
Encrypted Key Exchange:
Password-Based Protocols

Secure Against Dictionary Attacks

Steven M. Bellovin Michael Merritt

AT&T Bell Laboratories AT&T Bell Laboratories
Murray Hill, NJ 07974 Murray Hill, NJ 07974
smb@ulysses.att.com mischu@research.att.com

Abstract

Classical cryptographic protocols based on user-
chosen keys allow an attacker to mount password-
guessing attacks. We introduce a novel combination
of asymmetric (public-key) and symmetric (secret-key)
cryptography that allow two parties sharing a common
password to exchange confidential and authenticated
information over an insecure network. These proto-
cols are secure against active attacks, and have the
property that the password is protected against off-line
“dictionary” attacks. There are a number of other
useful applications as well, including secure public tele-
phones.

1 Introduction

People pick bad passwords, and either forget, write
down, or resent good ones. We present a protocol
that affords a reasonable level of security, even if re-
sources are protected by bad passwords. Using a novel
combination of asymmetric (public-key) and symmet-
ric (secret-key) cryptography — a secret key is used
to encrypt a randomly-generated public key — two
parties sharing a secret such as a password use it to
exchange authenticated and secret information, such
as a session key or a “ticket” for other services, a là
Kerberos [1]. This protocol, known as encrypted key
exchange, or EKE, protects the password from off-line
“dictionary” attacks.

EKE can be used with a variety of asymmetric cryp-
tosystems and public key distribution systems, subject

Proceedings of the IEEE Symposium on Research in
Security and Privacy, Oakland, May 1992.

to a few constraints detailed below. It works espe-
cially well with exponential key exchange [2]. Section
2 describes the asymmetric cryptosystem variant and
implementations using RSA[3] and ElGamal[4]. Each
of those two systems presents unique problems. Sec-
tion 3 generalizes EKE, and shows how most public
key distribution systems can be used. Section 4 con-
siders general issues related to the choice and use of
symmetric and asymmetric cryptosystems in EKE. Fi-
nally, in Section 5, we describe applications for EKE,
and discuss related work in Section 6.

1.1 Notation

Our notation is shown in Table 1. To avoid confu-
sion, we use the word “symmetric” to denote a con-
ventional cryptosystem; it uses secret keys. A public-
key, or asymmetric, cryptosystem has public encryp-
tion keys and private decryption keys.

1.2 Classical key negotiation

Suppose A (Alice) and B (Bob) share a secret, the
password P . In order to establish a secure session key,
A could generate a random key R, encrypt it with
P as key and send the result, P (R), to B. (This is
essentially the mechanism used to obtain the initial
ticket in the Kerberos authentication system [1].) Now
A and B share R and can use it as a session key;
perhaps B replies to A with

R(Terminal type :)

But an eavesdropper could record these messages, and
run a dictionary attack against P by first decrypting
P (R) with candidate password P ′, and then using the
resultant candidate session key

R′ = P ′−1(P (R))



Table 1: Notation

A,B System principals. (Alice and Bob).
P The password: a shared secret, often used as a key.
R,S Random secret keys (for symmetric cryptosystems).
R(info) Symmetric (secret-key) encryption of “info” with key R.
R−1(info) Symmetric (secret-key) decryption of “info” with key R.
Ek(X) Asymmetric (public-key) encryption of X with (public) key Ek.
Dk(X) Asymmetric (public-key) decryption of X with (private) key Dk.
challengeA A random challenge generated by A.
challengeB A random challenge generated by B.
p, q Prime numbers.

to decrypt R(Terminal type :), examining the result
for expected redundancy.

The simple protocol above has other flaws, particu-
larly against replay attacks, but illustrates a weakness
common to all classical two-party key exchange pro-
tocols: the enduring cryptographic secrets are suscep-
tible to off-line, brute-force attacks. This may be fine
when these secrets are long random strings, but poses
considerable difficulty when the secrets are passwords
chosen by naive users [5, 6, 7, 8].

2 EKE using public keys

Consider instead the following simple message ex-
change:

1. A generates a random public key/private key pair,
EA and DA, and encrypts the public key in a sym-
metric cryptosystem with password P , yielding
P (EA).

A sends

P (EA) (EKE.1)

to B. (We will defer until later a discussion of
how EA and DA are generated, and exactly what
role P plays.)

2. Sharing the password P , B decrypts to obtain
P−1(P (EA)) = EA, generates a random secret
key R, and encrypts it in the asymmetric cryp-
tosystem with key EA to produce EA(R). This
value is further encrypted with P .

B sends

P (EA(R)) (EKE.2)

to A.

3. A, knowing P and DA, uses them to calculate
DA(P−1(P (EA(R)))) = R.

After this exchange, A and B both know EA

and R. The latter can be used to protect the
session: B could send R(Terminal type :) to A.
Consider, however, the position of an eavesdropper
in this context. Knowing P (EA), P (EA(R)), and
R(Terminal type :), a candidate password P ′ can
be used to decrypt P (EA) to produce a candidate
public key EA′ = P ′−1(P (EA)). But determin-
ing whether EA′ is the public key used in the ex-
change amounts to determining whether there exists
a secret key R′ such that EA′(R′) = EA(R) and
R′−1(R(Terminal type :)) makes sense. This quan-
tification is the key property of the exchange: a can-
didate password P ′ cannot be rejected without doing
a brute-force attack on R.1 Since EA and R are ran-
domly generated over (presumably) large key spaces,
such attacks are expensive, even if the space of pass-
words is small. So far as naive (non-cryptanalytic) off-
line attacks are concerned, the relatively small space
from which P is chosen has been effectively multiplied
by the size of the keyspace from which R is obtained.

