum number of clusters. It is still necessary to have a search procedure through the immense number of possible structures, and the joining algorithm is such a search procedure.

15.4 GENERALIZATIONS OF TWO-WAY JOINING ALGORITHM

The algorithm may obviously be generalized to many-way tables. At each step, one of the N marginal variables is selected, and two of its values are amalgamated. Measures of distance and amalgamation rules are obtained analogously to the two-way case.

A second direction of generalization is the response variable. In the two-way joining algorithm, the response is 0-1, but it could be a category variable with more than two categories, it could be an ordered variable, it could be an integer (as in contingency tables), or it could be on an interval scale. Different measures of distance and amalgamation rules will be necessary for each of these variable types.

For an interval scale, each data point should be regarded as a range of values (Y_1, Y_2) ; before any clustering takes place, $Y_1 = Y_2$ for every data point. A threshold T is given. Two data points, (Y_1, Y_2) and (Z_1, Z_2) , are compatible if max (Y_2, Z_2) — min $(Y_1, Z_1) \leq T$. The distance between two vectors of data points will be the number

of compatible pairs. Two data points (Y_1, Y_2) and (Z_1, Z_2) amalgamate to $(\min (Y_1, Z_1), \max (Y_2, Z_2))$ if compatible, and otherwise the amalgamated value is missing.

15.5 SIGNIFICANCE TESTS FOR OUTCOMES OF TWO-WAY JOINING ALGORITHM

Let M be the number of rows, let N be the number of columns, and let K ones and MN-K zeroes be assigned to the data matrix $\{A(I,J), 1 \le I \le M, 1 \le J \le N\}$ at random. What is the distribution of KD, the number of data clusters?

Some asymptotic results are available. If $M \to \infty$, $K \to \infty$, but N remains fixed, then $KD = 2^N$. If $M \to \infty$ but K and N remain fixed, then KD - 1 equals the number of occupied cells when K balls are distributed at random among N cells. If $M \to \infty$, $N \to \infty$, but K remains fixed, KD = K + 1.

Some empirical results are given in Table 15.6 for relatively small matrices. Only means and variances are given, as the distributions are approximately normal as M, N, $K^{1/2}$ approach ∞ at comparable rates. Some general conclusions are that the

Table 15.6 The Number of Data Clusters when a Given Number of Ones are Assigned at Random to an M by N 0-1 Matrix. (Means and variance in 100 repetitions.)

M = 6 N = 2 1 1 1 5	_	1		2	3		4	!	;	6	
MEAN, VARIANCE.	-	2.00,	0.00	2.42, .	24 2.81,	.15	3.19, .	35 3.4	, .29	3.67,	.32
$M = 4 N = 3 \frac{11}{11} 1^{9} s$	-	1		2	3		4	!	5	6	
MEAN, VARIANCE	-	2.00,	.00	2.60, .2	4 3.07,	.17	3.77, .6	6 3.94,	.46	4.03,	.45
M = 12 N = 2 # 1 1 8	-	1		3	5		7	9)	11	
MEAN, VARIANCE	-	2.00,	•00	2.83, .1	4 3.20,	.24	3.56, .2	7 3.86,	.12	3.88,	.11
M = 8 N = 3 # 1's	-	1		3	5		7	:)	11	
MEAN, VARIANCE	-	2.00,	.00	3.05, .2	3 4.01,	.47	4.86, .8	4 5.51,	.95	5.73,	.94
M = 6 N = 4 # 1's	-	1		3	5		7	9	1	11.	
MEAN, VARIANCE	-	2.00,	.00	3.23, .2	8 4.25,	.79	5.38, .9	2 6.10,	.97	6.04,	-94
H = 16 N = 3 # 1's	•	2		6	10		14	18	l	22	
MEAN, VARIANCE	-	2.68,	.22	4.14, .4	2 5.40,	1.06	6.75, .6	9 7.20,	.60	7.27,	. 62
M = 12 N = 4 # 1 s	-	2		6	10		14	18	1	22	
MEAN, VARIANCE	-	2.76,	.18	4.75, .7	3 6.39,	.90	7.98, 1.	40 9.13,	1.43	9.46,	1.57
M = 8 N = 6 # 1's	-	2		6	10		14	16)	22	
MEAN, VARIANCE	-	2.75,	.19	5.17, .9	0 7.42,	1.28	9.21, 1.	76 10.10,	2.07	10.43,	1.81
M = 12 N = 8 # 1's	-	2		10	18		26				
MEAN, VARIANCE	-	2.87,	.11	7.86, 1.	04 11.88,	2.231	5.57, 2.	63			
M = 16 N = 6 # 1's	-	2		10	18						
MEAN, VARIANCE	-	2.83,	.14	7.38, .8	4 10.82,	2.07					

means and variance increase for M and N fixed, as K^2 increases toward $\frac{1}{2}MN$. For MN fixed, means and variances increase as M increases toward \sqrt{MN} . To illustrate the case M large, N and K small, consider M = 16, N = 3, K = 2. Then KD - 1 is the number of occupied cells in distributing two balls at random in three cells, so KD = 2 with probability $\frac{1}{3}$, KD = 3 with probability $\frac{2}{3}$; KD has mean 2.67, and variance 0.22.

15.6 DIRECT JOINING ALGORITHM FOR VARIABLES ON DIFFERENT SCALES

Preliminaries. This algorithm simultaneously clusters variables and cases when the variables are measured on different scales. The joining operation for variables is somewhat more complicated than that for the two-way algorithm, where all data values are comparable. At each stage in the algorithm, every variable is transformed to have the same first and third quartiles, and previous two-way joining rules are used on the transformed data.

As in the algorithm of Section 15.2, there is the data matrix $\{A(I,J), 1 \le I \le M, 1 \le J \le N\}$, there are the data clusters $1, 2, \ldots, KD$ with IR(K), IC(K) denoting the corresponding row and column clusters, there are the row clusters $1, 2, \ldots, KR$ with JR(I) denoting the smallest cluster properly including I, and there are the column clusters $1, 2, \ldots, KC$ with JC(I) denoting the smallest cluster properly including I. There is also the linear transformation B(J), C(J) of the Jth variable, such that $\{B(J), A(I,J) + C(J), 1 \le I \le M, 1 \le J \le N\}$ is a homogeneous data matrix. These linear transformations are discovered during the execution of the algorithm.

- STEP 1. Initially KD = 0, KR = M, KC = N, JR(I) = 0 $(1 \le I \le M)$ and JC(I) = 0 $(1 \le I \le N)$. As the first standardization of the variables, choose B(J), C(J) so that B(J) A(I, J) + C(J) has the first quartile equal to -1 and the third quartile equal to +1.
- STEP 2. For each pair of row clusters $[1 \le I, J \le KR, JR(I) = JR(J) = 0]$, the distance is the proportion of column clusters K $[1 \le K \le KC, JC(K) = 0]$, such that $|A(I, K) A(J, K)| \ge 1$. (The threshold 1 is chosen rather arbitrarily.) Similarly, for each pair of column clusters $[1 \le I, J \le KC, JC(I) = JC(J) = 0]$, the distance is the proportion of row clusters K $[1 \le K \le KR, JR(K) = 0]$, such that $|A(K, J) A(K, I)| \ge 1$. If no pairs of row or column clusters satisfying the conditions exist, go to Step 7 with K = 1.
- STEP 3. If a pair of column clusters are closest, go to Step 5. If a pair of row clusters I, J are closest, they are amalgamated to form a new cluster KR + 1 with JR(I) = JR(J) = KR + 1, JR(KR + 1) = 0. Increase KR by 1. For each K [$1 \le K \le KC$, JC(K) = 0], define A(KR, K) to be [A(I, K) + A(J, K)]/2 if |A(I, K) A(J, K)| < 1. Otherwise, define A(KR, K) to be A(I, K) or A(J, K), whichever is smallest in absolute value, increase KD by 1, and set IC(KD) = K, IR(KD) = I or J, according as A(I, K) or A(J, K) is largest in absolute value.
- STEP 4. Redefine B(J), C(J) for each column cluster J [$1 \le J \le KC$, JC(J) = 0], such that the values $\{A(I, J), 1 \le I \le KR, JR(I) = 0\}$ have the first quartile equal to -1 and the third quartile equal to +1. Return to Step 2.

STEP 5. Suppose the column clusters I, J are closest. Amalgamate them to form a new column cluster KC + 1 with JC(I) = JC(J) = KC + 1, JC(KC + 1) = 0. Increase KC by 1. For each row cluster K $[1 \le K \le KR, JR(K) = 0]$, define A(K, KC) = [A(K, I) + A(K, J)]/2 if |A(K, I) - A(K, J)| < 1. Otherwise, set A(K, KC) = A(K, I) or A(K, J), whichever is smaller in absolute value, increase KD by 1, and set IR(KD) = K, IC(KD) = I or J according as A(K, I) or A(K, J) is greater in absolute value.

STEP 6. Define B(KC), C(KC) so that A(I, KC)B(KC) + C(KC) has the first quartile equal to -1 and the third quartile equal to +1. Return to Step 2.

STEP 7. If K > N, stop. Otherwise, change B(K), C(K) as follows. Let L = K.

STEP 8. Let L = JC(L). If JC(L) = 0, increase K by 1 and return to Step 7. Change B(K) to B(L) B(K), and change C(K) to C(L) + C(K) B(L). Repeat Step 8.

This algorithm is applied to percentages of farmland devoted to various crops in counties in Ohio. The initial data are given in Table 15.7, and the final data in Table 15.8. There is a distinctive cluster of five counties which are high on hay and relatively low in other crops. The use of first and third quartiles for scaling the variables is somewhat arbitrary, and more careful scaling techniques will be discussed in Chapter 16.

Table 15.7 Ohio Croplands

The percent of total harvested cropland allocated to various crops in selected Ohio counties, U.S. Census of Agriculture (1949).

	CORN	MIDED SMALL GRAINS	WHEAT	OATS	BARLEY	SOYBEAN	HAY
ADAMS	42,41	0.21	22.47	1.07	0.37	0.62	27.80
ALLEN	34.43	0.13	23.76	18.35	0.11	12.18	15.31
ashtabula	22.88	0.24	13.52	15.67	0.02	1.30	38.89
ATHENS	26.61	0.18	8.89	3.42	0.05	0.71	53.91
DELAWARE	33.52	0.13	17.60	11.33	0.16	11.82	22.69
CLINTON	48.45	0.24	29.50	3.10	0.25	2.72	9.85
GALLIA	31.38	0.83	13.07	2.03	0.60	0.71	44.07
CEAUGA	23.04	0,21	12.68	17.44	0.11	0.41	37.80
HANCOCK	36.13	0.12	24.64	16.56	0.13	13.91	16.46
HIGHLAND	47,33	0.11	31.57	1.59	0.05	1.46	16.10
MEIGS	28.20	0.28	14.08	3.06	0.18	0.67	46.71
PORTAGE	26.67	0.11	19.13	18.67	0.03	0.69	27.33
PUTNAM	30.97	0.13	24.16	15.28	0.13	14.10	12,61
WARREN	43.23	0.09	24.97	3.20	0.24	4.68	18.72
WASHINITON	25.08	0.08	13.43	1.96	0.66	1.06	50.27

From U.S. census of agriculture, 1949. (There is some prejudice for clustering counties contiguously.)

	CORN	Soybean	HAY	oats	WHEAT
ADAMS	42.41	.62	27.80	1.07	22.47
WARREN	43.23	4.68	18.72	3.20	24.97
PORTAGE	26.67	. 69	27.33	18.67	19.13
GALLIA	31.38	•71	44.07	2.03	13.07
WASHINGTON-	25.08	1.06	50.27	1.96	13.43
MEIGS	28.20	. 67	46.71	3.06	14.08
ASHTABULA	22.88	1.30	38.89	15.67	13.52
ŒAUGA	23.04	.41	37.80	17.44	12.68
DELAWARE	33.52	11.82	22.69	11.33	17.60
PUTNAM	30.97	14.10	12.61	15.28	24.16
ALLEN	34.43	12.18	15.31	18.35	23.76
HANCOCK	36.13	13,91	16.46	16.56	24.64
ATHENS	22.61	0.71	53.91	3.42	8.89
HIGHLAND	57.83	1.46	16.10	1,59	31.57
CLINTON	48.45	2.72	9.35	3.10	29.50

Table 15.8 Application of Direct Joining Algorithm to Ohio Croplands

15.7 THINGS TO DO

15.7.1 Running the Two-Way Joining Algorithm

The most important restriction in this algorithm is the requirement that data values be comparable across both rows and columns. Since variables are frequently measured on different scales, they must be scaled, often rather arbitrarily, before the algorithm may be applied.

The general algorithm requires specification of a within-cluster threshold. No absolute guidelines are available for the choice of the threshold. For 0-1 data or category responses in general, the threshold should be zero. Then all values within blocks will be identical. For continuous data, reasonable thresholds are in the range of $\frac{1}{20} - \frac{1}{2}$ of the standard deviation of all data values. Tables 15.9 and 15.10 contain data sets on patterns of food consumption and on varieties of languages spoken in various European countries.

15.7.2 Two-Way Clustering Models

The basic component of the two-way clustering models is the block, or submatrix of the data, in which some simple model must be obeyed by the data. For example, all values must be equal or all values must lie within a certain range.

Table 15.9 European Food

(From A Survey of Europe Today, The Reader's Digest Association Ltd., 25 Berkeley Square, London.) Percentage of all households with various foods in house at time of questionnaire. Foods by countries.

	WG	ŢŢ	FR	ns	BM	LG	GB	PL	AA	SD	SW	DK	NY	FD	SP	ID
GC ground coffee	90	82	88	96	94	97	27	72	55	73	97	96	92	98	70	13
IC instant coffee	49	10	42	62	38	61	86	26	31	72	13	17	17	12	40	52
TB tea or tea bags	88	60	63	98	48	86	99	77	61	85	93	92	83	84	40	99
SS sugarless sweet.	19	2	4	32	11	28	22	5	15	25	31	35	13	20	-	11
BP packaged biscuits	57	55	76	62	74	79	91	55	29	31	-	66	62	64	62	80
SP soup (packages)	51	41	53	67	37	73	55	34	33	69	43	32	51	27	43	75
ST soup (tinned)	19	3	11	43	25	12	76	1	1	10	43	17	4	10	5	18
IP instant potatoes	21	2	23	7	9	7	17	5	5	17	39	11	17	8	14	2
FF frozen fish	27	Ħ	11	14	13	26	20	20	15	19	54	51	30	18	23	5
VF frozen vegetables	21	2	5	14	12	23	24	3	11	15	45	42	15	12	7	3
AF fresh apples	81	67	87	83	76	85	76	22	49	79	56	81	61	50	59	57
OF fresh oranges	75	71	84	89	76	94	68	51	42	70	78	72	72	57	77	52
FT tinned fruit	ħ Ħ	9	40	61	42	83	89	8	14	46	53	50	34	22	30	46
JS jam (shop)	71	46	45	81	57	20	91	16	41	61	75	64	51	37	38	89
CG garlic clove	22	80	88	15	29	91	11	89	51	64	9	11	11	15	86	5
BR butter	91	66	94	31	84	94	95	65	51	82	68	92	63	96	44	97
ME margarine	85	24	47	97	80	94	94	78	72	48	32	91	94	94	51	25
00 olive, corn oil	74	94	36	13	83	84	57	92	28	61	48	30	28	17	91	31
YT yoghurt	30	5	57	53	20	31	11	6	13	48	2	11	2	-	16	3
CD crispbread	26	18	3	15	5	24	28	9	11	30	93	34	62	64	13	9

The clustering structure assumed here is that the family of blocks form a tree, the family of row clusters (one to each block) forms a tree, and the family of column clusters forms a tree. The tree properties for row and column clusters guarantee, after some permutation of rows and columns, that each block consists of a set of contiguous data points.

For any family of blocks, a plausible model is

where
$$A(I,J) = \sum \{1 \le K \le L\} R(I,K)C(K,J)B(K),$$

$$R(I,K) = 1 \qquad \text{if row } I \text{ lies in block } K,$$

$$R(I,K) = 0 \qquad \text{if row } I \text{ does not lie in block } K,$$

$$C(J,K) = 1 \qquad \text{if column } J \text{ lies in block } K,$$

$$C(J,K) = 0 \qquad \text{if column } J \text{ does not lie in block } K,$$

$$B(K) \text{ is the value associated with block } K.$$

a factor analysis model that may be fitted in a stepwise

This is a factor analysis model that may be fitted in a stepwise algorithm, which at each step identifies the new block and the new block value which most reduces deviation between the data and the model. See also 17.8.2.

Table 15.10 Languages Spoken in Europe

(From A Survey of Europe Today, The Reader's Digest Association Ltd., 25 Berkeley Square, London.) Percentages of persons claiming to speak the language "enough to make yourself understood."

LANGUAGES	FI	FINN	ISH			DU	DUT	СН					
	SW	SWED:	ISH			FL	FLEI	MISH					
	DA	DANIS	SH			FR	FREI	NCH					
	NO	NORWI	EGIAI	ı		IT	ITA	LIAN					
	EN	ENGL:	ISH			SP	SPAI	NISH					
	Œ	GERM	AN			PO		ru c uesi	E				
COUNTRY	FI	SW	DA	NO	EN	Œ	DU	FL	FR	IT	SP	PO	
WEST GERMANY.	٥	0	0	0	21	100	2	1	10	2	1	0	
ITALY	0	0	0	0	5	3	0	0	11	100	1	0	
FRANCE	C	2	3	0	10	7	1	1	100	12	7	1	
NEGHERLANDS	0	0	0	0	41	47	100	100	16	2	2	0	
BEIGIUM	0	0	0	0	14	15	0	59	44	2	1	0	
IUXEMBOURG	0	0	0	0	31	100	4	1	92	10	0	0	
GREAT BRITAIN	O	0	0	0	100	7	0	0	15	3	2	0	
PORTUGAL	0	0	0	0	9	0	0	0	10	1	2	100	
AUSTRIA	0	0	0	0	18	100	1	1	4	2.	1	0	
SWITZERLAND	0	0	0	0	21	83	1	2	64	23	3	1	
SWEDEN	5	100	10	11	43	25	0	0	6	1	1	0	
DENMARK	0	22	100	20	38	36	1	1	10	3	1	0	
NORWAY	0	25	19	100	34	19	0	0	4	1	0	1	
FINLAND	100	23	0	0	12	11	0	0	2	1	0	0.	
SPAIN	0	0	0	0	5	1	0	0	11	2	100	0	
IRELAND	0	0	0	0	100	1	0	0	2	0	0	r	
For example,													
T3 5 2 37	Γ1	1 0) 1	1	ГО 1	1	۲0	Г	0 0	0 (Γ0		
	1			ı	1		- 1	1					
	1		1	1	ı		- 1	· 1			0		
5 2 5 0	[O	0 0	0_	J	0 1	1	0]	Ĺ:	1 0	1	0]		
	$\lceil 1 \rceil$				[17]			Ţ	ףק			

$$\begin{bmatrix} 3 & 3 & 2 & 3 \\ 8 & 5 & 5 & 3 \\ 5 & 2 & 5 & 0 \end{bmatrix} = 3 \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} + 2 \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} + 5 \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$= 3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 2 & 0 \\ 3 & 2 & 5 \\ 0 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

The overlapping clusters that arise from this procedure are difficult to present or interpret, and the actual data values within blocks do not obey any simple rule because there may be contributions from many other blocks. If the blocks form a tree, all values within any one block, not lying in a smaller block, will be equal. The requirement that blocks form a tree considerably complicates the fitting procedure.

15.7.3 Distances, Amalgamation, and Blocks

The basic ingredients of a joining algorithm are the methods of computing distances, of amalgamating, and of computing blocks. These operate during the process of joining two rows or two columns.

For example, from Table 15.1,

The distance between the two rows is the proportion of mismatches, $\frac{1}{12}$. These rows will be joined before any more distant pairs of rows or columns. The amalgamation rule represents a mismatch as \pm , so that the new row is

Row
$$(4,6)$$
 + + ± - + - - - + - + -.

At this stage, either (row 4, col 3) or (row 6, col 3) might be a block, and in the 0-1 two-way joining algorithm the decision is postponed until all rows and columns have been joined. Thus, during the algorithm, more blocks and more corresponding unspecified values such as \pm are retained than is really necessary.

A better, though more complicated, method decides the blocks and the amalgamated values at each step during the running of the algorithm. In the above example, row 1 is found most similar to 4 and 6. Since row 1 takes the value + in column 3, the correct value there is set at +, and (row 6, col 3) is declared a block. (At this stage, the block consists of a single element, but in later stages each row will have been amalgamated from a number of rows, each column form a number of columns, and the blocks will correspond to sets of rows and columns.)

15.7.4 Range

For continuous-response variables, it is not practical to require exact equality within blocks, but it is plausible to require that all values within a block have a range less than a specified threshold T. During the algorithm, each data value will be a range (Y1, Y2), and, indeed, the original data values are frequently faithfully represented this way.

The distance between two vectors of such values is the sum of combined ranges in each position, with this combined range set back to the threshold value T if it exceeds T. The amalgamation rule is the combined range in positions where the combined range is within threshold and a more complicated procedure otherwise, which is to be described.

Thus, for a threshold of 10,

The distance is
$$(6-1) + (10-2) + (4-2) + (16-5)^* + (19-5)^* = 35$$
,

where the asterisked values are set back to 10. The amalgamated values are

Row (1, 2)	(1, 6)	(2, 10)	(2, 4)	(5, 6)	(6, 18)
Row 3	(2, 5)	(7, 12)	(4, 7)	(5, 12)	(6, 18),

where row 3 is the row closest to (1, 2). Consider position 4, where (5, 6) and (7, 16) are out of threshold. Since (5, 6) is within threshold of (5, 12), the amalgamated value is (5, 6) and (7, 16) would become a block. Another case is position 6, where both (5, 5) and (18, 19) are out of threshold with (6, 18). In this case (5, 5) and (18, 19) are blocks and the amalgamated value is (6, 18).

15.7.5 Computational Expenses

Since the data matrix is destroyed during the operation of a joining algorithm, it is necessary to set aside space for saving the original data. The basic storage costs are thus 2MN. Storage is not often important because the time costs are so heavy for large arrays. The number of multiplications, nearly all occurring in repeated distance calculations, is proportional to M^2N^2 .

15.7.6 Identical Rows and Columns

If identical, or nearly identical, pairs of rows exist, they will be quickly joined and have the same weight as a single row in later calculations. The joining algorithms are thus insensitive to accidents of sampling which overrepresent some types of cases or some types of properties. This overrepresentation is one of the considerations necessary in weighting variables for distance calculations; the weighting takes place automatically in two-way joining algorithms.

