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Why to read this?

In the last couple of years I have come to realize that North American
education for non-Mathematics majors1 lacks an indispensable com-
ponent from a number of university classes. The material covered
here is necessary for any class in Computation, Cryptography, Ma-
chine Learning, Databases, Operations Research, and of course, in
all mathematics-related prerequisites; e.g. linear algebra, probability,
and statistics.

It is impossible to think quantitatively when lacking elementary rea-
soning skills. From my point of view, a student without this basic
background can never make sense of anything with quantitative or
formal meaning and of course can never produce anything related
later on in her professional life.

I believe it is unacceptable for university-level education one not
to be able to know what the following statement exactly means “find
all employees who made the most sales on 2/1/2019 OR 2/2/2019”.

Luckily, as we will see, all these can be easily fixed.

1This seems to be true for many well-established North American (north of Rio Grande) schools.
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Lecture 1

Sets, their size, operations, and mappings

1.1 Sets and basic notation

A set S is a collection of elements. Some sets have a finite number of el-
ements – e.g. the set S = {1, 2, 10} has three elements – and some are
infinite – e.g. the set of all even positive integers W = {2, 4, 6, . . . }.
We describe sets by enclosing in brackets { } their elements. Al-
ternatively, we may describe them as

S = {x | a condition about x}

In this case we replace x with every element that satisfies the condi-
tion after “|”. More about this later on when we explain what is “a
condition”. One more thing about sets: repetitions of elements and
order does not matter. For example, {1, 2, 1, 1, 3} = {2, 1, 3, 3, 3} =
{1, 2, 3}. We prefer {1, 2, 3} just because it looks nicer.

Finally, the symbol ∈ reads as “it belongs to” and is a relation be-
tween an element and a set; e.g. 1 ∈ S. In order to further clarify, ”it
belongs to” is a reference which will be used in class saying that the
left side or an element which belongs to the right side with is in the
set.
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8 LECTURE 1. SETS, THEIR SIZE, OPERATIONS, AND MAPPINGS

New sets from old sets

Consider A = {1, 2, 3} and B = {3, 4, 5}. We can build new sets from
these A and B. In particular, the union of two sets is a new set which
puts together all the elements of the two sets {1, 2, 3, 3, 4, 5}. Recall
that we eliminate repetitions, i.e. the union of A and B is {1, 2, 3, 4, 5}.
We denote the new set that corresponds to the union as A ∪ B =
{1, 2, 3, 4, 5}. It is essential to realize that you should view A ∪ B as a
single symbol because it is one set. The fact that the symbol A ∪ B
looks longer, than e.g. the symbol C, should not confuse the reader.
We create the symbol A ∪ B using more basic symbols because we
want to be able to “read off” A ∪ B its constituents.

The intersection of A and B is a new set defined to contain exactly
their common elements and is denoted by A ∩ B. For the previous
A, B we have A ∩ B = {3}.

We should add to the above discussion that both A and B are
subsets of the same bigger set, which sometimes we call the uni-
verse. By the way, a subset is denoted by ⊆. Say for example, that
Z = {. . . ,−2,−1, 0, 1, 2, . . . } is the set of all integers. Then, clearly,
A ⊆ Z and B ⊆ Z. Note also that the two new sets are subsets of Z,
i.e. in symbols, we write A ∪ B ⊆ Z and A ∩ B ⊆ Z.1 The symbol
for the empty set is ∅ or {}. Note that the symbols ⊆ and ∈ have
completely different function and should not be confused. One last
thing, the three2 dots . . . is a precise symbol, which means “continue
in the same way”.

Constructing complicated elements

Suppose that we have a set A = {a, b, c, . . . , z} and B = {1, 2, 3}.
Now, suppose that we want to define using A and B a new
type/format of element, which is neither a letter from A nor a num-

1The operation union would still make some sense even if A consists of apples and B consists of oranges, but in this
case the intersection of A and B would always be the empty set.

2These are not four dots or many dots, they are just three – it really is a symbol.



1.1. SETS AND BASIC NOTATION 9

ber from B, but this new element has some structure: it consists of
two parts “glued together”, where the first is a letter and the second
a number from 1 to 3. For example:

(b, 3)

The above element is a vector and a vector is still just one element.
For example, if C = {(a, 1), (b, 2), (c, 3), (d, 2)} then A ∩ C = ∅ be-
cause the sets A and C have no common elements. The symbol (a, 1)
corresponds to a single element and there is no such element in the
set A.

We say that (a, 1) has two coordinates. Note that the order here
matters. That is, (1, a) 6= (a, 1).

Finally, we remark that an alternative notation for (b, 3) is
(

b
3

)
.

Both notations may be used interchangeably.
The operations of union and intersection make more sense for sets

that are subsets of the same universe. By taking unions and inter-
sections we cannot go outside the universe. But the element (b, 3) is
neither a letter nor a number. This element is an example of a vector
notation looks like.

The cartesian product (or cross product) realizes the construc-
tion of a set consisting of complicated elements: A × B =
{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), . . . , (z, 3)}. Again, A × B is just the
symbol of a single set. This set consists exactly of all vectors with
two coordinates, where the first coordinate is any element from A
and the second any element from B. To summarize, A× B consists
of the concatenations of each of all possible elements from A with
each of all possible elements from B. Concatenation is a series of in-
terconnected things or events. In this case, you see one letter being
concatenated with one number.

When things become ambiguous, we start using parentheses
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around the union, intersection, or cartesian product. For example,
let A = {1, 2, 3}, B = {2, 3, 4, 5}, and C = {6, 7, 8}. Then, how to
read C ∪ A× B? It can mean either first take the union of C and A
and then the cartesian product with B, or it can mean first take the
product of A and B and then take the union with C. To remove this
ambiguity we write (C ∪ A)× B or C ∪ (A× B).

Do not confuse: A× B for two sets A and B does not refer to any multi-
plication among their elements. ×means, each element is a “concate-
nation” of two elements into a single vector that has two coordinates.

Constructing sets with more than two coordinates

Let A = {1, 2, 3} and suppose that we want to construct a set with
three coordinates each of which takes values from A.

We denote this as A× A× A.
According to what we said before,

(
(1, 2), 3

)
is an element of this

set. This is the case if we disambiguate A× A× A and we write it as
(A× A)× A. Now, if instead by A× A× A we meant A× (A× A)
the corresponding element would have been

(
1, (2, 3)

)
. Can we do

anything else according to what we said so far? No! We said when-
ever we write A× A this means that you construct each element of
this new set by taking one element from the first copy of A and an-
other from the second copy of A and put a left parenthesis “(” to the
left and then a right parenthesis “)” to the right. This is a rule with
a precise meaning. Rules should not be taken lightly.

Compare
(
(1, 2), 3

)
and

(
1, (2, 3)

)
? We observe that if we do not

follow the above rule and drop parentheses then the relative order of
all constituents of these vectors is the same. We can abuse notation
and instead simply write (1, 2, 3). This “abuse” is safe because from
(1, 2, 3) we can reconstruct whatever weird order of parentheses we



1.2. WHAT CAN WE USE WHEN WE ARGUE QUANTITATIVELY? 11

had before. Hence, we can drop parentheses altogether and write

A× A× A =
{
(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), . . . , (3, 3, 3)

}
We can introduce even further notation and write A3 instead of

A × A × A. Note that this A3 is just a succinct way to write a long
cartesian product and nothing else.