Another way to look at it is to examine the results
of a trial decryption EA′ = P ′−1(P (EA)). Is this a
comprehensible quantity? If EA is indeed random —
a question to which we shall return later — there is no
way to tell if P ′ is correct without cracking EA. And,
since EA is chosen from a much larger key space than
is P , cracking it is much more difficult.

1This discussion presumes the eavesdropper uses only non-
cryptanalytic attacks.



2.1 A complete protocol

Real protocols are not as simple as the basic con-
cepts outlined above. For example, an important con-
cern is the possibility of replay attacks. That is, an
attacker with control of the communications channel
may insert old, stale messages. Protocols must in-
corporate safeguards, typically in the form of random
challenges. Let us consider a full-blown version.

1. A generates a random public key EA and encrypts
it in a symmetric cryptosystem with key P to
produce P (EA).

A sends

A,P (EA) (RPK.1)

to B. This message includes her name in the clear.

2. Sharing the password P , B decrypts to obtain
EA, generates a random secret key R, and en-
crypts it in both the asymmetric cryptosystem
with key EA and in the password key to produce
P (EA(R)).

B sends

P (EA(R)) (RPK.2)

to A.

3. A decrypts the message to obtain R, generates a
unique challenge challengeA and encrypts it with
R to produce R(challengeA).

A sends

R(challengeA) (RPK.3)

to B.

4. B decrypts the message to obtain challengeA,
generates a unique challenge challengeB , and en-
crypts the two challenges with the secret key R
to obtain R(challengeA, challengeB).

B sends

R(challengeA, challengeB) (RPK.4)

to A.

5. A decrypts to obtain challengeA and challengeB ,
and compares the former against her earlier chal-
lenge. If it matches, she encrypts challengeB with
R to obtain R(challengeB).

A sends

R(challengeB) (RPK.5)

to B.

6. If the challenge-response protocol in steps RPK.1-
RPK.5 is successful, login is successful and the
parties proceed with the login session, using the
symmetric cryptosystem and session key R for
protection.

The challenge-response portion of the protocol, in
steps 3–5, is a standard technique for validating cryp-
tographic keys. (If a party sends challenge c encrypted
by R, where c was never used before, and receives
another encrypted message containing c in reply, it
follows that the message originator has the ability to
encrypt messages with R.) This portion of the pro-
tocol could be replaced by other mechanisms for vali-
dating R. For example, the time could be exchanged
encrypted by R, under the security-critical assump-
tion that clocks are monotonic and synchronized, as
in Kerberos [1].

2.2 When to encrypt with the password

In the protocol presented above, the password was
used for encryption twice, in messages RPK.1 and
RPK.2. Often, one of those two encryptions may be
omitted. Which one can be skipped will vary, depend-
ing on the particular asymmetric cryptosystem chosen.

The most obvious constraint is that the message
to be encrypted by the password must be indistin-
guishable from a random number. If, for example,
some cryptosystem required the use of prime numbers
as public keys, it would not be possible to encrypt
message RPK.1: an attacker would find it trivial to
validate a guess at P by testing the resulting decryp-
tion for primality. Similarly, if an encrypted message
always had some particular characteristics, message
RPK.2 could not be the one encrypted. We will see
this point illustrated with RSA. Other considerations
may apply as well; an example is presented in Section
2.4.

The choice of which message to encrypt also has
some subtle implications for the detailed protocol de-
sign. Specifically, the party that transmits in the
clear cannot be allowed to generate the first chal-
lenge. Otherwise, an attacker can receive a known
quantity — the challenge — encrypted with a value
derivable solely from the user’s password and infor-
mation known to the attacker. Put another way, each
party must be forced to demonstrate knowledge of P ,
either by encrypting a message to be read by the other
side, or by responding to a challenge.



2.3 Implementing EKE using RSA

Actually implementing EKE can be somewhat
trickier than it appears at first glance. We will use
RSA[3] to illustrate the difficulties. Elaboration of
some of the subtler points, though, is deferred until
Section 2.5.

The public key EA for the RSA cryptosystem con-
sists of a pair of large natural numbers (e, n), where
n is the product of two large primes p and q, and e is
relatively prime to

ϕ(n) = ϕ(p)ϕ(q) = (p− 1)(q − 1).

The private decryption key d is calculated such that

ed ≡ 1 (mod (p− 1)(q − 1)). (1)

A message m is encrypted by calculating

c ≡ me (mod n);

the ciphertext c is decrypted by

m ≡ cd (mod n).

It is not clear how to encode efficiently a pair<e, n>
so that it is indistinguishable from a random string;
an intruder could easily verify that most possible val-
ues of n′ have small prime factors, and hence were not
correct. Without such an encoding, we must encrypt
only e. It is encoded by beginning with the binary
encoding of e, and adding 1 with probability 1/2; the
addition is done because all possible values of e are
odd. Additionally, some mechanism must be provided
to bring the length of this encoding to a block bound-
ary for the symmetric cipher.

Can such a random odd number less than a known
n be distinguished from a valid public key e? Assume
that p and q are chosen to be of the form 2p′ + 1
and 2q′ + 1, where p′ and q′ are primes, a choice that
is recommended for other reasons [9]. Then an over-
whelming majority of the odd integers (mod n) will
be relatively prime to (p−1)(q−1) = 4p′q′, and hence
will be valid candidate public keys e. Consequently, a
dictionary attack on P (e) will provide extremely little
information about P . 2

The fact that n is sent in the clear introduces some
complexity to the analysis of the protocol. In par-
ticular, an adversary could substitute another num-
ber, n′, for n in the first message, so that B receives

2In [3], the authors suggest satisfying equation (1) by choos-
ing e to be a prime greater than max(p, q). Clearly, we cannot
follow that advice here.