15.7.7 Minimum Number of Blocks

Usually it will be desired to represent the data in a minimum total number of blocks, and the joining algorithms join rows or columns to least increase the number of blocks. An exact minimizing technique seems impracticable except for very small data sets. The blocks in a minimum structure will not be unique in general. Consider

for which there are two four-block structures.

15.7.8 Order Invariance

If all distances computed during the execution of the 0-1 two-way joining algorithm are different, then the final clusters will not depend on the original input order of rows or columns. It is not uncommon to have several different pairs of rows or columns corresponding to the same minimum distance. The pair selected to be joined may depend on the initial input order and may effect the final clustering. It is therefore necessary to develop a procedure for settling tied minimum distances—a difficult task.

First suppose a number of different pairs of rows are involved, with no row common to the different pairs. Then all these pairs of rows are joined before any other pairs of rows or columns are considered.

Next suppose there is a row which is closest to several other rows. All rows are joined in one step, by using the modal values for the new row and creating blocks wherever a value differs from the modal value.

Finally, if a pair of rows and a pair of columns are of minimum distance, join them simultaneously. One value in the new array will be derived from four original values, where the new row and column coincide. It will be the mode of these values.

Any set of pairs of rows and pairs of columns may be handled by generalizations of the above procedures.

PROGRAMS

JOIN2 joins rows or columns, identifying disparate elements as blocks.

RDIST computes distances between rows.

CDIST computes distances between columns.

PMUT permutes array to be consistent with clusters found in JOIN2.

```
SUBROUTINE JOINZ (A.M.N. NB, KC. KA, NR, NC. RO, CO. TH)
C . . . . .
                                                                          .......20 YAY 1973
C.... SUCCESSIVELY JOINS ROWS AND COLUMNS, WHICHEVER CLOSEST
       CONSTRUCTS BLOCKS FROM PAIRS OF ELEMENTS NOT IN THRESHOLD.
       USES RDIST, CDIST
C.... M = NUMBER DF ROWS
C.... N = NUMBER DF COLUMNS
C.... A = M BY N BORDERED ARRAY .DESTROYED BY CRUEL MANIPULATION
C ... NB = 4 BY KC BLOCK ARRAY
C.... NB = 4 BY KC BLOCK ARRAY
C.... KC = UPPER BOUND ON NUMBER OF BLOCKS, M*N IS ALWAYS SAFE
C.... KA = ACTUAL NUMBER OF BLDCKS
C.... NR = 1 BY M ARRAY, NR(I) = GLD INDEX DF ITH ROW IN REDROERED MATRIX
C.... NC = 1 BY N ARRAY, NC(I) = DLD INDEX OF ITH CDLUMN IN REORDERED ARRAY
C.... CD = 1 BY N SCRATCH ARRAY
C.... RD = 1 BY M SCRATCH ARRAY
C.... TH = THRESHDLD, IF EXCEEDED, MAKES BLOCKS
                                                          DIMENSION A(M.N).NB(4,KC),NR(M),NC(N)
       DIMENSION CDINI, ROIMI
       KB=KC
       XM=99999.
       00 10 I=1.M
    10 A(I,1/=I
       DO 11 J=1.N
    11 A(1.J)=J
       KARN
       MM=M-1
       NN=N-1
C.... FINO CLOSEST ROWS AND COLUMNS
       DO 22 I=2,M
    22 CALL ROIST(A,M,N,I,NR(I),RO(I),NN,TH)
       DD 32 J=2,N
    32 CALL CDISTIA, M, N, J, NC(J), CD(J), MM, TH)
    70 CONTINUE
C .... FIND CLOSEST ROWS
       DR=10.**10
       11=2
       I2=2
       DD 20 1=2.M
       IF(A(I,1).LT.0) GD TD 20
IF(OR.LE.RD(I)) GD TD 20
       DR=RD(I)
       11=1
       12=NR(1)
   20 CONTINUE
C.... FIND CLDSEST CDLUMNS
       DC=DR
       J1=2
        J2=2
       00 30 J=2,N
       IF(A(1,J).LT.O) GO TD 30
IF(OC.LE.CD(J)) GD TD 30
       DC=CD(J)
       J1≈J
        J2=NC (J)
    30 CONTINUE
       IF(I2.GE.I1) GD TD 21
       K= I 2
       12-11
       I1≈K
    21 CONTINUE
       IF(J2.GE.J1) GO TD 31
       K=J2
       J2=J1
        j1≈K
    31 CONTINUE
       IF(DC.LT.DR) GD TO 60
C.... AMALGAMATE RDWS
       IF(12.EQ.2) GO TO 80
C.... FIND CLOSEST RDW TD 11 AND 12
       A(11,1)=-A(11,1)
       CALL RDIST(A, M.N. 12.NR(12).RD((2), NN, TH)
       A(12,1)=-A(12,1)
       A(11,1)=-A(11,1)
       CALL RDIST(A,M,N,I1,NR(I1),RD(I1),NN,TH)
II=NR(I2)
       IF(RO((1).LE.RO(12)) | II=NR(I1)
       L1=A([1,1)
```

```
L2=-A(12,1)
        LL=A(II,1)
        A(11,1)=L2
        A(I2.1)=-L1
       MM=MM-1
C... AMALGAMATE VALUES AND CREATE BLOCKS
       DO 40 J=2,N
       IF(KA.GE.KB-2) GO TO 80
IF(A(1.J).LT.O) GO TO 40
       K=A(1,J)
       IF(AMAX1(A(L1,K),A(L2,K))-AMIN1(A(11,J),A(12,J)).LE.TH) GO TO 43
        Z1=AMAX1{A(L1,K1,A(LL,K1)-AMIN1(A{I1,J1,A(II,J1)}
        42=AMAX1(A(L2,K),A(LL,K))-AMIN1(A(12,J),A(11,J))
       IF(II.EQ.2) Z2=10.**2
IF(II.EQ.2) Z1=10.**10
        IF(Z1.LE.TH) A(LZ.K)=A(L1.K)
       IF(Z2.LE.TH) A(II,J)=A(I2,J)
IF(Z1.GT.TH.AND.Z2.GT.TH) A(I1,J)=A(II,J)
IF(Z1.GT.TH.AND.Z2.GT.TH) A(L2,K)=A(LL,K)
        IF(Z1.LE.TH) GO TO 41
       KA=KA+1
       NB[1,KA]=[1
       NB (2, KA) =L1
       NB(3,KA)=J
       N6 (4, KA) = A (1, J)
    41 IF(Z2.LE.TH) GO TO 40
       KA=KA+1
       NB (1,KA)=12
       NB[2,KA]=A[[1,1]
       NB(3,KA)=J
       NB(4,KA)=A(1,J)
GO TO 40
    43 CONTINUE
       Z=A{L1,K}
IF(A(I1,J).GE.A(I2,J)}A(I1,J)=A{I2,J}
   IFIZ.GE.A(L2,K))A(L2,K)=Z
40 CONTINUE
C.... UPDATE CLOSEST ROWS
       DO 45 I=2,M
       DU 45 1-2;M
IF(A(I,1).LT.0) GO TO 45
IF(NR(I).NE.11.AND.NR(I).NE.I2.AND.I.NE.I1) GO TO 45
       CALL RDIST(A,M,N,I,NR(I),RD(I),NN,TH)
        J=NR(I)
       IF(I.ME.II.OR.RD(I).GE.RD(J)) GO TO 45
       NRIJI=I
       RD(J) =RD(I)
    45 CONTINUE
       DO 46 J=2, N
IF(A(1+J).LT.0) GO TO 46
    CALL CDISTIA, M, N, J, NC(J,), CD(J), MM, TH)
46 CONTINUE
       GO TO 70
    60 CONTINUE
C.... AMALGAMATE COLUMNS
C.... FIND CLOSEST COLUMN TO J1 OR J2
       A(1,J1)=-A(1,J1)
       CALL CDISTIA, M. N. JZ, NCI JZ1 . CO(JZ), MM. TH)
       A(1,J2) =-A(1,J2)
       A(1,J1)=-A(1,J1)
       CALL CDIST(A,M,N,J1,NC(J1),CD(J1),MM,TH)
        JJ=NC (J2)
        IF(CD(J1).LE.CD(J2)) JJ=NC(J1)
       L1=A(1,J1)
       L2=-A(1,J2)
       LL=A(1,JJ)
       A(1,J1)=L2
       A(1,J2)=-L1
       NN=NN-1
C... AMALGAMATE VALUES AND CREATE BLOCKS
       DO 50 I=2,M
       IF(KA.GE.KB-2) GO TO 80
        IFIA(I,1).LT.O) GO TO 50
       K=A(1,1)
       IF(AMAX1(A(K,L1),A(K,L2))-AMIN1(A(I,J1),A(I,J2)).LE.TH) GU TD 53
Z1=AMAX1(A(K,L1),A(K,LL))-AMIN1(A(I,J1),A(I,JJ))
       22=AMAX1 (A(K,L2),A(K,LL))-AMIN1(A(I,J2),A(I,JJ))
       IF(JJ.EQ.2) Z2=10.**10
(F(JJ.EQ.2) Z1=10.**10
```

```
IF(Z1.LE.TH) A(K,L2]=A(K,L1)
IF(Z2.LE.TH) A(I,J1]=A(I,J2)
IF(Z1.GT.TH.AND.Z2.GT.TH)A(I,J1)=A(I,J1)
IF(Z1.GT.TH.AND.Z2.GT.TH) A(K,L2)=A(K,L1)
IF(Z1.LE.TH) GO TO 51
          KA=KA+1
         NB(1,KA)=I
NB(2,KA)=A(I,1)
         NB (3.KA)=J1
     NB(4,KA)=L1
51 IF(Z2.LE.TH) GO TO 50
         KA=KA+1
          NB(1,KA)=I
         NB(2.KA)=A(I,1)
         NB(3,KA1=J2
     NB(4,KA)=L2
GO TO 50
53 CONTINUE
          Z=A(K.L1)
          [SL,1)A=([L,1)A ((SL,1)A.30.([L,1]A]
          IF(Z.GE.A(K.L2)) A(K.L2)=Z
50 CONTINUE
C... UPDATE CLOSEST COLUMNS
          00 55 J=2,N

IF(A(1,J1.LT.0) GO TO 55

IF(NC(J).NE.J1.ANO.NC(J1.NE.J2.ANO.J.NE.J1) GO TO 55
          CALL CDIST(A,M,N,J,NC(J),CO(J),MM,TH)
          [=NC(J)
          IF(J.NE.J1.DR.CO(J1.GE.CO(I)) 60 TO 55
          NC(1)=J
CD(1) =CD(J)
     55 CONTINUE
         00 56 I=2,M
IF(A(1,1).LT.0) GO TO 56
     CALL RDIST(A,M,N,1,NR((1,RD(I),NN,TH)
56 CONTINUE
         GO TO 70
C .... COMPUTE NEW ORDERING OF ROWS AND COLUMNS PEXPRESS BLOCK BOUNDARIES
     80 CONTINUE
BO CUNTINUE

IF (KA.GE.KB-2) WRITE(6.1)

1 FORMAT(36H TOO MANY BLOCKS, INCREASE THRESHOLD )

IF (KA.EQ.O) WRITE(6,2)

2 FORMAT(30H NO BLOCKS, DECREASE THRESHOLD )

IF (KA.EQ.O.OR.KA.GE.KB-2) RETURN

C.... FIND ROW ORDER
          J=A(2,1)
         DO B4 I=2, M
IM=M-I+2
         NR (IM)=J
84 J=-A(J,1)
C.... FINO COLUMN DROER
         J=A(1,2)
DD 87 I=2,N
          IN=N-1+2
         NC(IN)=J
     87 J=-A(1,J)
OD 89 I=2,M
          J=NR(I)
     89 A(J,1)=I
DO 91 J=2,N
          I=NC(J)
C.... ADJUST BLOCKS
         DO 90 K=1,KA
I1=NB(1,K)
          I2=NB (2.K)
          J1=NB(3,K)
          J2=NB (4,K)
          I1=A(I1,1)
          12=A(12,1)
         J1=A(1,J1)
J2=A(1,J2)
NB(1,K)=I1
          NB (2, K) = 12
          NB(3,K)=J1
         NB (4, KJ=J2
     90 CONTINUE
         KA=KA+1
         NB(1,K)=2
         NB(2,K)=M
         NB(3,K)=2
NB(4,K)=N
          RETURN
```

```
SUBROUTINE ROIST(A,M,N,I,II,DR,NN,TH)
C . . . . . .
                         C.... USED IN JOIN2
C.... FIND CLOSEST ROW TO ROW I
C.... FIND CLOSEST ROW TO ROW I
C.... A = M BY N BORDERED ARRAY
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... I = TARGET ROW
C.... II = ROW CLOSEST TO I
C.... DR = DISTANCE OF II TO I
C.... NN = NUMBER OF COLUMNS NOT AMALGAMATED
C .... TH = THRESHOLD
        DIMENSION A(M.N)
        TT=TH
        IF(TT.EQ.O) TT=1
        DR=10.**10
        I I = 2
        LL=A(1,1)
        IF(LL.LT.O) RETURN
        DO 20 J=2,M
        IF(J.EQ. 1) GO TO 20
        L=A(J,1)
        IF(L.LT.0) GO TO 20
C .... COMPUTE THRESHOLD DISTANCE
        DN=0
        DD=0
        DO 21 K=2.N
        IF(A(1,K).LT.0) GO TO 21
        KK=A(1,K)
        DIF=AMAX1(A(L,KK),A(LL,KK))-AMIN1(A(I,K),A(J,K))
        DN=ON+1
        1F(DIF.GT.TH) DIF=TT
        DD=DD+DIF
        IF(DD.GE.DR*NN) GO TO 20
    21 CONTINUE
        IF(DN.NE.O) DD=DD/DN
IF(DN.EQ.O) DD=TH
        IF(DD.GE.DR) GC TO 20
        DR=DD
        I I = J
    20 CONTINUE
        RETURN
        END
```

```
SUBRDUTINE CDIST(A,M,N,I,JJ,DC,MM,TH)
C . . . . .
C.... FIND CLDSEST COLUMN TO I
C.... USED IN JDIN2
C.... A = M BY N BORDERED ARRAY
C.... M = NUMBER DF RDMS
C.... N = NUMBER DF COLUMNS
C.... I = TARGET CDLUMN
C.... JJ = CLOSEST CDLUMN TD I
G.... DC = DISTANCE DF I TO JJ
C.... MM = NUMBER DF ROMS NDT AMALGAMTED
C.... TH = THRESHOLD
C.... TH = THRESHOLD
C.....
                                     DIMENSION A(M.N)
         DC=10.**10
         TT=TH
         IF(TT.EQ.D) TT=1
         JJ=2
         LL=A(1,1)
         1F(LL.LT.O) RETURN
         DD 3D J=2,N
         IF(I.EQ.J) GD TO 30
         L=A{1,J}
         IF(L.LT.0) GO TD 30
C .... COMPUTE THRESHOLD DISTANCE
         DN=0
         DD=D
         DD 31 K=2,M
         IF(A(K,1).LT.D) GO TD 31
         KK=A(K,1)
         DN=DN+1
         DIF=AMAX1(A(KK,L),A(KK,LL))-AMIN1(A(K,I),A(K,J))
IF(DIF-GT-TH) DIF=TT
         DD=DD+DIF
         IF(DD.GE.DC+MM) GO TD 3D
     31 CONTINUE
         IF(DN.NE.D) DD=DD/DN
IF(DN.EQ.D) DD=TH
         IF(DD.GE.DC) GD TD 30
         DC=DD
          しっしし
     3D CONTINUE
         RETURN
         END
         SUBRDUTINE PMUT(B,A,M,N,NR,NC)
                                                                                               ....20 MAY 1973
C.... PERMUTES AN ARRAY A ACCORDING TO NR AND NC INTO AN ARRAY B.
C.... M = NUMBER OF ROWS
C.... N = NUMBER OF COLUMNS
C.... A = M BY N BDRDERED ARRAY
C.... B = M BY N BDRDERED ARRAY
DBTAINED FROM A BY PERMUTATION
C.... NR = 1 BY M ARRAY, NR(I)=OLD INDEX IN ITH ROW POSITION IN NEW ARRAY
C.... NC = 1 BY N ARRAY, NC(I)=OLD INDEX IN ITH COLUMN POSITION IN NEW ARRAY
         DIMENSION A(M, N), B(M, N), NR(M), NC(N)
         DD 2D I=2,M
         K=NR(I)
         DO 2D J=1, N
    20 B(I,J)=A(K,J)
        DD 40 J=1,N
DO 40 I=2,M
    40 A(I,J)=B(1,J)
DD 3D J=2,N
         K=NC(J)
         DD 3D I=1,M
     30 B(I,J)=A(I,K)
         RETURN
```

END

Simultaneous Clustering and Scaling

16.1 INTRODUCTION

In the usual case when the data consist of a number of variables measured in different scales, it is necessary to express the variables in a common scale before distances between cases may be computed. A typical ad hoc rescaling requires all variables to have variance one or, more generally, requires every variable to make the same average contribution to the distance.

If the variables are V(1), V(2), ..., V(N), then a scale V will be such that V(I) = T(V, I), where T(V, I) is a transformation of the common scale V to the variable V(I). The transformation T will be linear for interval scale variables and monotonic for ordered variables. The variance standardizing transformation would be

$$V(I) = A(I)V + B(I),$$

where A(I) is the standard deviation of V(I) and B(I) is the mean. In Table 16.1, relationships between the votes on various questions in the U.N. General Assembly (1969–1970) are tabulated. These show the necessity of various monotonic transformations to represent the responses on a common scale. For example, the relationship between V1 and V3 is essentially that the large yes vote on V1 has fragmented into yes, abstain, and no votes, in about equal proportions, for V3. A suitable common scale would take five values, 1, 2, 3, 4, 5, with

$$T(1, 1) = T(2, 1) = T(3, 1) = 1,$$
 $T(4, 1) = 2,$ $T(5, 1) = 3$

and

$$T(1,2) = 1$$
, $T(2,2) = 2$, $T(3,2) = T(4,2) = T(5,2) = 3$.

In other words, the five values on the common scale correspond to values of (V1, V3), successively: (1, 1), (1, 2), (1, 3), (2, 3), (3, 3).

Returning to the case of interval variables, there are serious defects with the method of equalizing variances. The principal one is that the variance calculation is very much affected by the presence of outliers or other clusters in the data. What is necessary is to continue rescaling as cluster information is exposed and to use standardizing techniques, such as equalizing interquartile ranges, that are not too sensitive to outliers or other clusters.

There follows a number of algorithms, of the joining type, for simultaneously clustering cases and variables while rescaling variables. These algorithms are different according to the type of variable being rescaled. The more difficult and intricate procedures necessary for combining different types of variables have been neglected.

Table 16.1 Relationship Between Votes on Various U.N. Questions (1969-1970)

			V1								V 2	V2		
		1	2	3						1	2	3		
	1	27	2	1					1	2	6	22]	
V 3	2	27 23 23	3	1				¥3	2	7	6 10 13	10	}	
	3	23	0	44					3	54	13	0		
	SHIF	T OF	V1 YE	s To	VARD	V 4	no.		REVI	ersal	V2 YES	TO	V4 NO .	

			V4					V 4	
			2						3
	1	11	0	0		1	2	22	41
V 5	2	0	26	2	V1	2	0	1	3
	3	0	4	0 2 69		3	0 9	8	26

IDENTICAL QUESTIONS.

WEAK RELATIONSHIPS.

1, yes; 2, abstain; 3, no. V1, declare the China admission question an important question; V2, to make the study commission on China admission "important"; V3, to form a study commission on China admission; V4, replace last paragraphs of preamble, on South Africa expulsion from UNCTAD, by Hungarian amendment; V5, adopt the Hungarian amendment of paragraph 1 and 2 on South Africa expulsion.

16.2 SCALING ORDERED VARIABLES

Preliminaries. Given two ordered variables X and Y taking values $\{X(I), Y(I), 1 \le I \le M\}$ on M cases, it is desired to find a scale Z, an ordered variable taking values $\{Z(I), 1 \le I \le M\}$, and monotonic transformations T(Z, 1) and T(Z, 2) of Z, such that X(I) = T[Z(I), 1] and Y(I) = T[Z(I), 2] with maximum frequency.

Let the values taken by X be the integers $1, 2, \ldots, N1$, let the values taken by Y be the integers $1, 2, \ldots, N2$, and let N(I, J) denote the number of cases with values X = I and Y = J. The variable Z will take values $[I(1), J(1)], \ldots, [I(K), J(K)]$, where $I(1) \leq I(2) \leq \cdots \leq I(K)$ and $J(1) \leq J(2) \leq \cdots \leq J(K)$ or $J(1) \geq J(2) \geq \cdots \geq J(K)$, and $N[I(1), J(1)] + N[I(2), J(2)] + \cdots + N[I(K), J(K)]$ is a maximum. [The transformations are T[I(L), J(L), 1] = I(L), and T[I(L), J(L), 2] = J(L).] The algorithm uses a maximization technique similar to dynamic programming. Let NMAX(I, J) denote the maximum value of $N[I(1), J(1)] + N[I(2), J(2)] + \cdots + N[I(K), J(K)]$ subject to the constraints $1 \leq I(1) \leq I(2) \leq \cdots \leq I(K) \leq I$ and $1 \leq J(1) \leq J(2) \leq \cdots \leq J$. Then NMAX $(I, J) = N(I, J) + \max[NMAX(I, J - 1), NMAX<math>(I - 1, J)$]. In this way, an optimal sequence increasing in I and J, connecting I, I, to I, I, I, I, is discovered. Similarly, discover an optimal sequence increasing in I but decreasing in I.

STEP 1. Compute N(I, J), the number of times variable X takes value I and variable Y takes value J. Set

$$NMAX(0, J) = NMAX(I, 0) = 0$$
 $(1 \le J \le N1, 1 \le I \le N2).$

STEP 2. For each $J(1 \le J \le N2)$, compute for each $I(1 \le I \le N1)$ NMAX $(I, J) = N(I, J) + \max [NMAX(I, J - 1), NMAX(I - 1, J)]$.

STEP 3. Set
$$L = N1 + N2 - 1$$
, $I(L) = N1$, $J(L) = N2$.

STEP 4. By definition,

$$NMAX[I(L), J(L)] = N[I(L), J(L)] + NMAX[I(L), J(L) - 1]$$

Οľ

$$NMAX[I(L), J(L)] = N[I(L), J(L)] + NMAX[I(L) - 1, J(L)].$$

In the first case I(L-1) = I(L), J(L-1) = J(L) - 1, and in the second case I(L-1) = I(L) - 1, J(L-1) = J(L). If L = 2, go to step 5. Otherwise, decrease L by 1 and repeat this step.

