Reference monitors

Suman Jana

*QOriginal slides from Vitaly Shmatikov

* Observes execution of the program/process
— At what level? Possibilities: hardware, OS, network

* Halts or confines execution if the program is
about to violate the security policy
— What’s a “security policy” ?
— Which system events are relevant to the policy?

* |Instructions, memory accesses, system calls, network
packets...

* Cannot be circumvented by the monitored
process

Enforceable Security Policies

* Reference monitors can only enforce
safety policies (schneider ‘og]
— Execution of a process is a sequence of states

— Safety policy is a predicate on a prefix of the sequence

* Policy must depend only on the past of a particular execution;
once it becomes false, it’ s always false

* Not policies that require knowledge of the future

— “If this server accepts a SYN packet, it will eventually
send a response”

* Not policies that deal with all possible executions
— “This program should never reveal a secret”

Reference Monitor Implementation

Kernelized

Program

V1
RM

Kernel

Wrapper Modified program

RM

Program

Program

Kernel

RM
V1 /?lT
|

Integrate reference monitor into
program code during compilation or
via binary rewriting

e Policies can depend on application semantics

* Enforcement doesn’t require context switches in the kernel

* Lower performance overhead

What Makes a Process Safe?

* Memory safety: all memory accesses are
11
correct’

— Respect array bounds, don’t stomp on another
process s memory, don’t execute data as if it were
code

e Control-flow safety: all control transfers are
envisioned by the original program

— No arbitrary jumps, no calls to library routines that
the original program did not call

* Type safety: all function calls and operations
have arguments of correct type

OS as a Reference Monitor

* Collection of running processes and files
— Processes are associated with users

— Files have access control lists (ACLs) saying which
users can read/write/execute them

* OS enforces a variety of safety policies
— File accesses are checked against file’ s ACL
— Process cannot write into memory of another process

— Some operations require superuser privileges
e But may need to switch back and forth (e.g., setuid in Unix)

— Enforce CPU sharing, disk quotas, etc.
* Same policy for all processes of the same user

Hardware Mechanisms: TLB

e TLB: Translation Lookaside Buffer

— Maps virtual to physical addresses
— Located next to the cache
— Only supervisor process can manipulate TLB

e Butif OS is compromised, malicious code can abuse TLB to
make itself invisible in virtual memory (Shadow Walker)

 TLB miss raises a page fault exception
— Control is transferred to OS (in supervisor mode)

— OS brings the missing page to the memory

* This is an expensive context switch

Time

Steps in a System Call
[Morrisett]

User Process : Kernel

calls f=fopen(“foo”)

library executes “break"\L‘

saves context, flushes TLB, etc.
trap

checks UID against ACL, sets up IO
buffers & file context, pushes ptr to
context on user’ s stack, etc.

restores context, clears supervisor bit
calls fread(f,n &buf) —

library executes “break
y \ saves context, flushes TLB, etc.

checks f is a valid file context, does

disk access into IocaI buffer, copies

results into user’ s buffer, etc.
/ restores context, clears supervisor bit

Score

100

90

80

70

60

50

40

Midterm grades

Secure Software Development Midterm Scores

mean: 65.16
std_dev: 14.68
median: 61
max: 96

min: 38

25%: 55.75
75%: 77.75

30
0

10

15

20

35

Modern Hardware Meets Security

Modern hardware: large number of registers, big
memory pages

Isolation = each process should live in its own
hardware address space

... but the performance cost of inter-process
communication is increasing
— Context switches are very expensive

— Trapping into OS kernel requires flushing TLB and
cache, computing jump destination, copying memory

Conflict: isolation vs. cheap communication

Software Fault Isolation (SFI)

[Wahbe et al. SOSP ‘93]

* Processes live in the same hardware address
space; software reference monitor isolates
them

— Each process is assigned a logical “fault domain”

— Check all memory references and jumps to ensure
they don’t leave process’s domain