<P (e), n′>. The resulting message from B will be of
the form

(R, challengeB)e (mod n′).

Now, from a candidate password P ′ the adversary can
compute

e′ = P ′−1(P (e)).

Assuming the adversary knows the factorization of n′,
the corresponding private key d′ is easily computed
and can be used to decrypt

(R, challengeB)e (mod n′),

obtaining

(R, challengeB)ed
′

(mod n′).

If e 6= e′, this is a random number, but so is
(R, challengeB). So a dictionary attack is of no help
at this point, and the adversary must still deliver a
message of the form

R(challengeA, challengeB),

but knows neither challengeB nor R. Unable to do so,
the attack stops at this point and (time-out) alarms
will ring at both A and B.

One more aspect of sending n in the clear is worth
noting: it exposes the user to the risk of cryptanalysis.
More precisely, if n is available to the attacker, it could
be factored; that in turn would disclose R and expose
P to attack. Without knowing n, an enemy cryptan-
alyst would be reduced to solving a system where the
only plaintext was random. That task is essentially
impossible.

Given the difficulty of encoding and encrypting the
public key, it is tempting to suggest that it be sent in
the clear, and that only the second message (RPK.2)
be protected by P . However, that variant is sus-
pectible to attack with RSA.

Let the enemy impersonate A. That person would
then select p and q, and hence e and n. If e is chosen
so that it does not satisfy equation (1), the space of
encryptions collapses. That is, the possible values of

EA(R) = Re (mod n)

(the e-residues (mod n)) are a fraction of the interval
[0, n − 1]. An attack on EKE can be launched if the
enemy can determine if a trial decryption

P ′−1(P (EA(R)))

produces an e-residue. Such determinations may be
feasible.



Defending against this attack would require that B
be able to detect fraudulent values of e. However, he
does not know the factorization of n, and hence does
not know ϕ(n); without such knowledge, it does not
appear to be practical to validate e directly. One ap-
proach (suggested to us by Joan Feigenbaum) is to
have B verify e interactively, by asking A to decrypt a
number of random messages encrypted by e. That is,
B generates a random r, sends re to A, and expects
r as the reply. Since re is only invertible when e is
relatively prime to ϕ(n), correct replies to a number
of such random challenges shows that e has the proper
form. This variant is expensive in messages, encryp-
tions and decryptions, and of course, must be shown
to be immune to attack by B.3

2.4 Using the ElGamal asymmetric cryp-
tosystem

The ElGamal cryptosystem[4] can also be used with
EKE. Encryption with ElGamal has some interesting
properties; these make its mode of employment rather
different. In particular, under certain circumstances
we must encrypt the second message, rather than the
first.

ElGamal’s algorithm is derived from the Diffie-
Hellman exponential key exchange protocol[2]; accord-
ingly, we will review the latter first. Briefly, A and
B each pick random exponents RA and RB . Assum-
ing they agree on a common base α and modulus
β, A computes YA ≡ (αRA (mod β)) and B com-
putes YB ≡ (αRB (mod β)). Both of these quanti-
ties are transmitted in the clear. A, knowing RA and
αRB (mod β), can compute

(αRB )RA (mod β) ≡ αRBRA (mod β)

Similarly, B can compute

(αRA)RB (mod β) ≡ αRARB (mod β)

This quantity is used as the key. An intruder, knowing
only αRA (mod β) and αRB (mod β), cannot perform
the same calculation; no better solution is known than
computing discrete logarithms in the field GF (β), a
problem that is believed to be hard for suitable values
of β.

3Note that B — or an intruder —could as easily send any
message m in place of re, obtaining md in reply. This is the sig-
nature ofm by A, using the public/private key pair (e, d). While
apparently not a problem with this variant of EKE using RSA,
this is an example of how a slight change in a cryptographic
protocol may have profound and unforeseen implications for the
security of that protocol.

To convert this into an asymmetric encryption sys-
tem, let the simple exponential

YX ≡ αRX (mod β)

be the public key for X. To send a message m to
B, A picks a random number k uniformly distributed
between 0 and β − 1. Then she computes

c1 ≡ αk (mod β)

and

c2 ≡ m(YB)k (mod β)

≡ m(αRB )k (mod β)

≡ mαRBk (mod β).

The encrypted message consists of the pair <c1, c2>.
Bob, knowing RB , can decrypt the message by first

calculating

K ≡ c1
RB (mod β)

≡ αRBk (mod β).

He can then divide c2 by K, yielding m.
Assuming that proper values are chosen for α and

β (see Section 3.2), the important quantities in this
cryptosystem fit nicely into the EKE scheme. The gen-
erated public key αRA is uniformly distributed in the
interval [0, β− 1]; thus, no information is leaked when
it is encrypted. The components of the encrypted mes-
sage c1 and c2 are similarly distributed. Thus, message
RPK.1 becomes

P (αRA (mod β)),

while message RPK.2 becomes

P (αk (mod β), RαRAk (mod β)).

At first glance, it appears that either encryption
with P may be omitted. Depending on the exact for-
mat of the challenge/response messages, though, an
attack may be possible if message RPK.2 is sent in
the clear. Consider the following scenario, where a
type code is used for the challenge/response messages
as per Section 4.1. Alice sends Bob an encrypted
public key:

P (αRA (mod β)). (XEG.1)

The enemy intercepts this message. Without knowing
P , it is not possible to decrypt the first message, so
it is not possible to compute (αRA)k. Accordingly, a
random quantity X is substituted. It is possible to
assign

c1 ≡ αk (mod β).



