
Types and Static Semantic Analysis

Stephen A. Edwards

Columbia University

Fall 2015

Types in C

Types of Type Systems

Static Semantic Analysis

Scope

A Static Semantic Analyzer

Types

A restriction on the possible interpretations of a segment of
memory or other program construct.

Two uses:

Safety: avoids data being treated
as something it isn’t

Optimization: eliminates certain
runtime decisions

Types in C

Basic C Types

C was designed for efficiency: basic types are whatever is
most efficient for the target processor.

On an (32-bit) ARM processor,

char c; /* 8-bit binary */

short d; /* 16-bit two’s-complement binary */
unsigned short d; /* 16-bit binary */

int a; /* 32-bit two’s-complement binary */
unsigned int b; /* 32-bit binary */

float f; /* 32-bit IEEE 754 floating-point */
double g; /* 64-bit IEEE 754 floating-point */

Pointers and Arrays

A pointer contains a memory address.

Arrays in C are implemented with arithmetic on pointers.

A pointer can create an alias to a variable:

int a;
int *b = &a; /* "pointer to integer b is the address of a" */
int *c = &a; /* c also points to a */

b = 5; / sets a to 5 */
c = 42; / sets a to 42 */

printf("%d %d %d\n", a, *b, *c); /* prints 42 42 42 */

a b c

Pointers Enable Pass-by-Reference

void swap(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;

}

Does this work?

void swap(int *px, int *py)
{
int temp;

temp = *px; /* get data at px */
*px = *py; /* get data at py */
py = temp; / write data at py */

}

void main()
{
int a = 1, b = 2;

/* Pass addresses of a and b */
swap(&a, &b);

/* a = 2 and b = 1 */
}

Pointers Enable Pass-by-Reference

void swap(int x, int y)
{
int temp;
temp = x;
x = y;
y = temp;

}

Does this work?
Nope.

void swap(int *px, int *py)
{
int temp;

temp = *px; /* get data at px */
*px = *py; /* get data at py */
py = temp; / write data at py */

}

void main()
{
int a = 1, b = 2;

/* Pass addresses of a and b */
swap(&a, &b);

/* a = 2 and b = 1 */
}

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

int a[10];

int *pa = &a[0];
pa = pa + 1;
pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];

pa = pa + 1;
pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];
pa = pa + 1;

pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];
pa = pa + 1;
pa = &a[1];

pa = a + 5;

a[i] is equivalent to *(a + i)

Arrays and Pointers

a: a[0]a[1] a[5] a[9]

pa:

int a[10];
int *pa = &a[0];
pa = pa + 1;
pa = &a[1];
pa = a + 5;

a[i] is equivalent to *(a + i)

Multi-Dimensional Arrays

int monthdays[2][12] = {
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } };

monthdays[i][j] is at address monthdays + 12 * i + j

Structures

Structures: each field has own storage
struct box {

int x, y, h, w;
char *name;

};

Unions: fields share same memory
union token {
int i;
double d;
char *s;

};

Structs

Structs can be used like the objects of C++, Java, et al.

Group and restrict what can be stored in an object, but not
what operations they permit.

struct poly { ... };

struct poly *poly_create();
void poly_destroy(struct poly *p);
void poly_draw(struct poly *p);
void poly_move(struct poly *p, int x, int y);
int poly_area(struct poly *p);

Unions: Variant Records

A struct holds all of its fields at once. A union holds only
one of its fields at any time (the last written).

union token {
int i;
float f;
char *string;

};

union token t;
t.i = 10;
t.f = 3.14159; /* overwrite t.i */
char *s = t.string; /* return gibberish */

Applications of Variant Records

A primitive form of polymorphism:

struct poly {
int type;
int x, y;
union { int radius;

int size;
float angle; } d;

};

void draw(struct poly *shape)
{
switch (shape->type) {
case CIRCLE: /* use shape->d.radius */

case SQUARE: /* use shape->d.size */

case LINE: /* use shape->d.angle */

}

}

Name vs. Structural Equivalence

struct f {
int x, y;

} foo = { 0, 1 };

struct b {
int x, y;

} bar;

bar = foo;

Is this legal in C? Should it be?

C’s Declarations and Declarators

Declaration: list of specifiers followed by a
comma-separated list of declarators.

static unsigned

basic type︷︸︸︷
int︸ ︷︷ ︸

specifiers

(*f[10])(int, char*);︸ ︷︷ ︸
declarator

Declarator’s notation matches that of an expression: use it
to return the basic type.

Largely regarded as the worst syntactic aspect of C: both
pre- (pointers) and post-fix operators (arrays, functions).

Types of Type Systems

Strongly-typed Languages

Strongly-typed: no run-time type clashes (detected or not).

C is definitely not strongly-typed:

float g;

union { float f; int i } u;

u.i = 3;

g = u.f + 3.14159; /* u.f is meaningless */

Is Java strongly-typed?

Statically-Typed Languages

Statically-typed: compiler can determine types.

Dynamically-typed: types determined at run time.