Summary of notation/symbols we learned so far

S = { }
”Set” Z: the set of all integers
A ∪ B
“The union of A & B” A ∩ B
“The intersection of A & B” A× B
“The concatenation of A & B” A4

“Another way of concatenation of A” . . .
“Continue in the same way” (1, 1, 1, 1)

1
1
1
1



1.2 What can we use when we argue quantitatively?

In Lecture 2 and Lecture 3 we discuss rigorous reasoning and calcula-
tions. In rigorous reasoning we can use only: sets, operations among
sets, operations among elements (e.g. addition, multiplication etc be-
tween integers), functions between sets, and logical inferences about
these objects. And nothing else.
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1.3 Mappings and functions

A function between two sets is a very important notion. A function f
maps every element of a set A, the domain, to a set B, the range. To
make sure that is clear what domain and range we have, we write:

f : A→ B

The above notation does not explain how the mapping is done.
In upcoming example, g is a function. The symbol which looks

like Z,Z, is a set containing all integers. Integers are whole num-
bers which is not a fraction and can consist of positive and nega-
tive number values. For example, consider a function mapping from
the integers Z to the integers Z. Let g : Z → Z. Now, we must
specify how an element of the domain (the first copy of Z above)
is mapped to each element of the range (the second copy of Z). In
this example, g(n) = n2. What is it missing? What is n? Is it a
vegetable? The notation g(n) = n2 means nothing unless we spec-
ify what is n. Thus, instead, we should have written “g(n) = n2,
where n ∈ Z”. To be fair, since we already wrote g : Z → Z,
here there isn’t much ambiguity, but in general, as a rule of thumb
every symbol must have a defined type.

According to what we said above, for a function f : A → B every
element of A must be mapped (by the rule f ) to some element of B.
This does not mean that every element of B is pointed by an element
of A. For example, for g : Z → Z where g(n) = n2, n ∈ Z, every
integer (e.g. g(2) = 4, g(−3) = 9, etc) is mapped to some element
of Z. But there are elements in the range Z that are not covered by
g. For example, g does not have negative outputs. In symbols, we
would say:

“for every n ∈ Z, g(n) ≥ 0”
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or equivalently

“there does not exist n ∈ Z such that g(n) < 0”

(we will discuss this “equivalence” in Lecture 2 below)

Some notational “tricks”

Think of a way to represent the previous function g as a set. Con-
struct a set that contains elements of the form (input, output). In
particular, for g(n) = n2, n ∈ Z an alternative way to view g is as
g = {. . . , (−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), . . . }.

Thus we can “view” the function as g ⊆ Z×Z. Only a few ele-
ments of Z×Z are in g. In particular, there do not exist two pairs
(x, y) ∈ g and (x, y′) ∈ g where y 6= y′. That is, the same input x
can only be mapped to a single element in the range. This is true
for every function. There are more complicated relations/mappings
that allow the same x to be mapped to more than one y’s, but these
are not functions as defined in the previous section.

Here is another “notational trick”. We can view a vector v =
(1, 2, 3, 2, 1, 42, 21) as a function. In particular, we can define

v : {1, 2, 3, 4, 5, 6, 7}︸ ︷︷ ︸
coordinate ID

→ {1, 2, 3, 21, 42}︸ ︷︷ ︸
value

“vector v” v = (1, 2, 3, 2, 1, 42, 21)

“function v” v : {1, 2, 3, 4, 5, 6, 7} → {1, 2, 3, 21, 42}
v(1) = 1, v(2) = 2, v(3) = 3, v(4) = 2
v(5) = 1, v(6) = 42, v(7) = 21

The vector v or the function v contain the same information. Note:
That we ignore the repetition of ”1” in the value set.
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Let us now introduce one more “notational trick”. Consider a set
A = {1, 2, 3} and note that A ⊆ Z. Again, to make it clear, A is a
subset. Let us define the characteristic function χA of A to be a function
χA : Z→ {0, 1} with the convention that the output of χA is 1 when
the input is in the set and the output of χA is 0 when the input is not
in the set. In particular, χA(1) = 1, χA(2) = 1, χA(3) = 1, whereas
for every other integer e.g. χA(100) = 0 since 100 6∈ A. We can go
further and replace the symbol χA by A, since A and χA provide
exactly the same information about the set (χA tests membership of
elements in A, whereas A is A itself).

Consider the set {0, 1}10. This contains all vectors of length 10,
meaning there are ten in it. Here the value of each coordinate is ei-
ther 0 or 1. Since 0 is different than 1, (0, 1, 0, 1, 1, 1, 0, 1, 0, 0) can be
reconstructed uniquely from 0101110100. Therefore,3 you can con-
sider a vector to be a binary string, similar to what you have done in
your programming classes. Note that order is very important when
looking at vectors. For example, vector A = (0, 1, 0) is not the same
as vector B = (0, 0, 1). The order of the two zeros and the one play a
big impact on the value of the overall vector.

In university-level textbooks there is frequent switch between nat-
ural forms of notation. For example, you may read: “fix a vec-
tor v ∈ Z100 and now let us consider the sum of its coordinates
∑100

i=1 v(i)”.

1.4 Preimages, inverses, and powersets

Consider f : {1, 2, 3} → {a, b, c}, where f (1) = a, f (2) = c, f (3) = b.
Suppose that we want to compute the inverse function, i.e. go from
a back to 1, from b back to 3, and from c back to 2. For this f we

3This is not the case if the set had elements {0, 1, 10}3 because then 1010 could correspond both to (1, 0, 10) and to
(10, 1, 0) and we have no way to disambiguate.
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can naturally construct the inverse, denoted by f−1. (again,“ f−1” is
just one symbol), where f−1 : B → A and f−1(a) = 1, f−1(b) =
3, f−1(c) = 2. We also say that “1 is the pre-image of a under f ”.

What if we instead f is as follows:
f : {1, 2, 3} → {a, b, c}, where f (1) = a, f (2) = a, f (3) = b ?
Then, the inverse of “a” is two elements of of {1, 2, 3}. Thus, the
inverse of f cannot anymore be a function f−1 : {a, b, c} → {1, 2, 3}
because the mapping f−1 maps an element of {a, b, c} to a subset of
A. Therefore, in general, we define the inverse as

f−1 : {a, b, c} →
{

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
}

This shows that how there can be two inputs that can map to one
output.
Think of this example, lets that there are ten pigeons, and we have to
put them into nine holes. What does this entail? It means that there
is going to be two pigeons that are shoved into the same hole. This
is a key idea to understand once we dive deeply into different ideas
of cryptography.
This is why we have have output of the inverse being {1,2} or {1, 2,
3}. To show all the possibilites of inputs to get an output of a, b, or c.

In general, the range can contain more elements than the domain.
Observe that every element in the range of f−1 is itself a set. This
is not a problem. An element is an element no matter what it is. It
can be a number, or a vector, or a letter, or an apple, or a human, or
a set, or a set of vectors, or whatever we want. Now, we can define
f−1(a) = {1, 2} and f−1(b) = {3} and f−1(c) = ∅. This is just a
specific mapping of elements to one another.