Message RPK.2 thus becomes

αk (mod β), RX (mod β). (XEG.2)

Alice, unaware of the imposture, computes

K ≡ αRAk (mod β)

and hence

R′ ≡ RX

αRAk
(mod β).

This value R′ is used to encrypt the first challenge
message:

R′(challengeA). (XEG.3)

Now, the attacker cannot calculate R′ directly. But
any guess at P yields a candidate value for αRA , and
hence a candidate R′. If message XEG.3 contains any
redundancy — i.e., if the challenge is typed, or if there
is a checksum — a trial decryption using R′ can be
validated. And that in turn permits the enemy to
validate guesses at P .

The attack we have just given does not succeed
against RSA; it is instructive to analyze what the dif-
ference is. Intuitively, the problem with ElGamal is
that the sender of a message has enough information
to decrypt it again without knowing the recipient’s
private key. The random variable k is an additional
secret; one who knows it, along with the recipient’s
public key, can decrypt the message.

More formally, let K be the space of all encryption
keys, K−1 the space of decryption keys, M the space
of plaintext messages, and C the space of ciphertext
messages. For RSA, there exist two functions, E and
D:

E : K ×M→ C
D : K−1 × C →M

such that D is the inverse of E.

With ElGamal, there is an additional parameter,
k ∈ S, the “secret space”, and an additional decryp-
tion function D′:

D′ : (K × S)× C →M.

It is the existence of D′, a second inverse function
computable by the attacker, that forces us to encrypt
at least message RPK.2. We call a cryptosystem with
such a second inverse a disclosing encryption system.

2.5 Security considerations

2.5.1 Partition attacks

We have stated that the encryptions using P must leak
no information. This is often quite difficult, simply be-
cause of the numerical properties of the cryptosystems
used. For example, we noted that public keys in RSA
are always odd; if no special precautions are taken, an
attacker could rule out half of the candidate values P ′

if P ′−1(P (e)) were an even number. At first blush,
this is an unimportant reduction in the key space; in
fact, if left uncorrected, it can be a fatal flaw.

Recall that each session will use a different public
key, independent of all others previously used. Thus,
trial decryptions resulting in illegal values of e′ will
exclude different values of P ′ each time. Put another
way, each session will partition the remaining candi-
date key space into two approximately-equal halves.
The decrease in the keyspace is logarithmic; compara-
tively few intercepted conversations will suffice to re-
ject all invalid guesses at P . We call this attack a
partition attack.

For some cryptosystems, one may choose to accept
a minimal partition. Consider a situation where one
must encrypt, with P , integers modulo some known
prime p. Clearly, if n bits are needed to encode p, trial
decryptions yielding values in the range [p, 2n−1] can
be used to partition the password space. However,
if p is very close to 2n, perhaps even 2n − 1, very
few candidates are excluded. Conversely, values of p
near 2n−1 are quite bad. For any value of p, it is
obviously possible to calculate how many interceptions
are necessary to analyze any given size password space.

Another area of possible exposure comes from try-
ing to encrypt a given number with a cryptosystem
that demands a larger blocksize. The straight-forward
way to do this — inserting high-order zero bits —
poses an obvious risk. Instead, those bits should be
filled with random data.

Often, we can solve both problems in one opera-
tion. Again, let assume that one is encrypting inte-
gers modulo p. Further assume that the desired input
encryption block size is m bits where 2m > p. Let

x =

⌊
2m

p

⌋
.

The value x is the number of times our legal interval
fits into the encryption block size. We can thus choose
a random value j ∈ [0, x− 1] and add jp to the input
value using non-modulo arithmetic. (If the input value
is less than 2m − xp, use the interval [0, x] instead.)



The recipient, knowing the modulus, can easily reduce
the decrypted value to the proper range.

2.5.2 Tacit assumptions

The security of EKE rests on several assumptions.
The most obvious is that the symmetric and asym-
metric cryptosystems must not leak any useful infor-
mation.

This somewhat vague condition may be understood
more fully in the context of the particular protocol.
Clearly, encryption of a random secret key R by ran-
dom public key EA must leak no useful information
about either EA or R.

But consider an attack on A in which message X
is sent to A in step 2, where X may or may not be a
message of the form EA(R, challengeB) obtained from
B. Let D1(X) denote the first part of the decryption
of X, interpreted by A as a key, and D2(X) the second
part of the decryption of X, interpreted by A as a
challenge. Then A will respond with

(D1(X))(challengeA, D2(X)),

and expect a message of the form

(D1(X))(challengeA)

in reply. Unless X is in fact EA(R, challengeB) and

(D1(X))(challengeA) = R(challengeA)

was obtained from B, the adversary should neither be
able to produce a message of the form

(D1(X))(challengeA)

nor to obtain any useful information about EA or R.
The adversary has messages P (EA), X, and

(D1(X))(challengeA) to work with in mounting such
an attack. We will permit the adversary to con-
sider the dictionary of all possible P ’s exhaustively in
mounting this attack. This means in particular that
for all (or an overwhelming majority) of the dictionary
entries P ′, P ′−1(P (EA)) must be (or appear to be) a
valid public key.

A similar analysis, considering possible attacks on
B, shows that an adversary should not be able to pro-
duce a message of the form

R(challengeA, challengeB)

from messages X, and P−1(X)(R, challengeB), unless
X is obtained from A and is of the form P (EA).

