VC-Dimension and its Applications in Machine Learning

Xu Miao, Lin Liao
xm@u.washington.edu, liaolin@cs.washington.edu

Abstract

VC-dimension is one of the basic concepts of learn-
ing theory. In this paper, we give an overview of
VC theory. We discuss the relations between the VC-
dimension and the learnability, and the relations be-
tween the VC-dimension and the generalization perfor-
mance. Especially we investigate the issue of applying
the theory of VC-dimension in the practice of machine
learning. We study the applications of VC theory in
two cases: decision tree pruning and model selection
of support vector machine.

1 Introduction

Supervised learning, or learning-from-examples, refers
to systems that are trained, instead of programmed,
with a set of examples. The key point of supervised
learning is that the learning should be predictive. That
is, it should be able to give lower error rates on test
data than those machines without learning. The per-
formance of a learning machine on test data is called
generalization performance of the machine. The inves-
tigation of the generalization performance of a learning
machine has a long history that can be tracked back
to 1970’s [12]. It has been found that for a given learn-
ing task, with a given finite set of training data, the
best generalization performance will be achieved if the
right balance is struck between the accuracy attained
on that particular training set and the capacity (or
expressiveness) of the machine. A machine with more
capacity could give low training errors but might over-
fit the data and thus perform badly on test data. A
machine with less capacity is not going to overfit, but
restricted in what it can model. Therefore, the key
question here becomes how we characterize the the
capacity of learning machines.

Vapnik and Chervonenkis [12] presented the con-
cept of VC-dimension. VC-dimension provides a quan-
titative way to measure the capacity of a learning ma-
chine and has been used to analyze many learning ma-
chines such as neural nets, decision trees, support vec-
tor machines and many more. In this paper, we give
an overview of the VC-dimension theory. In partic-
ular, we are interested in its applications in learning
theory and practical learning algorithms.

In the next section, we will give an introduction of
VC-dimension theory, including the PAC model, the
concepts of VC-dimension and effective VC-dimension

and structural risk minimization, a model selection
framework based on VC-dimension. Then in section
3, we discuss the applications of VC-dimension theory
on two popular machine learning algorithms, decision
tree and support vector machine, and demonstrate the
results of our experiments. At the end, we state our
conclusions.

2 VC-Dimension Theory

In the section, we review the main results of VC-
dimension theory. The goal is to give a comprehensive
picture of the theory and we will leave the proofs of
most theorems to the refereed literatures.

2.1 PAC Model

We first give the definition of a learning machine (aka.
concept class or a family of concepts).

Definition A learning machine is defined by a set of
possible mappings x — f((x,«)), where x is a vector
in domain X, y is the output which can only take
value +1 or —1 (i.e. we only two classes throughout
the paper). « is the parameter that could be adjusted
in during training. A particular choice of a generates
a “trained machine”.

The model we will now introduce is known under a
number of different names depending on the discipline
concerned. Within statistics it would be known as the
study of rates of uniform convergence, or frequentist
inference [11], but within computer science it is gener-
ally referred to as the probably approximately correct
or PAC model [7; 5]. The goal of the model is to learn
a concept so that with a high degree of confidence the
prediction error will be small.

The key assumption on which the model is based
is that the data used in training and testing are gen-
erated independently and identically according to a
distribution D. We assume that D is:

e Fixed throughout the learning process.
e Unknown to the learning machine.
e The instances are chosen independently.

The target concept is specified as a computable
function ¢;, thus our instances are of the form <
x, ¢ (x) >. Our goal is to find a hypothesis h which ap-
proximate ¢; with respect to D in the following sense.

Let
error(h) = Probp{ci(z) # h(x)}

We would like to ensure that error(h) is below a cer-
tain threshold €, which is given as a parameter of the
algorithm. This parameter is a measure of the accu-
racy of the learning process.

As a measure of the confidence in the outcome of
the learning process, we add another parameter 1. We
require the following hold:

Prob{error(h) <e} >1—n

Besides the parameters € and 7, the PAC algorithm
also has access to the labeled training data, which are
generated using the distribution D and labeled by ¢;.