Final remark on notation: for a set A we can construct a new set
that consists of all subsets of A (including the empty set, because
the empty set is also a subset). We call this new set the powerset
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of A and we denote it as 2A. 2A is just a weird symbol, which de-
notes the set of all subsets of A. For example, if A = {1, 2, 3} then
2A =

{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
. This shows

all combinations of the elements of A that can be considered a sub-
set.

Thus, in general, for a function f : A → B its inverse has domain
and range f−1 : B→ 2A.

1.5 Sets, sizes, and restricted functions

The size of a set A = {1, 2, 3, 42} is the number of its elements. We
denote this by |A| = 4. For finite sets the size is a trivial concept, but
for infinite sets the size becomes a complicated issue.

The following three restricted types of functions are related to size:

1. f : A→ B is an injection if for every x 6= x′ we have f (x) 6= f (x′).
That is, the example of g(n) = n2, n ∈ Z is not an injection
(because g(−1) = g(1)).

2. f : A → B is a surjection if for every b ∈ B there exists
a ∈ A such that f (a) = b; i.e. B is covered. For example,
g : Z → Z and g(n) = n2, n ∈ Z is not a surjection because
there is no n ∈ Z such that g(n) = −1. However, the function
h : Z→ {0, 1, 2, 3, . . . } where h(n) = n2, n ∈ Z is a surjection.

Remark on notation: we denote by g(Z) the image set of g,
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i.e. the set g(Z) consists of all possible outputs of g (and nothing
more). Therefore, for every function f : A→ B the new function
F : A→ f (A) with F(x) = f (x) for x ∈ A, is a surjection.

3. f : A → B is a bijection if f is injective and surjective. A bijec-
tion, sometimes called “one-to-one correspondence”, perfectly
matches the domain elements A and the range elements B.

What do all of the above have to do with the size of sets?
If for two sets A, B there is an injection A → B then B cannot be

smaller than A, since we can “inject A inside B without collisions”
(otherwise there would be collisions).

If there is a surjection A → B then A cannot be smaller than B
(otherwise there would be some element of B not covered).

Finally, a bijection A→ B witnesses equal size A and B.
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Summary of notation/symbols we learned so far

S = { }
Z: the set of all integers
A ∪ B
A ∩ B
A× B
A3

. . .
(1, 1, 1)1

1
1


111

|A|
f : A→ B
f (x) = something
function viewed as a set
vector viewed as a function
χA characteristic function of A
f (A) image set of f
preimage
f−1

2A powerset of A
injective
surjective
bijective



Lecture 2

How to parse, interpret, and write rigorous
statements?

One goal of this manuscript is to teach how to read/understand and
write rigorous statements. Rigor is necessary if we want to remove
ambiguities from our expression.

2.1 How to read and write rigorous statements

Every rigorous argument consists of a sequence of inferences on true
statements. How inference works is obvious/self-evident to anyone.
For example, if P implies Q and we know that P is true we can infer
Q is also true.

A prerequisite for articulating an argument is first to be able to
write down a precise expression about P and Q. This is what we
learn in this Lecture.

What is a rigorous/logical statement? A logical statement consists of

i. Logical connectives

ii. Predicates and variables

iii. Quantifiers

and that is all.

19
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Logical connectives

There are three logical operators AND, OR, NOT that “operate” on
logical expressions/statements.

Every statement evaluates to true or false. We occasionally write 1
for “true” and 0 for “false”.

For example, say that P and Q are statements that evaluate to true
or false.

Then, P AND Q evaluates to true if and only if both P and Q are
true (true = 1). That is:

• 1 AND 1 = 1

• 0 AND 1 = 0

• 1 AND 0 = 0

• 0 AND 0 = 0

Note that each of P and Q is a statement and “P AND Q” is also
a statement. It is a statement built from two sub-statements.

P OR Q evaluates to 1 if and only if any either P or Q or both are
1. That is:

• 0 OR 0 = 0

• 1 OR 1 = 1

• 0 OR 1 = 1

• 1 OR 0 = 1

Similarly to AND statements, P and Q is a statement and “P OR Q”
is also a statement. It is a statement built from two sub-statements.
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Important: Observe that the statement “I can meet you on Monday or
Tuesday” in formal/rigorous terms means I can meet you either on
Monday or on Tuesday or I can also meet you in both days. But in
everyday life (in the casual) use of “OR” people might not always
mean the same. In formal arguments there is no room for ambiguity.
“OR” means exactly: one or the other or both.

The logical NOT inverts the truth value of the expression.
NOT(0) = 1 and NOT(1) = 0.

Constant expressions and predicates

Some true/false facts are always true or always false i.e. they are con-
stants. For example, Q =“pigs fly”. In this case (assuming that pigs
don’t fly), the truth value of Q is always 0. In rigorous arguments,
we do not only have constantly true/false expressions but also things
that vary over a model of the world or a model of our system of rea-
soning if you like. “Things vary” refers to a function whose values
are true or false.

True/false-valued functions are called predicates.
For example, P : {Monday, Tuesday,..., Sunday} → {0, 1}, where

P(Tuesday) = 1 and P(x) = 0 for every x which is a day other than
Tuesday (also, we could have written P=“today is Tuesday” and we
evaluate P on the parameter “today” (think of x as today)).

Predicates are just logical expressions which are parameterized –
their true/false value is uniquely determined by the parameter(s).

Hypotheses and conclusions

How to express:

IF “some hypothesis” THEN “some conclusion”?

Understanding the above is a little complicated just because in rig-
orous arguments everything is a statement. The “hypothesis” must
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be a statement, the “conclusion” must be a statement, and also the
“IF hypothesis THEN conclusion” must be a statement. Statements
evaluate to be either true or false. Similar to what we explained be-
fore with P and Q in the last section. Think of P referring to the
hypothesis and Q referring to the conclusion. We can condense the
entire statement to read as “IF P THEN Q”. For example, suppose
that we express the following casual/real-life statement “IF today is
Tuesday THEN we have a lecture for this class”. The statement “IF
today is Tuesday THEN we have a lecture for this class” consists of
two substatements. One being “today is Tuesday” and the other be-
ing “we have a lecture for this class”. In our model of the world
“today is Tuesday” is a predicate. It becomes true/false based on
what day of the week it is. “we have a lecture for this class” is an-
other predicate that becomes true/false based on which day of the
week it is.

Everything (including the IF...THEN... statement itself) must have
some true/false value. That mean What truth values shall we assign
to “IF today is Tuesday THEN we have a lecture for this class”? Just
for now my goal is to write a statement that is always true (always
means for all days of the week). When the day is “Tuesday” then
“today is Tuesday”=true and “we have a lecture for this class”=true.
We decide define the IF...THEN... to be true if both the hypothesis and the
conclusion is true. Thus, for parameter “Tuesday” we have “IF today
is Tuesday THEN we have a lecture for this class”=true.