* Tradeoff: checking vs. communication

— Pay the cost of executing checks for each memory
write and control transfer to save the cost of

context switching when trapping into the kernel

Fault Domains

* Process’s code and data in one memory segment
— |ldentified by a unique pattern of upper bits
— Code is separate from data (heap, stack, etc.)
— Think of a fault domain as a “sandbox”

* Binary modified so that it cannot escape domain

— Addresses are masked so that all memory writes are to
addresses within the segment
e Coarse-grained memory safety (vs. array bounds checking)

— Code is inserted before each jump to ensure that the
destination is within the segment

* Does this help much against buffer overflows?

If target address can be determined statically,
mask it with the segment’s upper bits

— Crash, but won’ t stomp on another process’ s memory
If address unknown until runtime, insert checking
code before the instruction

Ensure that code can’t jump around the checks

— Target address held in a dedicated register

— Its value is changed only by inserted code, atomically,
and only with a value from the data segment

Simple SFI Example

Fault domain = from 0x1200 to Ox12FF

Original code: write x
Naive SFI: x :=x & O0FF

=~

convert x into an address that
lies within the fault domain

/_)i):: x | 1200 =
% What if the code jumps right here?

write x

Better SFI: tmp := x & OOFF
tmp :=tmp | 1200

write tmp

* Generalize SFI to more general safety policies than
just memory safety

— Policy specified in some formal language

— Policy deals with application-level concepts: access to
system resources, network events, etc.

* “No process should send to the network after reading a file”,
“No process should open more than 3 windows’, ...

* Policy checks are integrated into the binary code
— Via binary rewriting or when compiling

 |Inserted checks should be uncircumventable
— Rely on SFI for basic memory safety

Policy Specification in SASI

[Cornell project]

- (op = “div” -read -send
A arg2 =0)
read
No division by zero No network send after file read

SASI policies are finite-state automata

* Can express any safety policy

* Easy to analyze, emulate, compile

 Written in SAL language (textual version of diagrams)

* Checking before every instruction is an overkill
— Check “No division by zero” only before DIV

e SASI| uses partial evaluation
— Insert policy checks before every instruction, then rely
on static analysis to eliminate unnecessary checks
* Thereisa “semantic gap between individual
instructions and policy-level events

— Applications use abstractions such as strings, types,
files, function calls, etc.

— Reference monitor must synthesize these abstractions
from low-level assembly code

M. Abadi, M. Budiu, U. Erlingsson, J. Ligatti

Control-Flow Integrity:
Principles, Implementations, and Applications

(CCS 2005)

CFIl: Control-Flow Integrity

[Abadi et al.]

 Main idea: pre-determine control flow graph
(CFG) of an application

— Static analysis of source code
— Static binary analysis < CFl
— Execution profiling
— Explicit specification of security policy
* Execution must follow the pre-determined
control flow graph

* Use binary rewriting to instrument code with
runtime checks (similar to SFl)

* |Inserted checks ensure that the execution always
stays within the statically determined CFG
— Whenever an instruction transfers control, destination
must be valid according to the CFG

e Goal: prevent injection of arbitrary code and
invalid control transfers (e.g., return-oriented-
programming)

— Secure even if the attacker has complete control over
the thread’ s address space

CFG Example

bool 1t(int x, int y) {
return x < y;
}

bool gt(int x, int y) {
return x > y;
}

sort2(int a[], int b[], int len)

{
sort(a, len, 1t);

sort(b, len, gt);
}

gort2():

§

call sort#

call 17,RY]

label 55 W

§

call sort

/|

e
L. ret 55

‘.-
label 23'

g \

label 55 &

§

ret ..

1%

.8

1t():
y label 17

s T 23

igL

label 17

\ret 23

CFl: Control Flow Enforcement

* For each control transfer, determine statically its
nossible destination(s)

* |nsert a unique bit pattern at every destination

— Two destinations are equivalent if CFG contains edges
to each from the same source
e This is imprecise (why?)

