
Privileged Programs

https://creativecommons.org/licenses/by-nc/3.0/deed.en_US

Acquiring Privileges

How can privileged operations be performed?
More precisely, how can an unprivileged process request that something
privileged take place?
What is privilege?

Privileged Programs 2 / 48

Types of Privilege

Hardware restriction—ask the OS (or maybe it just isn’t allowed)
OS restriction—use a privileged process
Application restriction—application-dependent

Privileged Programs 3 / 48

What is a Privileged Process?

One that has access to some resource not generally available
Doesn’t necessarily correspond to root or Administrator
More secure systems have many types of privilege

Privileged Programs 4 / 48

File System-Related Privileges

Who can read from or write to certain files?
Example: a mail system on a multi-user computer system

Privileged Programs 5 / 48

Mailer Daemon: Sending Mail

In principle, an unprivileged operation
For convenience, have one well-written mail daemon per system

Accept mail from mail user agents (MUAs)
Add some header lines (MessageID, Received, maybe From)
For remote mail, create a network connection to the receiving machine
For local mail, try to open a mailbox owned by that other user
Attempt delivery; queue and retry if necessary

Use “privilege” to protect its own queue files.
And: use “privilege” to write to someone else’s mailbox

Which security attribute is invoked here?

Privileged Programs 6 / 48

Mailer Daemon: Sender Security

Confidentiality Protect the confidentiality of the email itself
Integrity Prevent mail from being tampered with

Availability Prevent mailer crashes and email deletion; deliver mail

Privileged Programs 7 / 48

The Lessons of Mailer Security

There’s no hardware privilege
For remote mail, the mailer has no resources unavailable to other users
Mailer protection (except for local delivery) is just another case of
protecting one user from another

Privileged Programs 8 / 48

What if Sending Remote Mail is Privileged?

Many sites block direct outbound access to port 25
Why? Firewalls, spam senders, and “bots”
How can we restrict which users can connect to which port?
Either make network access go through the file system
—/dev/tcp/25/another.host—or add a separate permission mechanism

Privileged Programs 9 / 48

What Are Other Privileges?

Privileged Programs 10 / 48

What Are Other Privileges?

Override DAC (or override it for specific purposes)
Mount a file system in a restricted fashion
Mount a file system with no restrictions
Operate on file as owner
Change MAC label
Set time
Assign privileges
Linux has about 40 privileges via its capabilities

Privileged Programs 11 / 48

What is the Principle of Least Privilege

No subject should have more privileges than it needs
Obvious reason: it can’t misuse abilities it doesn’t have

R Very important in case of application compromise
Difficult to do properly, since one privilege often implies another
Example: if I can overide the DAC “write” privileges, I can overwrite an
executable that a more privileged user will invoke, and thus get that user’s
privileges

Privileged Programs 12 / 48

How Processes Get Privileges

Inheritance
File attributes
Ask a privileged process to perform the operation for you

Privileged Programs 13 / 48

Inheritance

Many privileges are inherited from parent process (necessary in Unix,
where almost every command is run in a separate process)

R The source of a lot of danger!
Example: Unix uid
Sometimes associated with username: the login mechanism sets initial
privileges, and your shell inherits them
Obviously, child processes cannot inherit privileges the parent doesn’t
possess

Privileged Programs 14 / 48

File Attributes: SetUID (SUID)

Fundamental privilege acquisition mechanism in Unix
Invented in 1973 by Dennis Ritchie
Patented—U.S. Patent 4,135,240, issued January 1979
Major step towards principle of least privilege
A serious security risk if used improperly

Privileged Programs 15 / 48

Privileged Programs 16 / 48

What is SUID?

When the program is executed, it acquires the privileges of the file’s owner
This feature is available for all uids
Similar feature for groups: setgid
If a file is setuid root, it executes with root privileges

Privileged Programs 17 / 48

Setting and Querying the SUID Bit

Set:
chmod u+s file

Query:
ls -l file

The “x” for owner is replaced by a “s”
$ ls -l /bin/su
-rwsr-xr-x 2 root root 71288 Feb 27 2013 /bin/su

Privileged Programs 18 / 48

What Does This Do?

$ cp /bin/sh .
$ ls -l sh
-r-xr-xr-x 1 smb smb 109768 Sep 15 22:49 sh
$ chmod u+s sh
$ ls -l sh
-r-sr-xr-x 1 smb smb 109768 Sep 15 22:49 sh

It created a setuid shell
Anyone who executed that shell would have all of my privileges
Not a good thing to do. . .

Privileged Programs 19 / 48

What Does This Do?

$ cp /bin/sh .
$ ls -l sh
-r-xr-xr-x 1 smb smb 109768 Sep 15 22:49 sh
$ chmod u+s sh
$ ls -l sh
-r-sr-xr-x 1 smb smb 109768 Sep 15 22:49 sh

It created a setuid shell
Anyone who executed that shell would have all of my privileges
Not a good thing to do. . .