What happens for any other day of the week? Then, the hypoth-
esis “today is Tuesday” becomes false and same thing for “we have
a lecture for this class”. We decide to define IF...THEN... in a way that
when the hypothesis is false then no matter what is the conclusion whole
statement becomes true;

i.e. “IF false THEN false”=true and also “IF false THEN
true”=true. The only way for the IF...THEN... to become false is if we
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start from a true hypothesis and we conclude a false conclusion.
To summarize following the “IF P THEN Q” format:

• IF 1 THEN 0 = 0

• IF 0 THEN 0 = 1

• IF 0 THEN 1 = 1

• IF 1 THEN 1 = 1

We will come back to the use of IF...THEN... since it is a perfectly
good way to filter things out.

Is there a way to express “IF P THEN Q” using the AND, OR ,
NOT connectives? Yes, we can write it as

“IF P THEN Q” = NOT(P) OR Q

which does exactly what we want – if the hypothesis P is false then
the whole thing becomes true and the only way to become false is
when P is true in which case the value depends on the value of Q.

Since “IF P THEN Q” = NOT(P) OR Q then we have that
“IF NOT(Q) THEN NOT(P)” = NOT(NOT(Q)) OR NOT(P).
But, NOT(NOT(Q)) = Q, which means that “IF NOT(Q) THEN
NOT(P)”= Q OR NOT(P) =“IF P THEN Q”. To conclude:

“IF P THEN Q” = “IF NOT(Q) THEN NOT(P)”

This will become very useful when tring to prove statements as
true or false later in this course. This is a very important piece of
logicial reasoning to understand.

2.2 In a true statement there is no such thing as a free variable

Consider the predicate P : {0, 1}10 → {0, 1}, where P(x) = 1 if the
number of 1’s in x ∈ {0, 1}10 is at least 5 and P(x) = 0 for every
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other x.
Example: x = 1110011111
since x has eight 1’s, that means that it has more than five 1’s.
thus, P(x) = 1 since it meets the requirement.
Example: x = 0001100000
Now x has two 1’s, that means that it has less than five 1’s.
thus, P(x) = 0 since it does not meet the requirement.

Now consider the logical statement:

IF P(x) = 1 then x ∈ {0, 1}10 must be lexicographically
greater than or equal to 0000001111. 0000011111 is the value
of a binary string which we are comparing the value of x
to. (Lexicographically in this example means that within the
string x there are at least five elements that have a value of 1)

The above is just formal jargon for saying that if you have at least
five 1’s in a given string then this string cannot be the 0000000000
neither 0000000001 and in fact, it must be a string that has higher lex-
icographic order than 0000001111. This looks like an obvious state-
ment and seems to be obviously true. But one issue. Everything
said above is misleading because what is written is nonsense. The
above is not a statement. It cannot be evaluated to true or false.
For which x are we evaluating the truth value of “IF P(x) = 1 then
x ∈ {0, 1}10 must be lexicographically greater than 0000001111”? For
x = 0000000000? For x = 0000000001? For one x? For two x’s? For
all?

Unless we quantify variable x the above statement cannot
assume any truth value.

There are two quantifiers: “for all” and “there exists”. We write
∀ for “for all” and ∃ for “exists”. The meaning of “for all” is that
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I can conclude that a statement is true only after I substitute every
possible value for x and also if I find out that for each substitution the
statement is true. In contrast “there exists” becomes true if I can find
at least one value for x where the statement becomes true.

What we should have really written above is the following:

For every string x ∈ {0, 1}10, if P(x) = 1 then x must be
lexicographically greater than 0000001111.

or in more casual (but still rigorous!) terms we could have said:

For every binary string x of 10 bits, if there are at least 5
many 1’s then this string must be lexicographically ahead of
0000001111.

Note that the second statement is as rigorous as the first one.
Humans are not computer programs that parse logical statements.
When humans talk rigorously they aim to make true but also mean-
ingful statements, written in the most readable form (without losing
preciseness).

2.3 The order of quantification: constants and dependencies

What happens if in a logical statement there are many variables?
Consider the statement:

For every human h there is a woman w such that
is mother(w, h)=true.

We assume the usual model for the world and we would like to know
if the above statement is true. (Note that in this example, w repre-
sents an arbitrary woman and h represents an arbitrary man). Before
we do that we must go over possible pairs (w, h). For which (w, h)
are we going to test? “For every h” indicates that we should proba-
bly be testing for all possible h’s. But how about w? It seems that it
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suffices to find one w. But should this be the same for all h? In this
case the meaning would be that every human has the same woman
as her/his mother. In any case, we must agree on one reasonable
definition that allows us to evaluate such statements.

We interpret the quantifiers parsing them from left-to-right. In
particular, in the above statement, we first choose h and then for each
of these h we one (possibly new) w. Since h is quantified by “for all”
we must do this for all h and for each of them individually we search
for a w that satisfies the predicate is mother(w, h).

Variables quantified later become a function of (they depend on) the
earlier quantified variables. Also, if a variable is quantified earlier
then it behaves as a constant for every variable quantified later.

That is, in the above statement w is a function (depends on) h. To
emphasize this we may even write w(h).

Contrast the statement “For every human h there is a woman w
such that is mother(w, h)=true” with the statement:

There is a woman w for every human h such that
is mother(w, h)=true.

We first choose (appropriately quantified) woman w and then we
choose a man. Note that for this statement to be true there must exist
one woman w where the same woman must be paired with all men.
That is, all humans should have this one woman as their mother in
order for the above statement to be true. This is not the same at all
with the previous statement where each human could be paired with
one woman when verifying whether the statement is true.

None of these statements is, of course, the same as

There is a woman w, there is a human h such that
is mother(w, h)=true.
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This statement becomes true just if we are able to find one w and
one h where w is the mother of h.

Finally, in order for the following statement to be true, we must
have a model of the world where all possible humans have all possi-
ble women as their mother.

For all humans h, all women w it is true that
is mother(w, h)=true.

More details on the meaning of “for all” and “there exists”

We can conclude that the statement we really wanted to make is

For every human h there is a woman w such that
is mother(w, h)=true.

To simplify the discussion (avoid annoying nuances) let us sepa-
rate males and females and make the following statement.

For every man m there is a woman w such that
is mother(w, m)=true.

Suppose that we live in a world where there are only
three possible men {Tom, Jack, Peter} and three possible mothers
{Jane, Mary, Kate}.

Here is one way that the above can be true. is mother ={
(Jane, Tom), (Jane, Jack), (Mary, Peter)

}
. We see that it is possible

a woman can be a mother of more than one men, which is meaning-
ful.

However, “there is” means “there is at least one”. Therefore, the
use of the quantifier “there is” (which is the same as “there exists”),
leaves the following model as a possibility of the world that makes
the statement true:

is mother =
{
(Jane, Tom), (Kate, Tom), (Jane, Jack), (Mary, Peter)

}
.



28 LECTURE 2. HOW TO PARSE, INTERPRET, AND WRITE RIGOROUS STATEMENTS?

Therefore, Tom can have two biological mothers, and the use of the
quantifier “there exists” allows such a model of the world to satisfy
our statement. And we do not want that. How to write “there exists
exactly one”?

∀ man m ∃ woman w ∀ women w′ we have
is mother(w, m)=true
AND
IF w 6= w′ THEN is mother(w′, m)=false

Think about the following questions:

Question 1: Why did we write “AND”?