2.5.3 Strengthening EKE against cryptana-
lytic attacks

Suppose that a cryptanalyst has recovered some ses-
sion key R. This provides a hook for attacks on P . A
direct cryptanalytic attack on EA could be attempted;
alternatively, knowledge of R can be used to validate
guesses P ′ at P . That is, we can test whether EA(R),
which is transmitted, matches (P ′−1(P (EA)))(R). A
minor variation in the protocol can prevent this.

During the challenge/response dialog, let A and B
generate random subkeys SA and SB . These are trans-
mitted encrypted by R. Message (RPK.3) then be-
comes

R(challengeA, SA),

while message (RPK.4) becomes

R(challengeA, challengeB , SB).

The two parties then calculate a true session key
S = f(SA, SB) for some suitable function f . This key
is used for all subsequent exchanges; R is reduced to
the role of of a key exchange key.

Observe how this protects us. A recovered value of
S tells us nothing about P , because P is never used
to encrypt anything that leads directly to S. Nor is a
cryptanalytic attack on R feasible; R is used only to
encrypt random data, and the one hint — S — never
appears in any message.

Conceivably, a sophisticated cryptanalyst might be
able to use the presence of challenges and responses
in different messages to attack R. This seems un-
likely; however, if it is of concern, we can modify the
responses to contain a one-way function of the chal-
lenges, rather than the challenges themselves. Thus,
message (RPK.4) would become

R(g(challengeA), challengeB , SA).

A similar change would be made to message (RPK.5).

3 EKE using exponential key exchange

The use given above for asymmetric encryption —
simply using it to pass a key for a symmetric en-
cryption system — is an example of what Diffie and
Hellman[2] call a public key distribution system. In the
same publication, they describe the use of exponential
key exchange as a public key distribution system. It is
in some sense a weaker paradigm than asymmetric en-
cryption; exponential key exchange does not provide
authentication. Furthermore, it is vulnerable to active



wiretaps and “man in the middle” attacks [10]. How-
ever, by encrypting the transmitted quantities with a
secret key P , we can solve both of these problems.

1. As before, A calculates αRA (mod β), but trans-
mits

A,P (αRA (mod β)) (DH.1)

Since RA is random, αRA (mod β) is random;
hence guesses at P yield no information.

2. Similarly, B transmits

P (αRB (mod β)) (DH.2)

3. Both sides, knowing P , can retrieve the exponen-
tials, and calculate the session key. An intruder
cannot, and hence cannot sit in the middle. Nor
are attempts to guess P off-line useful; even a
successful guess will yield only αRA (mod β) and
αRB (mod β), which by our assumptions provide
no useful information about the session key.

3.1 A complete protocol

Using EKE with exponential key exchange is quite
similar to using it with any conventional asymmetric
cryptosystem. However, since the key exchange pro-
cess in itself produces a random session key, no sep-
arate transmission of R is needed. Without further
ado, we present the protocol.

1. A picks a random number RA and calculates
P (αRA (mod β)).

A sends

A,P (αRA (mod β)) (RDH.1)

to B; note that her name is sent in the clear.

2. B picks a random number RB and calculates
αRB (mod β). B also uses the shared password
P to decrypt P (αRA (mod β)), and calculates

(αRARB ) (mod β).

The session key K is derived from this value, per-
haps by selecting certain bits. Finally, a random
challenge challengeB is generated.

B transmits

P (αRB (mod β)),K(challengeB). (RDH.2)

3. A uses P to decrypt P (αRB (mod β)). From this,
K is calculated; it in turn is used to decrypt
K(challengeB). A then generates her own ran-
dom challenge challengeA.

A sends

K(challengeA, challengeB). (RDH.3)

4. B decrypts K(challengeA, challengeB), and ver-
ifies that challengeB was echoed correctly.

B sends

K(challengeA). (RDH.4)

5. A decrypts to obtain challengeA, and verifies that
it matches the original.

As before, it is possible to omit encryption of one of
the exponentials. For example, in the protocol shown
above, message (RDH.1) could be replaced by

A,αRA (mod β).

An attacker will not be able to decode the response
from B, and hence will gain no information. Nor
will an active attack succeed, substituting a new value
for A’s exponential; the enemy cannot respond to the
challenge in message (RDH.2) without knowing the
true value of RA.

A caveat should be mentioned. If the attacker can
select 0 as an exponent, causing

αRARB (mod β) ≡ 1.

This gives away K, and permits imposture. Fortu-
nately, this attack is easily detected; however, we do
not know if other special exponents exist.

3.2 Choosing α and β

Thus far, we have said nothing about how to choose
α and β, either for exponential key exchange or for
ElGamal. There are a variety of possibilities, offering
a range of tradeoffs between cost and security.

Although there are a number of possible choices for
the modulus, fairly large prime values of β are more
secure [11]. Furthermore, it is desirable that α be a
primitive root of the field GF (β). If we choose β such
that

β = 2p+ 1



for some prime p, there are (β − 1)/2 = p such val-
ues; hence, they are easy to find. We assume those
restrictions in the discussion that follows.

Our basic problem, when deciding how A and B
know which values of α and β to use, is to avoid leaking
information. As noted, we obviously cannot transmit
P (β); testing a random value for primality is too easy.
One good choice for EKE is to make α and β fixed and
public. There is thus no risk of information leakage or
partition attacks. The disadvantage is that implemen-
tations become less flexible, as all parties must agree
on such values. Furthermore, to maintain security, β
must be quite large, which in turn makes the expo-
nentiation operations expensive.