Privileged Programs 19 / 48

How Did I Do That Safely?

$ (umask 077; mkdir f)
$ cd f
$ ls -ld .
drwx------ 2 smb smb 512 Sep 18 22:49 .

Privileged Programs 20 / 48

Safely Doing Dangerous Things

Create a directory that no one else can access
Use umask to do it atomically
Create the dangerous file in a locked directory
Only I (and root) can get to that directory

To get to that dangerous shell, an attacker would either need to have my
privileges—in which case the attack buys nothing—or root privileges, in
which case I’ve already lost the game.

Privileged Programs 21 / 48

Safely Doing Dangerous Things

Create a directory that no one else can access
Use umask to do it atomically
Create the dangerous file in a locked directory
Only I (and root) can get to that directory
To get to that dangerous shell, an attacker would either need to have my
privileges—in which case the attack buys nothing—or root privileges, in
which case I’ve already lost the game.

Privileged Programs 21 / 48

Combining Permission Settings

Use some permissions to restrict acccess
Use SUID or SetGID to grant more authority to invoker
What does this do?

$ ls -l shutdown
-r-sr-xr-- 1 root operator 14463 Sep 2 01:38 shutdown

Privileged Programs 22 / 48

A Restricted shutdown Command

Note the permissions:
-r-sr-xr-- 1 root operator

r-s SUID root

r-x Executable by group “operator”
r-- Readable but not executable by others

The command runs with root permissions, but only a select few can get those
permissions.

Privileged Programs 23 / 48

Why is SUID Good?

Available to all users; does not require special privilege
Used by mailers, printer daemons, games, etc
Conceptually simple way to provide controlled interface to some resources

Privileged Programs 24 / 48

Why is SUID Bad?

Available to all users; does not require special privilege
Writing secure SUID programs is hard
Too easy to give away permissions
Per-user permissions aren’t granular enough

Privileged Programs 25 / 48

Peter Neumann on SUID

It is precisely BECAUSE it allows easy implementation that it is so frequently
misused—by people who don’t know better. Use of “setuid” opens up the
possibility of a variety of security flaws, including Trojan horses, search-path
traps, etc., and tends to substantially widen the perimeter of trust. I’m not
sure that anyone knows how to characterize “proper use” completely—if it is
indeed possible at all.

RISKS Digest 4:53, 1 March 1987

Privileged Programs 26 / 48

Fred Grampp and Robert Morris on SUID

SUID programs should be used only when there is no other way to get a
desired result. On most UNIX systems, perhaps a dozen SUID programs,
excluding games, are really needed. A lax attitude about SUID programs,
combined with a ‘quick and dirty’ programming style, can produce disasters. . .
It is difficult, when users are writing all but the most trivial programs, to
determine in advance that the program will be correct. Programs sometimes
do the most amazing things in unforeseen circumstances.

UNIX Operating System Security
AT&T Bell Laboratories Technical Journal 63:8, Part 2, October 1984

Privileged Programs 27 / 48

Linux and SUID

$ find /*bin /usr/*bin -perm -4000 -print
/bin/su
/bin/ping
/bin/fusermount
/bin/mount
/bin/umount
/bin/ping6
/sbin/mount.ecryptfs_private
/sbin/mount.nfs
/usr/bin/newuidmap
/usr/bin/chsh
/usr/bin/pkexec
/usr/bin/newgidmap
/usr/bin/at
/usr/bin/newgrp
/usr/bin/passwd
/usr/bin/chfn
/usr/bin/sudo
/usr/bin/gpasswd

Also: 16 setgid
programs; 7 with other
privileges (mostly for
networking)

Most are in two categories: mounting external
devices and changing data fields in
/etc/passwd

A few, e.g., sudo, are about letting certain
users have more privileges, at least
temporarily
All of these have to do their own
permission-checking—and do it very carefully!

Privileged Programs 28 / 48

What is the Problem with SUID?

The bad guy is running the program and supplying the inputs
The bad guy controls the environment
Many subtle traps!

Privileged Programs 29 / 48

Confusing a Program

$ PS1=’% ’ bash
% ulimit -f 0
% echo foo >/tmp/foo
File size limit exceeded
$ ls -l /tmp/foo
-rw-r--r-- 1 smb wheel 0 Sep 19 00:04 /tmp/foo

What if this happens to the passwd command?
This is one example of problems from inherited environment

Privileged Programs 30 / 48

Inherited Environments

Processes inherit many things from parent processes

UID and GID
Open files
ulimit values
Linux capabilities
Environment variables
More. . .

Which will cause trouble? How do you know?

Privileged Programs 31 / 48

How Do You Know?