We say that an algorithm A learns a family of con-
cepts C' if for any ¢; € C and any distribution D, A
outputs a hypothesis h, such that the probability that
error(h) < e is at least 1 — 7.

One of the key ingredients of the PAC approach is
that the error should not depend on the distribution D.
This means that the bounds must hold whatever the
distribution generating the examples, property some-
times referred to as distribution free. It is not sur-
prising that some distributions make learning harder
than others, and so a theory that holds for all distri-
butions must inevitably be pessimistic in many cases.
In the following subsection, we introduce the concept
of VC-dimension in the sense of distribution free. In
the discussion of support vector machine (see Section
3.2, we break this worst case deadlock and investigate
the VC-dimensions related to the distributions, called
effective VC-dimension.

2.2 VC-Dimension

[6; 8] For a finite set of concepts C, the probability
that all [of the independent training examples are
consistent with a hypothesis h for which error(h) > e,
is bounded by

Prob{h is consistent with [examples and error(h) > €}

< (1-¢f

< e
where the second inequality is a simple mathematical
bound. Since the number of possible hypotheses is |C],
we know the probability that one of them is consistent

with training data and has error greater than € is at
most

|C|676l
Since we want this probability less than 7, we have
1
€= —lng
L

This derivation is simple, but it cannot be used
to handle the infinite concept classes, perhaps even

not enumerable. The major contribution of the VC-
dimension theory is to extend such an analysis to infi-
nite sets of concepts. In this section we will introduce
the definition of VC-dimension and the measurement
of VC-dimension. The concept of VC-dimension will
provide us a substitute to to In|C|, for infinite concept
classes.

Definition of VC-Dimension
We start with the definition of shattering.

Definition Assume C is a concept class defined over
instance space X. Let S = {x1,---,xm} C X. A
concept class shatters S if every possible function on
S can be represented by some ¢ € C

. Here a function is a mapping from input x to output
y. Thus the number of different samples generated
by applying every possible function on S is 2™, where
m = |S].

Now we are ready to define the notion of VC-
dimension.

Definition VC-dimension of concept class C' is the
maximum size of a set shattered by C. VC-dimension
of C is oo if such a maximum size does not exist.

Measuring VC-Dimension
Usually we measure the VC-dimension based on its
definition. That is, to show the VC-dimension of a
concept class is n, we have to demonstrate it can shat-
ter a set of size n and it cannot shatter any set of size
n+ 1.

We give a number of examples on how to do that.

Example Suppose that the space in which the data
live is R? and the concept class C consists of oriented
straight lines, so that for a given line, all points on
one side are assigned the class 1, and all points on the
other side , the class -1. As shown in Figure 1, it is
possible to find three points that can be shattered by
C. We can also easily verify that it is not possible to
find four. Thus the VC-dimension of C is three [2].

L

Figure 1: Three points in R?, shattering by oriented
lines

o

O

O

We can extend this example to high dimensional
space and get the following theorem [2]:

Theorem 2.1 The VC-dimension of the set of ori-
ented hyperplane in R™ isn + 1.

One key of shattering is the set of points we choose.
In many situations, it is not straightforward as the first
example. Following is a more interesting example [6].

Example Parity function. Let X = {0,1}". The
concept class C is defined as xs(z) = ;. g i where
S C{1,---,n} is the parameter.

We first show that the VC=dimension > n. We
choose the n “points” as the unit vector e; =
0---010---0 where 1 appears in the i-th place. For

€S

any bit assignment by, - - - , b, for the vectors ey, -- -, e,.
We choose the set

S={i:b =1}
Thus we get

Xs(ﬂi):{(l) ;;g

Thus, we conclude VC-dimension(C) > n.

Then we show that VC-dimension(C) < n. Since
there are 2" parity functions. We have VC-dimension
<log2"™ =n.

Example Convex polygons [6] in R? and points in-
side the convex polygon are positive and outside are
negative.
Suppose we have no bound on the number of edges
of the convex polygons C, and we want to show that
VC-dimension = o0o; i.e. for any positive number d,
we can find d points that can be shattering by C'.
Given d, we choose S be a set of d points on the
unit circle perimeter. We show that for every labeling
of the points in S, there exists ¢; € C' that is consistent
with the labeling. In fact, We can just choose ¢; by
connecting all the “+1” points. The polygon includes
all the positive examples and none of the negative ones.
Therefore, VC-dimension(C)= oo.

