
– 1 –

Will Monroe
CS 109

Lecture Notes #21
August 11, 2017Naïve Bayes

Based on a chapter by Chris Piech

At this point in the class we are ready to dive into the field of machine learning. Machine learning
is the subfield of computer science that gives computers the ability to perform tasks without being
explicitly programmed. There are several different tasks that fall under the domain of machine
learning and several different algorithms for “learning”. In this lecture we are going to focus on
classification, starting with a classic classification algorithm, Naïve Bayes.

Classification
In classification tasks, your job is to build a function Ŷ = g(X) that takes in a vector of features
X (also called “inputs”) and predicts a label Y (also called the “class” or “output”). Features are
things you know, and the label is what your algorithm is trying to figure out; for example, the label
might be a binary variable indicating whether an animal is a cat or a dog, and the features might be
the length of the animal’s whiskers, the animal’s weight in pounds, and a binary variable indicating
whether the animal’s ears stick up or are droopy. Your algorithm needs to tell dogs and cats apart
(Y) using only this information about weight, whiskers, and ears (X).

A natural way to define this function is to predict the label with the highest conditional probability:
choose g(X) = arg maxy P(Y = y |X). To help with computing the probabilities P(Y = y |X), you
are able to use training data consisting of examples of feature–label pairs (X,Y). You are given N
of these pairs: (x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N)), where x(i) is a vector of m discrete features
for the ith training example and y(i) is the discrete label for the ith training example.

In classification, Y takes on discrete values. (The alternative is regression, in which your algorithm
is trying to predict a continuous value.) For this class we are going to assume that all values in our
training dataset are binary. While this is not a necessary assumption (both Naïve Bayes and next
lecture’s logistic regression algorithm can work for non-binary data), it makes it much easier to
learn the core concepts. Specifically, we assume that all labels are binary (∀i. y(i) ∈ {0, 1}) and all
features are binary (∀i, j . x (i)

j ∈ {0, 1}).

Naïve Bayes algorithm
We’ll first present the Naïve Bayes algorithm, and then we will show the theory behind it.

Training
The objective in training is to estimate the probabilities P(Y) and P(X j |Y) for all 2 ≥ j ≤ m
features.

Using an MLE estimate:

p̂(X j = x j |Y = y) =
(# training examples where X j = x j and Y = y)

(training examples where Y = y)

Using a Laplace MAP estimate:

p̂(X j = x j |Y = y) =
(# training examples where X j = x j and Y = y) + 1

(training examples where Y = y) + 2

– 2 –

Prediction
For an example with x = [x1, x2, . . . , xm], estimate the value of y as:

ŷ = g(X) = arg max
y

P̂(Y)P̂(X|Y) this is equal to arg max
y

P̂(Y = y |X)

= arg max
y

p̂(Y = y)
m∏

j=1
p̂(X j = x j |Y = y) Naïve Bayes assumption

= arg max
y

*.
,
log p̂(Y = y) +

m∑
j=1

log p̂(X j = x j |Y = y)+/
-

log version for numerical stability

Note that for small enough datasets you may not need to use the log version of the argmax.

Theory
We can solve the classification task using a brute force solution. To do so we will learn the full joint
distribution P̂(Y,X). Again, in the world of classification, when we make a prediction, we want to
chose the highest-probability value of Y given X: g(X) = argmax

y
P̂(Y = y |X).

ŷ = g(x) = arg max
y

P̂(Y |X) = arg max
y

P̂(X,Y)
P̂(X)

By definition of conditional probability

= arg max
y

P̂(X,Y) Since P̂(X) is constant with respect to Y

Using our training data, we could interpret the joint distribution ofX andY as one giant multinomial
with a different parameter for every combination of X = x and Y = y. If, for example, the input
vectors are only length one—in other words, X = some scalar X—and the number of values that X
and Y can take on are small (binary, perhaps), then this is a totally reasonable approach. We could
estimate the multinomial using MLE or MAP estimators and then calculate the arg max with a few
lookups to our table.

The bad times hit when the number of features becomes large. Recall that our multinomial needs to
estimate a parameter for every unique combination of assignments to the vectorX and the valueY . If
there are |X| = n binary features, then this strategy is going to takeO(2n) space and there will likely
be many parameters that are estimated without any training data that matches the corresponding
assignment.

Naïve Bayes Assumption
The Naïve Bayes Assumption is that each feature of X is independent of the others given Y . That
assumption is wrong, but useful. It allows us to make predictions using space and data which is
linear with respect to the size of the features: O(n) if |X| = n. That allows us to train and make

– 3 –

predictions for huge feature spaces, such as a set of features consisting of an indicator for every
word on the internet. Using this assumption simplifies the prediction algorithm.

