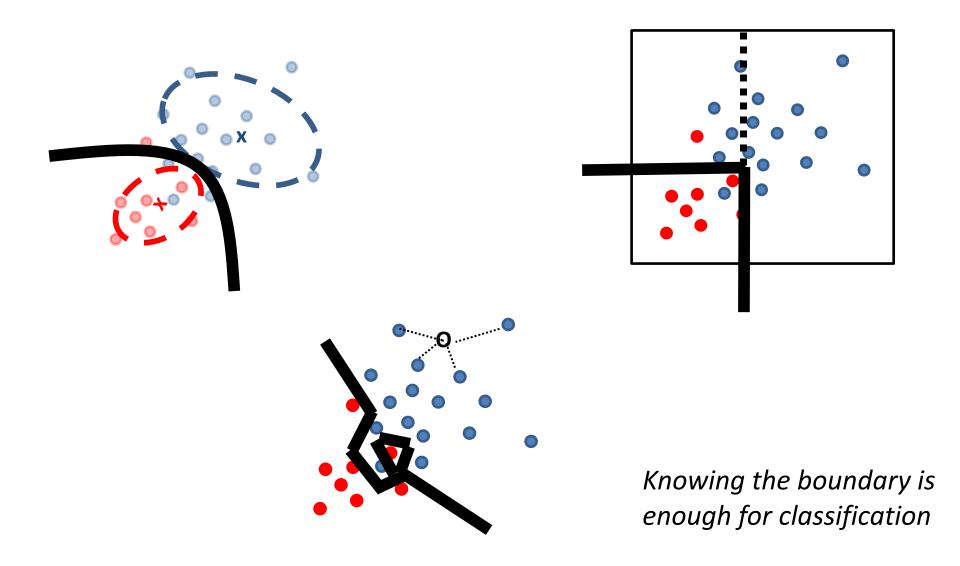
COMS 4771 Perceptron and Kernelization

Nakul Verma

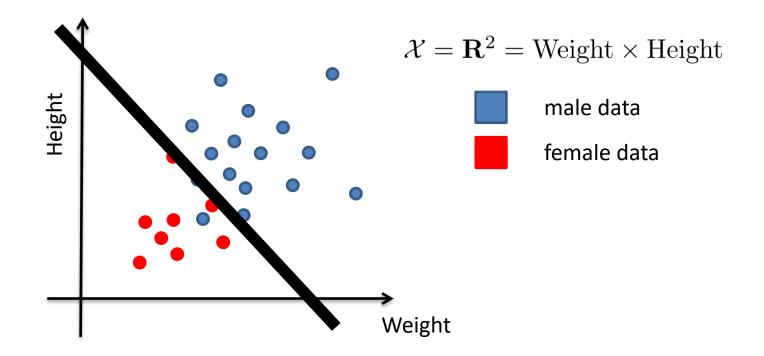
Last time...

- Generative vs. Discriminative Classifiers
- Nearest Neighbor (NN) classification
- Optimality of *k*-NN
- Coping with drawbacks of *k*-NN
- Decision Trees
- The notion of overfitting in machine learning

A Closer Look Classification



Linear Decision Boundary



Assume binary classification y= {-1,+1} (What happens in multi-class case?) *g* = decision boundary

d=1 case: $g(x) = w_1 x + w_0 = 0$

general: $g(\vec{x}) = \vec{w} \cdot \vec{x} + w_0 = 0$

f = linear classifier

$$f(\vec{x}) := \begin{cases} +1 & \text{if } g(\vec{x}) \ge 0\\ -1 & \text{if } g(\vec{x}) < 0 \end{cases}$$

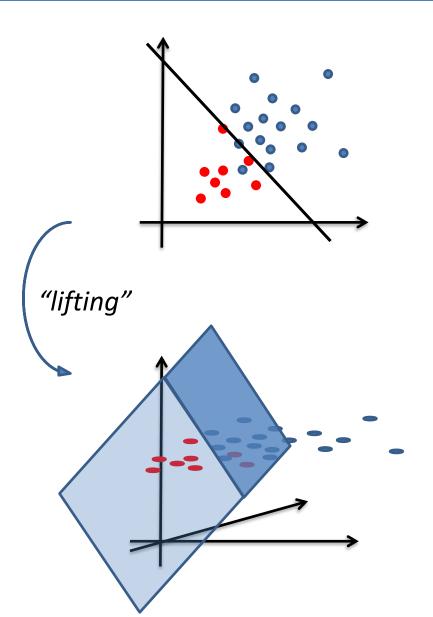
= sign $(\vec{w} \cdot \vec{x} + w_0)$

of parameters to learn in \mathbf{R}^d ?