Question 2: What is the role of “IF”?

Question 3: Why does the above enforce the constraint that each man
has a unique biological mother?

Question 4: What is the meaning of the statement if we switch the order
of quantifiers as “∀ women w′ ∀man m ∃ woman w”?

Remark: When we introduce rigor we should not lose common sense.
We introduce rigor to improve common sense. Rigor just removes
ambiguity from the casual/everyday talk. What does the above say
in layman’s terms: “every man has one mother and in fact for every
other woman who is different than his first biological mother, then
this new woman cannot be his mother at the same time.”. This is also
equivalent to: for every man there is exactly one woman who is his
mother.

2.4 How are things read and written in practice?

Statements have true/false meaning.
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For this to happen every variable/parameter that appears in the
statement must be quantified (otherwise we are unable to assign
true/false meaning).

When we write arguments our goal is to write only true state-
ments. From those, we infer/deduce other statements which are
also true (true things help us infer other true things). At the end,
we conclude with the statement that we originally wanted to argue
that holds true. This process is called a proof (or rigorous argument)
and we discuss it in Lecture 3.

How to “read” statements Consider the following statement

Let x ∈ {0, 1}10 be a string. Then, lalala...

We said that every variable in a statement must be quantified. It is
not surprising that the string x is not “free variable”. The reason is
that “let x...” really means “start with any x...”. In everyday logical
expression the statement “Let x...” is the same thing as saying “For
every x...”.

All of the following have exactly the same logical content:

“For all x...” = “Let x...” = “Fix arbitrary x...” = “For
any x...” = “Fix x...” = “Fix any x...” = “Consider an
x...”

For example:

Theorem: Let ABC be a triangle with right angle at B. Then, AC2 =
AB2 + BC2.

How to read the above statement? We go over all triangles that
have a right angle at B and for these triangles the stated length rela-
tion holds.

Here is another way to write this using what we have learned:
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Theorem (restating Pythagoras theorem): For all triangles ABC, if B is a right
angle then AC2 = AB2 + BC2.

In fact, this is not bizarre at all. It is the same thing as before writ-
ten in more detail (e.g. we replaced “let” with “for all”).

This is exactly the same statement as before. We go over all pos-
sible triangles. If B is not a right angle then “if B is a right angle
then AC2 = AB2 + BC2” becomes vacuously true because the hy-
pothesis is false. Things become non-trivial when B is a right angle
in which case the truthfulness of the statement “if B is a right an-
gle then AC2 = AB2 + BC2” depends only on the truthfulness of
“AC2 = AB2 + BC2”.

Finally, we conclude by noting that the following all have the same
meaning:

“There is x...” = “For some x...” = “There exists x...” =
“Choose one x such that...” = “There is a universal x...”



Lecture 3

How to argue rigorously?

We already fixed some minimal necessary notation and explained
how to parse, understand, and write down rigorous statements.
Each of these statements evaluates to true or false. Now, we explain
how one can establish this. That is, how to argue rigorously.1

3.1 How to argue about “for all” and “there exists”.

We always prefer to argue constructively. Constructively means
we just present a few things (e.g. by constructing them) and then
somehow we are done with the argument. I cannot overemphasize
enough the importance of arguing in this way. We would be very
happy if we were always able to prove things by saying “here is the
object that makes my statement true”. For example,

“There is a student in the class who is female”

How to prove this statement? Easy! Just point to a female student.

If we manage to exhibit or construct the target object for which we
wish to prove existence, then we have formally proved its existence.

Another example: There is an integer x such that x > 10.
How to prove this? Choose x = 11 > 10. Thus, there is x > 10.
1This exposition does not aim to be comprehensive. However, it provides all necessary tools students need to argue

rigorously in simple settings – as simple as in Information Security, Cryptography, and Machine Learning.

31



32 LECTURE 3. HOW TO ARGUE RIGOROUSLY?

Things become tricky when the quantifier is “for all” instead of
“there exists”. Before we attempt to argue directly about all possible
objects, we should consider the possibility of proving the same state-
ment by changing “for all” into “there exists”. This is not always
possible but sometimes we get lucky.

When does “for all” flip over and becomes “there exists”?

Consider the statement: “NOT(for all x, P(x)=true)”. How to prove
this. One way is to argue that the statement “for all x, P(x)=true” is
false and this would have concluded that “NOT(for all x, P(x)=true)”
is true.

Here is an alternative way to argue. Since “for all x, P(x)=true”
is a statement that we wish to prove false, this means that if we can
find at least one x that makes P(x)=false this would formally prove
that “for all x, P(x)=true” is a false statement. In other words the
following two statements have the same meaning:

“NOT(for all x, P(x)=true)”
= “there exists x, NOT(P(x)=true)”

To make things even more concrete, consider the statement: “It
is not true that every student in the class is female”. How to prove
that? This statement has the same meaning as: “There is at least
one student in the class who is not female”. In order to prove the
existence of such a student(to make the statement true), it suffices
to point to one such student. Thus, we see that a negation in front
of a “for all” quantified statement makes it possible for us to argue
constructively.

How to directly argue about “for all”

Suppose that we have to prove correct a statement that starts as: “Let
x ∈ {0, 1}100 be a string of 100 bits. Then, ...”
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Then, we start our argument by saying:

Fix an arbitrary x ∈ {0, 1}100.

From the point on we write the above expression we do have one
concrete object inside our argument. Although it is difficult to ar-
gue about all objects simultaneously, we can select an arbitrary one
and do things about that one (because an arbitrary is as good as any
other). So, we have this x and we can work with it from this point
on! There is a catch though. Although we have x and we can grab
it, massage it, paint it, we can do whatever we want with this x be-
cause it exists inside our argument (since we fixed it), the problem
is that we do not know how exactly x looks likes. Think of this as
if someone had given you an x but she gave you this x inside a black
box. If it happens that in your argument you don’t really care about
the specifics of x then you may be able to carry the argument without
ever opening the box. But in most arguments you have to open the
box. Opening the box means considering cases about the possible
contents of the box. Your argument should work for all possible
contents of the box. For example,

• If x has ≥ 5 many 1s (for example, let x=11101111) then I will
argue that x is a vegetable

• If x has < 5 many 1s(for example, let x=0110000) then I will argue
that it is a fruit.

Note that when you branch into cases about x your cases must cover
all possibilities about x – otherwise you do not have an argument
about an arbitrary x.

3.2 Example: the party problem

Statement: In a party for every set of 6 people either there are 3 of
them who have met before, or 3 of them have never met before.
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This is a non-trivial thing to show.
We start by saying:

Fix an arbitrary set of 6 people S. From this point on we work with
this set S.

Now, there are a few options of how to show the statement true.
Notice that 6 is a concrete finite number. Therefore, we can do this:

1. Write a computer program(lines of code) that enumerates all pos-
sible configurations between 6 people. This means, that we can
pair two of them in case they have met and if they have not met
then we do not pair them.

2. The same computer program as it enumerates all possible in-
stances using a loop inside this loop is testing whether for each
configuration of 6 people it is true that either 3 of them have met
before or whether 3 of them they have never met.