VC-Dimension and the Number of Parameters
The VC-dimension thus give concreteness of the notion
of the capacity of a given concept class. Intuitively, one
might expect that learning machines with many pa-
rameters would have high VC-dimensions, while learn-
ing machines with few parameters would have low VC-
dimensions. Although this is true in most cases, some
counterexamples exist.

One striking counterexample demonstrates a learn-
ing machine with just one parameter, but with infinite
VC-dimension. Define the step function 6(z),xz € R :
{6(z) = 1Vz > 0;6(z) = —1 VY < 0}. Consider the
one-parameter family of functions, defined by

flz,a) = 0(sin(ax)),z,a € R

You choose some number I, and present me with the
task of finding [/ points that can be shattered. I choose
them to be:

r;=10"%i=1,---,1

You specify any labels you like:

Y1, Y1, Yi € {_]—5 1}
Then f(«) gives this labeling if T choose a to be

! i
« :7r(1+27(1 —g,-)lO)

Thus the VC-dimension of this machine is infinite.

2.3 VC-Dimension and Learnability

[1; 5] VC-dimension is one of the foundations of learn-
ing theory. It helps to answer some basic questions
about learning, such as

1. Is a concept class learnable?
2. Can a concept class be learned efficiently?
3. How many training samples do we need?

Here we give some research results about these ques-
tions without proof. They are closely related to the
PAC model in Section 2.1.

Definition The static learning algorithm has the fol-
lowing characteristics:

e The number of samples it ask for is (e, n)

e It choses its hypothesis based on the sample it
gets.

The main limitation of static learning algorithm is
that the algorithm cannot update the number of exam-
ples necessary depending on the examples it receives.
That is, it is not adaptive. This is closely related to the
concept of distribution free that we mentioned for the
PAC model. For static learning, we have the following
theorem.

Theorem 2.2 If a concept class C has VC-dimension
00, then C' is not learnable by any static learning al-
gorithm.

For static learning, as to the number of samples we
need, we have the following theorem.

Theorem 2.3 If C' is a class with VC-dimension h,
then

ie,m) = (%)

Another important question about learning is about
the efficiency of a learning algorithm. In [1], the poly-
nomial learnability is classified into two groups: those
with respect to the domain dimensions and those with
respect to the complexity of target concept. For ex-
ample, for the polynomial learnability with respect to
domain dimension, we have the following theorem.

Theorem 2.4 The concept class C(n) is not polyno-
mially learnable if the VC-dimension of C(n) grows
more than polynomially in n, where n is the dimen-
sion of the domain space.

2.4 VC-Dimension and Generalization
Performance

The generalization performance concerns the error rate
of a learning machine on test data. Given a learning
machine defined in Section 2.1, The expectation of the
test error R(a) for a trained machine is defined as

R(@) = [3o~ 1x,0)ldD(x.)

where D(x,y) is the cumulative probability distri-
bution that generating training and test samplings.
Here the fact % is because for each misclassification,
y— flx,0) =9.

The quality of R(«) is called the actual risk.
The empirical 1isk Remp(a) is defined to be just
the measured mean error rate on the training set

{(x1,91), - x1, 1)}
1 l
Remp(a) = ﬂ ; |yz - f(Xi,Oé)|

Now choose some 7 such that 0 < n < 1. Then with
probability 1 — n, the following bound holds [2]:

R(0) < Romp(a)+ \/h(log(QZ/h) +ll)—log(n/4) Q

where h is the VC-dimension of the leaning machine
and [is the number of training samples. This inequal-
ity defines a upper bound of actual risk and we call
this upper bound “VC bound”. The second term on
the right hand side is called “VC confidence”.

We note three key points about this bound. First,
remarkably, it is independent of D(x,y). Second, it
is usually not possible to compute the left hand side.
Third, if we know h, usually we can easily compute
the right hand side.