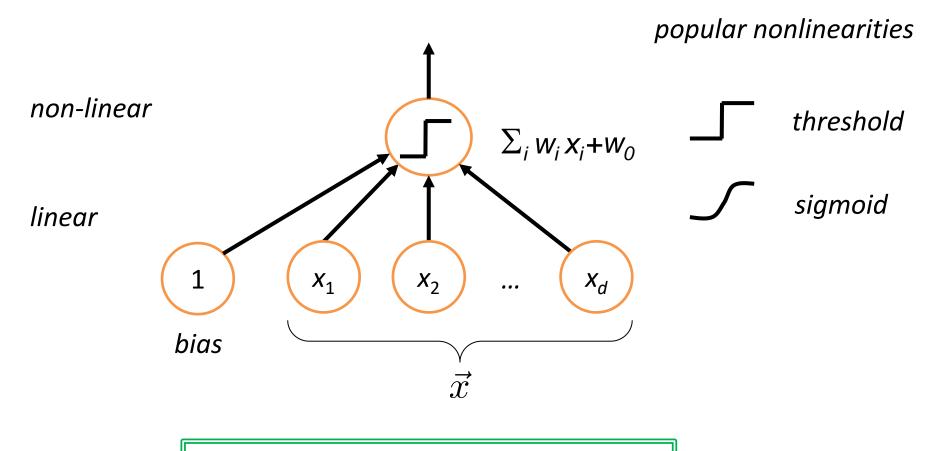
Dealing with w_o

$$g(\vec{x}) = \vec{w} \cdot \vec{x} + w_0$$
$$= \underbrace{\begin{pmatrix} \vec{w} \\ w_0 \end{pmatrix}} \cdot \underbrace{\begin{pmatrix} \vec{x} \\ 1 \end{pmatrix}}_{\textit{bias}} \textit{bias}$$
$$\vec{w}' \quad \vec{x}'$$

$$g(\vec{x}') = \vec{w}' \cdot \vec{x}'$$
 homogeneous

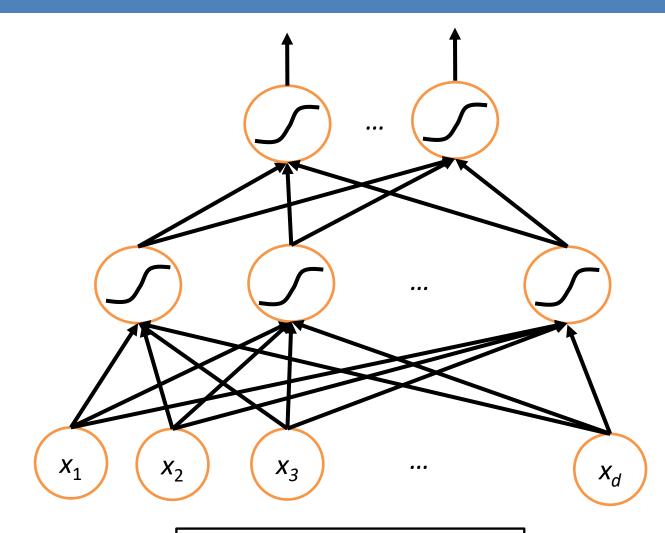


The Linear Classifier



A basic computational unit in a neuron

Can Be Combined to Make a Network



Amazing fact: Can approximate any smooth function!

An artificial neural network

How to Learn the Weights?

Given labeled training data (bias included): $(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots (\vec{x}_n, y_n)$ Want: \vec{w} , which minimizes the training error, i.e.

$$\arg\min_{\vec{w}} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \left[\operatorname{sign}(\vec{w} \cdot \vec{x}_i) \neq y_i \right]$$
$$= \arg\min_{\vec{w}} \sum_{\substack{x_i \\ \text{s.t.} y_i = +1}} \mathbf{1} \left[\vec{x}_i \cdot \vec{w} < 0 \right] + \sum_{\substack{x_i \\ \text{s.t.} y_i = -1}} \mathbf{1} \left[\vec{x}_i \cdot \vec{w} \ge 0 \right]$$

How do we minimize?