Is Java statically-typed?

class Foo {
public void x() { ... }

}

class Bar extends Foo {
public void x() { ... }

}

void baz(Foo f) {
f.x();

}

Polymorphism

Say you write a sort routine:

void sort(int a[], int n)
{
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j] < a[i]) {
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

Polymorphism

To sort doubles, only need
to change two types:

void sort(double a[], int n)
{
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j] < a[i]) {
double tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

C++ Templates

template <class T> void sort(T a[], int n)
{
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j] < a[i]) {
T tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

int a[10];

sort<int>(a, 10);

C++ Templates

C++ templates are essentially language-aware macros. Each
instance generates a different refinement of the same code.

sort<int>(a, 10);

sort<double>(b, 30);

sort<char *>(c, 20);

Fast code, but lots of it.

Faking Polymorphism with Objects

class Sortable {
bool lessthan(Sortable s) = 0;

}

void sort(Sortable a[], int n) {
int i, j;
for (i = 0 ; i < n-1 ; i++)
for (j = i + 1 ; j < n ; j++)

if (a[j].lessthan(a[i])) {
Sortable tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

Faking Polymorphism with Objects

This sort works with any array of objects derived from
Sortable.

Same code is used for every type of object.

Types resolved at run-time (dynamic method dispatch).

Does not run as quickly as the C++ template version.

Static Semantic Analysis

Static Semantic Analysis

Lexical analysis: Make sure tokens are valid

if i 3 "This" /* valid Java tokens */
#a1123 /* not a token */

Syntactic analysis: Makes sure tokens appear in correct order

for (i = 1 ; i < 5 ; i++) 3 + "foo"; /* valid Java syntax */
for break /* invalid syntax */

Semantic analysis: Makes sure program is consistent

int v = 42 + 13; /* valid in Java (if v is new) */
return f + f(3); /* invalid */

What To Check

Examples from Java:

Verify names are defined and are of the right type.

int i = 5;
int a = z; /* Error: cannot find symbol */
int b = i[3]; /* Error: array required, but int found */

Verify the type of each expression is consistent.

int j = i + 53;
int k = 3 + "hello"; /* Error: incompatible types */
int l = k(42); /* Error: k is not a method */
if ("Hello") return 5; /* Error: incompatible types */
String s = "Hello";
int m = s; /* Error: incompatible types */

How To Check: Depth-first AST Walk

Checking function: environment → node → type

1 - 5

-

1 5

check(-)
check(1) = int
check(5) = int
Success: int − int = int

1 + "Hello"

+

1 "Hello"

check(+)
check(1) = int
check("Hello") = string
FAIL: Can’t add int and string

Ask yourself: at each kind of node, what must be true
about the nodes below it? What is the type of the node?

How To Check: Symbols
Checking function: environment → node → type

1 + a

+

1 a

check(+)
check(1) = int
check(a) = int
Success: int + int = int

The key operation: determining the type of a symbol when
it is encountered.

The environment provides a “symbol table” that holds
information about each in-scope symbol.

Scope

Basic Static Scope in C, C++, Java, etc.

A name begins life where it is
declared and ends at the end
of its block.

From the CLRM, “The scope
of an identifier declared at
the head of a block begins at
the end of its declarator, and
persists to the end of the
block.”

void foo()
{

int x;

}

Hiding a Definition

Nested scopes can hide earlier
definitions, giving a hole.

From the CLRM, “If an
identifier is explicitly declared
at the head of a block,
including the block
constituting a function, any
declaration of the identifier
outside the block is
suspended until the end of
the block.”

void foo()
{

int x;

while (a < 10) {
int x;

}

}

Static Scoping in Java

public void example() {
// x, y, z not visible

int x;
// x visible

for (int y = 1 ; y < 10 ; y++) {
// x, y visible

int z;
// x, y, z visible

}

// x visible
}

Basic Static Scope in O’Caml

A name is bound after the
“in” clause of a “let.” If the
name is re-bound, the
binding takes effect after the
“in.”

let x = 8 in

let x = x + 1 in

Returns the pair (12, 8):
let x = 8 in

(let x = x + 2 in
x + 2),

x

Let Rec in O’Caml

The “rec” keyword makes a
name visible to its definition.
This only makes sense for
functions.

let rec fib i =
if i < 1 then 1 else

fib (i-1) + fib (i-2)
in

fib 5

(* Nonsensical *)
let rec x = x + 3 in

Let...and in O’Caml

Let...and lets you bind
multiple names at once.
Definitions are not mutually
visible unless marked “rec.”

let x = 8
and y = 9 in

let rec fac n =
if n < 2 then

1
else

n * fac1 n
and fac1 n = fac (n - 1)
in
fac 5

Nesting Function Definitions

let articles words =

let report w =

let count = List.length
(List.filter ((=) w) words)

in w ^ ": " ^
string_of_int count

in String.concat ", "
(List.map report ["a"; "the"])

in articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

let count words w = List.length
(List.filter ((=) w) words) in

let report words w = w ^ ": " ^
string_of_int (count words w) in

let articles words =
String.concat ", "
(List.map (report words)
["a"; "the"]) in

articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

Produces “a: 1, the: 2”

A Static Semantic
Analyzer

The Static Semantic Checking Function
A big function: “check: ast → sast”

Converts a raw AST to a “semantically checked AST”

Names and types resolved

AST:

type expression =
IntConst of int

| Id of string
| Call of string * expression list
| ...