This bound gives a principled method for choosing
a learning machine for a given task, and is the essen-
tial idea of the structural risk minimization (see Sec-
tion 2.5). Given a fixed family of learning machine to
choose from, to the extent that the bound is tight for
at least one of the machines, one will not be able to do
better than this. To the extent that the bound is not
tight for any, the hope is that the right hand side still
gives useful information as to which learning machine
minimizes the actual risk. At present, for this case, we
must rely on experiment to be the judge.

2.5 Structural Risk Minimization

We can now summarize the principle of structural risk
minimization (SRM) [2]. This approach suggests when
we do model selection, it’s not enough to consider only
empirical risk, since some machines may overfit the
training data. Instead, we should consider the bound
of the actual risk, e.g. VC bound in Eq. (1) or similar
bounds.

Note that the VC confidence term in Eq. (1) de-
pends on the chosen class of functions, whereas the em-
pirical risk and actual risk depends on one particular
function chosen by the training procedure. We would
like to find that subset of the chosen set of functions,
such that the risk bound for that subset is minimized.
To do that we can divide the family of functions into
a set of subsets where each subset has the same value
of VC dimension h. We can do that since h only takes
integer values. For each subset, we must be able to
compute h, or to get a bound on A itself. Since all the
functions with a subset have the same VC-confidence,
it is enough to compare just the empirical risk of each
machine. For each subset, we choose the one with min-
imum empirical risk. Then we get a series of machines,
one for each subset. One then takes that trained ma-
chine in the series whose sum of empirical risk and VC
confidence is minimal.

3 Case Study

In this section, we investigate two popular algorithms
in machine learning community: decision tree and sup-
port vector machine. Through these examples, we
want to demonstrate how VC-dimension can be used
in practice.

3.1 Decision Tree

A decision tree takes as input a set of attributes and
return a “decision”—the predicted output value for the
input. Decision trees are expressive enough to repre-
sent any boolean function. Figure 2(a) gives an exam-
ple. We will concentrate on boolean function induction
, although decision trees have been successfully used
in many other domains including continuous function
regression. The problem of decision tree induction on
boolean functions is to induce an appropriate decision
tree from a set of examples, where each example con-
sists of a vector of input boolean attributes and a single
boolean output value. In this section, we first explain
how to build a decision tree based on the entropies of
examples and then demonstrate using structural risk
minimization to avoid overfitting. At the end, we state
our conclusions.

Inducing Decision Tree from Examples
Our task is to build a decision tree that satisfies two
conditions:

e First, we want the induced decision tree to be
consistent with all the training examples (if there
are no conflicts in the training data).

e Second, applying the idea of Occam’s razor, we
want to find the smallest tree.

In general, finding a smallest decision tree is an in-
tractable problem. Fortunately, with some simple
heuristics, we can do a good job in practice. The most
widely-used heuristic is to test the most important at-
tribute first. By “most important”, we mean the one

(a)

that makes the most difference to the classification of
an example. This way, we hope to get to the correct
classification with a small number of tests, meaning
that all paths in the tree will be small and the tree as
a whole will be small.

One implementation of such a heuristic is called
ID3 algorithm, which is based on the concept of en-
tropy from the information theory. Suppose we have
a sample set S and each sample belongs to one of the
two classes, @ and ©. Let pg and pg the proportions
of positive and negative examples in S, respectively.
Then the entropy of S is

pa(—logpe) + pe(—logps)

Then when we pick a attribute A and divide S based
on A, the information gain is computed as

: ||

Gain(S, A) = Entropy(S) — B
(A4)

At each step of ID3 algorithm, we greedily pick the
attribute that has the biggest information gain. Both
theoretical analysis and empirical results have shown
that the decision trees generated by ID3 are approxi-
mately “shortest trees”.

veValues

Decision Tree Pruning

If there is no noise in the training data, the heuris-
tic discussed above works well. But in practice most
training data are not noise-free and ID3 algorithm may
overfit the training data. Thus we want to prune un-
necessary nodes of the resulting trees. This problem
is actually a model selection problem in that we have
to make trade-off between the accuracy on the train-
ing data and the sizes of the trees. Here we develop
an algorithm to prune decision trees based on the idea
of structural risk minimization (see section 2.5). Note
that there are some other ways to do pruning, e.g.
cross-validation and C4.5, and a few of them may be
much more efficient than structural risk minimization.
Our goal here is just to show how to do that using the
idea of VC-dimension.