STEP 5. Define a new variable U by U = N2 - J + 1 when Y = J. Discover the optimal monotonic relationship between X and U, following Steps 1-4. If

Table 16.2 Scaling Components of Mammal's Milk

ANIMAL WATER \$ PROTEIN \$ NMAX JMAX NMAX JMAX 1. Dolphin 44.9 10.6 1 - 1 - 2. Seal 46.4 9.7 1 - 2 1 3. Reindeer 64.8 10.7 2 2 2 4 4. Whale 64.8 11.1 3 3 1 5. Deer 65.9 10.4 2 2 3 3 6. Elephant 70.7 3.6 1 - 4 5 7. Rabbit 71.3 12.3 4 4 1	n
2. Seal 46.4 9.7 1 - 2 1 3. Reindeer 64.8 10.7 2 2 2 4 4. Whale 64.8 11.1 3 3 1 - 5. Deer 65.9 10.4 2 2 3 3 6. Elephant 70.7 3.6 1 - 4 5	K
3. Reindeer 64.8 10.7 2 2 2 4 4. Whale 64.8 11.1 3 3 1 - 5. Deer 65.9 10.4 2 2 3 3 6. Elephant 70.7 3.6 1 - 4 5	
4. Whale 64.8 11.1 3 3 1 - 5. Deer 65.9 10.4 2 2 3 3 6. Elephant 70.7 3.6 1 - 4 5	
5. Deer 65.9 10.4 2 2 3 3 6. Elephant 70.7 3.6 1 - 4 5	
6. Elephant 70.7 3.6 1 - 4 5	
7. Rabbit 71.3 12.3 4 4 1 -	
8. Rat 72.5 9.2 2 6 4 5	
9. Dog 76.3 9.3 3 8 4 5	
10. Cat 81.6 10.1 4 9 4 5	
11. Fox 81.6 6.6 2 6 5 9	
12. Guinea Pig 81.9 7.4 3 11 5 9	
13. Sheep 82.0 5.6 2 6 6 12	
14. Buffalo 82.1 5.9 3 13 6 12	
15. Pig 82.8 7.1 4 14 6 12	
16. Zebra 86.2 3.0 1 - 7 15	
17. Ilama 86.5 3.9 2 16 7 15	
18. Bison 86.9 4.8 3 17 7 15	
19. Camel 87.7 3.5 2 16 8 18	
20. Monkey 88.4 2.2 1 - 9 19	
21. Orangutan 88.5 1.4 1 - 10 20	
22. Mule 90.0 2.0 2 21 10 20	
23. Horse 90.1 2.6 3 22 9 19	
24. Donkey 90.3 1.7 2 21 11 22	

Data ordered by water percentage.

NMAX(N1, N2) is larger for U and X than for Y and X, the optimal relationship overall is increasing in X and decreasing in Y.

NOTE If the ordered variables X and Y take a very large number of different values, the contingency table N(I, J) will mostly consist of 0's and 1's and will be rather expensive to store and manipulate. Suppose that the variables X and Y take the values $\{X(I), Y(I)\}$ N(I) times. Assume the data ordered so that $X(I) \leq X(J)$ if $I \leq J$, and Y(I) < Y(J) if X(I) = X(J) and X(I) < Y(J) and X(I) < Y(J) if X(I) < Y(J) and X(I) < Y(J) and X(I) < Y(J) is the maximum value of X(I) < Y(J) subject to

$$X[I(1)] < X[I(2)] < \cdots < X[I(K)] = X(I)$$

and

$$Y[I(1)] \leq Y[I(2)] \leq \cdots \leq Y[I(K)] = Y(I).$$

Compute NMAX(I) iteratively $(1 \le I \le M)$, setting

$$NMAX(I) = max_I [NMAX(I)] + N(I),$$

where $X(J) \le X(I)$ and $Y(J) \le Y(I)$ and $I \ne J$. The quantity JMAX(I) is the value of J which maximizes NMAX(J) under the above constraint. The sequence of Z values is I(1), maximizing NMAX(I), then I(2) = JMAX[I(1)], I(3) = JMAX[I(2)], and so on.

This algorithm is applied to mammal's milk components in Table 16.2. A scale is computed with water and protein both increasing and also with water increasing and protein decreasing. The second relationship is preferred since 11 of 24 points are covered in the fitting curve. The curve is graphed in Figure 16.1.

16.3 SCALING ORDERED VARIABLES APPLIED TO U.N. QUESTIONS

The questions to be scaled are V2 and V3 as given in Table 16.1, two questions on a study commission on the China admission question.

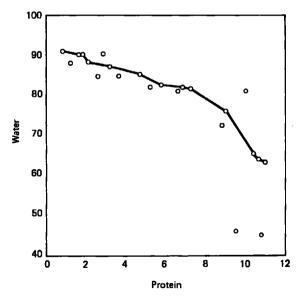


Figure 16.1 Monotonic scale for mammals' milk.

STEP 1. In the terminology of the algorithm, X = V3 and Y = V2. Then N(1, 1) = 2, N(1, 2) = 6, N(1, 3) = 22, N(2, 1) = 7, N(2, 2) = 10, N(2, 3) = 10, N(3, 1) = 54, N(3, 2) = 13, N(3, 3) = 0. NMAX(0, 1) = NMAX(0, 2) = NMAX(0, 3) = 0, NMAX(1, 0) = NMAX(2, 0) = NMAX(3, 0) = 0.

STEP 2 First NMAX(1, 1) = 2, then

$$NMAX(2, 1) = N(2, 1) + max [NMAX(1, 1), NMAX(2, 0)]$$

= 7 + 2 = 9.

NMAX(3, 1) = 63, NMAX(1, 2) = 8, NMAX(2, 2) = 19, NMAX(3, 2) = 76, NMAX(1, 3) = 30, NMAX(2, 3) = 40, NMAX(3, 3) = 76.

STEP 3. Set L = 5, I(5) = 3, J(5) = 3.

STEP 4. Since NMAX(3, 3) = 0 + NMAX(3, 2), I(4) = 3, J(4) = 2. Decrease L to 4, since NMAX(3, 2) = N(3, 2) + NMAX(3, 1). Therefore I(3) = 3, J(3) = 1. Similarly, I(2) = 2, J(2) = 1 and I(1) = 1, J(1) = 1. The final optimal increasing sequence is thus (1, 1), (2, 1), (3, 1), (3, 2), (3, 3).

STEP 5. Define the variable U: U = 1 if V2 = 3, U = 2 if V2 = 2, U = 3 if V2 = 1. Repeating Steps 1-4, discover the sequence (1, 3), (1, 2), (2, 2), (3, 2), (3, 1), which covers 109 points. This sequence is thus preferred to the sequence increasing in I and J. The final scale is Z = (1, 3), (1, 2), (2, 2), (3, 2), (3, 1) with T[(I, J), 2] = J. The function T(Z, 1) is increasing; the function T(Z, 2) is decreasing.

A number of such scales, which can be computed very quickly by hand for ordered variables taking just a few values, are given in Table 16.4.

16.4 JOINER SCALER

Preliminaries. The data matrix $\{A(I, J), 1 \le J \le M, 1 \le J \le N\}$ is a collection of N ordered variables measured on different scales. During the algorithm's execution, pairs of the variables are joined to form new variables, pairs of cases are joined to form new cases, and a common scale for all variables is constructed.

The output consists of data clusters within which all values are equal when expressed in the common underlying scale. The data clusters $1, 2, \ldots, KD$ are determined by the corresponding row and column clusters IR(I), IC(I) for the Ith clusters. The tree structure of the row clusters $1, 2, \ldots, KR$ is determined by the function JR(I) which is the smallest row cluster properly including cluster I. The tree structure of the column clusters $1, 2, \ldots, KC$ is determined by the function JC(I), which is the smallest column cluster properly including cluster I.

STEP 1. Set KR = M, KC = N, JR(I) = 0 $(1 \le I \le M)$, and JC(I) = 0 $(1 \le I \le N)$.

STEP 2. Compute distances between all pairs of row clusters I, J [$1 \le I, J \le KR$, JR(I) = JR(J) = 0] as the proportion of columns in which $A(I, K) \ne A(J, K)$, among columns for which A(I, K) and A(J, K) are both defined and in which JC(K) = 0. Let the smallest distance be DROW and the corresponding rows be IROW, JROW.

Table 16.3 Mammal's Milk

	WATER	PROTE IN	FAT	IACTOSE	ASH
Horse	90.1	2.6	1.0	6.9	0.35
Orangutan	88.5	1.4	3.5	6.0	0.24
Monkey	88.4	2.2	2.7	6.4	0.18
Donkey	90.3	1.7	1.4	6.2	0.40
Hippo	90.4	0.6	4.5	4.4	0.10
Camel	87.7	3.5	3.4	4.8	0.71
Bison	86.9	4.8	1.7	5-7	0.90
Buffalo	82.1	5.9	7.9	4.7	0.78
Guinea Pig	81.9	7.4	7.2	2.7	0.85
Cat	81.6	10.1	6.3	4.4	0.75
Fox	81.6	6.6	5.9	4.9	0.93
Llama	86.5	3.9	3.2	5.6	0.80
Mule	90.0	2.0	1.8	5.5	0.47
Pig	82.8	7.1	5.1	3.7	1.10
Zebra	86.2	3.0	4.8	5.3	0.70
Sheep	82.0	5.6	6.4	4.7	0.91
Dog	76.3	9.3	9.5	3.0	1.20
Elephant	70.7	3.6	17.6	5.6	0.63
Rabbit	71.3	12.3	13.1	1.9	2.30
Rat	72.5	9.2	12.6	3.3	1.40
Deer	65.9	10.4	19.7	2.6	1.40
Reindeer	64.8	10.7	20.3	2.5	1.40
Whale	64.8	11.1	21.2	1.6	1.70
Seal	46.4	9.7	42.0	-	0.85
Dolphin	44.9	10.6	34.9	0.9	0.53

From Handbook of Biological Data (1956), William S. Spector, ed., Saunders.

STEP 3. Compute distances between each pair of columns by finding the monotonic scale which covers most rows, as in the algorithm for scaling ordered variables. (Look only at columns I, J for which JC(I) = JC(J) = 0, and look only at rows K for which JR(K) = 0 and for which A(I, K) and A(J, K) are both defined.) The distance between I and J is the number of rows not covered by the monotonic scale, divided by the total number of rows considered less 2. (The reason for the 2 is that two rows will always be covered.) Let the smallest distance be DCOL and the corresponding columns be ICOL, JCOL.

STEP 4. (If the minimum of DCOL and DROW is 1, go to Step 6.) If DCOL < DROW, go to Step 5. Otherwise increase KR by 1, JR(1ROW) = JR(JROW) = KR, JR(KR) = 0. For each column K [$1 \le K \le KC$, JC(K) = 0], set A(KR, K) = A(IROW, K) if A(IROW, K) = A(JROW, K). If A(IROW, K) is undefined, set A(KR, K) = A(JROW, K). If $A(IROW, K) \ne A(JROW, K)$, leave A(KR, K) undefined and define data clusters KD + 1 and KD + 2 by IR(KD + 1) = IROW, IC(KD + 1) = K, IR(KD + 2) = JROW, IC(KD + 2) = K. Increase KD by 2

and go to the next column cluster K. If all column clusters have been adjusted, return to Step 2.

- STEP 5. Increase KC by 1, define JC(ICOL) = JC(JCOL) = JC, JC(KC) = 0. For each row cluster K [$1 \le K \le KR$, JR(KR) = 0] define A(K, KC) to be the value in the new scale corresponding to A(K, JCOL) and A(K, JCOL)] if this value is uniquely defined. Otherwise, define data clusters KD + 1 and KD + 2 by IR(KD + 1) = K, IC(KD + 1) = ICOL, IR(KC + 2) = K, JC(KD + 2) = JCOL, and increase KD by 2. Return to Step 2.
- STEP 6. A single underlying scale has been constructed with monotonic functions from this scale to each original variable. Within each data cluster, consider the data values that are not included in some smaller cluster. Each such data value corresponds to a range of scale values. The intersection of these ranges is always nonempty, and this intersection range is recorded for each data cluster.

Beginning with the largest clusters and moving toward the smaller, eliminate a cluster I if the smallest cluster containing it has an intersection range which includes the intersection range for I. Otherwise, change the intersection range for I to be the smallest value in the range.

Table 16.4 Scaling U.N. Questions V١ V2 1 2 3 1 2 3 1 6 22 3 1 10 10 44 13

			V 4					V 4			
		1	2	3				1	2	3	
	1	11	0	0			1	2	22	41	
V 5	2	0	26	2	,	71	2	0	1	3	
	3	٥	4	69			3	9	8	26	

Blocks are different values of constructed scale.

16.5 APPLICATION OF JOINER-SCALER ALGORITHM TO U.N. VOTES

It is natural to apply a two-way clustering algorithm to the U.N. votes (Table 16.5) because there are blocs of countries such as Bulgaria, Romania, and the USSR that vote similarly, and blocs of questions that arise from the same issue, such as "China admission," "importance of China admission," "study China admission," "importance of studying China admission."

								•		,	
	Y - YES		n	- NO		A	- ABST	AIN			
		1	2	3	4	5	6	7	8	9	10
1.	CANADA	n	A	Y	A	n	A	A	Y	Y	Y
2.	CUBA	Y	A	n	Y	Y	N	Y	A	n	N
3.	MEXICO	N	¥	Y	n	n	¥	Y	A	A	Y
¥.	UNITED KINGDOM	N	n	Y	Y	n	A	N	A	Y	¥
5.	netherlands	N	n	¥	A	N	Y	A	A	Y	Y
6.	FRANCE	n	A	n	Y	A	N	A	A	Y	Y
7•	SPAIN	Ħ	A	Y	N	Y	¥	A	A	A	¥
8.	PORTUGAL	A	N	A	A	A	A	n	n	Y	Ā
9.	POLAND	¥	Y	n	Y	A	n	Y	Y	A	A
10.	Austria	N	A	A	A	A	A	A	Y	¥	Y
11.	HUNGARY	Y	¥	n	Y	Y	n	Y	Y	A	A
12.	CZECHOS LOVAKIA	Y	¥	n	Y	A	M	Y	Y	A	A
13.	ITALY	N	A	Y	n	n	Y	A	A	¥	Y
14.	BUIGARIA	Y	¥	n	¥	Y	N	¥	Y	A	A
15.	ROMANTA	Y	¥	Ħ	Y	Y	N	¥	Y	A	A
16.	USSR	Y	¥	n	Y	A	n	Y	Y	A	A
17.	FINIAND	A	A	N	Y	A	N	A	Y	Y	¥
18.	GAMBIA	M	A	¥	n	A	N	A	A	A	A
19.	MALI	A	¥	M	Y	Y	n	A	Y	H	N
20.	SENEGAL	A	¥	¥	A	A	A	Y	Y	N	N
21.	DAHOMEY	A	Y	Y	n	Y	n	Y	Y	N	N
22.	NICERIA	n	Y	Y	n	Y	M	Y	Y	n	n
23.	IVORY COAST	N	¥	Y	x	¥	M	Y	Y	A	A

Table 16.5 Selected Votes in the United Nations (1969-1970)

Y/R/A 7/11/5 12/3/8 11/10/2 11/7/5 9/5/9 4/14/5 12/2/9 14/1/8 8/5/10 10/5/8

Columns: 1, to adopt USSR proposal to delete item on Korea unification; 2, to call upon the UK to use force against Rhodesia; 3, declare the China admission question an important question; 4, recognize mainland China and expel Formosa; 5, to make study commission on China admission important; 6, to form a study commission on China admission; 7, convention on no statutory limits on war crimes; 8, condemn Portuguese colonialism; 9, defer consideration of South Africa expulsion; 10, South Africa expulsion is important question.

Also, the questions must be rescaled. For example, "importance of China admission" and "study China admission" are similar questions translated on an underlying scale, so that some of the yes votes on "importance" become abstains on "study." The other two China questions are very similar in producing opposite votes from almost every country.

STEP 1. To initialize, set KR = 23, KC = 10, JR(I) = 0 $(1 \le I \le 23)$, and JC(I) = 0 $(1 \le I \le 10)$.

STEP 2. Compute the distance between all pairs of rows. For example, row 1 and row 2 match in just one vote, so the distance between Canada and Cuba is $\frac{p}{10}$. The smallest row distance (there are several, and one is chosen arbitrarily) is DROW = 0, IROW = 12 (Czechoslovakia), JROW = 16 (USSR).

- STEP 3. Find the monotonic scale for columns 1 and 2 that covers most rows. This is done by using the previous algorithm of Section 16.2. The optimal scale has five values, YY, AY, NY, YA, NN, which cover 18 of 23 rows. The distance between columns 1 and 2 is therefore $1 \frac{8}{21}$. (Note that 2 is subtracted from the 23, because a monotonic scale always covers two points for free. This becomes important in the later stages of the algorithm when just a few rows and columns remain.) Examining all pairs of columns, discover DCOL = 0 for ICOL = 9, JCOL = 10.
- STEP 4. Increase KR to 24, define JR(12) = 24, JR(16) = 24, JR(24) = 0. Since rows 12 and 16 are identical, row 24 is the same as row 12. Return to Step 2, and amalgamate rows 24 and 9 to be row 25, rows 14 and 15 to be row 26, and rows 11 and 26 to be row 27. On the next return to Step 2, columns 9 and 10 are closer than any pair of rows, and Step 5 is taken.
- STEP 5. Increase KC to 11, JC(9) = JC(10) = 11, JC(11) = 0. The monotonic scale takes values 1, 2, 3, 4, corresponding to the pairs (Y, Y), (A, Y), (A, A), (N, N). Note that this sequence is monotonic in both variables. All pairs of votes fall in one of these four categories, so no data clusters are formed.
- STEP 4 REPEATED. The next closest pair of row or column clusters are rows 21 and 22. Set KR = 28, JR(21) = JR(22) = 28, JR(28) = 0. Define A(28, K) = A(21, K) except for K = 1, since $A(21, 1) \neq A(22, 1)$. Define two data clusters by JR(1) = 21, JR(2) = 22, JR(1) = 1, JR(2) = 1, and increase JR(1) = 1. The algorithm continues in this way until a single column remains and several row clusters which are a distance of 1 from each other. The data clusters at this stage are given in Table 16.6. Also all original variables are monotonic functions of the scale of the column cluster which replaced them. These column clusters are joined, pairwise, with other column clusters till a single column cluster remains. All original variables will be monotonic functions of the scale of this final column cluster, given in Table 16.7.
- STEP 6. Each data cluster generates a range of scale values, the intersection of the ranges of scale values over all values in the cluster. Consider, for example, the data cluster corresponding to rows 1 and 17 and columns 3, 4, 6, 1, 2, 5. The data values which are not included in smaller clusters are A, N, A, N for row 17 and columns 6, 1, 2, 5. From Table 16.7, these correspond to ranges of final scale values, 5–8, 6-E, 4-7, 7-E. The intersection of these ranges is the value 7. Such a value is associated with every data cluster.

For some data clusters, the intersection range includes that of the next largest cluster, and the data cluster is deleted. For example, the data cluster rows 21, 22, 23 by columns 7, 8, 9, 10 has intersection range C-E which includes that of the next largest cluster, rows 3-23 by columns 3-10, intersection range C. This data cluster is deleted.

Beginning with the largest clusters, every cluster is either deleted or has its intersection range replaced by the smallest value in it. A single scale value is thus associated with each remaining cluster, as in Table 16.8. The original data is recoverable from this representation in 41 data clusters, using the scale-to-variable transformations in Table 16.7.

The clusters of countries are {Senegal}, {African bloc}, {Netherlands, Italy}, {Soviet bloc}, {fringe neutrals}, {Portugal}, and {United Kingdom}. The clusters of questions are {China questions}, {African questions}.

Table 16.6 Preliminary Data Clusters in Applying Joiner-Scaler Algorithm to U.N. Data

	3	4	6	1	2	5	7	8	9	10
20	Y	A	A	A	Y	A	Y	Y	N	N
3	Y	N	Y	N	Y	N	Y	A	A	Y
7	Y	N	Y	N	A	Y	A	A	A	<u> </u>
6	Y	N	N	N	A	A	A	A	Α	A
18	Y	N	N	N	A	A	A	A	X	Y
21	Y	N	N	A	Y	Ŷ	Y	Y	N	N
22	Y	N	N	N	Y	Y	Y	Y	N	N
23	Y	N	N	N	Y	Y	Y	Y	A	
5	Y	A	Y	N	N	N	A	A	Y	Y
13	N	Ÿ	Y	N	Α	N	A	A	Y	Y
19	N	Y	N	A	Y	Y	A	Y	N	
2	N	¥	A	Y	A	Y	Y	A	N	
11	N	Y	А	A	Y	Y	Y	Y	A	A
14	N	¥	A	Y	Y	¥	Y	¥	A	A
15	N	Y	A	A	Y	Y	Y	Y	A	A
9	N	Y	A	Y	Y	A	Y	Y	A	A
12	N	Y	A	Y	Y	A	Y	Y	A	A
16	N	Y	A	Ā	X	A	Y	Y	A	_A_
10	A	A	A	N	A	A	A	Y	Y	Y
17	Y	N	N	A	A	A	A	Y	Y	Y
1	Y	À	A	N	A	N	A	Y	Y	Y
8	A	A	A	A	N	A	N	N	Y	Y
14	Ÿ	Y	Α	N	N	N	N	A	Y	Y

16.6 THINGS TO DO

16.6.1 Running the Joiner Scaler

The algorithm assumes that given variables are obtained by monotonic transformation from some underlying scale to be discovered in the course of the algorithm. It thus produces results invariant under monotonic transformation of the variables.

SCALE.	1	2	3	4	5	6	7	8	9	В	C	D	E
QUESTION 1.	Y	A	A	A	Α	N	N	N	N	N	N	N	N
2.	Y	Y	Y	A	A	A	A	N	N	N	N	N	N
3.	N	N	A	A	A	A	Y	Y	Y	Y	Y	Ÿ	Y
4.	·Υ	Y	A	A	A	A	A	N	N	N	N	N	N
5.	Y	Y	A	A	A	A	N	N	N	N	N	N	N
6.	N	N	N	N	A	A	A	A	Ý	Y	Y	Y	Y
7.	N	N	N	N	N	N	N	N	A	A	Y	Ÿ	Y
8.	N	N	N	N	N	A	A	A	A	Y	Y	Y	Y
9.	Y	Y	Y	Y	Ÿ	Y	Y	Y	Y	Y	A	A	N
10.	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ŷ	Y	A	N

Table 16.7 Common Scale for All U.N. Questions, Output of Joiner-Scaler

It is expensive to use if each variable takes many different values. The time is proportional to $M^2K^2N^2$, where K is the number of different values taken by each variable, averaged over different variables. In using it with continuous variables, it is suggested that you reduce the number of different values taken by each variable to between 5 and 10.