• Cannot use the standard technique (take derivate and examine the stationary points). Why?

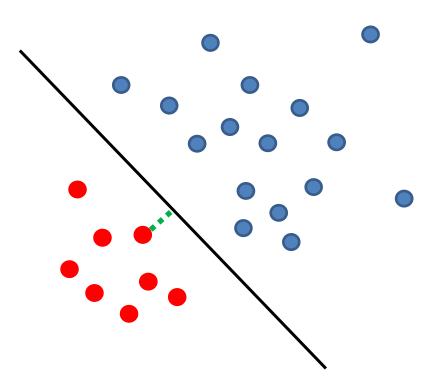
Unfortunately: NP-hard to solve or even approximate!

Can we approximate the weights if we make reasonable assumptions?

What if the training data is **linearly separable**?

Linear Separability

Say there is a **linear** decision boundary which can **perfectly separate** the training data



distance of the closest point to the boundary (margin γ) Given: labeled training data $S = (\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots (\vec{x}_n, y_n)$

Want to determine: is there a \vec{w} which satisfies $y_i(\vec{w} \cdot \vec{x}_i) \ge 0$ (for all *i*) *i.e., is the training data linearly separable?*

Since there are d+1 variables and |S| constraints, it is possible to solve efficiently it via a (constraint) optimization program. (How?)

Can find it in a much **simpler** way!

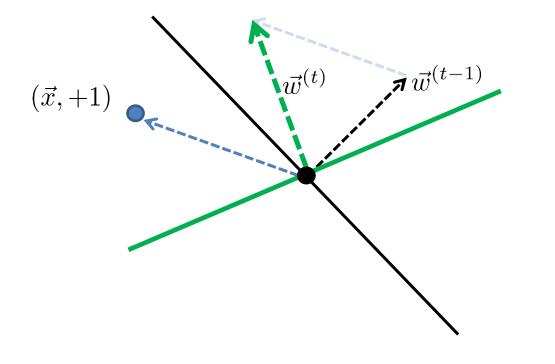
The Perceptron Algorithm

Given: labelled training data $S = (\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots (\vec{x}_n, y_n)$

$$\begin{aligned} \text{Initialize } \vec{w}^{(0)} &= \mathbf{0} \\ \text{For t} &= \mathbf{1}, \mathbf{2}, \mathbf{3}, \dots \\ \text{If exists } (\vec{x}, y) \in S \text{ s.t. } \operatorname{sign}(\vec{w}^{(t-1)} \cdot \vec{x}) \neq y \\ \vec{w}^{(t)} \leftarrow \begin{cases} \vec{w}^{(t-1)} + \vec{x} & \text{if } y = +1 \\ \vec{w}^{(t-1)} - \vec{x} & \text{if } y = -1 \end{cases} &= \vec{w}^{(t-1)} + y\vec{x} \end{aligned}$$

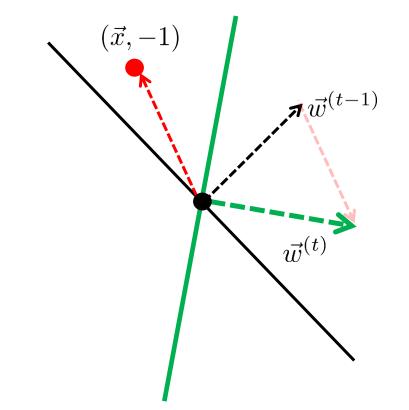
(terminate when no such training sample exists)

Perceptron Algorithm: Geometry



 $\operatorname{sign}(\vec{w}^{(t-1)} \cdot \vec{x}) \neq +1$ $\vec{w}^{(t)} \leftarrow \vec{w}^{(t-1)} + \vec{x}$ $\operatorname{sign}(\vec{w}^t \cdot \vec{x}) = +1$