To use structural risk minimization, we need to fig-
ure out a way to compute the VC-dimension h of a

Z —Entropy(Sy)

(c)
Figure 2: Decision trees in our experiments (a) Decision tree used for generating samples; (b) Decision tree before pruning;
(¢) Decision tree after pruning.

given decision tree. It has been shown that h of a
decision tree is roughly the number of nodes (not in-
cluding the leaves). *

For example, the VC-dimension of the tree in Fig-
ure 2 is 7. Thus we also call the VC-dimension h the
size of the tree.

Although computing VC-dimension and VC confi-
dence is simple in this case, the main problem is finding
for every h the best decision tree T}, of size h. That
is, for any given size h, we want to find the decision
tree with size h and minimum empirical risk. An naive
way to do that is for each size h, enumerating all the
possible trees and finding the best one. This method
obviously has exponential complexity.

In our work, we developed an algorithm based on
the idea of dynamic programming that can do it much
more efficiently.

The algorithm of is shown in Table 3.1. Now let
us analyze its complexity. Let n and d the size and
depth of the tree before pruning, respectively. Let [
the number of training samples.

Experiments and Results

We implement the ID3 algorithm for inducing a deci-
sion tree and the dynamic programming algorithm for
pruning the tree. The decision tree we use for generat-
ing the samples is shown in Figure 2(a). We generate
1000 training samples, 5% of them are noisy data (i.e.
their classes are incorrect). The decision tree gener-
ated by ID3 is displayed in Figure 2(b).

Then we use dynamic programming to prune trees.
For each possible size of tree, we find the tree with
minimum training errors. Thus we get a series of trees
with different sizes. We compute the VC bound for
each size based on Eq. (1). The resulting curve is
shown in Figure 3. For comparison, we generate an-
other 1000 test samples in the same way. We measure
the actual risk (test error) using the series of trees
with different sizes. The result is also shown in Fig-
ure 3. Note that the two curves have minima at the

!We have seen a proof that shows the VC-dimension of
a decision tree is at least the number of nodes [6]. Some
literature mentioned that in practice, we usually just use
the node number as its VC-dimension [8].

function R = prune-tree(T,S)
T: input, decision tree to prune
S: input, training samples
R: output, 3-column table, for each row i
R(i,1) is the number of nodes to prune
R(i,2) is the minimum num of misclassified
samples among all the trees with the
given size
R(i,3) the tree achieving the value R(i,2)

if size(T) =1
set R with 2 rows, corresponding
to prune the only node or not;
return;
else
root=get-root(T);
T, =left-subtree(7');
Si1=filter-sample(S,root=true);
R;=prune-tree(71,S51);
T>=right-subtree(7');
Sy=filter-sample(S,root=false);
Ry=prune-tree(7>,52);
for nodesToPrune=0 : size(T)
B(nodesToPrune,1)=nodesToPrune;
B(nodesT oPrune, 2)=00;
for INodesToPrune=0 : nodesT oPrune
rNodesT oPrune=nodesT oPrune
- INodesToPrune
if By (INodesToPrune,2)+
Bs(rNodesToPrune,2) <
B(nodesToPrune,2)
B(nodesToPrune,2)=
B;(INodesToPrune,2)+
Bs(rNodesToPrune,2);
B(nodesToPrune, 3)=merge — subtree();
end if;
end for;
end for;
end if;
end function

Table 1: Algorithm of dynamic programming
for pruning

same place of size 7. Thus, from the idea of structural
risk minimization, we will select the size with lowest
VC bound and this size is exactly where actual risk
becomes minimum.

-+#- theoretical test error bound
—4— real test error

o
w
T

Error rate
I N ===
(3] E= (8] [a3] -] [us]
T T T T T
;
+
;
+
.*.

o
[N
T

o

[}

1 1
10 15 20
YWC-dimension (i.e. node number)

o
-

Figure 3: The predictivity of VC bound

One thing to point out is that in the Figure 3. The
curve of actual risk stays flat after reaching the mini-
mum. That’s because the decision tree we used in our
experiment is very simple. Therefore, although the
noisy data will make the tree induced over-complex, it
will not make wrong decision since at the leaves the
classification is determined by majorities.