16.6.2 Monotonic Subsequences

For any sequence of length n, show that there is an increasing subsequence of length r and a decreasing subsequence of length s, such that $rs \ge n$. Thus for any n points in two dimensions, there is a monotone curve passing through at least \sqrt{n} .

16.6.3 Category Data

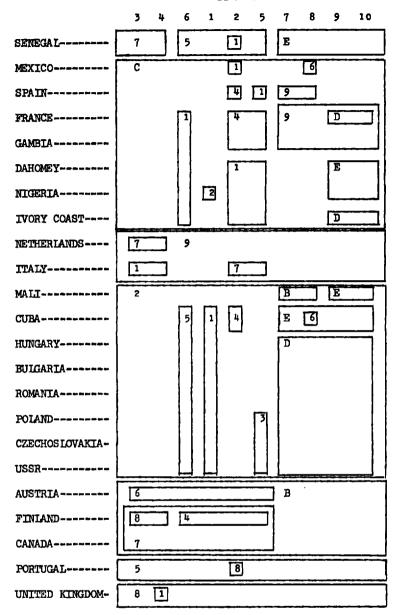
If each variable is a category variable, the results should be invariant under arbitrary one-to-one transformations of each variable. Therefore there will be an underlying scale of block values, a category scale, from which the given variables must be obtained by transformation.

In the joining algorithm, the basic problem is always the distance, the amalgamation rule, and block construction for pairs of rows or columns. The rows will be handled as usual by using matching distances and constructing blocks at the mismatches. The variables require new treatment. One simple procedure measures the distance between two variables as $\sum K(I,J)[K(I,J)-1]/M(M-1)$, where K(I,J) counts the number of times, in M cases, that the first variable takes the value I and the second variable takes the value J. The new variable just takes the set of values (I,J) which actually occur, and no blocks are constructed when variables are joined.

16.6.4* Continuous Data

In both the monotonic data and category data approaches, the final blocks have the property that every variable within a block is constant over cases within a block. This property is not realistic in the continuous data case. It is plausible to consider either monotonic transformation or linear transformations from the block-value scale, but it is necessary that a threshold be given for each variable, such that the variable ranges within the threshold over the cases in a block.

Table 16.8 Final Data Clusters in Applying Joiner Scaler to U.N. Votes



To translate this table, look at Mexico on Question 3, taking the value C. From 16.7, the value C on Question 3 is Y. Thus Mexico votes Yes on Question 3.

Original data are recovered by relating scale values to questions (Table 16.7).

In considering the linear case, pairs of cases are treated as in the range algorithm in Chapter 15, but pairs of variables must be considered freshly. Suppose that X and Y are variables taking values [X(I), Y(I)] with thresholds TX and TY. A new variable Z will be constructed, connected to X and Y by

$$X = A(1)Z + A(2)$$

and

$$Y = B(1)Z + B(2).$$

There will be a threshold TZ for Z that is the minimum of TX/A(1) and TY/B(1). For each case I, there is a difference between the Z values D(I) = |[X(I) - A(2)]/A(1) - [Y(I) - B(2)/B(1)]|. Define

$$DD(I) = D(I)/TZ$$
 if $D(I) \le TZ$,
 $DD(I) = 1$ if $D(I) \ge TZ$.

Then $\sum \{1 \le I \le M\}$ DD(I) measures the distance between X and Y for the particular choice of scale parameters A(1) and A(2), B(1) and B(2). Of course, these must be chosen to minimize DD(I). You see instantly that B(1) = 1, B(2) = 0 without loss. It is true also that the optimal choice of A(1) and A(2) is such that D(I) = 0 for two cases I. Thus the optimal values of A(1) and A(2) are obtained by searching over all the lines through pairs of points. (The time for a complete join of all rows and columns is thus proportional to M^3N^2 .) Blocks are constructed, as in the homogeneous case, whenever a value is out of threshold with the value it is being joined to and is out of threshold with the value it is likely to be joined to next.

Complications arise later on in the algorithm, when each value becomes a range of values. For a pair of variables, the range is a rectangle with four corners. The optimal scale choice passes through corners for two cases, and so the same search procedure finds the optimal scaling.

16.6.5 Greater Generality

To handle data in which different variables are on entirely different scales, such as continuous, ordered, or category scales, it is supposed that there is an underlying block scale. All values in a block take a single block value z. For a variable I, there is a transformation T(I, z) which specifies the value of variable I when the block value is z.

Thus T(I, z) might be a linear transformation of z, or a monotonic transformation, or an arbitrary transformation, according to the type of variable. The problem of combining different types of variables to produce such a scale remains to be solved.

16.6.6 Median Regression

If X, Y are variables taking values X(I), Y(I), a median regression line of Y on X is the line y = a + bx, where a, b are chosen to minimize

$$\sum \{1 \le I \le M\} |Y(I) - a - bX(I)|.$$

Show that there is a median regression line for which Y(I) = a + bX(I) for two values of I. Suppose that cases I, J are such that Y(I) = a + bX(I), Y(J) = a + bX(J). Suppose that for every K the lines through I, K and J, K have larger sums of absolute deviations than the line through I, J. Then the line through I, J is a median regression line.

REFERENCES

HAMMERSLEY, J. M. (1972). "A few seedlings of research." Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I, pp. 345–393. U. of California, Berkeley. Considers various properties of the longest increasing subsequence of a random permutation of n integers. For example, the length L of the subsequence exceeds $\sqrt{n}-1$, a result proved by Erdos and Szekeres in 1935. Hammersley shows that $L/\sqrt{n} \to c$ as $n \to \infty$, where $\frac{1}{2}\pi \le c \le e$. Hammersley presents a variety of nonrigorous arguments suggesting that c is close to 2.

Factor Analysis

17.1 INTRODUCTION

Consider the correlations between physical measurements listed in Table 17.1. The correlations are relatively high within the groups head length, head breadth, face breadth, and foot, forearm, height, finger length, and somewhat smaller between the groups. An explanation for such a pattern is that all variables contain a "dimension factor," that the first group contains a "head factor," and the second group a "height factor." The general technique of representing variables as weighted sums of hypothetical factors is known as factor analysis. The principal developers and users of this technique have been psychologists, although it has been applied to every type of data.

Denote the variables to be investigated by V(1), V(2), ..., V(N), and denote the factors by F(1), F(2), ..., F(K). Then

$$V(I) = \sum \{1 \le J \le K\} B(I, J) F(J).$$

Thus each variable lies in the vector space spanned by the factors F(1), F(2), ..., F(K). To be concrete, suppose the variables to be measured are the results of the following: V(1), arithmetic; V(2), geometry; V(3), drawing; V(4), spelling; V(5), writing tests. Let the factors be the following: F(1), intelligence; F(2), mathematical ability; F(3), spatial perception; F(4), verbal ability. The equations might be

$$V(1) = 0.5F(1) + 0.3F(2),$$

$$V(2) = 0.4F(1) + 0.2F(2) + 0.3F(3),$$

$$V(3) = 0.3F(1) + 0.1F(2) + 0.4F(3),$$

$$V(4) = 0.4F(1) + 0.2F(4),$$

$$V(5) = 0.6F(1) + 0.3F(4).$$

In particular, if an individual had intelligence 20 and mathematical ability 10, the arithmetic score would be $0.5 \times 20 + 0.3 \times 10 = 13$. The matrix of coefficients $\{B(I,J), 1 \le I \le N, 1 \le J \le K\}$ is called the loading matrix, and the particular coefficient B(I,J) is the loading of the variable V(I) on the factor F(J).

Basic operations in factor analysis are determination of the factors $\{F(I), 1 \le I \le K\}$ and of the loading matrix $\{B(I, J)\}$. The factors are usually interpreted by examination of the loadings of the given variables $\{V(I), 1 \le I \le N\}$ on them. It is apparent that the factors and loading matrix will not be uniquely determined. There are many

		HL	нв	FB	FT	FM	HT	FL
HL	Head Length	1,000	.402	.395	.339	.305	.340	.301
нв	Head Breadth	.402	1.000	.618	.206	.135	.183	.150
FB	Face Breadth	.395	.618	1.000	.363	.289	•345	.321
FT	Foot	.339	.206	.363	1,000	•797	.736	.759
FM	Forearm	.305	.135	,289	•797	1.000	.800	. 84.6
HT	Height	.340	.183	.345	.736	.800	1.000	.661
FL	Finger Length	.301	.150	.321	•759	.846	.661	1,000

Table 17.1 Correlations Between Physical Measurements

(From K. Pearson (1901). On lines and planes of closest fit to points in space. Philosphical Magazine 559-572)

factor-analytic representations of a given set of data, and this plethora of solutions is a permanent embarrassment to the keen factor analyst. In particular, if the factors are transformed to some other set of factors by a linear transformation, the inverse transformation operates on the loading matrix, and exactly the same variables are represented by the new factors and loadings.

One way of reducing ambiguity assumes the factors have a unit covariance matrix, so that the covariance matrix $\{C(I,J), 1 \le I, J \le N\}$ of the variables may be written as $C(I,J) = \sum \{1 \le L \le K\} B(I,L)B(J,L).$

The loading matrix is said to be a root of the given covariance matrix. This root remains undetermined up to a rotation of factors (since such a rotation does not change the unit covariance matrix of the factors). To determine the root, further constraints are necessary, such as orthogonality of the vectors $\{B(I, L), 1 \le I \le N\}$ for different L, or simple structure, which requires that many of the entries in the loading matrix be nearly zero. The simple structure requirement is formalized in a number of algorithms, which have names such as QUARTIMAX or VARIMAX.

A clustering model for the loading matrix associates each factor with a cluster of variables, the variables with nonzero loadings on the factor. This model thus requires many zeroes in the loading matrix and is a special type of simple structure model which permits interpretation of the final factors as clusters of variables.

The requirement of zero correlation between factors makes a simple model for the variable covariance matrix, but it is not a compelling assumption. It is necessary, in view of the factor-loading matrix nonuniqueness, to have even more stringent assumptions on the loading matrix if no assumptions are made about the factors. A simple clustering model of this type is that all entries in the loading matrix are 0 or 1, with each factor corresponding to a cluster of variables with unit loadings.

17.2 SPARSE ROOT ALGORITHM

Preliminaries. A covariance matrix $\{C(I, J), 1 \le I, J \le N\}$ is to be approximated by the product of B and its transpose, where B contains many zeroes. The matrix B is assessed by two properties:

(i) the sum of squares $SS(B) = \sum \{1 \le I \le N, 1 \le L \le K\} B(I, L)^2$.

(ii) the number of zeroes Z(B), which equals the number of times B(I, L) = 0. During the maximization, it is required that the residual matrix

$$R(I, J) = C(I, J) - \sum \{1 \le L \le K\} B(I, L)B(J, L)$$

remain nonnegative definite. Thus

$$\sum \{1 \le I \le N\} R(I, I) = \sum \{1 \le I \le N\} C(I, I) - SS(B)$$

decreases as SS(B) increases, and, if SS(B) is close enough to $\sum \{1 \le I \le N\}$ C(I, I), the diagonal residuals will be negligible. Because R is nonnegative definite, the off-diagonal term R(I, J) is less than $[R(I, I)R(J, J)]^{1/2}$.

The fitting proceeds stepwise. The first (trial) column of B is chosen to maximize $\sum \{1 \le I \le N\} B(I, 1)^2$. This column is the first eigenvector of C, and SS(B) is the first eigenvalue. The row IMIN minimizes $[\sum \{1 \le I \le N\} B(I, 1) C(IMIN, I)]^2 \times [SS(B)C(IMIN, IMIN)]^{-1}$. This quantity is the square of the correlation of the IMINth variable with the weighted average of the original variables, weighted by the coefficients $\{B(I, 1)\}$. If B(IMIN, 1) is constrained to be zero, the quantity SS(B) will be reduced by an amount proportional to this squared correlation.

The row IMIN is "removed" from the matrix C by replacing all correlations by the partial correlation with IMIN fixed and by setting all correlations involving IMIN equal to zero. A new eigenvector is computed on this adjusted matrix, a new IMIN is found least correlated with the weighted average of variables, and this variable is removed from the matrix. In this way, an eigenvector is obtained for N, N-1, N-2,..., 1 variables. That eigenvector is chosen to fit C for which eigenvalue/(number of nonzero values) is a maximum.

The residual matrix R is computed, as follows:

$$R(I, J) = C(I, J) - B(I, 1)B(J, 1), \qquad 1 \le I, J \le N,$$

and the above steps are repeated on R. Eventually C is approximated by a loading matrix in which SS(B) is high and the number of zeroes is also high.

- STEP 1. Set L=1. Initially, set R(I,J)=C(I,J) $(1 \le I \le N, 1 \le J \le N)$. Set IP=N.
- STEP 2. Let $\{X(I), 1 \le I \le N\}$ be the eigenvector with largest eigenvalue of the matrix C. Set $F(IP) = [\sum \{1 \le I \le N\} X(I)^2][$ number of values $X(I) \ne 0]^{-1}$.
- STEP 3. Choose IMIN to minimize $[\sum \{1 \le I \le N\} B(I, 1) C(IMIN, I)\}] [C(IMIN, IMIN)]^{-1}$, with $X(IMIN) \ne 0$.
- STEP 4. Compute the partial correlation matrix of C with IMIN "removed"; that is, change C(J, K) to C(J, K) C(IMIN, J)C(IMIN, K)/C(IMIN, IMIN), $(1 \le J, K \le N)$, and finally set C(IMIN, J) = C(J, IMIN) = 0 $(1 \le J \le N)$. Set IP = IP 1, and, if IP remains greater than zero, return to Step 2.
- STEP 5. Let IP = IMAX maximize $\{F(IP), 1 \le IP \le N\}$. Set B(I, L) = X(I) $(1 \le I \le N)$, where $\{X(I)\}$ is the eigenvector corresponding to F(IP). Change R(I, J) to R(I, J) B(I, L)B(J, L) $(1 \le I, J \le N)$. Define C(I, J) = R(I, J), increase L by 1, and return to Step 2, unless L = K.

17.3 SPARSE ROOT ALGORITHM APPLIED TO FACE MEASUREMENTS

The variables used are head length (HL), face length (FL), and face breadth (FB) with correlations between them as given in Table 17.1.

STEP 1. Initialization sets the column to be estimated, L=1, remembers the covariance matrix C in R, R(I,J)=C(I,J), $1 \le I,J \le 3$ (since C is destroyed in the next few steps), and sets 1P=3.

STEP 2. The first eigenvector of C is (0.712, 0.852, 0.848). $F(IP) = F(3) = (0.712^2 + 0.852^2 + 0.848^2)/3 = 0.651$.

STEP 3. The squared correlation of the first variable with the linear combination of variables corresponding to the first eigenvector is

$$\frac{(0.712 \times 1.000 + 0.852 \times 0.402 + 0.848 \times 0.395)^{2}}{1.95^{2}} = 0.506.$$

The other two variables have a higher squared correlation] so 1MIN = 1.

STEP 4. Remove IMIN = 1 from the covariance matrix. Then

$$C(1, 1) = C(2, 1) = C(3, 1) = C(1, 2) = C(1, 3) = 0,$$

 $C(2, 3) = 0.618 - 0.395 \times 0.402 = 0.459,$
 $C(2, 2) = 0.838, \text{ and } C(3, 3) = 0.844.$

Set IP = 2, and return to Step 2.

STEP 2 REPEATED. The first eigenvector of C, with variable 1 removed, is (0, 0.804, 0.809). Then $F(2) = (0.804^2 + 0.809^2)/2 = 0.650$.

STEP 3 REPEATED. The second variable is least correlated with the new eigenvector so IMIN = 2.

STEP 4 REPEATED. On removing IMIN = 2 from C, all entries are zero except C(3, 3) = 0.592. Return to Step 2.

STEP 2 REPEATED. The first eigenvector of C with variables 1 and 2 removed is (0, 0, 0.770). Thus F(3) = 0.592.

STEP 5. The maximum value of F(I) occurs at I = 3, F(I) = 0.651. The first column of B is B(1, 1) = 0.712, B(2, 1) = 0.852, B(3, 1) = 0.848. Change the residual matrix R(I, J) ($1 \le I, J \le 3$); for example, $R(1, 2) = R(1, 2) - B(1, 1)B(2, 1) = 0.402 - 0.712 \times 0.852 = -0.204$. Define C = R, set L = 2, and return to Step 2.

The sequence of values of C, R, and B are given in Table 17.2. There are not many zeroes, which indicates, perhaps, that there is not much clustering.

17.4 REMARKS ON THE SPARSE ROOT ALGORITHM

The sparse root algorithm is applied to the 7×7 physical measurements matrix in Table 17.3. The first three columns are rather satisfactory. First, the "bone length" cluster of four variables, foot, forearm, height, and finger length, appears, then the face and head breadth cluster, and then a general cluster containing all variables.

Table 17.2 Sparse Root Algorithm Applied to Head Measurements

(1)	INITIAL	HEAD LENGTH	HL	T1.000	.402	.395
• •	CORRELATIONS	HEAD BREADTH	нв	.402	1.000	.618
		FACE BREADTH	FB	.395	.618	1.000_
(2)	FIRST EIGENVEC	TOR		[.712	.852	.848]
(3)	CORRELATIONS		HL	۲۰	0	۰ ٦
	WITH HL		HB	0	.838	.459
	REMOVED		FB	_ 0	.459	.844_[
(4)	EIGENVECTOR OF	REDUCED MATRIX		0 1	.804	.809]
(5)	CORRELATIONS		HL	۲۰	0	۰ ٦
	WITH HL, HB		нв	0	0	0
	REMOVED		FB	Lo	o	.592_
(6)	EIGENVECTOR OF	F REDUCED MATRIX		[•	0	.770]
(7)	RESIDUAL MATRI	cx	HL	-493	204	209
	AFTER FIRST CO	OLUMN	HB	204	. 2 74	104
	FITTED		FB	209	104	.280_
(8)	FIRST EIGENVE	CTOR		[.702	286	303]
(9)	EIGENVECTOR, I	HB REMOVED		.584	0	490]
(10)	RESIDUAL MATR	rx .	HL	.152	204	.078
	AFTER SECOND	COLUMN	HB	204	. 2 74	104
			FB	078	104	.040]
(11)	RESIDUAL MATR	ΙX	HL	Γ •	o	۰ ٦
	AFTER THIRD C	OLUMN	HB	0	0	0
			FB	_ 0	0	ا_ ه
(12)	LOADING		HL	712	.584	390
	MATRIX		HB	.852	0	.524
			FB	.848	.490	199_i

The later columns reveal two problems: First, the cluster of variables in the fourth column overlaps with that in the first. This happens because it is not forbidden by the algorithm, and perhaps it should be. Second, some rather small entries appear in the later columns, such as 0.055 for head breadth in column four. These make only a trivial difference in the fit but cannot be replaced by zero because the residual matrix would then be no longer nonnegative definite.

HEAD LENGTH	c	0	.857	504	0	.109	0
HEAD BREADTH	0	.898	.431	055	0	.041	0
FACE BREADTH	0	.356	•774	.506	.027	123	.039
FOOT	•799	0	.438	.145	0	.339	175
FOREARM	.877	0	.356	0	0	0	.322
HEIGHT	•770	o	.426	0	408	.235	074
FINGER LENGTH	.814	0	•373	o	.409	171	0
VARIANCE	2.664	.932	2.160	•534	.335	.227	.142
CUMULATIVE VARIANCE	2.664	3.596	5.756	6.290	6.625	6.852	6.994
(MAXIMUM SUM = 7)							

Table 17.3 Sparse Root of Physical Measurements Data

On the other hand, a substantial amount of variance is explained in the first three columns, 82%, and these have many zeroes. The later columns can be ignored in this case.

17.5* ROTATION TO SIMPLE STRUCTURE

A difficulty with the "sparse root" method is the requirement of nonnegative definiteness on the residual matrix. This requirement is necessary so that the method can be applied stepwise, at each stage operating on the residual matrix from the previous stage.

An alternative constraint on the fitted loading matrix B^* is that there exists a root B such that $B^*(I, J) = B(I, J)$ whenever $B^*(I, J) \neq 0$. This condition is always met by the "sparse root" computed as above. The relaxed condition is justified as follows. Consider the data matrix A(I, J).

Let $A(I,J) = \sum \{1 \le L \le K\} F(I,L)B^*(J,L) + E(I,J)$. Fit F and B^* with some values of B^* constrained to be zero, to minimize $\sum \{1 \le I \le M, 1 \le J \le N\} E(I,J)^2$. The columns $\{F(I,L), 1 \le I \le M\}$ are assumed orthogonal. For $K \ge N$, $A(I,J) = \sum \{1 \le L \le K\} F(I,L)B(J,L)$, where $\{F(I,L), 1 \le I \le M\}$ are orthogonal and B is a root of the covariance matrix with (I,J)th element $C(I,J) = \sum \{1 \le L \le M\}$ A(L,I)A(L,J). Thus the equation involving B^* may be written, for a particular F, as

$$A(I, J) = \sum \{1 \le L \le K\} F(I, L)B(J, L) = \sum \{1 \le L \le K\} F(I, L)B^*(J, L) + E(I, J),$$

which implies that $E(I, J) = \sum \{1 \le L \le K\} F(I, L)[B(J, L) - B^*(J, L)]$. To minimize $\sum \{1 \le I \le M, 1 \le J \le N\} E(I, J)^2$, for a particular F, set $B^*(J, L) = B(J, L)$ whenever $B^*(J, L)$ is not constrained to be zero.

Thus, if a loading matrix B^* is constrained a priori to have certain elements zero, the optimal B^* (in the sense of a least sum of squared errors on the original data) is obtained by finding a root B of C and setting the constrained elements equal to zero. Each root B will be evaluated by the sum of its squared elements over those elements to be set zero; the optimal B^* is obtained when this sum is minimized or, equivalently, when $\sum \{1 \le I \le N, 1 \le L \le K\} B^*(I, K)^2$ is maximized. The family of roots of C must be searched. Any two of these are related by an orthogonal matrix T operating on the columns. Thus, if B1 and B2 are roots,

$$B1(I, J) = \sum \{1 \le L \le K\} B2(I, L)T(L, J).$$

These orthogonal matrices correspond to the orthogonal factors F, which disappear when the covariance matrix is used rather than the original data. The search thus proceeds by beginning with an arbitrary root of C and rotating it to maximize $\sum \{1 \le I \le N, 1 \le L \le K\}B^*(I, K)^2$. Stationary points occur at roots B for which

$$\sum \{1 \le I \le N\} B(I, J) B^*(I, L) = \sum \{1 \le I \le N\} B(I, L) B^*(I, J),$$

where $B^*(I, J) = B(I, J)$ whenever $B^*(I, J) \neq 0$. There may be many such points corresponding to many local optima.