Perceptron Algorithm: Geometry



 $\operatorname{sign}(\vec{w}^{(t-1)} \cdot \vec{x}) \neq -1$

$$\vec{w}^{(t)} \leftarrow \vec{w}^{(t-1)} - \vec{x}$$

$$\operatorname{sign}(\vec{w}^t \cdot \vec{x}) = -1$$

Input: labelled training data $S = (\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots (\vec{x}_n, y_n)$

$$\begin{aligned} \text{Initialize } \vec{w}^{(0)} &= \mathbf{0} \\ \text{For t} &= \mathbf{1}, \mathbf{2}, \mathbf{3}, \dots \\ \text{If exists } (\vec{x}, y) \in S \text{ s.t. } \operatorname{sign}(\vec{w}^{(t-1)} \cdot \vec{x}) \neq y \\ \vec{w}^{(t)} \leftarrow \begin{cases} \vec{w}^{(t-1)} + \vec{x} & \text{if } y = +1 \\ \vec{w}^{(t-1)} - \vec{x} & \text{if } y = -1 \end{cases} &= \vec{w}^{(t-1)} + y\vec{x} \end{aligned}$$

(terminate when no such training sample exists)

Question: Does the perceptron algorithm terminates? If so, when?

Perceptron Algorithm: Guarantee

Theorem (Perceptron mistake bound):

Assume there is a (unit length) \vec{w}^* that can separate the training sample S with margin γ

Let R = $\max_{\vec{x} \in S} \|\vec{x}\|$

Then, the perceptron algorithm will make at most $T := \left(\frac{R}{\gamma}\right)^2$ mistakes.

Thus, the algorithm will terminate in T rounds! umm... but what about the generalization or the test error?

Proof

Key quantity to analyze: How far is $\vec{w}^{(t)}$ from \vec{w}^* ?

Suppose the perceptron algorithm makes a mistake in iteration t, then

$$\vec{w}^{(t)} \cdot \vec{w}^* = (\vec{w}^{(t-1)} + y\vec{x}) \cdot \vec{w}^*$$
$$\geq \vec{w}^{(t-1)} \cdot \vec{w}^* + \gamma$$

$$\begin{aligned} \|\vec{w}^{(t)}\|^2 &= \|\vec{w}^{(t-1)} + y\vec{x}\|^2 \\ &= \|\vec{w}^{(t-1)}\|^2 + 2y(\vec{w}^{(t-1)} \cdot \vec{x}) + \|y\vec{x}\|^2 \\ &\leq \|\vec{w}^{(t-1)}\|^2 + R^2 \end{aligned}$$

Proof (contd.)

for all iterations t

$$\vec{w}^{(t)} \cdot \vec{w}^* \geq \vec{w}^{(t-1)} \cdot \vec{w}^* + \gamma$$
$$\|\vec{w}^{(t)}\|^2 \leq \|\vec{w}^{(t-1)}\|^2 + R^2$$

So, after T rounds

$$T\gamma \le \vec{w}^{(T)} \cdot \vec{w}^* \le \|\vec{w}^{(T)}\| \|\vec{w}^*\| \le R\sqrt{T}$$

Therefore: T

$$\Gamma \leq \left(\frac{R}{\gamma}\right)^2$$

What Good is a Mistake Bound?

 It's an upper bound on the number of mistakes made by an *online* algorithm on an arbitrary sequence of examples

i.e. no i.i.d. assumption and not loading all the data at once!

• Online algorithms with small mistake bounds can be used to develop classifiers with good generalization error!

Other Simple Variants on the Perceptron

Voted perceptron

Average perceptron

Winnow

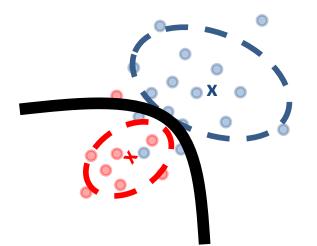
• • •

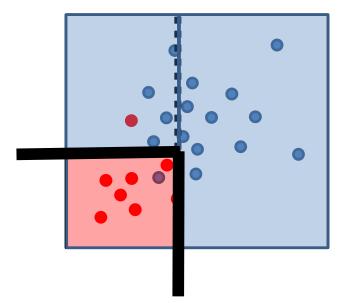
Linear classification simple,

but... when is real-data (even approximately) linearly separable?

What about non-linear decision boundaries?

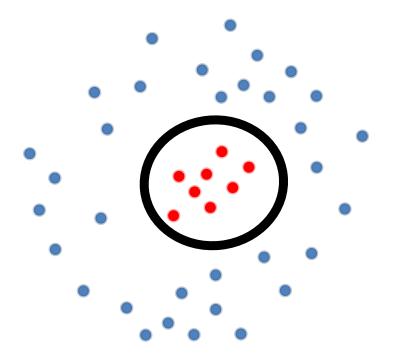
Non linear decision boundaries are common:





Generalizing Linear Classification

Suppose we have the following training data:



d=2 case:

 $g(\vec{x}) = w_1 x_1^2 + w_2 x_2^2 + w_0$

say, the decision boundary is some sort of ellipse

e.g. circle of radius r: $w_1 = 1$ $w_2 = 1$ $w_0 = -r^2$

n boundary *not linear in* \vec{x} !

separable via a circular decision boundary

But g is Linear in some Space!