How do you know what inherited attributes will cause trouble?
The only solution: thorough knowledge of your environment
Thus: avoid complexity
But even simple, necessary things can be complex
From the man page for strftime:
“The environment variables TZ and LC_TIME are used.”
What is LC_TIME? What happens if it’s set to an unexpected value?

Privileged Programs 32 / 48

Shells are Horribly Complex

Shells look at all sorts of environment variables and can do unexpected
things if some are set
Traditional and known: PATH can affect which program is actually executed
Traditional and little known: IFS specifies characters that will split a line
into different arguments
ENV and BASH_ENV: specifies a file of shell commands that is (sometimes)
read before anything else is done
In fact, there are more than 50 environment variables that are used by
bash—do you know them all?

Privileged Programs 33 / 48

Invoking a Program via a Shell

What You Think is Happening

Program 1
↓

Shell
↓

Program 2

What is Actually Happening

Program 1
↓

↓
Program 2

Privileged Programs 34 / 48

Invoking a Program via a Shell

What You Think is Happening

Program 1
↓

Shell
↓

Program 2

What is Actually Happening

Program 1
↓

↓
Program 2

Privileged Programs 34 / 48

The Alternative: Message-Passing

A program runs with certain permissions
It sets up some sort of local communications channel
Other programs send messages to that channel, and receive responses
Used by Windows, some Unix subsystems

Privileged Programs 35 / 48

Practical Difficulties

How does the initial program start?
What sorts of channels are available?
Can you control access to those channels?
What are the messages and responses like?

Privileged Programs 36 / 48

Initial Startup

Very much OS-dependent
On some systems, any user can have a program started at boot time:
$ crontab -l
@reboot echo ‘hostname‘ reboot | mail smb

Sometimes program is invoked automatically when channel is contacted

Privileged Programs 37 / 48

A “Daemon Daemon”

Have an always-running “daemon daemon”
It listens for requests for other daemons, and fires up the proper program
with the proper privilege
(Also used for network daemons)
Must be very privileged, since it can run programs as any other user

Privileged Programs 38 / 48

Some Types of Channels

Local sockets (“UNIX-domain sockets”)
Message-passing queues
Controlled RPC

Privileged Programs 39 / 48

Access Control

Different channels have different permission mechanisms
Very much OS-dependent
Getting these right is just as important as file permissions

Privileged Programs 40 / 48

UNIX-Domain Sockets

Appear in file system
Not accessed like regular files; use “socket” primitives instead
Permissions on this “file” not always honored—version-depenent!
Solution: set directory permissions instead

ls -ld private
drwx------ 2 postfix wheel 512 Sep 10 23:31 private
ls -ld private/maildrop
srw-rw-rw- 1 postfix wheel 0 Sep 10 23:31 private/maildrop

Privileged Programs 41 / 48

Unix-Domain Sockets on Linux

In the Linux implementation, pathname sockets honor the permissions
of the directory they are in. Creation of a new socket fails if the process
does not have write and search (execute) permission on the directory
in which the socket is created.

On Linux, connecting to a stream socket object requires write permis-
sion on that socket; sending a datagram to a datagram socket likewise
requires write permission on that socket. POSIX does not make any
statement about the effect of the permissions on a socket file, and on
some systems (e.g., older BSDs), the socket permissions are ignored.
Portable programs should not rely on this feature for security.

Privileged Programs 42 / 48

Passing Credentials

Linux programs can pass “credentials” and security labels over Unix-domain
sockets

struct ucred {
pid_t pid; /* Process ID of the sending process */
uid_t uid; /* User ID of the sending process */
gid_t gid; /* Group ID of the sending process */

};

via SCM_CREDENTIALS and SCM_SECURITY.

Note carefully: this implies that the receiving application has to do the right
thing with this data

Privileged Programs 43 / 48

Why is Message-Passing Good?

Bad guys can’t invoke the privileged commands
No opportunity to control the environment
Less opportunity for certain harmful programming mistakes

Privileged Programs 44 / 48

Why is Message-Passing Bad?

Fundamentally, you’re writing network servers
We know from experience how hard it is to get them right!
You have to design a language for the channel, and perhaps
marshall/unmarshall arguments

Privileged Programs 45 / 48

Capabilities

Capability: a bit-string that gives access to some resource
Not the same as Linux “capabilities”!
Sometimes, a cryptographically protected string
Can be copied
Effectively attribute-based access control
Issues: acquisition, forgery, revocation
Rarely used in practice, except for Web cookies

Privileged Programs 46 / 48

What is the Real Issue with
Acquiring Privileges?

Granting selective access is hard
Never trust anything that can be controlled by the enemy
Make sure you know the enemy’s powers. . .

Privileged Programs 47 / 48

Questions?

(Peregrine falcons, Riverside Church, May 16, 2019)

	What Are Other Privileges?