Now consider the general problem of specifying the zeroes in the loading matrix. As before, all roots will be searched. Each root can be rendered sparse by setting elements equal to zero, and the error is the sum of the squares of these elements. The value of a root B is the maximum number of elements which may be set zero, with their sum of squares less than some threshold TH. Or, the value of a root B is the number of elements less in absolute value than some threshold TH.

A particular search pattern to minimize the number of elements exceeding threshold begins with an arbitrary root, rotates that pair of columns whose rotation most decreases the number of elements exceeding threshold, and continues until no pair of columns can be improved by rotation.

To optimize the rotation of each pair of columns, consider the pair of elements x, y in a particular row. Rotations with angle θ (between 0 and π) will transform these to $x \cos \theta + y \sin \theta$, $-x \sin \theta + y \cos \theta$. The possible values of θ will be divided into intervals in which 0, 1, or 2 elements are less than threshold. This is done for each row. An interval (or intervals) of θ values may now be discovered maximizing the number of elements within threshold. In general, the maximizing rotation will not be unique, and the smallest rotation that will achieve the maximum number of elements within threshold is chosen.

17.6 JOINING ALGORITHM FOR FACTOR ANALYSIS

Preliminaries. A covariance matrix $\{C(I,J), 1 \le I \le N, 1 \le J \le N\}$ is to be approximated by a product of loading matrices B, in which B has simple tree structure. This means that every column of B has constant nonzero elements (perhaps a different constant for different columns) and that the clusters of variables defined by the nonzero elements in each column form a tree. A covariance matrix C is exactly equal to a product of loading matrices of this type if and only if -C is an ultrametric, that is, if and only if for every three variables I, J, K, $C(I,J) \ge \min [C(I,K), C(J,K)]$. Note that, if -C is an ultrametric for one scaling of the variables, it might not be for another, so that careful scaling of the variables could improve the fit of this model.

The algorithm proceeds by finding the two variables with the largest covariance and joining them to construct a new factor whose covariance with each other variable is the weighted average of the covariances of the joined variables with that variable. The next highest covariance then indicates the next pair to be joined. This is no different from the standard distance and amalgamation procedure.

During the algorithm, clusters (or factors) $\{1, 2, \ldots, 2N - 1\}$ will be constructed. The first N clusters are the original variables. The cluster structure is recorded by the vector JT, where JT(I) is the cluster constructed by joining I to some other cluster. If clusters I and J are joined to form cluster K, then the loading in the Ith column of the loading matrix is $\{C(I, I) - \min [C(I, I), C(I, J), C(I, J)]\}^{1/2}$.

- STEP 1. Set K, the number of clusters, equal to N. For each I ($1 \le I \le N$) define WT(I) = 1, JT(I) = 0. Define B(I, I) = 1 ($1 \le I \le N$) and B(I, J) = 0 for all other I, J ($1 \le I \le N$, $1 \le J \le 2N 1$).
- STEP 2. Find that pair $I \neq J$ with JT(I) = JT(J) = 0, such that C(I, J) is a maximum.
- STEP 3. Increase K by 1. Define JT(I) = K, JT(J) = K, $C(K, K) = \min [C(I, I), C(J, J), C(I, J)]$, WT(K) = WT(I) + WT(J). Define $B[L, I) = [C(I, I) C(K, K)]^{1/2}$ whenever B(L, I) = 1 ($1 \le L \le N$). Define $B(L, J) = [C(J, J) C(K, K)]^{1/2}$ wherever B(L, J) = 1 ($1 \le L \le N$). Define B(L, K) = 1 whenever B(L, I) or B(L, J) are nonzero ($1 \le L \le N$). Define JT(K) = 0.
- STEP 4. For each L, JT(L) = 0, define C(L, K) = C(K, L) = [WT(I) C(I, L) + WT(J)C(J, L)]/WT(K). If K < 2N 1, return to Step 2.
- NOTE 1. There will be 2N-1 clusters, or factors, after the calculations. (Some of these may have only zero loadings and may be dropped.) The loading matrix may be reduced to an $N \times N$ matrix as follows. Begin with the smallest clusters and move to the largest. If I and J are joined to form cluster K, suppose that DI, DJ, DK are the corresponding nonzero loadings. Whenever $B(I, L) \neq 0$, set $B(I, L) = Dl^2/(Dl^2 + DJ^2)^{1/2}$. Whenever $B(J, L) \neq 0$, set $B(I, L) = -DJ^2/(Dl^2 + DJ^2)^{1/2}$. Eliminate entirely the column $\{B(J, L), 1 \leq L \leq N\}$. Replace $B(K, L) \neq 0$ by $B(K, L) = [DK^2 + Dl^2DJ^2/(Dl^2 + DJ^2)]^{1/2}$. During this procedure, N-1 columns are eliminated. The base for the elimination is the collinearity of the I, J, K columns when I and J are joined to form K.
- NOTE 2. This algorithm may be set up as an average joining algorithm by using euclidean distances when the variances are all unity. If $\rho(I,J)$ is the correlation between variables I and J, $D(I,J) = [1 \rho(I,J)]/2M$ is the square of the euclidean distance between the standardized variables. The distance between clusters of variables is defined as the average distance over pairs of variables, one from each cluster. Then exactly the same sequence of joins will be obtained on the distances, as in the above algorithm.

The covariance between any two clusters is the average covariance between the variables in the two clusters. It is natural to associate a factor with each cluster equal to the average of all variables in the cluster, since the covariance between clusters is the covariance of these two factors. Of course, these factors will be oblique. Another convenient set of factors for a binary tree is obtained by associating a factor with each split into two clusters—the difference of the averages of the variables in the two clusters. These factors are oblique also, whereas the columns of the loading matrix are orthogonal.

17.7 APPLICATION OF JOINING ALGORITHM TO PHYSICAL MEASUREMENTS DATA

The correlation matrix in Table 17.1 has approximately the ultrametric structure required. For example, all the correlations in the block head length, head breadth, face breadth by forearm, finger, foot, height are approximately equal. The operations on the correlation matrix are given in Table 17.4, and the final loading matrices and correlation matrix are given in Table 17.5.

Table 17.4 Application of Joining Algorithm to Measurements Data

```
1. 17.
           1000
2. HB
            402 1006
J. FB
           395 618 1000
4 . FM
           305
                 135
                      289 1000
5. PR
            301
                 150
                      321
                           846 1000
6. PT
           339
                 206 363 797 759 1000
7. HT
           340
                 183
                      345 800 661 736 1000
 STEP 1. JOIN FR TO FM
                                               STEP 2. JOIN FMFR TO FT
  ΗL
          1000
                                                            1000
  Н3
           402 1000
                                                 ΗB
                                                             402 1000
  נוד
           395
                 618 1000
                                                 FВ
                                                             395
                                                                  618 1000
  TMER
           303
                 142
                      305
                            C46
                                                 IMET
                                                             315
                                                                  163 324
                                                                             778
  71
           339
                 206
                      363
                            770 1000
                                                 HT
                                                             340 183 345 732 1000
  HT
           34 C
                183 345
                          730 736 1000
 STEP 3. JOIN FMFRFT TO HT
                                               STEP 4. JOIN HB TO FB
  Æ
          1000
                                                 HL
                                                            1000
  ΕВ
           402 1000
                                                 FBH9
                                                             398
                                                                  618
  FΒ
                 618 1000
           395
                                                 FMFRFTHET
                                                             321 248
                                                                        732
  PMFRFTHT 321
                168 328
                            732
 STEP 5. JOIN HERE TO HL
                                               STEP 6. JOIN HIFBHB TO FMFRFTHT
  ньэвня
           398
                                                 HLFBHBFMFRFTHT
                                                               270
  FMFRFTHT 270
                732
  TREE IS HL-FRED---FMFR-FT--HT.
```

See Table 17.5 for loading matrix.

The pair with highest covariance are joined. New covariances are weighted averages of the old.

STEP 1. Set K, the number of clusters, equal to 7. Define WT(I) = 1, JT(I) = 0, and B(I, I) = 1 for $1 \le I \le 7$ and B(I, J) = 0 for other I, J ($1 \le I \le 7$, $1 \le J \le 13$).

STEP 2. The pair FM and FR have the highest covariance, so $I=4,\,J=5.$

STEP 3. Increase K to 8. Define JT(4) = JT(5) = 8, C(8, 8) = 0.846 [since C(4,5) = 0.846 is less than C(4,4) or C(5,5), WT(8) = 2. Define B(4,4) = $(1 - 0.846)^{1/2} = 0.392$, $B(5, 5) = (1 - 0.846)^{1/2} = 0.392$, B(4, 8) = B(5, 8) = 1. Define JT(8) = 0.

STEP 4. Define

$$C(1, 8) = \frac{1}{8}[C(1, 4) + C(2, 4)] = \frac{1}{8}(0.305 + 0.301) = 0.303.$$

Similarly, other covariances with the new cluster or factor are defined by averaging the old. Since K < 13, return to Step 2. And so on.

Table 17.5 Loading Matrix and Residual Correlation Matrix Obtained by Joining Algorithm

(Values in blocks average to zero)

Consider also the construction of oblique factors from the binary tree. One such set of factors is the differences between the averages of the variables in pairs of clusters joined during the algorithm. Thus,

$$F(8) = [V(4) - V(5)]\sqrt{\frac{1}{2}},$$

$$F(9) = [\frac{1}{2}V(4) + \frac{1}{2}V(5) - V(6)]\sqrt{\frac{2}{3}},$$

$$F(10) = [\frac{1}{3}V(4) + \frac{1}{3}V(5) + \frac{1}{3}V(6) - V(7)]\sqrt{\frac{2}{4}},$$

$$F(11) = [V(2) - V(3)]\sqrt{\frac{1}{2}},$$

$$F(12) = [\frac{1}{2}V(2) + \frac{1}{2}V(3) - V(1)]\sqrt{\frac{2}{3}},$$

$$F(13) = [\frac{1}{3}(V(1) + V(2) + V(3)) - \frac{1}{4}(V(4) + V(5) + V(6) + V(7))]\sqrt{\frac{1}{4}},$$

$$F(14) = [V(1) + V(2) + V(3) + V(4) + V(5) + V(6) + V(7)]\sqrt{\frac{1}{4}}.$$

The multiplicative constants $\sqrt{\frac{1}{2}}$, etc., ensure that the sum of the squares of the coefficients is unity. The method of definition guarantees orthogonality between coefficients for different factors. The coefficient matrix is thus easily inverted to

$$V(1) = -\sqrt{\frac{2}{3}} F(12) + \frac{1}{3}\sqrt{\frac{1}{7}} F(13) + \sqrt{\frac{1}{7}} F(14),$$

$$V(2) = \sqrt{\frac{1}{2}} F(11) + \frac{1}{2}\sqrt{\frac{2}{3}} F(12) + \frac{1}{3}\sqrt{\frac{1}{7}} F(13) + \sqrt{\frac{1}{7}} F(14),$$

$$V(3) = -\sqrt{\frac{1}{2}} F(11) + \frac{1}{2}\sqrt{\frac{2}{3}} F(12) + \frac{1}{3}\sqrt{\frac{1}{7}} F(13) + \sqrt{\frac{1}{7}} F(14),$$

$$V(4) = \sqrt{\frac{1}{2}} F(8) + \frac{1}{2}\sqrt{\frac{2}{3}} F(9) + \frac{1}{3}\sqrt{\frac{2}{3}} F(10) - \frac{1}{4}\sqrt{\frac{1}{7}} F(13) + \sqrt{\frac{1}{7}} F(14),$$

$$V(5) = -\sqrt{\frac{1}{2}} F(8) + \frac{1}{2}\sqrt{\frac{2}{3}} F(9) + \frac{1}{3}\sqrt{\frac{2}{3}} F(10) - \frac{1}{4}\sqrt{\frac{1}{7}} F(13) + \sqrt{\frac{1}{7}} F(14),$$

$$V(6) = -\sqrt{\frac{2}{3}} F(9) + \frac{1}{3}\sqrt{\frac{2}{3}} F(10) - \frac{1}{4}\sqrt{\frac{1}{7}} F(13) + \sqrt{\frac{1}{7}} F(14),$$

$$V(7) = -\sqrt{\frac{2}{3}} F(10) - \frac{1}{4}\sqrt{\frac{1}{7}} F(13) + \sqrt{\frac{1}{7}} F(14).$$

This representation is similar to the reduced loading matrix in Table 17.5, but it is the columns of the loading matrix, rather than the factors, that are orthogonal. The factors will be oblique in general, even if the simple tree structure model holds.

If the factors obtained above *are* orthogonal and are normalized to have a variance of unity, then the loading matrix is a root of the covariance matrix with orthogonal columns, so that the columns of the loading matrix are just the eigenvectors of the covariance matrix. A possible use of these factors, then, is as a first approximation to the eigenvectors of a matrix. The suggested procedure would be to construct a tree, transform to the oblique factors $F(1), \ldots, F(14)$ by using the above rotation, then use a standard technique on the covariance matrix of the F's that would hopefully be substantially more nearly diagonal.

A similar use of these factors occurs in regression. It is desired to predict a variable Y from the variables $V(1), \ldots, V(N)$. The standard stepwise technique finds the variable V(I) that best predicts Y, a second variable V(I) such that V(I) and V(I) best predict Y, and so on. A difficulty of this approach is that, if there are three or four variables highly correlated with V(I), they will not appear in the regression formulas although they are nearly as good predictors as V(I). Suppose, instead, that the factors F(I) are used in the stepwise fitting. Any variables that are highly correlated will be grouped together in the factors and so will appear simultaneously, as averages, in the regression equations.

17.8 THINGS TO DO

17.8.1 Running the Factor Analysis Algorithms

All the algorithms operate on a covariance matrix and are aimed at discovering clusters of variables rather than clusters of cases. The techniques are not appropriate if there is a substantial clustering of cases, since this will not be visible in the covariance matrix. For 1000 cases and 50 variables, preliminary analyses on the covariance matrix may reveal, say, 10 significant factors, and a more detailed analysis may then be performed on the 1000 cases by 10 factors.

Any tree on the variables generates a loading matrix in which each factor corresponds to a cluster of variables. A binary tree on N variables generates a loading matrix on N factors, in which each factor corresponds to the split at each node into two clusters of variables. (See Table 17.6, Indian caste measurements, for a trial data set.)

	sh	ND	NH	HL	FB	ВВ	HD	NB
STATURE5	849	1774	1974	2698	2173	2891	1412	2103
SITTING HEIGHT		2094	2170	2651	3012	2995	2069	1182
NASAL DEPTH			2910	1537	1243	1 57 5	1308	1139
NASAL HEIGHT				1758	1139	1852	1735	0438
HEAD LENGTH					2270	2792	1982	1930
FRONTAL BREADTH						4930	4461	1831
BIZYGOMETIC BREADTH							54 07	2729
HEAD BREADTH								1413
NASAL BREADTH								

Table 17.6 Indian Caste Measurements

[From C. R. Rao (1948), The utilization of multiple measurements in problems of biological classification, *J. Roy. Stat. Soc. B* 10, 159–193.] The correlations (by 10,000) are computed within 22 caste groups containing between 67 and 196 individuals.

17.8.2 Direct Factoring of a Data Matrix

Consider the representations

$$A = FB$$
.

where A is an $M \times N$ data matrix, F is an $M \times K$ factor matrix, and B is an $N \times K$ loading matrix. The arrays F and B are row and column factors of A. Many factor analyses ignore or assume away structure in F in order to concentrate on the more malleable loading matrix B. For example, if the columns of F are assumed uncorrelated, then B is a root of the covariance matrix of A.

Since important interactions between the clustering of variables and the clustering of cases are gladly expected, it is necessary to have factor analysis models that will reveal two-way clustering. Let the Kth cluster be a submatrix of A or a block. Define F[I, K] = 1 if case (row) I is in the Kth cluster, and define F(I, K) = 0 otherwise. Define B(J, K) = S(J, K) if variable (column) I is in the Kth cluster, and define B(J, K) = 0 otherwise. The values of F and B are not defined analogously because it is anticipated that variables will be constant within a cluster, but not necessarily cases, since the variables may be measured on different scales.

Then $A = FB = \sum \{1 \le K \le L\} C(K)$, where C(K), the Kth cluster, is zero except on a submatrix within which the variables are constant. For example,

$$\begin{bmatrix} 3 & 6 & 2 & 6 \\ 3 & 11 & 3 & 2 \\ 2 & 8 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 5 & 1 & 2 \\ 0 & 5 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 3 & 2 & 0 \\ 2 & 3 & 2 & 0 \\ 2 & 3 & 2 & 0 \end{bmatrix}.$$

Note that there are no overlapping constraints, which may make the blocks difficult to understand in large arrays. (A similar decomposition is available if all values within a block are equal.)

The model may be fitted in stepwise fashion. At each stage, an optimal block is fitted to the residual matrix. Given the rows of this block, any variable is placed in the block for which the square of the mean by the number of rows exceeds a given

threshold. Given the variables in a block, each row is added or deleted from the block (as in K means) according to its distances from the block mean and the nonblock mean.

REFERENCES

HARMAN, H. (1967). Modern Factor Analysis, University of Chicago Press, Chicago. This is a really excellent book, very clearly written. One method which discovers clusters (in a backhand way) is the centroid method (p. 171). The first factor is $F(1) = -1/N \sum \{1 \le I \le N\} V(I)$. The second factor is

$$F(2) = -1/N \sum \{1 \le I \le N\} E(I)[V(I) - \alpha(I)F(1)],$$

where $V(I) - \alpha(I)F(1)$ is orthogonal to F(1) and E(I) is a pattern of plus and minus ones chosen, in an *ad hoc* way, to maximize the variance of F(2). The third factor is an average of residual variables orthogonal to F(1) and F(2), and so on.

The patterns of plus and minus ones, at least for the first few factors, often conform to clusters obtained by other methods.

A second method involving clusters is the multiple-group method, which partitions the variables and defines factors equal to the averages of the variables in each group. A method of constructing the clusters is discussed on p. 119—the two variables with highest correlation are grouped together, then the variable with highest average correlation to these two is added to the group, and so on, until the average correlation has "a sharp drop" with the addition of a new variable. Then a new group is begun, and the process continues until all the variables are grouped.

HORST, P. (1965). Factor Analysis of Data Matrices, Holt, Rinehart and Winston, New York. This is a general text which may be used as a guide to the extremely extensive literature. This particular book has many algorithms explicitly described and an array of supporting Fortran subroutines. Some quotes will be used to show the relation between factor analysis and classification. On p. viii, "Factor analysis has had its most popular appeal as a device for generating plausible and acceptable taxonomies in disciplines where these have been confused and unsatisfactory.... Labels seem to play a fundamental role in providing emotional security for all human beings, including scientists, and therefore the taxonomic function of factor analysis procedures probably needs no justification. However, it is in parsimonious description of natural phenomena that factor analysis has more fundamental and universal significance."

In the "group centroid" method, discussed on p. 148, a loading matrix is specified, and then the factors are computed by regression on the original variables. The loading matrix "consists of binary vectors each of which serves to group the variables into subsets according to unit elements in the vector.... It is not necessary that the unit elements in the vectors of the binary matrix be mutually exclusive.... Harman, H. H. (1960) ("Factor Analysis" in Mathematical Methods for Digital Computers, H. S. Wilf and A. Ralston (eds.), Wiley, New York) has suggested that a preliminary cluster analysis of the correlation matrix may provide a basis for the grouping of the variables. However, since cluster analysis procedures are, in general, not objective, it is perhaps better to depend on some a priori or even arbitrary hypothesis concerning the way variables should be grouped in setting up the binary matrix."

In order to approximate a given loading matrix by one with a given pattern of zeroes, Horst assumes that the fitted loading matrix will be constant or zero in the

columns and seeks that orthogonal transformation of the original matrix which most closely approximates a loading matrix of this form (p. 415).

TRYON, R. C., and BAILEY, D. E. (1970). Cluster Analysis, McGraw-Hill, New York. This book was published shortly after the death of R. C. Tryon, a pioneer in clustering from the factor analysis side. (Tryon wrote a monograph "Cluster Analysis" in 1939.) In the foreword Charles Wrigley states: "Tryon spent a sabbatical year at the University of Chicago in the later 1930's. He grasped the point, as many others at Chicago must have done, that similar tests would have high correlations between them and that clusters of related tests could therefore be identified, without the labour of a centroid factor analysis, by direct search of the correlations. Thus cluster analysis, as originally conceived by Tryon, was a poor man's factor analysis."

Part of the purpose of this book is to describe a large package of computer programs called the BCTRY system. Tryon's general approach to clustering begins with a factor analysis of the variables identifying similar groups of variables and then continues by clustering cases, using new variables, each representing a group of the old.

Two types of clustering take place—clustering of variables, and then clustering of cases. The clustering of variables proceeds as follows: To construct the first cluster, a pivot variable is found maximizing the "index of pivotness," the variance of the squares of the correlation coefficients of all variables with this variable. A measure of similarity between variables is defined, the "proportionality index":

$$P(I, J) = (\sum \{1 \le K \le N\} \rho(I, K)\rho(J, K))^{2} \times (\sum \{1 \le K \le N\} \rho^{2}[I, K] \sum \{1 \le K \le N\} \rho^{2}(J, K))^{-1},$$

where $\rho(I, K)$ is the correlation between variables I and K. The variable with largest proportionality to the pivot variable is added to the cluster. The variable with the highest mean proportionality to the two already added is added provided its proportionality with the first two exceeds 0.40. Similarly, for the fourth variable. For more than four variables, additional variables are added "if their mean index of proportionality is within twice the range of the indexes of proportionality among the four first-selected variables, and if all of the indexes of proportionality of the variable and the previously selected variables are greater than 0.81."

The clustering of cases proceeds principally through a K-means-type algorithm in which initial cluster means are guessed, each object is assigned to whichever mean it is closest to, then all means are recomputed, then the objects are reassigned, and so on.

PROGRAMS

SPARSE finds root of covariance matrix containing many zeroes.

FIRST finds first eigenvector.

FIND finds eigenvector with many zeroes.