The optimal tree after pruning is displayed in Fig-
ure 3(c), whose size is 7. It can be easily verified that
this tree is equivalent with the generating the samples.

3.2 Support Vector Machine

Support Vector Machines (SVM) are learning systems
that use a hypothesis space of linear functions in a
high dimensional feature space, trained with a learn-
ing algorithm from optimization theory. This learn-
ing strategy introduced by Vapnik and co-workers is a
principled and very powerful method that in the few
years since its introduction has already outperformed
most other systems in a wide variety of applications.
In this section, we give a brief introduction of SVM
and we will focus on the application of VC-dimension
in this approach.

Structure of SVM

[3; 2] If given a classification task, SVM will first map
the data from the input space into a feature space by
a mapping function vector. ® : R¢ — F. By this
mapping, the data in the feature space are separable
by a hyperplane, but in the input space usually are not.

25

The dimension of the feature space is different from
the dimension of input space, usually is much higher.
Then, SVM will use a linear learning machine to do the
classification in the feature space. A linear learning
machine is used to find a hyperplane y = w e &(x) + b,
with the constraints

wed(x;)+b>+1, fory; = +1
wed(x;)+b< -1, fory; = -1

Then the classification function we learn is
f(x,a) = sign(w e ®(x) + b)

where a = [w, b].

The objective of training is to find the learnable
parameters according to the given [observations. Ac-
cording to the geometry, the vector w is the normal of
the hyperplane, the b is the bias. We define a margin
as the distance between hyperplane H1 and H2. H1
and H?2 are the tight boundaries for the data and the
normal of both of them is w.

Figure 4: Linear Learning Machine

The solution of SVM always maximizes the margin.
So this optimization problem could be formulated by
Lagrangian representation with introducing a set of
positive Lagrange multipliers «;. The constraints are
derived from the Karush-Kuhn-Tucker conditions. Fi-
nally, it turns out to be a quadratic programming (QP)
problem by using its dual formulation

Lo =Y ai— 3 Y ceuip(Ba) o 2(c;) (2

where). a;y; = 0. From (2), we can find the term
(®(x;) » &(x;)) actually is a function of x; and xj, we
can calculate the inner product without knowing the
mapping function ®. This property can save us a lot of
computational time, since, for most of the times, the
dimension of the feature space is very high, even infi-
nite, so that to calculate ® is at least very expensive.
We define this function as a kernel function, K (xj,x;).
Not all kinds of functions can be a kernel function. The
Mercer’s theorem is used to verify whether a function
is a kernel. The frequently used kernels have, for ex-
ample:

With the introduced kernel method, the solution of
the SVM is:

lwl]* = aTHaH(w-) = yiy; K (x4, %)

In the testing phase, we are using another set of
observations to test the generalization performance of
our SVM.

fx) = Z a;yi K (xi,X)

. An error will be detected if f(x) # y

Furthermore, even in the feature space, the data are
still non-separable. In this case, QP has no feasible
solution.

Figure 5: Soft margin and slack variable

The concept of Soft Margin is introduced to deal
with this problem. A soft margin is a margin that can
tolerant some training errors to some extent Figure 5.
This is done by introducing positive slack variables &;, i
=1,...,.. 37, & reflects the upper bound on the number
of training errors. Hence the objective function is now
to minimize

w2

— T C(zi: &)?

. where C' is a parameter giving the penalty to errors.
The larger is the C the bigger the penalty and the less
the errors that soft margin can tolerant. This change
reflected in the QP form is limit the a; with upper
bound of C.

Generalization performance
To get the best generalization performance is one
basic goal of a learning machine. There are sev-
eral theories applicable: Bayesian evidence frame-
work, VC dimension theory and cross validation [4;
9]. In this project, we studied the VC dimension the-
ory. The general idea is still following the structural
risk minimization, i.e. we will use Structural Risk Min-
imization to tune our SVM to get the best generaliza-
tion performance.