Some compromise in the length of the modu-
lus is possible, however. Though LaMacchia and
Odlyzko[12] suggest 1000-bit values, they are assum-
ing that the exponentials are available to the attacker.
With EKE, the password P is used to superencrypt
such values; it is not possible to essay a discrete log-
arithm calculation except for all possible guesses of
P . Our goal is thus to select a size for β sufficient to
make guessing attacks far too expensive. Using 200
bits, for which discrete logarithm solutions are esti-
mated to take several minutes (after modulus-specific
preprocessing), could suffice.

Another consideration inclines one towards larger
moduli, however. If the user’s password is ever com-
promised, recorded exponentials will be available to
the attacker; these, if solved, will permit reading of
old conversations. If a large modulus value is used, all
such conversations will remain secure.

Size requirements for β are derived from a desire
to prevent calculations of discrete logarithms in the
field GF (β). The current best algorithms for such
calculations all require large amounts of precalcula-
tion. If a different β is used each time, an attacker
cannot build tables in advance; thus, a much smaller,
and hence cheaper, modulus can be used. Therefore,
we suggest that A generate random values of β and
α, and transmit them in cleartext during the initial
exchange. There is little security risk associated with
an attacker knowing these values; the only problem
would be with cut-and-paste attacks. And even this
risk is minimal if B performs certain checks to guard
against easily-solvable choices: that β is indeed prime,
that it is large enough (and hence not susceptible to
precalculation of tables), that β − 1 have at least one
large prime factor (to guard against Pohlig and Hell-
man’s algorithm[13]), and that α is a primitive root
of GF (β). The latter two conditions are related; we
must know the factorization of β − 1 in order to vali-

date α. Requiring that β be of the form kp+ 1, where
p is prime and k a very small integer, solves both prob-
lems.

Recent results[14] do suggest that it may be possi-
ble to choose a β that contains a hidden trap door. At
the moment, this attack does not seem to be practical.
If that should change, other choices would, of course,
be preferable.

Thus far, we have said nothing about choosing α.
But if a suitable value of β is chosen, finding primitive
roots is very easy. There is no reason not to examine
the integers starting with 2; the density of primitive
roots guarantees that one will be found quite quickly.

4 The encryption layers

4.1 Selecting symmetric cryptosystems

Symmetric encryption is used in three places with
EKE: to encrypt the initial asymmetric key exchange,
to trade challenges and responses, and to protect the
ensuing application session. Each of these has different
requirements, though in general the same cryptosys-
tem can be used.

In the initial exchange, there are severe constraints
on the plaintext encrypted. Fairly obviously, the mes-
sages must not use ASN.1 [15, 16] or any other form of
tagged data representation; if they did, the sanity of
the decrypted tags could be used to validate a guess
at P .

More subtly, the original plaintext message can-
not contain any non-random padding to match the
encryption blocksize, nor can it contain any form of
error-detecting checksum [17]. Otherwise, an attacker
could use these indicators when guessing at P . Protec-
tion against communications errors must be provided
by lower-layer protocols. While one normally employs
cipher block chaining or some similar scheme to tie to-
gether multiple blocks, such mechanisms are not par-
ticularly important here; the bits being transmitted
are random, and cannot profitably be manipulated by
an attacker. The challenge/response protocol provides
the necessary defense against such manipulation of the
messages.

Curiously enough, the encryption algorithm may
be quite weak; even as simple an operation as XOR-
ing the password with the public key will suffice. The
reasons are simple. Anything that obscures the public
key will provide the necessary level of authentication.
And, since the key being sent is random, it provides
the necessary level of concealment of the password.



There is, however, a significant disadvantage to us-
ing such a simple scheme. If the public key, random
and transient though it may be, should ever be dis-
closed, the intruder will instantly know the password.
Consequently, we recommend using a stronger encryp-
tion algorithm.

Similarly, the challenge/response messages do not
need to be protected by a strong cipher system. How-
ever, we have tacitly assumed that it is not feasible
for an attacker to perform useful cut-and-paste op-
erations on encrypted messages. For example, when
we say that A sends R(challengeA, challengeB) to B,
and thatB replies withR(challengeA), one might con-
clude that the attacker could snip out R(challengeA)
from the first message, and simply echo it in the sec-
ond. This must be prevented, of course. Thus, if nec-
essary in the particular cryptosystem being used, stan-
dard techniques such as cipher block chaining should
be employed. Alternatively, A and B could use R
to derive distinct subkeys RA and RB , each used in
only one direction. Other possibilities include employ-
ing message typing or adding message authentication
codes; however, these may introduce redundancy un-
desirable in the face of a cryptanalytic attack. (Note
also the potential problems when using typed mes-
sages with disclosing encryption systems.) In such sit-
uations, the one-way functions mentioned in Section
2.5.3 may be preferable.

Finally, the use of R in the ensuing login session
must not reveal useful information about R. If the
system is cryptanalyzed and R is recovered, the at-
tacker can then mount a password-guessing attack on
the EKE exchange. Furthermore, since this protocol
is being suggested for protecting arbitrary sessions be-
tween parties, it is best to be cautious, and examine
the particular symmetric system under the assump-
tion that the adversary may mount chosen-ciphertext
attacks against the session. If there is any doubt, the
separate key exchange key should be used.

4.2 Selecting an asymmetric cryptosys-
tem

In principle, EKE can be used with any asymmetric
cryptosystem. In reality, some systems may be ruled
out on practical grounds. For example, a system that
used many large primes would be infeasible. RSA re-
quires at least two such primes; dynamic key genera-
tion might be too expensive on today’s hardware.