ŷ = g(x) = arg max
y

P̂(X,Y) as we last left off

= arg max
y

P̂(Y)P̂(X|Y) by chain rule

= arg max
y

P̂(Y)
m∏

j=1
p̂(X j |Y) using the Naïve Bayes assumption

= arg max
y

*.
,
log p̂(Y = y) +

m∑
j=1

log p̂(X j = x j |Y = y)+/
-

log version for numerical stability

This algorithm is both fast and stable both when training and making predictions. If we think of
each Xi,Y pair as a multinomial, we can find MLE and MAP estimations for the values. See the
“algorithm” section for the optimal values of each p in the multinomial.

Naïve Bayes is a simple form of a field of machine learning called Probabilistic Graphical Models.
In that field you make a graph of how your variables are related to one another and you come up
with conditional independence assumptions that make it computationally tractable to estimate the
joint distribution. Take CS 228 if you are interested in learning more!

Example
Say we have thirty examples of people’s preferences (like or not) for the movies Star Wars, Harry
Potter and Lord of the Rings. Each training example has x1, x2 and y where x1 is whether or not
the user liked Star Wars, x2 is whether or not the user liked Harry Potter and y is whether or not
the user liked Lord of the Rings.

For the 30 training examples the MLE estimates are as follows:

MLE
counts P̂(X1 | Y)

Y
X1 0 1 0 1

0 3 10 3
13

10
13

1 4 13 4
17

13
17

MLE
counts P̂(X2 | Y)

Y
X2 0 1 0 1

0 5 8 5
13

8
13

1 7 10 7
17

10
17

MLE
Y counts P̂(Y)

0 13 13
30

1 17 17
30

For a new user who likes Star Wars (x1 = 1) but not Harry Potter (x2 = 0) do you predict that they
will like Lord of the Rings? We can compute this from the Naïve Bayes formula:

ŷ = arg max
y

*.
,
log p̂(Y = y) +

m∑
j=1

log p̂(X j = x j |Y = y)+/
-

– 4 –

This means plugging in each of the two different values for y:

For y = 0: log p̂(Y = 0) +
m∑

j=1
log p̂(X j = x j |Y = 0)

= log p̂(Y = 0) + log p̂(X1 = 1|Y = 0) + log p̂(X2 = 0|Y = 0)
= log 13/30 + log 10/13 + log 5/13 ≈ −2.05

For y = 1: log p̂(Y = 1) +
m∑

j=1
log p̂(X j = x j |Y = 1)

= log p̂(Y = 1) + log p̂(X1 = 1|Y = 1) + log p̂(X2 = 0|Y = 1)
= log 17/30 + log 13/17 + log 7/17 ≈ −1.72

−1.72 is larger (less negative) than −2.05, so our prediction is ŷ = 1: our new user is likely to like
Lord of the Rings.

The above was done with maximum likelihood estimation; the process is the same for Laplace
smoothing, but with different fractions for the conditional probabilities. The decision to smooth
only the conditional probabilities p̂(X j = x j |Y = y) and not the prior p̂(Y = t) is due to the fact that
Laplace smoothing makes a difference primarily when counts are small, while counts for the prior
tend to be large enough that Laplace smoothing doesn’t change the resulting probabilities much.

Laplace
counts P̂(X1 | Y)

Y
X1 0 1 0 1

0 3 10 4
15

11
15

1 4 13 5
19

14
19

Laplace
counts P̂(X2 | Y)

Y
X2 0 1 0 1

0 5 8 6
15

9
15

1 7 10 8
19

11
19

For y = 0: log p̂(Y = 0) +
m∑

j=1
log p̂(X j = x j |Y = 0)

= log p̂(Y = 0) + log p̂(X1 = 1|Y = 0) + log p̂(X2 = 0|Y = 0)
= log 13/30 + log 11/15 + log 6/15 ≈ −2.06

For y = 1: log p̂(Y = 1) +
m∑

j=1
log p̂(X j = x j |Y = 1)

= log p̂(Y = 1) + log p̂(X1 = 1|Y = 1) + log p̂(X2 = 0|Y = 1)
= log 17/30 + log 14/19 + log 8/19 ≈ −1.74

The results are barely different from the ones for maximum likelihood, and they bring us to the
same conclusion: the user will probably like Lord of the Rings.

	Classification
	Naïve Bayes algorithm