For SVM, the original VC-dimension doesn’t work
well. Vapnik proved that the VC-dimension of a SVM
is

h=dim(F)+1

Experimentl

: Dim. of I | VC-dim. he objective of this experiment is to implement the
linear Xev d d+1 iflea Burges suggested choosing a kernel with appro-

| Kernel name | Definition |

. d+p—1 d+p-—1 friate parameter to minimize D? /2. Firstly, in this
p)
polynomial (xev+1) (P) (p +1 experiment, we will measure the new VC-bound of a
i lx=vI2 i i series of SVM with polynomial kernel of parameter p,
Gaussian RBF e 202 inf inf

in this experiment, p = 1...30. Secondly, we will find

Table 3.2 shows the VC dimension of some kernel.

Mostly, the VC-dimension of the SVM is very high,
even infinite. So the value of the VC-bound of the
structural risk is also very high and even infinite. How-
ever even with an infinite error bound, the actual per-
formance of the SVM is still very good. That is be-
cause VC-dimension is the measurement of the capac-
ity of the SVM on any distribution of the training
sample. It is distribution free. But for a given train-
ing task, the distribution is given. So the SVM will not
reach its capacity fully when training. And according
to PAC model, the distribution of the testing sample is
the same as the training sample too, which means the
testing will not reach the capacity fully either. Vap-
nik introduced an effective VC dimension, which is a
measurement, of the capacity of the SVM and, at the
same time, the sample complexity [3].

Definition Let F' be a class of real-valued func-
tions defined on a domain X. We say a set of points
{z1,29,...,2;} € X! is y-shattered by F, if there exist
real numbers r;, such that for every binary classifica-
tion y € {—1,1}!, there exists f, € F, such that

N_) Zzrit+y bi=1
fb("””l)—{ <ri—v bi=-1

The fat-shattering dimension fatp(7y) is the size of the
largest v-shattered subset of X. This fat-shattering
dimension is the effective VC-dimension. It can be
bounded as [10]:

h* < mm((%)2 +1,1)
where D is the diameter of the Minimal Enclosing
Sphere, which covers all the training data points in
the feature space as seen in Figure 4. 7 is the margin.
And a new VC-bound is generated by Vapnik. We
would like to quote without proof.

Theorem 3.1 For optimal

through the origin, we have [2]

E[D?/v%]
l

where P(error) is the probability of error on the test
set, the expectation on the left is over all training sets
of size l — 1, and the expectation on the right is over
all training sets of size l.

hyperplanes passing

E[P(error)] <

From this theorem, Burges argued that minimizing
D?/~? could be expected to give better generalization
performance.

the appropriate p by minimal VC-bound so as to ob-
tain the best generalization performance. Finally, the
test data are used to measure the test errors. It is used
to argue that the method suggested by Burges is valid
and reasonable for tuning SVM. The training sample
is faked by hand to keep a particular shape. To keep
the consistency of the distribution of the training sam-
ple and test sample, we add the random noise to the
training data to get a larger training data set and the
testing data set. The size of the training set is 14,100.
The size of the testing set is 141.

We implement, the method to calculate the D. We
wish to minimize R? subject to

|®(x; — B||*> < R*Vi

It turned out to be another quadratic programming
problem: Maximize

Lp =Y NE(xi,x5) — > NNE(xi,x5) Y A =14 >0
i i,j i

The solution is B = >, \;®(x;) so
D =4R> = dmax(K (xi,x:1)—2 Y A K (x1,%;)+AT K)\)

’ (3)

1. From Figure 6(b), we can see the minima of the
VC-bound at the same place as the minima of
the actual risk, which is p = 6. In this case, the
minimization of the VC-bound works well to find
the appropriate kernel to build the SVM.

2. As a comparison, we measure another risk bound,
support vector bound, which is defined by

number of support vector
l

Actually, for this case, the risk grows bigger be-
yond the p = 6, while this bound keeps decreas-
ing. So minimizing this bound will not give good
result.

3. When measuring the VC-bound, we divide the
sample set into 10 pieces; the VC-bound is the
expectation of the VC-bound is done over these
10 pieces. It will cost too much time if to do
all sample size. And this also gives a reason-
able result. But maybe it is not very correct and
accurate. Anyway the best way is to do the ex-
pectation over all sample size.