A second consideration is whether or not a particu-
lar system’s public keys can be encoded as a random-
seeming bit string. We have already seen how this can

be an issue for RSA; conceivably, asymmetric systems
exist for which there is no easy solution.

It is tempting to finesse the issue by instead trans-
mitting the seed of the random number generator used
to produce the public key. Unfortunately, that does
not work. Apart from the expense involved — both
sides would have to go through the time-consuming
process of generating the keys — the random seed will
yield both the public and private keys. And that in
turn would allow an attacker to validate a candidate
password by retrieving the session key.

The same option does work with exponential key
exchange. Since the prime modulus may be public
anyway, there is nothing to be concealed. Unfortu-
nately, it requires both parties to go through the ex-
pense of generating large prime numbers, albeit while
saving on the size modulus required. The tradeoff may
be worth reconsidering if very fast solutions to the dis-
crete logarithm problem are found.

Regardless, we do recommend careful analysis of
whichever asymmetric encryption system is chosen.
The constraint we impose — that encryption of a ran-
dom quantity not leak information — is rather dif-
ferent than has been required in the past. Put an-
other way, the questions we are asking have not been
asked in the past; hence, the answers are not readily
available. For example, we are unaware of any other
discussion of disclosing encryption systems. Addition-
ally, it is entirely possible that number-theoretic at-
tacks would succeed against particular cryptosystems
when used with EKE, even if they are secure for other
applications.

One last caveat should be mentioned. It is vi-
tal that the symmetric and asymmetric cryptosystems
used not be associative. That is, they must be chosen
so that in general

P (EA(R)) 6= EP (EA)(R).

Otherwise, an attacker can use the value learned from
message (EKE.1) to encrypt a selected R in the follow-
ing message, with obvious deleterious consequences.
Associativity does not appear to be a concern with
the cryptosystems we have discussed, but interactions
are certainly conceivable.

5 Applications

As noted earlier, a primary motivation for the cre-
ation of EKE was the problem of authenticating a user
to a host. However, there are other uses as well. Per-



haps the most interesting application for EKE is se-
cure public phones.

Let us assume that encrypting public telephones
are deployed. If someone wishes to use one of these
phones, some sort of keying information must be pro-
vided. Conventional solutions — i.e., the STU-III se-
cure voice/data telephone — require that the caller
possess a physical key. This is undesirable in many
situation. EKE permits use of a short, keypad-entered
password, but uses a much longer session key for the
call.

EKE would also be useful with cellular phones.
Fraud has been a problem in the cellular industry;
EKE can defend against it (and ensure the privacy of
the call) by rendering a phone useless if a PIN has not
been entered. Since the PIN is not stored within the
phone, it is not possible to retrieve one from a stolen
unit.

EKE also provides a replacement for Rivest and
Shamir’s Interlock Protocol [18]. This protocol is de-
signed to detect active eavesdroppers. If the interlock
protocol is used for authentication, as suggested by
Davies and Price [19, page 222], certain attacks are
possible, as we have shown elsewhere [20]. Our attack
does not succeed against EKE.

From a general perspective, EKE functions as a pri-
vacy amplifier. That is, it can be used to strengthen
comparatively weak symmetric and asymmetric sys-
tems when used together. Consider, for example, the
key size needed to maintain security when using ex-
ponential key exchange. As LaMacchia and Odlyzko
have shown [12], even modulus sizes once believed to
be safe (to wit, 192 bits) are vulnerable to an attack
requiring only a few minutes of computer time. But
their attack is not feasible if one must first guess a
password before applying it.

Conversely, the difficulty of cracking exponential
key exchange can be used to frustrate attempts at
password-guessing. Password-guessing attacks are fea-
sible because of how rapidly each guess may be ver-
ified. If performing such verification requires solving
an exponential key exchange, the total time, if not the
conceptual difficulty, increases dramatically. Assume,
for example, that a modulus size was picked so that
LaMacchia and Odlyzko’s method would take 5 sec-
onds. Testing all possible passwords composed solely
of five lower-case letters would then take more than
two years. (Note, though, that password-guessing pro-
grams rely on more sophisticated techniques, such as
lists of common names. One should still use a longer
modulus length to maintain security.)

6 Related work

Lomas et al. [21] present a different protocol with
the same goals. They introduce the valuable concept
of verifiable plaintext, a more formal definition of the
random plaintext constraint we mandate. The paper
also presents a very clear and compelling argument
for why protocols that prevent password-guessing at-
tacks are needed. Gong refines the definition of verifi-
able plaintext in [22]. The protocols in these two pa-
pers are designed to operate via a trusted third party
whose public key is known to both A and B. They
could be simplified if one assumes that the server and
B are one and the same, as our model assumes; how-
ever, that would require that A know B’s public key.
For some of the applications we have described above,
this is not feasible. As noted, EKE simply requires
that the two parties share a password. The variation
presented in [21] requires that the two parties have
roughly synchronized clocks; again, this is not always
possible.

The essential insight in these papers is that if a
plaintext block containing the user’s password also
contains a random quantity, the encryption of that
block via an asymmetric cryptosystem and the key
server’s secret key is immune to password-guessing.
No direct decryption by the enemy is possible, of
course, and attempts to validate a guess at the pass-
word by trial encryptions will fail, since the attacker
cannot produce the exact plaintext block. As in our
scheme, extra complexity is needed to guard against
replays, known plaintext attacks, etc.

The same idea is used by the SPX[23] authenti-
cation system. Additionally, it utilizes two different
one-way hashes of a user’s password, rather than the
password itself; thus, neither the “LEAF” intermedi-
ary nor the certificate distribution center itself need
know the actual password.