REMOVE computes partial covariances.

```
SUBROUTINE SPARSE(C,R,N,X,B,KK)
C - - - - -
                                                                                  ......20 MAY 1973
C... APPROXIMATES C BY ROOT B WHICH HAS MANY ZEROES. USES FIRST, REMOVE, FIND, OUT C... C = N BY N BORDERED COVARIANCE MATRIX, DESTROYED.

C... N = NUMBER OF ROWS
C.... KK = NUMBER OF FACTORS, TRY KK = N
C.... X = 1 8Y N SCRATCH ARRAY
C.... R = N 8Y N RESIDUAL MATRIX, C-88'.
C.... B = N BY KK LDADING MATRIX
        DIMENSION C(N,N),R(N,N),X(N),B(N,KK)
        DIMENSION S(100)
        DATA XL/4HLDAD/
        B(1.1)=XL
        WRITE (6,1)
     1 FORMAT(18H COVARIANCE MATRIX )
        CALL OUT(C.N.N)
        SS=0
        DD 50 J=2,N
        R(J,1)=C(1,J)
        B(J,1)=C(1,J)
        R(1,J)=C(1,J)
    50 SS=SS+C(J,J)
        DD 20 KR=2,KK
        B(1.KR)=0
       DD 30 I=2,N
DO 30 J=2,N
    30 R(I,J)=C(I,J)
CALL FIND(C,N,X,B(1,KR))
        00 31 I=2,N
00 31 J=2,N
    31 C(I,J)=R(I,J)-B(I,KR)+B(J,KR)
    20 CONTINUE
        WRITE(6,3)
     3 FORMAT(16H RESIDUAL MATRIX)
        CALL DUT(R, N, N)
        WRITE (6,2)
     2 FORMAT(33H SPARSE RODT OF COVARIANCE MATRIX)
        CALL DUT(8,N,KK)
        DO 60 K=2,KK
        SIKJ=0
    DD 61 J=2,N
61 S(K)=S(K)+B(J,K)**2
    60 CONTINUE
     WRITEI6,4) SS,(S(K),K=2,KK)
4 FORMAT(29H VARIANCES, TOTAL AND FACTORS/
*6G10.4,2X,5G10.4/(10X,5G10.4,2X,5G10.4))
        5(1)=0
    DO 62 K=2,KK
62 S(K)=S(K)+S(K-1)
        DO 63 K=2,KK
    63 S(K)=100.*S(K)/SS
        WRITE(6,5)(SIK),K=2,KK)
     5 FORMAT(31H PERCENTAGE CUMULATIVE VARIANCE/(10x,5G10.4,2X,5G10.4))
        RETURN
        ENO
```

```
SUBROUTINE FIRST(C,N,X)
c.....
                                                                       .......20 MAY 1973
C.... COMPUTES FIRST EIGENVECTOR OF SUBMATRIX OF C OVER ROWS I WHERE X(I).NE.O
C.... C = POSITIVE DEFINITE ARRAY
C.... N = NUMBER OF ROWS
C.... X = N BY 1 INDICATOR VARIABLE ON INPUT, EIGENVECTOR ON OUTPUT
       DIMENSION C(N,N),X(N)
DIMENSION Y(100)
       TH=.0005
       SN=0
       00 20 I=1,N
       IF(C(I,I).GT.TH) GO TO 22
       00 21 J=1.N
       C(1,J)=0.
    21 C(J,I)=0.
22 CONTINUE
    IF (X(I).NE.O.) X(I)=C(I,I)++0.5
20 CONTINUE
    10 CONTINUE
       SN=0.
       00 50 4=1.N
    50 SN=SN+X(I) **2
       5N=5N**0.5
       00 51 I=1,N
    51 IF(SN.NE.O) X(I)=X(I)/SN
       SYY=0.
       5 XY=0.
       00 30 I=1,N
Y(I)=0.
       IF(X(1).EQ.O.) GO TO 30
       DO 40 J=1.N
       IF (X(J).EQ.O.) GO TO 40
       Y([]=Y([]+C(],J)*X(J)
    40 CONTINUE
       SXY=SXY+X(1)*Y(1)
       SYY=SYY+Y(1)**2
    30 CONTINUE
       IF(SXY.LT.O.) SXY=0.
       E=SXY**0.5
       SYY=SYY**0.5
       ERR=0.
       00 60 1=1.N
1F(SYY.NE.O) Y(1)=Y([]/SYY
       ERR=ERR+(X(1)-Y(1))++2
    60 X([]=E+(1.2+Y([)-0.2+X([))
       (CNT=ICNT+1
       IF (ICNT.GT.20) RETURN
IF (ERR.GT.TH**2) GO TO 10
       RETURN
```

END

```
SUBROUTINE FIND (C, N, X,Y)
C . . . . .
                                                                                         ..20 MEY 1973
C.... FINDS BEST EIGENVECTOR FITTING TO C, MINIMIZING EIGENVALUE/NON-ZERO VALUE
C.... C = N BY N BORDERED COVARIANCE
C.... N = NUMBER OF ROMS
C.... X = SCRATCH VARIABLE
C.... Y = N BY 1 FITTED VARIABLE
                                                ********************************
       DIMENSION C(N,N),X(N),Y(N)
    00 20 I=1.N
20 X(I)=1.
        X(1)=0
        CMAX= 0.
    50 CALL FIRST(C,N,X)
        XS=0.
        55=0.
        00 30 I=1,N
IF (X(I).EQ.0.) GD TD 30
        XS=XS+1.
         Z=X(I)**2
        SS=SS+Z
    30 CONTINUE
        XMIN=10. **10
        DO 31 J=1.N
        IF(X(J).EQ.O.) GO TO 31
        xx=0.
    DO 32 I=1,N
32 XX=XX+X(I)*C(I,J)
XX=XX*+2/(SS*+2*C(J,J))
        IF (XX.GT.XMIN) GO TO 31
        XMIN=XX
        IMIN=J
    31 CONTINUE
        IF(XS.NE.O) CC=SS/XS
        IF(CC.LE.CMAX) GO TO 33
        CMAX=CC
    DO 40 I=1.N
40 Y(I)=X(I)
33 CONTINUE
        CALL REMOVE(C, N, X, IMIN)
        XIIMIN)=0.
         IF (XS.GT.1.) GO TO 50
        RETURN
        END
        SUBROUTINE REMOVE(C.N.S.I)
                                                                                 ......20 MAY 1973
C.... COMPUTES PARTIAL CORRELATIONS ON ARRAYC, REMOVING VARIABLE I.
C.... N = NUMBER OF VARIABLES
C.... S = INDICATOR VARIABLE, ONLY NON-ZERO ROWS CONSIDERED
C.... I = INDEX OF VARIABLE TO BE REMOVED.
        DIMENSION C(N.N),S(N).
        TH=.0005
        IF (C(I,I).LT.TH) GO TO 50
IF (S(I).EQ.O.) RETURN
DO 20 J=1.N
IF (J.EQ.I) GO TO 20
IF (S(J).EQ.O.) GO TO 20
        DO 30 K=1, N
        IF (S(K).EQ.O.) GO TO 30
         C(J,K)=C(J,K)-C(I,J)+C(I,K)/C(I,I)
    30 CONTINUE
    20 CONTINUE
    50 CONTINUE
        DO 40 J=1,N
        C(J,I)=0.
    40 C(I,J)=0.
        RETURN
        END
```

Prediction

18.1 INTRODUCTION

A base data matrix $\{A(I,J), 1 \le I \le M, 1 \le J \le N\}$ is assumed. A new variable $\{A(I,O), 1 \le I \le M\}$ is observed on the given cases. A new case $\{A(O,J), 1 \le J \le N\}$ is observed on the given variables. How can the missing value A(O,O) be estimated? The standard regression approach would predict A(I,O) as a linear function $\sum \{1 \le J \le N\} C(J)A(I,J)$ of the base variables. This linear function is then applied to the new case to predict the value A(O,O) by $\sum \{1 \le I \le M\} C(J)A(O,J)$. Of course, if the new case is quite different from the base cases, the prediction may be quite wrong (and the error estimate much too small), so that an underlying similarity between the new case and the base set is necessary for the extension to be valid. A typical assumption is that all $\{A(I,J), 1 \le J \le N\}$ for $O \le I \le M$ are randomly sampled from an M-dimensional multivariate normal. In piecewise fitting, the set of all possible cases is partitioned into clusters, and a different predicting function is used within each of the clusters. Essentially the clusters are used as a means of generalizing the fitting function. For example, suppose that a variable Y(I) is to be fitted by a linear function of X(I) ($1 \le I \le M$). The usual least-squares fit is

where $a = \overline{Y} - b\overline{X}$.

$$a = Y - bX,$$

$$b = (\sum \{1 \le I \le M\} \ Y(I)[X(I) - \overline{X}])(\sum \{1 \le I \le M\} \ [X(I) - \overline{X}]^2)^{-1},$$

$$\overline{X} = \sum \{1 \le J \le M\} \frac{X(I)}{M},$$

y = a + bx

and

$$\overline{Y} = \sum \{1 \le I \le M\} \frac{Y(I)}{M}.$$

This fit could be computed separately for $X(I) \le 0$ and X(I) > 0. The fitting equation would be

$$y = a(1) + b(1)x,$$
 $x \le 0$
 $y = a(2) + b(2)x,$ $x > 0$

where a(1) and b(1) are computed from those $\{X(I), Y(I)\}$ with $X(I) \le 0$, and a(2) and b(2) are computed from those $\{X(I), Y(I)\}$ with X(I) > 0. Notice that not only the given cases are clustered but the set of all possible cases is clustered, so that new cases can be inserted in the fitting equations.

The clustering used in piecewise fitting is chosen to optimize some measure of the fit within each of the clusters. For example, in the above line fitting problem, suppose that the possible clusters were $x \le c$ and x > c. For each c, there will be a sum of squared deviations of Y(I) from its predicted value. As c increases, this residual sum of squares will change only as c passes through X(I). So c = X(I) $(1 \le I \le M)$ are the only values which need be tried.

For N variables, there are two types of approaches to piecewise fitting—the first via mixtures, and the second via the automatic interaction detection (AID) technique of Sonquist and Morgan.

First, as in discriminant analysis, suppose the variable to be predicted is an integer variable $\{A(I,O), 1 \le I \le M\}$. When A(I,O) = L, $\{A(I,J), 1 \le J \le N\}$ is randomly sampled from a multivariate normal with mean $\{E(L,J), 1 \le J \le N\}$ and covariance matrix Σ . A new case $\{A(O,J), 1 \le J \le N\}$ is used to predict A(O,O). Let the probability be P(L) that the new case is from the Lth multivariate normal. The minimum expected number of misclassifications occurs if A(O,O) = L is predicted, where L maximizes

$$-\frac{1}{2}[A(O,I)-E(L,I)] \Sigma^{-1}(I,J)[A(O,J)-E(L,J)] + \log P(L).$$

Thus N-dimensional space is divided into a number of convex polytopes in each of which a different prediction of A(O, O) is made. In practice, E, Σ , and P must be estimated from the data matrix $\{A(I, J), 1 \le I \le M, 1 \le J \le N\}$; for example, E(L, J) is the average of A(I, J) over those cases for which A(I, O) = L.

For $\{A(I,O), 1 \le I \le M\}$ continuous, assume that each vector of length N+1, $(A(I,O), \{A(I,J), 1 \le J \le N\})$ is a sample from a mixture of K multivariate normals, where the Lth has mean $[E(L,O),E(L,1),\ldots,E(L,N)]$ and variance Σ and sample I comes from the Lth with probability P(L). The expected value of A(I,O), given $\{A(I,J), 1 \le J \le N\}$ and that the Ith sample lies in the Lth population, is $F(L)+\sum \{1 \le J \le N\}$ C(J)A(I,J). Note that the coefficients C(J) depend on Σ but not on L, since the covariance matrix does not change between clusters. Given $\{A(O,J), 1 \le J \le N\}$, let P(L,O) be the probability that the Oth sample lies in the Lth cluster. If the sample were always assigned to the cluster of highest probability, the sample space would be divided into polytopes as in the discriminant analysis case. But for predicting a continuous variable, the correct prediction is the expectation of A(O,O), $\sum \{1 \le L \le K\} P(L,O)F(L) + \sum \{1 \le J \le N\} A(O,J)C(J)$. The quantities E, Σ , and P are estimated, as in the mixtures algorithm, by maximum likelihood.

The difference in the prediction of A(O,O), due to the clustering, is carried in the constant terms F(L) in the various predicting equations within the various clusters. In particular, if the F(L) do not much differ, it will not much matter what cluster the Oth observation lies in.

The other approach to multivariate prediction is the AID technique of Sonquist and Morgan (see the references in Chapter 14). This constructs clusters of cases by splitting, using the variables one at a time. At each split a cluster is divided into two clusters of cases, according as A(I,J) > C or $A(I,J) \le C$. That variable J and that constant C are chosen which minimize the sum of squared deviations within clusters of the variable to be predicted. Thus the final AID clusters are of especially simple form—parallelipipeds consisting of all cases $\{I \mid D(J) < A(I,J) \le C(J), 1 \le J \le N\}$. These clusters are easy to interpret and compute. Because of its simple, one-at-a-time

treatment of variables, the AID technique can also accommodate ordered or category variables. An ordered variable generates a split into $\{I \mid A(I,J) \leq C\}$ and $\{I \mid A(I,J) > C\}$. A category variable is temporarily converted into an ordered variable by ordering its categories according to the mean value of A(I,O) within each of the categories.

A possible drawback of the AID approach is the simplicity of the final clusters. It may be that convex shapes other than parallellepipeds are appropriate. A generalization has a first split according to $\sum \{1 \le J \le N\} B(J)A(I,J)$ not greater than, or greater than, C. Later splits will also be according to some linear combination of the variables rather than a single variable. Each set of coefficients $\{B(J)\}$ and constant C is evaluated according to the sum of squared deviations of $\{A(I,O)\}$ from cluster means generated by the split. Determining the optimal $\{B(J)\}$ is not a simple procedure (especially when compared to the AID technique), and "local optimization" approximations are necessary.

In a third approach, it is assumed that a tree of convex clusters has already been computed by using the data matrix $\{A(I,J), 1 \le I \le M, 1 \le J \le N\}$. By using analysis of variance techniques, clusters in the tree are eliminated if the cluster mean of $\{A(I,O)\}$ does not differ significantly from the mean of the next including cluster. The tree is thus reduced to a smaller tree from which predictions are made. The advantage of this approach is that the original clustering may be applied to a number of different variables to be predicted.

18.2 VARIANCE COMPONENTS ALGORITHM

Preliminaries. A tree of clusters 1, 2, ..., K is given with its structure specified by an ancestor function F, which for each cluster I (I < K) specifies F(I) > I, the smallest cluster containing I. For the largest cluster K, F(K) = K.

A variable X takes values $\{X(I), 1 \le I \le M\}$ on the objects at the ends of the trees. It is fitted to the tree by using a variance components model. A random variable X(I) is associated with each cluster I ($1 \le I \le K$), such that the X(I) - X[F(I)] for I ($1 \le I < K$) are independent normal variables with mean 0 and variance V[F(I)]. The quantity X(I) is a "mean value" associated with cluster I, and the quantity V(I) is a variance component associated with cluster I ($M < I \le K$). The variance of the value at the Ith object is the sum of the variance components corresponding to clusters including the Ith object. If a new object is classified into the tree, into cluster I, its I0 value is estimated by I1. The variance components are a guide in reducing the tree, with the cluster I1 eliminated if I2 is sufficiently small.

A threshold T is used that is injected into the probability model by assuming a uniform prior distribution of V and X and a threshold observation $X(I) - X[F(I)] = \sqrt{T}$ for each F(I). The log posterior density of X and V is given by

$$LPD = C - \frac{1}{2} \sum \{1 \le I < K\} \frac{\{X(I) - X[F(I)]\}^2}{V[F(I)]} - \frac{1}{2} \sum \{M < I \le K\} [N(I) + 1] \log V(I) - \frac{1}{2} \sum \{M < I \le K\} \frac{T}{V(I)}.$$

The maximum posterior density values of X and V are determined iteratively, first by

getting optimal V's for a given X and then by getting optimal X's for given V's. The posterior density is surely increased at every step.

STEP 1. Initialization. Let NC(I) be the number of L with F(L) = I. Let X(I) be the average of X(L) over L with F(L) = I, defined successively for $M < I \le K$. Let V(I) = T ($M < I \le K$).

STEP 2. Update X. The value of X(I) which maximizes the log posterior density is, for M < I < K in turn,

$$X(I) = \left(\sum \{F(L) = I\} \frac{X(L)}{V(I)} + \frac{X(J)}{V(J)}\right) \left(\frac{NC(I)}{V(I)} + \frac{1}{V(J)}\right)^{-1},$$

where J = F(I). Thus X(I) is a weighted average of X values on the adjoining clusters.

Set
$$X(K) = \sum \{F(L) = K\} \frac{X(L)}{NC(K)}$$
.

STEP 3. Update V. Change V(I) $(M < I \le K)$ to

$$V(I) = \left[\left(\sum \{ F(L) = I \} [X(I) - X(L)]^2 \right) + T \right] [N(I) + 1]^{-1}.$$

STEP 4. Compute log posterior density by LPD = $-\frac{1}{2}\sum\{M < I \le K\}$ [NC(I) + 1] log V(I). If the increase from its previous value is less than 0.01, stop. Otherwise, return to Step 2.

NOTE. To eliminate clusters, remove all clusters I with V[F(I)] < T, and repeat the algorithm on the reduced tree.

18.3 VARIANCE COMPONENTS ALGORITHM APPLIED TO PREDICTION OF LEUKEMIA MORTALITY RATES

Consider the leukemia mortality data in Table 18.1. Suppose the 1967 rate for Switzerland were unknown. The regression approach to its prediction would find a linear function of, say, the three rates in 1964, 1965, 1966 that best predicts the 1967 rate for countries other than Switzerland. This formula would be then extended to Switzerland.

The clustering approach constructs a tree of countries by their rates in 1964, 1965, 1966. The 1967 rates and variance components are then computed for every cluster in the tree. Switzerland is classified into the tree according to its 1964, 1965, 1966 rates, and its 1967 rate is predicted from the estimated rate for the smallest cluster containing it.

The tree, given in Table 18.2, is constructed by using the adding algorithm. Switzer-land, if added to the tree, forms a new cluster of two countries with Belgium.

STEP 1. First NC(I) = 0 (1 $\leq I \leq M = 16$). Then, NC(17) = 2 because cluster 17 contains 2 objects. Because the tree is a binary tree, NC(I) = 2 for every cluster I (17 $\leq I \leq 31$). The initial X(17) is the average of X(1) = 34 and X(2) = 29, so X(17) = 31.5. Then cluster 18 has 17 and 3 as its maximal clusters, so X(18) = (31.5 + 33)/2 = 32.25, and so on. The initial threshold is T = 1, the smallest variance component which is judged noticeable.

Table 18.1 Mortality Rates per Million from Leukemia Among Children Aged 0-14 Years, Various Countries, 1956-1967

From Spiers (1972). "Relationship at age of death to calendar year of estimated maximum leukemia mortality rate." HSMHA Health Rep. 87, 61-70.

	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967
AUSTRALIA	34	33	43	44	38	38	39	34	36	35	37	34
AUSTRIA	27	3 5	40	45	39	34	37	39	35	39	37	29
BELGIUM	41	29	31	40	39	39	47	40	34	29	34	30
CANADA	36	35	32	42	35	35	35	38	36	37	33	33
DENMARK	33	44	46	45	35	48	43	49	56	39	39	38
FINLAND	43	41	34	32	37	28	28	42	43	38	32	41
FRANCE	44	41	41	42	40	36	40	36	36	34	34	31
GERMAN FED. REP.	3 5	33	3 5	36	35	35	34	38	36	38	34	39
HUNGARY	28	26	31	31	29	27	27	34	36	35	29	35
ISRAEL	38	44	45	28	61	33	32	28	29	36	30	30
JAPAN	26	25	29	28	30	29	32	32	31	33	33	31
NETHERLANDS	32	37	39	39	39	31	41	37	40	42	36	33
NORTHERN TRELAND	17	25	27	39	29	27	22	31	33	26	30	32
NORWAY	45	44	36	31	44	44	56	31	36	37	50	40
PORTUGAL	20	28	21	34	30	30	30	29	35	37	40	36
SCOTLAND	27	31	32	30	35	30	31	26	29	28	29	25
SWEDEN	33	45	46	45	##	37	44	31	39	35	37	38
SWITZERLAND	42	46	##	47	38	35	45	42	33	31	36	31

STEP 2. The updating of X(17) is based on the X values for clusters 1, 2, 18, which immediately adjoin it; that is, F(1) = F(2) = 17, F(17) = 18. Thus,

$$X(17) = \frac{34 + 29 + 32.25}{3} = 31.75.$$

Other X values are updated similarly, except for the largest cluster X(31) = [X(16) + X(30)]/2 = (38 + 37.35)/2 = 37.67.

STEP 3. Change V(17) to

$$V(17) = \frac{(34 - 31.75)^2 + (29 - 31.75)^2 + 1}{2 + 1} = 4.54$$
$$= \frac{[X(1) - X(17)]^2 + [X(2) - X(17)]^2 + T}{NC(17) + 1}.$$

Similarly adjust other variance estimates.

STEP 4. Compute log posterior density by $-\frac{1}{2} \times 3 \times \log 4.54 - \frac{1}{2} \times 3 \times \log 1.15 - \cdots = -18.534$. Return to Step 2, and continue updating X and V. At each stage increase the log posterior density. When this increase is less than 0.01, the algorithm stops. The optimum log posterior density is -13.053.

The final estimates of X and V are given in Table 18.3. Notice that several clusters have very small variance components, which justifies the reduction of the tree. For example, the largest cluster, 31, has a variance component of 0.2 because there is very

Table 18.2 Tree Using Adding Algorithm, with Euclidean Distances, on the Variables 1964, 1965, 1967, Leukemia Mortality Data (Table 10.1)

	COUNTRY				1967	RATE	
1.	AUSTRALIA	-/-I	- I - I - I	-1-1-	·I	34	
2.	AUSTRIA	-/-/	I I	II	I	29	
3.	CANADA	-/	-/ I I	II	I	33	
ч.	SWEDEN	-/	/ 1	II	I	38	
5.	NETHERLANDS	/ - I	3	II	I	33	
6.	FINLAND	-/-/	/	' I I	I	41	
7.	BELGIUM	-/	- I I	II	I	30	
8.	NORTHERN IRELAND	/ - I	I I	II	I	32	
9.	SCOTLAND	-/-/	-/ 1	II	I	25	
10.	FRANCE	-/-I	- I - I I	II	I	31	
11.	GERMANY	-/-/	I I	III	I	39	
12.	HUNGARY	/	-/ I	II	I	35	
13.	JAPAN	/ - I	I :	I I	I	31	
14.	ISRAEL	/-/	/-	/-/ I	I	30	
15.	NORWAY	/		/	I	40	
16.	DENMARK	/		. -	- /	38	
	TREE STRUCTURE FO	OR 31 CLU	STERS				
	I F(I)	I	F(I)	I	F(I)	Ĭ	F(I)
	1 17	9	22	17	18	25	27
	2 17	10	24	18	19	26	2,5
	3 18	11	24	19	21	27	28
	4 19	12	25	20	21	28	29
	5 20	13	26	21	29	29	30
	6 20	14	26	22	23	30	31
	7 .23	15	30	23	28	31	31
	8 22	16	31	24	25		

little difference between its subcluster means 37.9 and 38. These subclusters should therefore be eliminated. The algorithm is repeated on the reduced tree, which eliminates all subclusters where the variance component is less than T=1. The reduction step is again performed, and the final reduced tree is given in Table 18.4.