3. Thus, we exhaustively test whether the statement is true in each
among all possible met/not-met configurations. If at the end the
test turns out to be true for all configurations then we conclude
that the statement is true.

So, we can write a program and check “every set” of 6 people in an
exhaustive way. Is this a formal proof? Absolutely! We can test a “for
all” condition by actually going through “all possible” objects. We
can do that here because we have 6 people, as opposed to a “generic”
integer; e.g. we could not write a program that tests a similar thing
for N people.

One last remark: why do you need a computer program? In total
there are (6

2) = 6!
2!4! = 6·5

2 = 15 possible pairs among 6 people. If
we want to count all possible configurations, then each pair might
exist or not in the configuration. Thus, there are 215 = 32768 many



3.2. EXAMPLE: THE PARTY PROBLEM 35

different configurations to check(15 different pairing possibilities).
This is why you need a computer program.2

What happens if we do not want to write a program or we do not
have enough time (e.g. we are not in prison). Here is a way to argue.

Proof. Fix an arbitrary set of 6 people S. From this point on we work
with this set S.

We consider two main cases.

• Case 1: There exists a person p ∈ S who has met at least 3 other
people p1, p2, p3 ∈ S. Then, we consider further cases.

– Subcase 1.1: There are at least two among p1, p2, p3 that they
have met. Say that without loss of generality these are p1, p2

and then p, p1, p2 are three people that have met.

– Subcase 1.2: None of p1, p2, p3 have met. Then, p1, p2, p3 are
three people who have never met.

• Case 2: Every person p ∈ S has met at most 2 other people.

– Subcase 2.1: There exists p who has met 2 people p1, p2.

∗ Subcase 2.1.1: If p1, p2 have met each other, then p, p1, p2

are three people who have met.
∗ Subcase 2.1.2: If p1, p2 have not met, then let us now con-

sider the people with whom p1 has met. These must be at
most 2 new and one of them is p. Therefore a second one
p3. Note that if p3 doesn’t exist then p1, p2 together with
anyone except p form three people that have never met.
This leaves us with the case p1 has met with p and p3. If p3

has met p2 then p1, p2, p3 are three people that have met.
Similarly, if p3 has met p. Otherwise, p3 has not met p and

2The only detail missing is that you have to prove that your program correctly enumerates the configurations – but
that’s easy to argue.
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she/he has not met p2 and thus p, p2, p3 are three people
that have never met.

– Subcase 2.2: Every person has met at most 1 other. This
means that there exist three people who have never met (ob-
serve this by matching the 6 people).

Note that, Case 1 and Case 2 are complementary. This means that
Case 1 and Case 2 cover all possibilities. Thus, if we cover all pos-
sibilities and in each of them we conclude that the statement is true
then this means that the statement is true no matter how the 6 peo-
ple are related to each other. The same thing holds for Subcase 1.1
and 1.2, and the same thing holds for each of the subcases we are
branching into.

You should practice with the above to understand the differences
between “there exists at least” and “for all at most”, etc. This is an
important skill for you to acquire.

3.3 What do we mean by “Statement”?

A statement is something that uses logical connectives, proper quan-
tification, and in general, has a rigorous meaning. We care about
statements that are true.

True statements appear with the following names:

• Theorem

• Lemma

• Proposition

• Claim

• Fact
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All of the above are the same thing. They all refer to a true state-
ment. Can we write “Lemma” instead of “Theorem”? Yes, we al-
ready said that these are just different names, which all refer to “a
true statement”. We use different names for aesthetic and psycho-
logical reasons. Theorems are considered more important than Lem-
mas, and Lemmas more important than Propositions, Claims, and
Facts.

3.4 What is a “Definition”?

A definition is a new name (or a title if you like) that we give to an
object or a set of objects. Definitions have nothing to do with true
statements. Definitions are just names and nothing else.

Devising a definition might be non-trivial. We assign a name to an
interesting family of objects. For example, how to define : “efficient
search in a database”? We should define “efficiency” in a way, which
is:

• relevant to human perception and

• interesting and

• universal enough, but

• not too broad and which also

• enables us to make progress by devising such search procedures.

Definitions are about philosophy and aesthetics. Not just about
mathematics.

3.5 “Definitions” vs “True Statements”

You should not confuse “definitions” with “true statements”. A true
statement has all of its variables quantified (each, either by “for all”
and “there exists”). That means for it to re On the other hand, a



38 LECTURE 3. HOW TO ARGUE RIGOROUSLY?

definition has one (or more) free parameter, which is the object we
wish to define. Everything else must be quantified in a definition.

A little less precise: for example, we may have a definition of what
is a “delicious chocolate cake”. The fact that we defined “delicious
chocolate cake” does not mean that we have in our hands such a cake
(we only have its specification). Making a “delicious chocolate cake”
is different than explaining to someone when a chocolate cake can be
called “delicious”.

Finally, you cannot make a cake and then just put a label “deli-
cious chocolate cake” on your creation, unless you first clearly say
(i.e. define) what precisely “delicious chocolate cake” means.

3.6 Example: asymptotic growth of functions

We wish to define the following notion: a function that may have a
complicated form, e.g. f (n) =

√
2π
2 n2 + 1.1n1.1 log2(n) + 100n grows

“roughly no more than n2”. That is, we want to have a definition that
hides visually annoying details about the function and focuses on
what matters most.

Here is how to define it:

Definition 1. We say that f : R→ R is of order g : R→ R and we write
f (n) = O(g(n)) if
there exists n0 ∈ Z and
there exists c > 0, c ∈ R such that
for all n ≥ n0

we have f (n) ≤ c · g(n)

This is a great definition. The “trick” is that it chooses n0 and c to
suppress all lower order terms (I mean g is going to beat f from some
constant point and above) and also uses c to ignore the constant in
front of the most important term.
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How to formally argue that f (n) = O(n2)? How to show the ex-
istence of n0 and c? We show existence by constructing the object (in
fact, construct two objects: n0 and c).

Proof. One thing we know from Calculus is that if we do a mono-
tonicity study on h(n) = n2 −

(
1.1n1.1 log2(n) + 100n

)
then there is

an n0 after which h is monotonically increasing and bigger than 0
(i.e. n2 beats all the lower order terms). By studying the monotonic-
ity of h we find out that for every n ≥ 113 we have h(n) > 0.

Let us now construct n0 and c.
Choose n0 = 113.
Choose c =

√
2π
2 + 1.

Now, for all n ≥ 113 we have:
g(n) = cn2 =

√
2π
2 n2 + n2︸︷︷︸

which is ≥1.1n1.1 log2(n)+100n, for all n≥113

≥ f (n).

3.7 Example: more on the asymptotic growth of functions

We saw that f (n) =
√

2π
2 n2 + 1.1n1.1 log2(n) + 100n is “of order at

most” n2, n ∈ Z. According to our intuition, f (n) is not of order n
nor of order n1.5 etc. In symbols, we would like to show f (n) 6= O(n).

Before we formally argue about this we must first express clearly
what do we really want to show. Recall Lecture 2.

We want to show that it is NOT true that
“there exists n0 ∈ Z and
there exists c > 0, c ∈ R such that
for all n ≥ n0

we have f (n) ≤ c · n ”
Recall that NOT(∀x, P(x)) = ∃x, NOT(P(x)) and it is also true that
NOT(∃x, P(x)) = ∀x, NOT(P(x)).