7 Conclusions

We have presented a novel protocol relying on the
counter-intuitive notion of using a secret key to en-
crypt a public key. There are a number of applications
for this that are immediately apparent; we speculate
that there may be others as well.

Our main goal, however, is to protect users with
weak passwords. We expect that some people will ob-
ject that we have provided a solution without a prob-
lem. In a world of smart cards, hand-held authenti-
cators, and zero-knowledge proofs, it seems pointless



to be worrying about poorly-chosen passwords. Were
the world like that, we might agree. Today, it is not.

Empirically, weak passwords are fact of life. At-
tempts to strengthen users’ passwords by enforcing
syntactic restrictions have not been notably success-
ful; audits still turn up many weak passwords. Klein
[7], for example, cracked 25% of a database of 15,000
password entries; others report similar success rates.
The problem is so serious that many versions of the
UNIX4 operating system have been forced to read-
protect the file containing users’ passwords, despite
the system’s use of a one-way function.[5]. But that
approach does not protect networked systems. Only a
protocol like EKE will solve that problem.

8 Acknowledgements

We would like to thank Jeff Lagarias, Andrew
Odlyzko, Joan Feigenbaum, and Jim Reeds for their
assistance, especially with number-theoretic problems.
Jason De Mont helped us expand the original scope of
the idea. Li Gong made a number of helpful observa-
tions, especially about the need for non-associativity
of the cryptosystems.

References

[1] J. Steiner, B. C. Neuman, and J. I. Schiller, “Ker-
beros: An authentication service for open net-
work systems,” in Proc. Winter USENIX Con-
ference, (Dallas), 1988.

[2] W. Diffie and M. E. Hellman, “New directions in
cryptography,” IEEE Transactions on Informa-
tion Theory, vol. IT-11, pp. 644–654, November
1976.

[3] R. L. Rivest, A. Shamir, and L. Adleman,
“A method of obtaining digital signatures and
public-key cryptosystems,” Communications of
the ACM, vol. 21, pp. 120–126, February 1978.

[4] T. ElGamal, “A public key cryptosystem and
a signature scheme based on discrete loga-
rithms,” IEEE Transactions on Information The-
ory, vol. IT-31, pp. 469–472, July 1985.

[5] R. H. Morris and K. Thompson., “Unix password
security,” Communications of the ACM, vol. 22,
p. 594, November 1979.

4UNIX is a registered trademark of UNIX Systems Labora-
tories, Inc.

[6] F. T. Grampp and R. H. Morris, “Unix operating
system security,” AT&T Bell Laboratories Tech-
nical Journal, vol. 63, pp. 1649–1672, October
1984.

[7] D. V. Klein, ““Foiling the cracker”: A survey of,
and improvements to, password security,” in Pro-
ceedings of the USENIX UNIX Security Work-
shop, (Portland), pp. 5–14, August 1990.

[8] P. Leong and C. Tham, “Unix password en-
cryption considered insecure,” in Proc. Winter
USENIX Conference, (Dallas), 1991.

[9] D. E. Denning, Cryptography and Data Security.
Addison-Wesley, 1982.

[10] R. DeMillo and M. Merritt, “Protocols for data
security,” Computer, vol. 16, pp. 39–50, February
1983.

[11] A. M. Odlyzko, “Discrete logarithms in finite
fields and their cryptographic significance,” in
Proceedings of Eurocrypt ’84, pp. 225–314, 1984.

[12] B. A. LaMacchia and A. M. Odlyzko, “Compu-
tation of discrete logarithms in prime fields,” De-
signs, Codes, and Cryptography, vol. 1, pp. 46–62,
1991.

[13] S. C. Pohlig and M. Hellman, “An improved algo-
rithm for computing logarithms over GF (p) and
its cryptographic significance,” IEEE Transac-
tions on Information Theory, vol. IT-24, pp. 106–
110, 1978.

[14] A. M. Odlyzko, June 1991. Private conversation.

[15] International Organization for Standardization
and International Electrotechnical Committee,
Information Processing Systems – Open Systems
Interconnection – Specification of Abstract Syn-
tax Notation One (ASN.1), 1987. International
Standard 8824.

[16] International Organization for Standardization
and International Electrotechnical Committee,
Information Processing Systems – Open Systems
Interconnection – Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.1),
1987. International Standard 8825.

[17] L. Gong, “A note on redundancy in encrypted
messages,” Computer Communications Review,
vol. 20, pp. 18–22, October 1990.



[18] R. L. Rivest and A. Shamir, “How to expose
an eavesdropper,” Communications of the ACM,
vol. 27, no. 4, pp. 393–395, 1984.

[19] D. W. Davies and W. L. Price, Security for Com-
puter Networks. John Wiley & Sons, second ed.,
1989.

[20] S. M. Bellovin and M. Merritt, “An attack
on password-authenticated exponential key ex-
change,” IEEE Transactions on Information
Theory, to appear.

[21] T. M. A. Lomas, L. Gong, J. H. Saltzer, and R. M.
Needham, “Reducing risks from poorly chosen
keys,” in Proceedings of the Twelfth ACM Sympo-
sium on Operating Systems Principles, pp. 14–18,
SIGOPS, December 1989.

[22] L. Gong, “Verifiable-text attacks in crypto-
graphic protocols,” in Proceedings of the IEEE
INFOCOM ’90 – The Conference on Computer
Communications, pp. 686–693, 1990.

[23] J. J. Tardo and K. Alagappan, “SPX: Global
authentication using public key certificates,” in
Proc. IEEE Computer Society Symposium on
Research in Security and Privacy, (Oakland),
pp. 232–244, May 1991.