If Switzerland was classified into this tree, it falls with Belgium into the large cluster Belgium-Israel with relatively low rates. The predicted value for Switzerland in 1967 would be 32.1 with a variance of 1.8. The actual value is 31.

The final reduced tree has only a few clusters in it, which may be briefly summarized. The first division is into four clusters: Australia-Finland, Belgium-Israel, Norway,

Table 18.3 Maximum Posterior Density Estimates of Means and Variances by Applying Variance Components Algorithm to Leukemia Mortality

The first value in each block is the mean; the second value is the variance.

OBJECT	X VALUE	************************
1	34	132.9133.0135.4135.4134.4137.9137.91
2	29	<u>I 2.9I</u> 0.2I 2.2I 0.2I 1.6I 2.8I .2I
3	33	<u>I</u> IIIIII
jt.	38	IIIIII
5	33	I35.5 I I I I
6	41	I 6.3 I I I I
7	30	
8	32	[30.2] 0.2 [.5] [] [
9	25	I5.3I I I I I
10	31	I34.7I34.7I32.0I I I I
11	39	<u>I 5.5I</u> .2I 1.7I I I I
12	35	<u> </u>
13	31	I30.6 I I I I I
14	30	I.3 I I I I I
15	40	<u> </u>
16	38	J

Table 18.4 Reduced Tree, Small Variance Components Eliminated

		1967 RATE	*********
1.	AUSTRALIA	34	I32.7I36.3I36.6I
2.	AUSTRIA	29	I 1.5I 2.6I 1.9I
3.	CANADA	33	<u>I I</u> I I
4.	SWEDEN	38	I I I
5.	NETHERLANDS	33	I I I
6.	FINLAND	41	<u> </u>
7.	BELGIUM	30	I32.1 I I
8.	NORTHERN IRELAND	32	I 1.8 I I
9.	SCOTLAND	25	I I
10.	FRANCE	31	I I I
11.	GERMANY	39	I I I
12.	HUNGARY	35	I I
13.	JAPAN	31	I I I
14.	ISRAEL	30	I I
15.	NORWAY	40	I I
16.	DENMARK	38	<u> </u>

Denmark. The last two have high death rates. The Belgium-Israel cluster has a low rate, and within Australia-Finland, Australia-Canada has a relatively low rate.

18.4 ALTERNATIVES TO VARIANCE COMPONENTS ALGORITHM

There are two separable problems in the variance components approach—estimation of the means and estimation of the variance components. The technique used for estimating the means given the variances is just the least-squares fit of the model, X(I) - X[F(I)], uncorrelated with variance V[F(I)]. The normality assumption is not necessary to justify this procedure.

The variance components themselves are more difficult to estimate. Another method of estimating these is to use the raw cluster variances

$$\sum \{F(L) = I\} \frac{[X(L) - X(I)]^2}{N(I) - 1},$$

where X(I) is the mean of X(L) with F(L) = I, defined recursively for I increasing $(M < I \le K)$. The expectation of this quantity is V(I) plus other variance components of clusters contained in I, and thus an unbiased estimate of V(I) is available. This procedure was not used, principally because of the problem of negative estimates of variance components, but it seems plausible and is certainly simpler than the iterative procedure.

18.5 AUTOMATIC INTERACTION DETECTION

Preliminaries. There is a base data set $\{A(I, J), 1 \le I \le M, 1 \le J \le N\}$ and a variable to be predicted $\{A(I, O), 1 \le I \le M\}$. The variables are all assumed real valued, but an extension to category-valued variables will be discussed later.

The algorithm considers splits of the M cases into two clusters defined by the variable J, such that the first cluster consists of those cases I with $A(I, J) \leq C$ and the second cluster consists of those cases I in which A(I, J) > C. The variable J and the constant C are chosen to minimize the sum of the squared deviations of $\{A(I, O), 1 \leq I \leq M\}$ from the cluster means.

During the algorithm, the clusters are numbered $1, 2, \ldots, KC$. The cluster K splits into two clusters L1(K) and L2(K), where L2(K) > L1(K) > K. The number of cases in cluster K is NC(K). The average value of A(I, O) over cases in cluster K is AVE(K). The between-cluster sum of squares at cluster K is

$$SSQ(K) = \frac{\{AVE[L2(K)] - AVE[L1(K)]\}^{2}}{1/NC[L2(K)] + 1/NC[L1(K)]}.$$

At each stage, whichever cluster has the smallest value of SSQ(K) is split, and the two subclusters L1(K) and L2(K) become available for further splitting.

The splitting will continue until KC clusters are obtained. If KC is chosen somewhat larger than the number of clusters expected, the later splits may be rejected after examination of the tree, for example, by using the variance components algorithm.

STEP 1. Let NP(I) denote the cluster into which object I is assigned. Initially NP(I) = 1 ($1 \le I \le M$). Set LL = 1, KK = 1.

STEP 2. Find the optimal split of cluster LL. For cluster LL and for variable J $(1 \le J \le N)$, define $I(1), I(2), \ldots, I(L)$ to be the cases with NP(I) = LL reordered so that $A[I(1), J] \le A[I(2), J] \le \cdots \le A[I(L), J]$.

Find the maximum value for $1 \le K < L$ of $ST(J) = [B(K) - B(L)]^2 LK/(L - K)$, where $B(L) = \sum \{1 \le K \le L\} A[I(K), O]/L$. Let D(J) = A[I(K), J] if K maximizes ST(J).

The maximum value of ST(J) over J ($1 \le J \le N$) is SSQ(LL), the reduction in the sum of the squared deviations of $\{A(I, O), 1 \le I \le M\}$ due to splitting cluster LL optimally. Correspondingly, J(LL) is the maximizing J, and C(LL) is the split point D(J).

STEP 3. Find the maximum value of SSQ(K) over all clusters K with NP(I) = K for at least one I. If cluster K has maximum SSQ, set L1(K) = KK + 1, L2(K) = KK + 2, and increase KK by 2. For each $I[1 \le I \le M, NP(I) = K]$, define NP(I) = L1(K) if $A[I, J(K)] \le C(K)$, and NP(I) = L2(K) if A[I, J(K)] > C(K). If $1 + KK \ge KC$, stop.

STEP 4. Perform Step 2 for LL = L1(K), then for LL = L2(K), and then return to Step 3.

18.6. APPLICATION OF AID ALGORITHM TO LEUKEMIA MORTALITY

The problem is again a regression problem: to predict the 1967 death rate from the rates in 1964, 1965, 1966. The AID algorithm operates similar to a stepwise regression, except that the base variables are converted to 0-1 variables before being used for prediction.

STEP 1. Initially, there is only one cluster, KK = 1. Set NP(I) = 1 $(1 \le I \le 16)$ LL = 1.

STEP 2. This step finds the best split of a given cluster. If J = 1, the cases I(1), $I(2), \ldots, I(16)$ are 10 (Israel), 15 (Scotland), 11 (Japan), ..., 5 (Denmark). This is the ordering of the cases by the first variable 1964. Thus the death rate for Israel in 1964 is 36, the minimum, and the death rate for Denmark is 56, the maximum.

The quantity $[B(K) - B(L)]^2 LK/(L - K)$ is to be computed for each K ($1 \le K < L$); B(L) is the average over all 16 countries, 33.4, and B(1) is the average over the first country, B(1) = 30. Thus, for K = 1,

$$ST(J) = (30 - 33.4)^2 16 \times \frac{1}{15} = 14.5.$$

Similarly,

$$B(2) = 27.5$$
, $ST(J) = (33.4 - 27.5)^2 16 \times \frac{2}{14} = 87.5$.

The maximum value of 168.3 is achieved at K = 6, D(1) = 35. The split is thus according as the 1964 rate is less than or equal to 35, or greater than 35.

The other variables attain a maximum reduction of 109.9 and 64.5, respectively, so the best split is J(1) = 1 with C(1) = 35. The reduction is SSQ(1) = 168.3.

STEP 3. The only cluster K with NP(I) = K for some I is K = 1. Thus cluster 1 is split, L1(1) = 2, L2(1) = 3, KK = 3. If I = 1, set NP(I) = 1, and, since A(1, 1) = 36 > C(1) = 35, NP(I) = 3. If I = 2, NP(I) = 1, and since $A(2, 1) = 35 \le C(1) = 35$, NP(I) = 2. In this way, all cases will be assigned to one or other of clusters 2 and 3.

STEP 4. Find the optimal split for cluster 2 by returning to Step 2.

STEP 2 REPEATED. With LL = 2, J = 1, there are only six cases with NP(I) = 2. Ordered by the first variable, 1964 rate, these are 10, 15, 11, 13, 3, 2. The value of ST(1) is then 12.5. The best split occurs for the third variable, so SSQ(2) = 24.3, J(2) = 3, and C(2) = 29.

Continuing with Step 2, LL = 3, the best split occurs with variable 2, SSQ(3) = 30.0, J(3) = 2, and C(3) = 34.

STEP 3. The only clusters that need be examined are 2 and 3. For these, K = 3 minimizes SSQ. Set L1(3) = 4, L2(3) = 5, increase KK to 5. Cases with NP(I) = 3 are changed to NP(I) = 5, except for case 7, where A(7, 2) = 34, so NP(I) = 4.

The splitting is stopped after seven clusters are obtained, with the next split being of cluster 2, variable 3. The splits and cluster averages are given in Table 18.5. It will be seen that the first split gives a rather satisfactory division into high and low rates.

Table 18.5 Aid Algorithm Applied to Leukemia Mortality

1, 1964 rate; 2, 1965 rate; 3, 1966 rate.

				1967 RATES	ESTIMATES	(MEANS)
SCOTLAND	I3<29	[1 <u><</u> 35	δI	25	25.0)
AUSTRIA	I3>29	Ī	I	29	30.4	•
BELGIUM	I :	I	I	30	30.4	ŀ
ISRAEL	1	I	I	30	30.1	.
JAPAN	1	ı "	I	31	30. ¹	ı
NORTHERN IRELAND	<u> </u>	I	Ī	32	30.1	
FRANCE	I2<34	<u>I</u> 1 >3	5I	31	31.0)
AUSTRALIA	I2>34	Ī	I	34	37.	•
CANADA	ı	I	I	33	37.	•
DENMARK	I :	I	I	38	37.	0
FINLAND	I	I	I	41	37.	0
GERMANY	I :	I	I	39	37.	D
HUNGARY	I	I	I	35	37.	0
NETHERLANDS	I	I	I	33	37.	D
NORWAY	I	I	I	40	37.	0
SWEDEN	I	<u> </u>	Ī	38	37.	0

A new state—say, Switzerland—is classified according to its rates in 1964, 1965, 1966. Since Switzerland in 1964 has a rate of 33, it is classified into the low group. Next, in looking to 1966, it is classified high. Thus the predicted value for Switzerland is 30.4. The real value is 31.

Portugal would be classified into the same group—predicted value 30.4, real value 36. The reliability of the method (as with many clustering methods) should be assessed cautiously by the within-cluster sum of squares, since this has been minimized in the algorithm.

18.7 REMARKS ON THE AID ALGORITHM

The AID algorithm offers a simple clustering alternative to linear regression. The algorithm may be used with discrete or continuous base variables.

Suppose the base variables $\{A(I,J), 1 \le I \le M, 1 \le J \le N\}$ are 0-1 variables. Two clusters are associated with the Jth variable—the cluster of cases where the variable is zero and the cluster where the variable is one. That variable is first chosen which maximizes the between-cluster sum of squares (or equivalently, the correlation squared) for the predicted variable $\{A(I,O), 1 \le I \le M\}$. Suppose this variable is the Jth. A number of new variables are now defined, based on the first one fitted, just as in stepwise regression. The Kth variable becomes two new category variables. The first of these—say, X—is defined as

(i)
$$X(I) = 0$$
 if $A(I, J) = 0$, $A(I, K) = 0$,

(ii)
$$X(I) = 1$$
 if $A(I, J) = 0$, $A(I, K) = 1$,

(iii)
$$X(I) = 2$$
 if $A(I, J) = 1$.

The second of these Y, is defined as

(i)
$$Y(I) = 2$$
 if $A(I, J) = 0$,

(ii)
$$Y(I) = 0$$
 if $A(I, J) = 1$, $A(I, K) = 0$,

(iii)
$$Y(I) = 1$$
 if $A(I, J) = 1, A(I, K) = 1$.

Each variable divides the cases into three clusters, and that variable is found which has the largest between-cluster sum of squares. A number of new variables are now defined, each with four categories, obtained by dividing one of the three present case clusters according to whether or not one of the original variables is zero or one.

The technique used then is to construct a finer and finer partition, at each stage having a number of variables available which generate partitions even finer than the present partition. The best of these trial partitions is the next partition of cases.

The technique can obviously be generalized to category variables taking more than two values. If the category variables take very many values, any one variable may use up too many degrees of freedom. A way out of this is to construct 0-1 variables from the category variables at each stage. The best 0-1 variables (ones generating best between-cluster sums of squares) are obtained by ordering the categories according to the mean of A(I, O) within each category, and then generating N-1 0-1 variables by splitting consistent with this order, where N is the number of categories.

For continuous base variables these also are converted to 0-1 variables by considering a number of 0-1 variables of the type

$$Z(I) = 0$$
 if $A(I, J) \le C$,
 $Z(I) = 1$ if $A(I, J) > C$.

One of the defects of the AID algorithm is that it considers a single variable at a time. This makes the results easy to interpret, but, if several variables cluster about equally well, only one of these may define the split and the others may never appear. There is a similar "arbitrary selection" problem in stepwise regression. A possible cure is to consider more general ways of constructing 0-1 variables, to be used in the fit, from many variables. For example, for two variables define

$$X(I) = 0$$
 if $A(I, J)B(J) + A(I, K)B(K) \le C$
 $X(I) = 1$ if $A(I, J)B(J) + A(I, K)B(K) > C$.

The number of 0-1 variables of this type is M(M-1)/2+1, versus M-1 for the 0-1 variables based on a single continuous variable. So this approach certainly complicates the computing.

To handle many variables, it is suggested that an initial splitting variable be found, then find one which combines with it to split well, then find one which combines with the new variable (a linear combination of the first two), and so on, until no significant improvement takes place. Then begin over within the two clusters obtained in the first step.

The AID algorithm takes $O(M \log MNK)$ calculations (where M is the number of cases, N is the number of variables, and K is the number of clusters) for continuous variables. For 0-1 variables, by clever sorting, the calculations are O(MN). The technique is thus appropriate for very large data sets.

The above procedure for handling many variables is $O(M^2N^2)$, which is much more expensive. Approximate optimization of the K-means type will reduce the computation time.

The AID algorithm is remarkable in its ability to handle continuous and category variables, but it should be noted that the method is to reduce all variables to 0-1 variables. The method operates somewhat differently on the continuous than on the category variables. In particular, a category variable taking many possible values is more likely to be chosen early in the fitting than a 0-1 or continuous variable, because the many-valued category variable generates many 0-1 variables.

18.8 THINGS TO DO

18.8.1 Running Prediction Algorithms

The AID algorithm is to be used in somewhat the same circumstances as stepwise regression; it is much more able to cope with clusters in the cases and with non-linear relationships between variables. It generates a simple interpretable prediction rule for new observations. (Use the city crime data in Table 18.6.)

The variance components algorithm fits a continuous variable to a given tree and is just a generalization of standard variance components fitting for partitions. The analogous procedure for category data is the minimum-mutation method. Thus this algorithm might be used to summarize a number of variables in terms of their average values at a few nodes of the tree. Predictions of missing values are made from these fitted average values.

18.8.2 By Rows or Columns

The matrix

$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 2 & 5 \\ 6 & 2 & * \end{bmatrix}$$

has a missing value denoted by an asterisk. Show that the following procedures are equivalent:

(i) Using the first two rows, predict the third column as a linear combination of the first two. Extend this prediction to the third row.

Table 18.6 City Crime

[From The Statistical Abstract of the United States (1971), Bureau of the Census, U.S. Department of Commerce, Grossett and Dunlap, New York.] Each variable, except if specified otherwise, is per 100,000.

CITY	POPN (1000's)	SWHITE CHANGE, INNER CITY 1960-1970	BIACK (1000's)	MURDER	RAPE	ROBBERY	ASSAULT	BURGLARY	AUTO THEFT
ANAHEIM	1420	50.8	39	2.7	21.9	94	103	1607	377
PALITIMORE	2071	-21.4	501	1.3.2	34.9	564	396	1351	701
BOSTON	2754	-16.5	151	4.4	14.8	1 36	95	1054	984
BUFFALO	1349	-20.7	118	5.7	13.7	145	111	862	448
CHICAGO	6979	-18.6	1306	12.9	25.4	363	233	830	708
CINCINATTI	1385	-17.2	156	6.4	16.8	120	107	912	348
CLEVELAND	2064	-26.5	343	14.5	18.7	288	132	826	1208
DALLAS	1556	14.2	261	18.4	41.0	206	338	1581	577
DETROIT	4200	-29.1	780	14.7	31.1	649	223	1986	758
HOUSTON	1985	25.5	399	16.9	27.1	335	183	1532	741
LOS ANGELES	7032	4.7	1026	9.4	50.0	307	371	1981	945
MIAMI	1268	13.5	196	15.6	17.0	427	421	1358	781
MILWAUKEE	1404	-1 a.4	116	3.8	8.3	53	63	499	405
MINNEAPOLIS	1814	- 7.9	50	2.6	16.8	179	89	1198	615
NEW YORK	11529	- 9.3	2080	10.5	19.9	665	286	1821	947
NEWARK	1857	-36.7	363	9.5	20.5	333	182	1315	667
PATERSON	1359	- 9.1	83	2.6	5.7	99	63	815	491
PHILADELPHIA	4818	12.9	873	9.3	15.2	173	123	754	534
PITTSBURGH	2401	-18.0	176	#.4	14.0	145	108	696	537
ST. LOUIS	2363	-31.6	388	14.8	34.4	280	203	1458	840
SAN FRANCISCO	3110	-17.2	535	8.3	42.9	348	226	2164	957
SAN DIEGO	1358	17.2	106	4.1	19.4	93	106	1011	428
SEATTLE	1422	- 8.5	85	4.4	23.8	164	114	1976	547
WASHINGTON	2861	-39.4	737	11.4	23.0	504	232	1433	7 67

- (ii) Repeat (i) with rows and columns interchanged.
- (iii) Estimate the missing value by requiring zero determinant.

18.8.3 Block Models

If any array contains a number of blocks and all values within a block have a specified range, a missing value will be predicted to lie in the range of the block containing it. For a large block it might be reasonable to assume the missing value has the same distribution as the distribution of values in the block.

This technique works well for filling in missing values, but it is less compelling as a prediction technique because a new case must be fitted into the blocks of the array before predictions can be made. These predictions are like the AID predictions—if 0.3 < V1 < 0.5 and 0.2 < V2 < 0.7 and 0.5 < V3 < 0.9, then predict 0.3 < V4 < 0.6.

18.8.4 Median Fits

In fitting a continuous variable to the nodes of a tree, it is plausible to minimize |X(I) - X[T(I)]| summed over all nodes of the tree, where T(I) is the ancestor of node I. The values of X at the ends of the tree are assumed given. The algorithm given in Section 13.8.6 computes this median fit exactly.

PROGRAMS

VARCO variance components model fitted to a given tree.

AID splits data to best predict a target variable, basing each split on a predicting variable.

AIDOUT outputting program for AID.