— Use same bit pattern for equivalent destinations

* Insert binary code that at runtime will check
whether the bit pattern of the target instruction
matches the pattern of possible destinations

CFl: Example of Instrumentation

Original code

Source Destination
Opcode bytes Instructions Opcode bytes Instructions
FF El jmp ecx ; computed jump 8B 44 24 04 mov eax, [esp+éd] ; dst

Instrumented code

B8 77 56 34 12 mov__eax 345677h ; load ID-1 3E OF 18 05 ; label
40 nC¢ eax ; add 1 for ID 78 56 34 12 3 ID
38 41 04 o [ecx+4], ez ; compare w/dst 8B 44 24 04 ; dst
75 13 jne abel ; 1f V= fail
FF E1 jmp ; jump to label

Jump to the destination only if
the tag is equal to “12345678”

Abuse an x86 assembly instruction to
insert “12345678” tag into the binary

CFl: Preventing Circumvention

Unique IDs

— Bit patterns chosen as destination IDs must not appear
anywhere else in the code memory except ID checks

Non-writable code

— Program should not modify code memory at runtime
* What about run-time code generation and self-modification?

Non-executable data
— Program should not execute data as if it were code
Enforcement: hardware support + prohibit system

calls that change protection state + verification at
load-time

Improving CFl Precision

e Suppose a call from A goes to C, and a call from B
goes to either C, or D (when can this happen?)

— CFI will use the same tag for C and D, but this allows an
“invalid” call from Ato D

— Possible solution: duplicate code or inline
— Possible solution: multiple tags

 Function F is called first from A, then from B;
what’s a valid destination for its return?

— CFI will use the same tag for both call sites, but this
allows F to return to B after being called from A

— Solution: shadow call stack

» Effective against attacks based on illegitimate
control-flow transfer

— Stack-based buffer overflow, return-to-libc
exploits, pointer subterfuge

* Does not protect against attacks that do not
violate the program’ s original CFG
— Incorrect arguments to system calls
— Substitution of file names
— Other data-only attacks

Possible Execution of Memorv

[Erlingsson]

Possible control

fiow destination Possible Execution of Memory
D Safe code/data

Data memory {

Code memory
for function A

for function B

Code memory {

| | |
x86 x86/MNX RISC/NX Xx86/CFI

[Erlingsson et al. OSDI ‘06]

Inline reference monitor added via binary
rewriting
— Can be applied to some legacy code

CFl to prevent circumvention

Fine-grained access control policies for
memory regions

— More than simple memory safety (cf. SFl)

Relies in part on load-time verification

— Similar to “proof-carrying code”

XFI maintains a separate “scoped stack” with
return addresses and some local variables

— Keeps track of function calls, returns and exceptions

Secure storage area for function-local information

— Cannot be overflown, accessed via a computed
reference or pointer, etc.

— Stack integrity ensured by software guards

— Presence of guards is determined by static verification
when program is loaded

Separate “allocation stack” for arrays and local
variables whose address can be passed around

XFI: Memory Access Control

 Module has access to its own memory
— With restrictions (e.g., shouldn’t be able to corrupt its
own scoped stack)
* Host can also grant access to other contiguous
memory regions
— Fine-grained: can restrict access to a single byte

— Access to constant addresses and scoped stack verified
statically

— Inline memory guards verify other accesses at runtime

e Fast inline verification for a certain address range; if fails, call
special routines that check access control data structures

XFl: Preventing Circumvention

* |Integrity of the XFIl protection environment
— Basic control-flow integrity

— “Scoped stack” prevents out-of-order execution
paths even if they match control-flow graph

— Dangerous instructions are never executed or their
execution is restricted
* For example, privileged instructions that change
protection state, modify x86 flags, etc.

* Therefore, XFI modules can even run in kernel