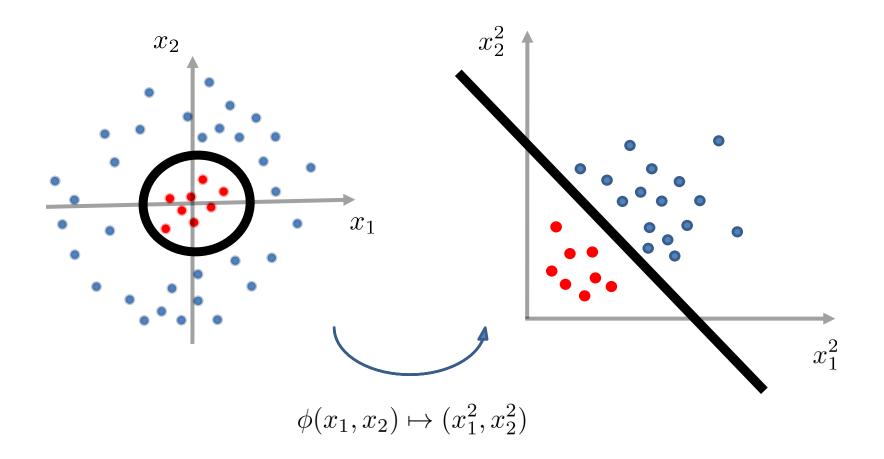
$$g(\vec{x}) = w_1 x_1^2 + w_2 x_2^2 + w_0 \qquad \text{non linear in } x_1 \& x_2$$
$$= w_1 \chi_1 + w_2 \chi_2 + w_0 \qquad \text{linear in } \chi_1 \& \chi_2 !$$

So if we apply a feature transformation on our data:

$$\phi(x_1, x_2) \mapsto (x_1^2, x_2^2)$$

Then *g* becomes linear in ϕ - transformed feature space!

Feature Transformation Geometrically



Feature Transform for Quadratic Boundaries

R² case: (generic quadratic boundary)

$$g(\vec{x}) = w_1 x_1^2 + w_2 x_2^2 + w_3 x_1 x_2 + w_4 x_1 + w_5 x_2 + w_0$$
$$= \sum_{p+q \le 2} w^{p,q} x_1^p x_2^q$$

feature transformation:

$$\phi(x_1, x_2) \mapsto (x_1^2, x_2^2, x_1 x_2, x_1, x_2, 1)$$

R^{*d*} case: (generic quadratic boundary)

$$g(\vec{x}) = \sum_{i,j=1}^{d} \sum_{p+q \le 2} w_{i,j}^{p,q} x_i^p x_j^p$$

This captures all pairwise interactions between variables

feature transformation:

 $\phi(x_1, \dots, x_d) \mapsto (x_1^2, x_2^2, \dots, x_d^2, x_1 x_2, \dots, x_{d-1} x_d, x_1, x_2, \dots, x_d, 1)$

Theorem:

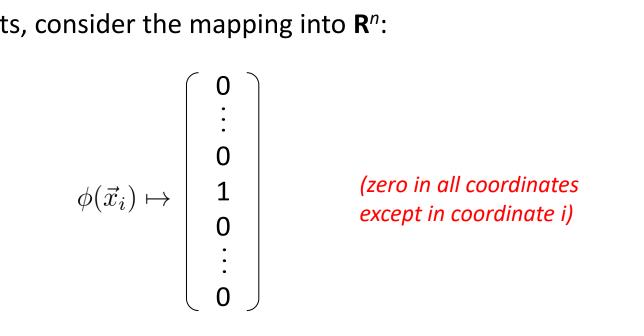
Given *n* distinct points $S = \vec{x}_1, \vec{x}_2, \dots \vec{x}_n$

there exists a feature transform such that for *any* labelling of *S* is linearly separable in the transformed space!

(feature transforms are sometimes called the Kernel transforms)

the proof is almost trivial!