REL splits data to best predict a given variable, with split based on another variable.

```
SUBROUTINE VARCO(M,K,NT,TH,X,XN,V,XLL,Y)
C . . . . . . . . . . . .
                                                                                                        ....20 MAY 1973
         GIVEN A TREE, AND A SET OF VALUES ON (TS ENDS, THIS PROGRAM FINDS VARIANCE COMPONENTS AND MEANS ASSOCIATED WITH EACH NODE. THE PROBABILITY
C . . . .
C
VARIANCE COMPONENTS AND MEANS ASSOCIATED WITH EACH NODE. THE PROBABILITY
MODEL ASSUMES THAT X(1)-X(K) IS NORMAL WITH MEAN ZERO AND VARIANCE V(L)

HHERE K IS ANY CLUSTER AND L IS THE SMALLEST ONE INCLUDING IT.

.... M = NUMBER OF GBJECTS AT END OF TREE, PLUS ONE FOR DUMMY FIRST OBJECT.

.... K = NUMBER OF CLUSTERS OR NODES OF TREE, K.GT.M.

.... NT = 1 BY K VECTOR, NT(1).GT.I IS ANCESTOR OF I, EXCEPT FOR ROOT K,NT(K)=K

.... TH = THRESHOLD, PRIOR EXPECTATION OF (X(L)-X(K))**2

.... X = K &Y 1 VECTOR, FOR I.LE M, X(I) = INPUT VALUE AT END OF TREE

FOR 1.GT.M, X(I) = ESTIMATED MEAN AT NODE I.

.... XN = K BY 1 VECTOR, YN(I) = NUMBER OF NODES WITH ANCESTOR I.

.... XL = LOG LIKELIHHOO AT EACH STEP

.... Y = K BY 1 SCRATCH VECTOR
C... Y = K BY 1 SCRATCH VECTOR
                                                                     DIMENSION NT(K), X(K), V(K), XN(K), Y(K)
          MM=M+1
          KK=K-1
C.... INITIALIZE MEANS, VARIANCES, COUNTS AT EACH NOOE
          DO 10 I=MM,K
          X(I)=0.
     10 V(1)=TH
          00 11 I=2.K
      11 XN(1)=0.
          DO 12 I=2.KK
          J=NT(I)
          1F(I.GT.M) X(I)=X(I)/XN(I)
          (I)X+(L)X=(L)X
      12 XN(J)=XN(J)+1
          X(K) = X(K) / XN(K)
          WRITE (6,11
       1 FORMAT(22H10BJECT ANCESTOR VALUE )
          WRITE(6,2)([,NT(]),X(]),1=2,M)
       2 FCRMAT(215,5x,G12.5)
          ITER=20
          XLL=-10. **10
          00 40 IT=1. ITER
          WRITE(6,3) XLL
       3 FORMAT(14HOLOGLIKELIHOOO .G12.5)
          WRITE (6,4)
       4 FORMAT(44H NODE ANCESTOR COUNT
                                                                   MEAN
                                                                                 VARIANCE I
          WRITE(6,5) (I,NT(I),XN(I),X(I),V(I),(=MM,K)
       5 FORMAT(215,G12.2,2G12.5)
C.... UPDATE MEANS
          00 20 1=MM.K
      20 Y(1)=0.
          00 21 I=2,KK
          J=NT(I)
          IF ((.GT.M) X(()=(Y(1)/V(I)+X(J)/V(J))/(XN(I)/V(I)+1./V(JI)
     21 Y(J)=Y(J)+X(I)
          X(K)=Y(K)/XN(K)
C.... UPDATE VARIANCES
          00 30 I=MM.K
     30 V(1)=0.
          00 31 I=2,KK
           J=NT(1
     31 V(J)=V(J)+(X(J)-X[]))++2/XN(J)
C.... COMPUTE LOG LIKELIHOOD
          XOLO=XLL
          XLL=0.
          00 32 I=MM,K
     V(I)=(V(I)+TH)/(1.+XN(I))
32 XLL=-(1.+XN(I))*0.5*ALOG(V(I))+XLL
          IFEXLL-LT.XOLO+-000011 RETURN
      40 CONTINUE
          RETURN
          END
```

```
SUBROUTINE AID(A,M,N,K,TH,NB,SP,KA,JP)
C . . . . .
                                                                               .....20 MAY 1973
C.... SPLITS DATA TO BEST PREDICT COLUMN JP, BASING EACH SPLIT ON SOME OTHER COL.
C... A = M BY N BORDERED ARRAY
C... M = NUMBER OF ROMS
C... N = NUMBER OF COLUMNS
C... JP = VARIABLE TO BE PREDICTED
C... K = MAXIMUM NUMBER OF CLUSTERS
C.... K = MAXIMUM NUMBER OF CLUSTERS

C.... TH = THRESHOLD, STOP SPLITTING WHEN THRESHOLD EXCEEDS SSQ REDUCTION

C.... NB = 4 BY K ARRAY DEFINING BLOCKS

C NB(1,K) = FIRST ROW IN CLUSTER

C NB(2,K) = LAST ROW OF CLUSTER
              NB(3,K) = VARIABLE USED IN SPLIT
NB(4,K) = VARIABLE IN SPLIT
C .... SS = 5 BY K ARRAY DEFINING FOR EACH CLUSTER THE SPLITTING VARIABLE, THE
              SPLITTING CONSTANT, THE CLUSTER MEAN, THE SSQ DUE TO SPLIT
C.... KA = ACTUAL NUMBER OF CLUSTERS
C . . . . .
                                                 DIMENSION A(M,N),NB(4,K),SP(6,K)
C.... INITIALIZE BLOCK ARRAY
        KARO
        IL=2
        ILLEM
        JM=JP
        15=1
    80 IF(KA.GT.K-2) GD TD 9D
C.... DEFINE BLOCKS
        KA=KA+1
        NB(1.KA)=IL
        N6 (2, KA) = [S
        NB(3,KA)=JM
        NB (4, KA) =JM
        KA=KA+1
        NB(1,KA)=IS+1
        NB (2, KA) = [U
        NB(3,KA)=JM
        NB (4, KA)=JM
C.... DEFINE SPLITTING PARAMETERS FOR NEW BLOCKS
        KL=KA-1
        DO 43 KK=KL,KA
        LL=IL
        LU=IS
        IF(KK.EQ.KA) LL=IS+1
        IF(KK.EQ.KA) LU=IU
IF(LL.GT.LU) GO TO 43
        SP(3, KK)=0
        DO 40 J=2.N
        IF(J.EQ.JP) GO TO 40
        NN=LU-LL+1
        CALL REL(A(LL.JP).A(LL.J), NN,C,SSQ)
        IF(SSQ.LT.SP(3,KK)) GO TO 40
        SP(1,KK)=J
        SP(2, KK)=C
        SP(3.KK)=SSQ
    40 CONTINUE
        S 0= 0
        S1=0
        $2=0
        00 42 I=LL,LU
        50=50+1
        S1=S1+A([,JP)
    42 52=S2+A(I,JP)**2
        SP(4,KK)=SD
        SP(5,KK)=S1/S0
        SP(6+KK)=S2/S0-(S1/S0)**2
   43 CONTINUE
C.... FIND BEST BLOCK TO SPLIT
        5M≃0
        DO 10 KK=2,KA
        IF(SP(3,KK).LE.SM) GO TO 10
        KM=KK
        SM=SP(3.KK)
    10 CONTINUE
IF(SM.LT.TH) GO TO 9D
C.... REDROER DATA ACCORDING TO BEST SPLIT
        IL=NB(1,KM)
        IU=NB(2,KM)
```

```
JM=SP(1,KM)
   20 20 I=IL,(J
BC 20 II=I,IU
   IF(A(I,JM).LE.A(II,JM)) GO TO 20
   DO 21 J=1,N
   C=A(I,J)
   (L, II)A=(L, I)A
21 A(II, J)=C
20 CONTINUE
   SP(3,KM)=-SP(3,KM)
   DO 31 I=IL, IU
IF(A(I,JM).GT.SP(2,KM)) GO TO 32
31 CONTINUE
32 [5=1-1
   GO TU EQ
90 CONTINUE
          CALL AIDOUT (A, M, N, NB, SP, KA, TH, JP)
   RETURN
   ENO
```

```
SUBROUTINE AIDOUT(A,M,N,NB,SP,KA,TH,JP)
                                                             .....20 MAY 1973
C....PRINTS OUTPUT OF SUBROUTINE AID. SEE AID FOR ARGUMENTS.
      DIMENSION NB(4,KA),SP(6,KA),A(M,N)
    WRITE(6,1) JP,TH
1 FORMAT(51H1CLUSTERS OBTAINED IN SPLITTING TO PREDICT VARIABLE, 15,
     */16H USING THRESHOLD .G12.6)
     WRITE(6,3)
    3 FORMAT(
     SSQ
                                                           COUNT
                                              REDUCTION
      IL=NB(1,K)
      IU=NB(2,K)
   22 WRITE(6,2) A(IL,1),A(IU,1),A(1,JS),(SP(I,K),I=2,6)
2 FORMAT(3(2X,A5),5X,5G12,5)
   20 CONTINUE
      RETURN
      END
```

```
SUBROUTINE REL(U,V,N,C,SSQ)
C.... USEO IN AIO FOR PREDICTING A VARIABLE U BY SPLITTING DN A VARIABLE V.
C.... U = N BY 1 ARRAY, TO BE PREDICTED
C.... V = N BY 1 ARRAY, USED IN PREDICTION
C.... N = NUMBER OF ELEMENTS OF ARRAY
C.... C = SPLIT POINT
C.... SSQ = SUM OF SQUARES IN U AFTER SPLIT
                                                                                    ......20 MAY 1973
        OIMENSION U(N), V(N)
OIMENSION X(500), Y(500)
        00 10 I=1,N
X(I)=U(I)
   10 Y([]=V(])
C- - - - - - - REORDER X AND Y VECTORS BY Y VECTOR
        DO 20 1=1,N
        DO 20 J=I,N
IF (Y(I).LE.Y(J)) GO TO 20
        C=X(I)
        X(I)=X(J)
        X(J)=C
C=Y(I)
        YII)=YIJ)
        Y(J)=C
   20 CONTINUE
          ---- FINO BEST SPLIT
       SSQ=0.
        AVE=0.
DO 30 I=1.N
    30 AVE=AVE+X(I)
        XN=N
        AVE=AVE/XN
        A=0.
        OC 31 I=1.N
IF (I.EQ.N) GO TO 31
         (I) X+A=A
        XI=I
        B= ( AVE-A/XI ) ++ 2+ XN+ XI/( XN-XI )
        IF (Y(I).EQ.Y(I+1)) GO TO 31
IF(B.LE.SSQ) GO TO 31
        SSQ=B
        C=Y(I)
    31 CONTINUE
        RETURN
        ENO
```

Index

Abell, G. O., galaxies, 6, 25 Adding technique, algorithm, 222	Blackwelder, R. A., taxonomy, 1, 14 weighing necessary, 67
definition, 12	Block clusters, 288, 324, 342
Amalgamation rules, 216	definition, 11
Analysis of variance, for evaluating clusters, 13	histogram, 40
for K-means clusters, 89	Blood, 4
variance components, 332	Boorman, K. E., blood group serology, 4, 17
Ant, 2	Borradaile, L. A., classification of ants, 2, 16
classification of, 16	Bostonians, stealing cars, 33
eyes of, 9	Bouckaert, A., goiters, 4, 18
Anthropology, 5, 24	Boundaries of clusters, 191
Archaeology, 5, 24	Boyce, A. J., skulls, 5, 24
Automatic interaction detection, 337	Bremner, J. M., monotone fitting, 204, 212
Average linkage, on bacteria, 20	Brunk, H. D., monotone fitting, 204, 212
on firms, 27	Burbank, F., epidemiology of cancer, 4, 18
as a joining algorithm, 222, 227	
on skulls, 5, 24	Camin, J. H., evolutionary trees, 233, 245
on stone tools, 24	Cases, 9
superior, 4	Category variables, distances for, 64
	Cattell, R. B., coefficient of pattern similarity,
Bacteria, 4, 21	67
Bailey, D. C., clustering variables and cases, 251, 269	Cavalli-Sforza, L. L., evolutionary tree models, 245
factor analysis, 326	Chakraverty, P., viruses, 4, 18
profiles, 40	Chernoff, H., faces displaying shellfish, 40
Barlow, R. E., monotone fitting, 204, 212	Cirrhosis, 3, 4
Baron, D. N., classification of liver disease, 17	Clark, P. J., packing distances, 5, 25
Bartholomew, D. J., monotone fitting, 204, 212	Clustering, diameters, 157
Barton, W. E., classification in psychiatry, 23	estimating missing values, 9
Bassett, I. J., classification of pollen, 3, 17	functions of, 6
Bayes techniques, in K-means, 93	interpretation, 12
in mixture model, 115, 123	multivariate histograms, 9
Bellman, R. E., dynamic programming, 132, 140	names for, 1, 156
Bertin, J., beautiful graphs, 164	stability, 14
drawing trees, 162	Cole, J. O., classification in psychiatry, 23
Bilines, need work, 39	Cole, J. W. L., linguistics, 26
Bimodality, measure of, 99	Complete linkage, on goiters, 18
test for, 98	subjective partitions, 27

Contiguity, 156	moats, 202, 212
Convexity, joining algorithm, 212	Euclidean distance, 58, 60
of K-means clusters, 94	distributions of, 66
Cormack, R. M., discussion after, 8	generalized, 63
survey paper, 1	plotted to detect clusters, 65
waste of time, 15	weighted, 60
Correlation, as euclidean distance, 64, 191	European languages, 243
Cox, D. R., optimal classification of a normal	Evans, F. C., packing distances, 5, 25
distribution, 95, 105	Everitt, B. S., classification in psychiatry, 5, 22
Crimes in U.S. cities, 28, 342	Evolutionary tree construction, 237
linearly optimal profiles, 36	
rescaled data, 32	Faces, 39
Crompton, C. W., classification of pollen, 3, 17	Factor analysis, algorithms, 313
Cronbach, L. J., assessing similarity, 67	in block clustering, 290, 324
Mahalanobis distance, 63	on diabetes, 20
Managerous amanco, 03	oblique factors, 320
Delembra T autimal stratification Of 106	
Dalenius, T., optimal stratification, 95, 106	in psychiatry, 5, 22
Darlington, P. J., 3	in psychology, 6
abandonment of reality, 17	Farris, J. S., link distance to ultrametrics, 162
Darwin's evolutionary theory, 2	Wagner trees, 246
Data structures, 9	Feinstein, A. R., classification of disease, 3, 19
Dendrograms, 164	Fisher, L., evaluation of K-means, 93, 106
Dentition of mammals, 170	Fisher, W. D., clustering in economics, 5, 26,
Diabetes mellitus, 3	268
Dickerson, R. E., cytochrome-c, 240	Fisher's algorithm, applied to Olympic data,
Discriminant analysis, for evaluating clusters,	137
13	exact optimization, 130
in prediction, 331	time and space requirements, 137
separating K-means clusters, 94	Fitch, W. M., minimum mutation fit, 233, 246
Disease, 3	mutation distances, 209
Distance, 9	Flieger, W., expectation of life, 182
matrix, 10	Football prediction, 217
separated from clustering, 191	Ford, T. L. E., butterflies, 150
Ditto algorithm, 143	Frank, R. E., market research applications, 5,
Dodd, B. E., blood group serology, 4, 17	26
Doll, R., leukemia, 20	Fraser, P. M., classification of liver disease, 17
Donnelly, W., leukemia, 21	Friedman, H. P., stages of critically ill, 19
	weighting variables, 58
Dreyfus, S. E., dynamic programming, 140	_ _ _ _
Dupont, P. F., classification of yeasts using	within-cluster covariance matrix, 63, 68
DNA, 3, 17	Friedman-Rubin technique, in depression, 23
Dyen, I., linguistics, 5, 26	Calcular 6
Parameter 6	Galaxies, 6
Economics, 5	Gallimaufry cluster, 147
Edwards, A. W. F., evolutionary tree models,	Gap, 191
245	Genghis Khan, descendants, 164
Eigenvectors, 35	Gleser, G. C., assessing similarity, 67
closest fitting plane, 39	Mahalanobis distance, 63
interpreting Mahalanobia distance, 63	Goiter, 4
sorting, 175	Goldwyn, R. M., stages of septic process, 3, 4,
splitting into two clusters, 99	19
Electrocardiograms, 4, 21	Good, I. J., 1
Engelman, L., test for clusters, 97, 98, 106	two-way splitting, 15, 268
Epidemiology, 4	Goodfellow, N., bacteria, 4, 20
Erdos, P., random graphs, 202, 212	Goodman, L. A., measures of association, 13,
Estabrooke, G. J., distances before clusters,	15
191	Goronzy, F., business enterprises, 5, 26
evolutionary trees, 233, 245	Gourlay, A. J., classification in psychiatry, 22

Gower, J. C., minimum spanning trees, 191, 201, 713 spirited defense, 8 Green, P. E., market research, 5, 26 Hall, C. T., yeast, 279 Hammersley, J. M., monotone fits, 312 Harman, H. H., factor analysis, 325 Hartigan, J. A., clusters given distances, 191 direct splitting, 251 minimum mutation fit, 233, 246 optimal trees, 200, 213

test for clusters, 97, 98, 106 ultrametrics, 160, 164 Hautaluoma, J., psychiatric syndromes, 5, 23

Hayhoe, F. G. J., leukemia, 4, 20 Heart disease, 4

Hendrick, L. R., classification of yeast, using DNA, 3, 17

Hess, S. W., legislative districts, 5, 27 Hierarchical clustering, see trees Hodson, F. R., archaeological applications, 25 tools, broaches, 5, 24

Homology problem, 9, 15 Huizinger, J., distances in anthropology, 5, 25

Imms, A. D., insects cerci, 233, 246 Information, association between two partitions, Insect, classified by different systems, 14

wings, 10 James, A. T., linguistics, 26

Jardine, C. J., distances, 191 optimally fitting trees, 200, 213 ultrametrics, 164 Jardine, N., mathematical taxonomy, 1, 15 optimally fitting trees, 200, 213 ultrametrics, 160, 164 Jigsaw puzzle, 75 Johnson, S. C., complete linkage, 200, 213 single-linkage clusters, 191 ultrametrics, 160, 164 Joining, algorithms, 216 definition, 11 in factor analysis, 319 probability models, 229

K-means, algorithm, 84-112 on axes, 25 on broaches, 25 on cities, 26 convexity of clusters, 94 global optimality, 103 in psychiatry, 22 variations on, 102

two-way algorithms, 278

Kaiser, H. F., legislative districts, 5, 27 Kant, I., classification of mental disorders, 4, 23 Katz, M. M., classification in psychiatry, 4, 23 Kendall, D. G., archaeology, 25 Kendall, R. E., classification in psychiatry, 22 Keyfitz, N., expectations of life, 182 King, B. F., stocks, 5, 27 Klett, C. J., psychiatric syndromes, 23 Knospe, W. H., leukemia, 21 Knusman, R., diabetes, 3, 20 Kruskal, J. B., minimum spanning tree, 201, 213 Kruskal, W. H., measures of association, 13, 15

Lance, G. N., joining of algorithms, 200, 213, 222, Landsteiner, 4 Leader algorithm, 75 Legislative districts, 6, 27 Leukemia, 21, 334 Levelt, W. J. M., triads, 184 Lieth, H., phytosociology, 5, 26 Likelihood, generalized K-means, 93 in mixture models, 113-125 Ling, R., reality of clusters, 202, 213 Linguistics, 5 Linnaeus, 1 Livermore, T. L., Civil War casualties, 121 Local optimization, 84 Lockwood, drawing trees, 162, 164 Lorr, M., psychiatric syndromes, 5, 23

MacQueen, J., K-means algorithm, 106 Mahalanobis, P. C., 63, 68 Mahalanobis distance, 16 bad effects in weighting, 63, 67, 68 Mammals' milk data, 6 Manic depressive, unobservable, 4 Manning, R. T., heart disease, 4, 20 Manual of disease classification, 3, 20 Margoliash, mutation distances, 209 Market research, 5, 26 Maurer, W., profile algorithm, 32 McNair, D. M., psychiatric syndromes, 23 McQuitty, L. L., maximum joining algorithm, 213 Miller, G. A., subjective partitions, 6, 27 Minimum mutation fit, 233 joining algorithm for, 237 probability theory for, 236 real variables, 244 Minimum spanning tree, 201 Minkowski distances, 65 Minor planets, grouped sightings table, 2 keeping track of, 1 Missing values, 267 Mixture model, 13

algorithms, 113-129

related to K-means, 124 Modes, as cluster centres, 143	within-cluster covariance matrix, 63, 68
density contour clusters, 211	Scaling, 299
by maximum likelihood, 140	Scammon, R. M., Connecticut votes, 267
related to single linkage, 15	Schizophrenic, 5
Moore, C. W., phytosociology, 5, 26	Schrek, R., leukemia, 4, 21
Moore, P., moons and planets, 122	Sebestyen, G. S., K-means type algorithm, 107
Morgan, AID technique, 331	Severity of renal disease, 18
Multivariate normal, 116	Shakow, D., variability of psychiatric class- ification, 4, 24
Nosology, 1, 3	Sibson, R., mathematical taxonomy, 1, 15
Numerical taxonomy, 1	optimally fitting trees, 200, 213
examples of, 3	ultrametrics, 160, 164
logically unsound, 8	Siegel, J. H., stages of septic process, 19 Similarities, 9
Okajima, M., electrocardiograms, 21	Simple structure, 314
Overlapping clusters, 15, 16	Single linkage, on airline distances, 195
for broaches, 25	algorithm, 191
Palmer, E. L., dentition of mammals, 170	on bacteria, 20
Papageorge, C., yeast, 279	beaten, 4
Partition, definition, 11	broaches, 25
by exact optimization, 130	on cirrhosis, 17, 22
models, 11	continuous function of dissimilarities, 16 density contour tree, 205
neighborhoods, 84	exact optimization, 199, 200
optimal, 95	on goiters, 18
quick algorithms, 74	invariance under transformation, 195
Paykel, E. S., classifications of depressed	on leukemia, 20
patients, 5, 23	partitions, 199
Pearson, K., coefficient of racial likeness, 68	reducing distance calculations, 212
Peterson, S., presidential elections, 252	sausage clusters, 200
Phytosociology, 5	significance tests, 204
Pollen, 3, 17	subjective partitions, 27
Potts, F. A., classification of ants, 2, 16	on viruses, 18
Prediction, 330	Small, E., classification of pollen, 3, 17
Prevot, A. H., bacteria, 4, 21	Sneath, P. H. A., don't weight, 68
Probability of rain, 9	joining, 200, 214
Profiles, 28-57	numerical taxonomy, 1, 3, 15
algorithm, 29	single-linkage algorithm, 191, 213
linearly optimal, 34	weights, 61
rank profiles, 32	Sokal, R. R., don't weight, 68
transposed, 39	drawing trees, 162, 164
Psychiatry, 4	evolutionary trees, 213, 245
	foundation of numerical taxonomy, 1, 3, 16
Quaglino, D., leukemia, 20	joining techniques, 200, 214 single-linkage clusters, 191
Range, 268, 291	weights, 61
Rao, C. R., Indian caste measurements, 324	Sonnquist, J. A., splitting technique, 251, 269,
Mahalanobis distance, 63, 68	331
Ratio measure for validity of partition, 91	Sorting, algorithm, 78, 173
Regression, 323, 330	definition, 11
Renal disease, 4	Species, 1
Renyl, A., random graphs, 202, 212	Spiral search algorithm, 196
Root of a matrix, 314	Splitting, definition, 11
Ross, G. J. S., single-linkage clusters, 191, 201, 213	direct splitting, 251
Rubin, J., weighting variables, 58	two-way splitting, 260 Stark, L., 4
	uma, u, T

Stearn, W. T., 3, 17 Struhsaker, T. T., vervet monkeys, 149 Subsampling, in K-means, 105 Switching, definition, 11 Tantu, P., archaeology, 25 Temkin, O., history of medical classification. 3, 21 Threshold, in quick algorithm, 78 Tied distances, 292 Toeller, M., diabetes, 3, 20 Tree, complete search, 185 definition, 11, 155 as a directed graph, 158 drawings, 155 leader algorithm, 169 mixture model, 124 models, 11 natural trees, 164 as triads, 177 Triads, algorithm using, 177 probability model, 187 similarity between trees, 13 triads-leader algorithm, 181 Tryon, R. C., chistering variables then cases, 251, 269 factor analysis, 326 profiles, 40 Tumors, 4 Two-way clustering, 10 Tygstrup, N., cirrhosis, 3, 22

electrocardiograms, 4, 21

Ultrametric, 11, 16 definition, 160

Van Ness, J. W., evolution of K-means, 93 Variables, 9 Variance-components algorithm, 332 Vietnam combat deaths, 139 Viruses, 4, 21, 22 Voting, Congress, 242 Connecticut, 267 presidential elections, 251 United Nations, 300

Watson, L., heart disease, 4, 20 Weaver, J. B., legislative districts, 5, 27 Webb, C. D., yeast, 279 Weights, 60 circularity using within-cluster variances, 62 for food data, 84, 91 inverse variances risky, 61 Mahalanobis distance dangerous, 63 in two-way joining, 292 Weiner, J. S., distances in anthropology, 5, 25 Whipple, G. M., electrocardiograms, 21 Whittaker, R. H., phytosociology, 5, 26 Wife, notices husband, 1 Wildy, P., viruses, 4, 21 Wiley, D. E., latent partition analysis, 6, 13, 27 Williams, W. T., joining algorithms, 200, 213 Wilner, B. I., viruses, 4, 22 Wines, evaluation, 144 Winkel, P., cirrhosis, 3, 22 Wishart, D., reducing chaining, 214

Zubin, J., schizophrenia, 5, 24