Therefore, in order to show that f (n) 6= O(n) we have to show
that the negation of the definition is true, i.e. “for all n0 ∈ Z and
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for all c > 0, c ∈ R

there exists n ≥ n0

such that it is NOT true that f (n) ≤ c · n ”

Note that NOT( f (n) ≤ c · n) is the same as f (n) > c · n.
How do we always argue about “for all”? As follows:

Proof. Fix arbitrary n0 and c. It remains to prove the existence of n,
which means that we can construct it in any way we like as long as
n ≥ n0. If we choose n > c then we observe that cn < n2, and
we know that f (n) has at least one term which is bigger than n2.
Therefore, given the fixed n0 and c a good choice for n is any number
bigger than c and n0; i.e. choose any fixed n > c and n ≥ n0 and
n ≥ 0. Then, cn < n2 <

√
2π
2 n2 + 1.1n1.1 log2(n) + 100n = f (n),

which completes the argument.

Why it was not enough to say “choose n > c”? After we fix n0 and c we really
have them as concrete entities inside our proof. But we do not know
their values (as if they are inside black-boxes). To satisfy f (n) > cn
it suffices to choose n > c. But, the negation of the definition of O(·)
(note: the dot inside the parenthesis signifies its is a place holder for
any parameter) the says that n ≥ n0. It is a formality, but still, we
have to choose n ≥ n0. For example, what if the fixed n0 and c are
such that c < n0? Then, by just choosing n > c we fail to satisfy
the requirement that n ≥ n0. However, we are free to choose an n
as large as we like. Thus, if we choose n greater than the maximum
between c and n0 that simultaneously satisfies everything we had to.

3.8 Some questions on the previous examples

What would have happened if the order of quantification in the def-
inition of O(·) were different? For example, what if it were:
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... there exists n0 ∈ Z such that
for all n ≥ n0

there exists c > 0, c ∈ R

such that we have f (n) ≤ c · g(n)?
Suppose that the above modification defines when a function is
O(·) and compare this to the previous definition of O(·). Then, if f =
O(n) is it true that f = O(n)? How about the opposite? Finally, do
you think the above definition of O(·) defines anything reasonable?

3.9 Example: arguing by contradiction

Sometimes we wish to prove that a logical statement P is true and
we argue as follows: (i) assume that NOT(P) is true and then (ii)
show that we can conclude f alse, which means that our original as-
sumption was not true, i.e. (iii) conclude that NOT(NOT(P)) = P is
true.

One thing that puzzles students is “what does it mean to conclude
f alse”? It means that we can conclude e.g. (1) 0 = 1 or (2) that x > 0
and x < 0 at the same time or (3) n2 = −1 (but a square can never be
negative) or in general (4) anything that is f alse.

Here is a prototypical example.

Fact: Fix 10 real numbers a1, a2 . . . , a10 ∈ R whose sum is a1 + a2 +
· · ·+ a10 ≥ 100. Then, at least one among those numbers ai has value
at least 10.

Proof. In the contrary suppose that the following is true: NOT(there
is ai ≥ 10). In other words, for every ai we have that ai < 10. But if
for 10 numbers each is less than 10 then these numbers cannot sum
up to 100. In symbols we write: a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 +
a9 + a10 < 10 + 10 + · · ·+ 10 = 100, which contradicts the fact that
a1 + a2 + · · ·+ a10 ≥ 100. Therefore, our original assumption is false.
Hence, there exists at least one ai ≥ 10.
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As we mentioned earlier, statement, fact, claim, theorem, lemma,
proposition are all the same thing, reffering to a true statement.

3.10 Example: is the set of all integers bigger than the set of non-negative
integers?

In Section 1.3 we claimed that injective, surjective, and bijective func-
tions are helpful in order for us to determine the size of sets. As ev-
eryone understands these functions are not too useful when the sets
are of finite size, e.g. of size 1 or 11 or 42 or 874239875.

What happens if the sets have infinite size? We will see that not all
infinities are same big.

For example, let Z be the set of all integers, i.e. Z =
{. . . ,−2,−1, 0, 1, 2, . . . } and let N be the set of non-negative integers,
i.e. N = {0, 1, 2, . . . }. An injection function(one-to-one function) is a
function that preserves distinctness: it never maps distinct elements
of its domain to the same element of its codomain At a first glance,
it seems that the infinitely many elements in Z are more than the el-
ements of N. What if we manage to inject Z inside N (recall that
“inject” means without collisions)? In this sense, we will say that the
infinite size of Z is no bigger than the infinite size of N.

To do that we must show that there exists an injective function
f : Z → N. How do we always show existence? We construct the
object. This function aim Map f (1) = 1 and f (−1) = 2 and f (2) = 3
and f (−2) = 4. This does not describe the entire f so we should
generalize this rule. Let n ∈ Z. If n > 0 then f (n) = 2n− 1. If n < 0
then f (n) = 2|n|. And f (0) = 0.

The above is enough to complete the proof. But, if someone is ob-
sessed with details she may also like to argue formally that there is
no collision( ”no collision” means that no two inputs will map to the
same output.) Let us do this (although it might be a little too much
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of a detail). Suppose that there exists a value N such that f (a) = N
and f (b) = N for a 6= b. Then, we branch into cases.
Case a > 0 and b > 0: then f (a) = f (b) and by the way we con-
structed f we have 2a− 1 = 2b− 1 which means that a = b, which
contradicts that a 6= b, which means that it is true:
NOT(there exists a value N ∈ N and also there exist a, b ∈ Z such
that f (a) = N and f (b) = N and a 6= b)
, which is the same as
for every value of the function N and every a, b we have f (a) 6= N or
f (b) 6= N or a = b.
Therefore, if we have that a 6= b the above implies that f (a) 6= N or
f (b) 6= N, i.e. f (a) 6= f (b).
Similarly, we argue for all the remaining three cases and we leave
them as an exercise.

3.11 Example: the set of integers is smaller than the real numbers

The set of real numbers R is of infinite size but strictly bigger than
the infinite size set of integers Z, in the sense that there is no way to
inject R inside Z without a collision. There must have been repeated
number after the injection since the size of set R is bigger than that
of set Z. By “collision” we mean that for every injection f there will
be two distinct a 6= b ∈ R such that f (a) = f (b). Now, we prove this
fact using an advanced reasoning technique that is based on contra-
diction.

First, before we showed that Z can be injected inside N. The same
function we constructed above shows that there is no uncovered el-
ement of the N. This means that this function is a bijection. That is,
Z and N have exactly the same size. Therefore, to show that there is
no bijection between R → Z it suffices to show there is no bijection
R→N.
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Theorem: There is no f : R→ Z which is a bijection.
(or equivalently: “every function f : R→ Z is not a bijection”)

Proof. For the sake of contradiction suppose that there exists a bijec-
tion R→N which is the same as a bijection f : N→ R.