Given *n* points, consider the mapping into \mathbf{R}^n :



Then, the decision boundary induced by linear weighting $\vec{w}^* = \begin{bmatrix} y_1 \\ \vdots \\ y_2 \end{bmatrix}$ perfectly separates the input data!

Transforming the Data into Kernel Space

Pros:

Any problem becomes **linearly separable**!

Cons:

What about computation? Generic kernel transform is typically $\Omega(n)$

Some useful kernel transforms map the input space into **infinite dimensional space**!

What about model complexity?

Generalization performance typically degrades with model complexity

The Kernel Trick (to Deal with Computation)

Explicitly working in generic Kernel space $\phi(\vec{x}_i)$ takes time $\Omega(n)$

But the dot product between two data points in kernel space can be computed relatively quickly

 $\phi(\vec{x}_i) \cdot \phi(\vec{x}_j)$ can compute fast

Examples:

- quadratic kernel transform for data in \mathbb{R}^d explicit transform $O(d^2)$ $\vec{x} \mapsto (x_1^2, \dots, x_d^2, \sqrt{2x_1x_2}, \dots, \sqrt{2x_{d-1}x_d}, \sqrt{2x_1}, \dots, \sqrt{2x_d}, 1)$ dot products O(d) $(1 + \vec{x}_i \cdot \vec{x}_j)^2$
- RBF (radial basis function) kernel transform for data in \mathbb{R}^d *explicit transform* infinite dimension! $\vec{x} \mapsto ((2/\pi)^{d/4} \cdot \exp(-\|\vec{x} - \alpha\|^2))_{\alpha \in \mathbb{R}^d}$ dot products O(d) $\exp(-\|\vec{x}_i - \vec{x}_j\|^2)$

The trick is to perform classification in such a way that it **only accesses the data** in terms of **dot products** (so it can be done quicker)

Example: the `kernel Perceptron'

$$\begin{array}{ll} \textit{Recall:} & \vec{w}^{(t)} \leftarrow \vec{w}^{(t-1)} + y\vec{x} \\ \textit{Equivalently} & \vec{w} = \sum_{k=1}^{n} \alpha_k y_k \vec{x}_k & \alpha_k = \textit{\# of times mistake was made on } \textbf{x}_k \end{array}$$

Thus, classification becomes

$$f(\vec{x}) := \operatorname{sign}(\vec{w} \cdot \vec{x}) = \operatorname{sign}\left(\vec{x} \cdot \sum_{k=1}^{n} \alpha_k y_k \vec{x}_k\right) = \operatorname{sign}\left(\sum_{k=1}^{n} \alpha_k y_k (\vec{x}_k \cdot \vec{x})\right)$$

Only accessing data in terms of dot products!

The Kernel Trick: for Perceptron

classification in original space:

$$f(\vec{x}) = \operatorname{sign}\left(\sum_{k=1}^{n} \alpha_k y_k (\vec{x}_k \cdot \vec{x})\right)$$

If we were working in the transformed Kernel space, it would have been

$$f(\phi(\vec{x})) = \operatorname{sign}\left(\sum_{k=1}^{n} \alpha_k y_k \left(\phi(\vec{x}_k) \cdot \phi(\vec{x})\right)\right)$$

Algorithm:

Initialize
$$\vec{\alpha} = 0$$

For t = 1,2,3,..., T
If exists $(\vec{x}_i, y_i) \in S$ s.t. $\operatorname{sign}\left(\sum_{k=1}^n \alpha_k y_k \left(\phi(\vec{x}_k) \cdot \phi(\vec{x}_i)\right)\right) \neq y_i$
 $\alpha_i \leftarrow \alpha_i + 1$

implicitly working in non-linear kernel space!

The Kernel Trick: Significance

 $\sum \alpha_k y_k \big(\phi(\vec{x}_k) \cdot \phi(\vec{x}) \big)$

dot products are a measure of similarity

Can be replaced by any userdefined measure of similarity!

So, we can work in any user-defined non-linear space **implicitly without** the potentially heavy computational cost

What We Learned...

- Decision boundaries for classification
- Linear decision boundary (linear classification)
- The Perceptron algorithm
- Mistake bound for the perceptron
- Generalizing to non-linear boundaries (via Kernel space)
- Problems become linear in Kernel space
- The Kernel trick to speed up computation

Questions?

Support Vector Machines (SVMs)!