⇓

SAST:

type expr_detail =
IntConst of int

| Id of variable_decl
| Call of function_decl * expression list
| ...

type expression = expr_detail * Type.t

The Type of Types

Need an OCaml type to represent the type of something in
your language.

An example for a language with integer, structures, arrays,
and exceptions:

type t = (* can’t call it "type" since that’s reserved *)
Void

| Int
| Struct of string * ((string * t) array) (* name, fields *)
| Array of t * int (* type, size *)
| Exception of string

Translation Environments

Whether an expression/statement/function is correct
depends on its context. Represent this as an object with
named fields since you will invariably have to extend it.

An environment type for a C-like language:

type translation_environment = {
scope : symbol_table; (* symbol table for vars *)

return_type : Types.t; (* Function’s return type *)
in_switch : bool; (* if we are in a switch stmt *)
case_labels : Big_int.big_int list ref; (* known case labels *)
break_label : label option; (* when break makes sense *)
continue_label : label option; (* when continue makes sense *)
exception_scope : exception_scope; (* sym tab for exceptions *)
labels : label list ref; (* labels on statements *)
forward_gotos : label list ref; (* forward goto destinations *)

}

A Symbol Table

Basic operation is string → type. Map or hash could do this,
but a list is fine.

type symbol_table = {
parent : symbol_table option;
variables : variable_decl list

}

let rec find_variable (scope : symbol_table) name =
try

List.find (fun (s, _, _, _) -> s = name) scope.variables
with Not_found ->

match scope.parent with
Some(parent) -> find_variable parent name

| _ -> raise Not_found

Checking Expressions: Literals and Identifiers

(* Information about where we are *)
type translation_environment = {

scope : symbol_table;
}

let rec expr env = function

(* An integer constant: convert and return Int type *)
Ast.IntConst(v) -> Sast.IntConst(v), Types.Int

(* An identifier: verify it is in scope and return its type *)
| Ast.Id(vname) ->

let vdecl = try
find_variable env.scope vname (* locate a variable by name *)

with Not_found ->
raise (Error("undeclared identifier " ^ vname))

in
let (_, typ) = vdecl in (* get the variable’s type *)
Sast.Id(vdecl), typ

| ...

Checking Expressions: Binary Operators

(* let rec expr env = function *)

| A.BinOp(e1, op, e2) ->
let e1 = expr env e1 (* Check left and right children *)
and e2 = expr env e2 in

let _, t1 = e1 (* Get the type of each child *)
and _, t2 = e2 in

if op <> Ast.Equal && op <> Ast.NotEqual then
(* Most operators require both left and right to be integer *)
(require_integer e1 "Left operand must be integer";
require_integer e2 "Right operand must be integer")

else
if not (weak_eq_type t1 t2) then
(* Equality operators just require types to be "close" *)
error ("Type mismatch in comparison: left is " ^

Printer.string_of_sast_type t1 ^ "\" right is \"" ^
Printer.string_of_sast_type t2 ^ "\""
) loc;

Sast.BinOp(e1, op, e2), Types.Int (* Success: result is int *)

Checking Statements: Expressions, If

let rec stmt env = function

(* Expression statement: just check the expression *)
Ast.Expression(e) -> Sast.Expression(expr env e)

(* If statement: verify the predicate is integer *)
| Ast.If(e, s1, s2) ->

let e = check_expr env e in (* Check the predicate *)
require_integer e "Predicate of if must be integer";

Sast.If(e, stmt env s1, stmt env s2) (* Check then, else *)

Checking Statements: Declarations

(* let rec stmt env = function *)

| A.Local(vdecl) ->
let decl, (init, _) = check_local vdecl (* already declared? *)
in

(* side-effect: add variable to the environment *)
env.scope.S.variables <- decl :: env.scope.S.variables;

init (* initialization statements, if any *)

Checking Statements: Blocks

(* let rec stmt env = function *)

| A.Block(sl) ->

(* New scopes: parent is the existing scope, start out empty *)

let scope’ = { S.parent = Some(env.scope); S.variables = [] }
and exceptions’ =
{ excep_parent = Some(env.exception_scope); exceptions = [] }

in

(* New environment: same, but with new symbol tables *)
let env’ = { env with scope = scope’;

exception_scope = exceptions’ } in

(* Check all the statements in the block *)

let sl = List.map (fun s -> stmt env’ s) sl in
scope’.S.variables <-

List.rev scope’.S.variables; (* side-effect *)

Sast.Block(scope’, sl) (* Success: return block with symbols *)

	Types in C
	Types of Type Systems
	Static Semantic Analysis
	Scope
	A Static Semantic Analyzer