This means that we can enumerate all real numbers. f (0) =
some real number, f (1) = another real number, and so on. Now,
let us consider the real numbers in decimal notation. For example,
5331.123123 or a real number with infinitely many decimal digits
e.g.
√

2. Among all real numbers let us focus only on those with
integer part 0. For example, 0.238345 or 0.69340122 or

√
2 − 1 =

0.41421356237 . . . . Since we have a mapping from N we can list all
these numbers in order. For example, we have a program here that
construct a new real number using an interger input,

11
f7→ 0.987189729

1023 7→ 0.32190382
1024 7→ 0.10000000
1032 7→ 0.111100000

...

(In the above f it happened that from 12 to 1022 every real number, f (12), f (13), . . . , does not start with 0..

This is why there is a gap.)

We look at the above ordering (according to f we assumed it exists)
and construct a new real number X. This number has decimal part
that also starts with 0. The first decimal digit of X is different than
the decimal digit of the first number in the above order. Since the first
number that starts with 0. . . . has id 11, i.e. f (11) = 0.987189729, then
since the first decimal digit is 9 we can choose as the first decimal
digit of X a digit different than 9. For example, choose 0.
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That is, so far we have constructed X = 0.0.
The second digit is different than the second digit of the second

number in the order. Since the number is 0.32190382 we must choose
a digit different than 2. Let this be 3. That is, so far X = 0.03. Simi-
larly, for the remaining digits of X:

11 7→ 0. 9 87189729

1023 7→ 0.3 2 190382

1024 7→ 0.10 0 00000

1032 7→ 0.111 1 00000

Then, X starts with X = 0.0312 . . . .
We keep constructing a number whose i-th decimal digit is differ-

ent than the i-th decimal digit of the i-th number in our list.
The critical observation, which completes the argument, is that the

number X we are constructing is a real number. Therefore: X itself
must be somewhere in the list induced by f . But, f is a bijection, giving
each real number an integer ID. That is, there exists n ∈ N such that
f (n) = X and let this n be the N-th number in the list of reals of
the form 0.xxx. Then: the N-th number in the list (which is X) must
have its N-th digit different than itself! This is how we constructed
X. Therefore, the constructed X cannot possibly exist. What did
we use in order to construct (the non-existent X)? We only used the
assumption that there exists a bijection f (everything else is well-
defined). This implies that our single assumption about the existence
of f cannot possibly be true. Therefore, f does not exist (which is
what the statement in this theorem says).

3.12 Example: a system, which is not perfectly secure

Here is a definition of a private-key encryption system.
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Definition 2. A Private-Key Encryption system consists of three al-
gorithms (Key, Enc, Dec), which are defined to work for inputs of ev-
ery length related to the parameter n ∈ Z and n > 0. That is,
Key : {0, 1}n → {0, 1}n, Enc : {0, 1}n × {0, 1}n → {0, 1}n, and
Dec : {0, 1}n × {0, 1}n → {0, 1}n.

We think of the inputs and outputs of the above algorithms as fol-
lows. Algorithm Key takes n independent and uniform random bits
as input and outputs a key k, where k is also of length n. The al-
gorithm Enc(k, m) takes as input an n-bit long key k and an n-bit
long message m and outputs a ciphertext c also of length n. Finally,
Dec(k, c) takes as input a key k and a ciphertext c and outputs the
decryption to a message.

We have two requirements about a Private-Key Encryption sys-
tem. First to be correct and second to be secure.

Definition 3. A Private-Key Encryption system (Key, Enc, Dec), which
is defined to work for inputs of every length related to the parameter n ∈ Z

and n > 0, is correct if for every m ∈ {0, 1}n and every r ∈ {0, 1}n:

k = Key(r); c = Enc(k, m); m′ = Dec(k, c) =⇒ m = m′

Security is defined through the following security experiment.

Definition 4. The security experiment is a probabilistic game between
a Challenger and an Adversary. The Challenger is a function with
the following specified behavior, whereas the Adversary is an arbitrary
function (i.e. the definition is for all adversaries – read this as: no matter
how malicious they are).
Fix an arbitrary PriKey Encryption (Key, Enc, Dec) and fix an arbitrary
positive n ∈ Z. The Adversary chooses two messages m0, m1 ∈ {0, 1}n

and passes them to the Challenger. Then, the Challenger (without revealing
what he is doing to the Adversary) does the following:
(i) samples a uniformly random string from r ∈ {0, 1}n and generates



3.12. EXAMPLE: A SYSTEM, WHICH IS NOT PERFECTLY SECURE 47

k = Key(r);
(ii) chooses between m0 and m1 by sampling uniformly a bit b ∈ {0, 1};
(iii) encrypts c = Enc(k, mb);
and (iv) passes the ciphertext c to the Adversary.
Finally, the adversary (who originally chose herself m0, m1 and is presented
with c) guesses a b′ ∈ {0, 1}.

We say that the Adversary wins if b = b′.

We say that (Key, Enc, Dec) is secure if Pr[Adversary wins] ≤ 1
2 .

Note that in the above definition the Adversary is quantified after
the PriKey Encryption system. This order of quantification means
that m0, m1 are chosen as a function of the system the Adversary is
trying to break.

Here is a statement we wish to show true.

Lemma: Consider a Private-Key Encryption system where the encryp-
tion function ignores the key and outputs the plaintext in the ci-
phertext. That is, for every n ∈ Z+ we have that Key(r) = r,
Enc(k, m) = m, and Dec(k, c) = c for all k, m, c ∈ {0, 1}n. Then,
this (Key, Enc, Dec) is not secure.

This is an obvious statement. There is some minimal technical
work to formally argue about this. “Security” is not some abstract
notion, but rather exactly what we defined above it to be secure.

Proof. By negating the security specifications (definition) we ob-
tain: there exists n ∈ Z+ and there exists an Adversary such that
Pr[Adversary wins] > 1

2 . We show existence by constructing things.
Therefore, we have to construct an n and an Adversary. Choose
n = 1, and the Adversary chooses two single-bit messages, m0 = 0
and m1 = 1. Now, if the ciphertext the Challenger sends to the Ad-
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versary is c = 0 then the Adversary outputs b′ = 0, otherwise, it out-
puts b′ = 1. By simply inspecting the way this (Key, Enc, Dec) system
works it is immediate that the Adversary is always (with probability
100%) winning and therefore Pr[Adversary wins] = 1 > 1

2 . There-
fore, (Key, Enc, Dec) is not secure.


	Contents
	Why to read this?
	Sets, their size, operations, and mappings
	Sets and basic notation
	What can we use when we argue quantitatively?
	Mappings and functions
	Preimages, inverses, and powersets
	Sets, sizes, and restricted functions

	How to parse, interpret, and write rigorous statements?
	How to read and write rigorous statements
	In a true statement there is no such thing as a free variable
	The order of quantification: constants and dependencies
	How are things read and written in practice?

	How to argue rigorously?
	How to argue about ``for all'' and ``there exists''.
	Example: the party problem
	What do we mean by ``Statement''?
	What is a ``Definition''?
	``Definitions'' vs ``True Statements''
	Example: asymptotic growth of functions
	Example: more on the asymptotic growth of functions
	Some questions on the previous examples
	Example: arguing by contradiction
	Example: is the set of all integers bigger than the set of non-negative integers?
	Example: the set of integers is smaller than the real numbers
	Example: a system, which is not perfectly secure