R<

Structural Rigk Minimization

VC-Bound

Actual Risk,
25

o 5 10 15 20
p: The Exponential Index of Polynomial Kernel

(a)

Select SVM with minimum YC-Bound

VC-Bound

Actual Risk * 5

o 5 10 15 20 25 30
p: The exponential index of polynomial kernel

(b)

Figure 6: (a) VC-bound, SV-bound and actual risk (b) VC-bound and scaled actual risk.

4. In some sense, if the kernel is fixed and the train-
ing task is given, then to minimize the VC-bound
is equivalent to maximize the margin. This gives
an explanation of why optimal solution is of max-
imal margin.

5. For polynomial kernel with small degree like 1 or
2, this training sample actually is non-separable.
So there will be a training error term added to the
VC-bound according to the structural risk defi-
nition. When the degree is large enough, about
5 in this experiment, the training error vanishes.

Experiment2
For non-separable case, the SVM has another param-
eter C' could be tuned to minimize the VC-bound.
This experiment is designed to do the SVM tuning
by choosing C' according to structural risk minimiza-
tion. Firstly, a RBF kernel SVM is taken to classify
a non-separable training data with a series of differ-
ent C value. The kernel parameter is fixed, ¢ = 5.
Secondly, the VC-bound is measured, and the C' with
the minimum VC-bound will be found. Finally, the
testing error is measured, and the minimum place will
be found and compared with the C' obtained in the
previous step.

In this non-separable case, the VC-bound will count
on the training errors according to the structural risk
definition. Vapnik gives the bound:

where (", &)? reflects the training errors.

1. The C we tested is 10,1000,10000,10000,infinite.
The result shows C' = 1000 is the best solution.

2. The actual risk shows C' = 1000 is best too.

4 Conclusion

VC-dimension provides a quantitative way for mea-
suring the capacity of a learning machine. Since the

Tuning soft margin

Actual Risk

0 1000 10000 100000 nf
c

Figure 7: Soft margin and risk bound

capacity is a very important concept in machine learn-
ing, VC-dimension thus becomes a very useful tool.
Structural risk minimization, which is based on the
VC-bound, suggests a feasible framework for model
selection. OQur experiments on decision tree and sup-
port vector machine demonstrate the applications of
VC-dimension in machine learning.

5 Acknowledgment

We would like to thank Prof. Richard Ladner for his
instructions and encouragements during the project.
We are also grateful to Prof. Raj Rao for lending us a
book on support vector machine.

References

[1] A.Ehrenfeucht A. Blumer and D.Haussler. Learn-
ablility and the vapnik-chervonenkis dimension.
Journal of the ACM, 36:929-965, 1989.

[2] C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowl-
edge Discovery, 1998.

[3] Nello Cristianini and John Shawe-Taylor. An in-
troduction to Support Vector Machines and other
kernel-based learning methods. Cambridge Uni-
versity Press, 2000.

A .Boni D.Anguita and S.Ridella. Evaluating the
generalization ability of support vector machines
through the bootstrap. Neural Processing Letters,
2000.

M. J. Kearns. The Computational Complezity of
Machine Learning. Cambridge University Press,
1990.

M. J. Kearns. An introduction to Computational
Learning Theory. 1994.

L.G.Valiant. A theory of the learnable. Commu-
nications of the ACM, 27:1134-1142, 1984.

Andrew Moore. Tutorial on ve-
dimension for characterizing classifiers.
http://www-2.cs.cmu.edu/ awm/tutorials/.

M. Cheriet N. E. Ayat and C.Y. Suen. Optimiza-
tion of the svm kernels using an empirical error
minimization scheme. Lecture Notes in Computer
Science, 2388, 2002.

V. N. Vapnik. The Nature of Statistical Learning
Machine. Springer-Verlag Press, 1995.

V. N. Vapnik. An overview of satistical learning
theory. IEEE Transaction on Neural Networks,
10:988-999, 1999.

V.Vapnik and A. Chervonenkis. On the uniform
convergence of relative frequencies of events to
their probabilities. Theory of Probability and its
Applications, 16:264-280, 1971.

