Scanning and Parsing

Stephen A. Edwards

Columbia University

Fall 2015

The First Question

How do you represent one of many things?

Compilers should accept many programs;
how do we describe which one we want?

Use continuously varying values?

Very efficient, but has serious noise issues

Edison Model B Home Cylinder phonograph, 1906

SOOI, | (TR 7

+
o+
Q
<
(@)}
©
Q
w
<
x
S
()}
=
S
S
©
S
(@)}
©)
]
o
U
<
=
Ll
)]
<
=

Have one symbol per thing?

Works nicely when there are only a few things

Sholes and Glidden Typewriter, E. Remington and Sons, 1874

Have one symbol per thing?

Not so good when there are many, many things
Nippon Typewriter SH-280, 2268 keys

Solution: Use a Discrete Combinatorial System

Use combinations of a small number of things to represent

(exponentially) many different things.

ENGLISH SOUNDS

IBM Selectric (88-96)

Mayan (100) Roman (21-26)

The Second Question

How do you describe only certain combinations?

Compilers should only accept correct programs;
how should a compiler check that its input is correct?

Just List Them?

he Oxford
English

Dictionary

ND EDITION

Gets annoying for large numbers of combinations

Just List Them?

3 AA—ARAARAAAARAAAA
A& A A A Budget Movi

A& A A Canadian MW
s 5339 Eglnicn- 6201577

"™ 16 wibye:_ 241,568
Mk Warehouse

4120 FinchE,
AARAAACritter Conirol.
AAAAA Critter Control
100 Sumres Unonvie. 410.8727

410.0371

ARARAAAA GBS Haiing
130 imdowne. $337139
ARARAAAA

Auuunn\;mﬂe
e, 065.2767

Acsom; 91

an

" ”!m\uwltmﬂw 663-2211
ARAAARANR Rocdent

Lk o1 ctw_ges.2211

Toronto East. 422.0501
T s29.c048

AAR AR Eevering Rendervois.
ARRAR, B Mini Storage

535 Trethewey0r. 2476234

9622033

AAAAA Limousine Connection

The. 967.5466
AAAAA Mature Escorts 9255433
AARAA Move M: 4656

aster.
ANARA Noul Profesond g
450 Lowrercent. 1856325

RARAR mnc\-ku ove. ..~ 2076701
RRAA A Woodbins Navingisiarsg
ss@uu;é"

Aot Glssbinier 341989

ARRRRRAIRT
603 Evins. 259-1578
AARARAA Armstrong Movingh
Storage. 233-2477
AAAAAAHSL Movingastorage
Sa3bnes, 2517290
AAAA KA Middup MovingBStor
&0 Enapario, 44451
AAAAR A1 MovingBStor
7 Lahonne. 516:3536
AAAAA A Prestige Movers
705 Gldsonei 5332633
AARARA Soth Wester Otario Wil
‘04066

AAAARA S
e '3- Crockford . 285-6084

RodobAoheA Speedy Mo
1540 Victodiapark. 7519532
AAAARAA Across The World Courier
425 Adelaidew . 504-0008
AAAAAAA Auto Glass
855 plness , 663-8676
AAAARAA Calforria Dreams E
rvice. 323-3899
AAAARAA Calforria Dreams Massage
. . Service. 323.3899
RAAARAA Nationsl Auto Glass
62 g 5033833
ABRAR AL HgttRDey -
AEAARAS rgeiiie ot freY
AARARAA A Automated
Systems 32 utng s
AARANAAR Gafoa Beach (L
Servie. 3235822

Service. 323.9522
ARAAAAAARAAARBC
1860 BoniIRd Vissaugs. 748:3667

AAAAAAAARAAG
Massfw 253-0888
AAAAAAAARARlert Auto
o Glass 3‘]54!!:
AMAMMJGNMIVI Lines.
Inc 1180 Meyersider. 213-5660
AAAAAAAAA AAuto Glass
Yotine. 2930002
ARARAAAAAA CollnskGrelg
Lid 33 Coroner, 239.2991
AARAAAARAARA Competition Auto
Glass 223.1292
ARAAARAAA A Competition Auto
- 2330042
KAAAARAAA A Competiton Auto

ARAAAAAAAA Intemationsl
ARAAAAAAAA Jews! Datinga

AAARAAAAAANarketing
AAAAARAARA Hothing Bt~ ¢
#
s95.1854

Class .

ARAAAAAAA AOn The Wild Side.

Female Escort Service_ 255.1320
ARARAAAARA The Good Life

21 McCaul - §79-1822

67.0574

AAAAARAARAAA 4

AAAAAAARAAA A Class Above
imousine 173 Danforthi . 465-5643

12328 Woodbine . 423-0239
AAAAAAAAAAAAMSS
Victoria, 967.7176

AAAAAAAAAAAAA??;W 55
corts. 4855333

AARBAARAARARAL
KAk A 00 osenceal 2561600
AR R T R
AARAAAL. 6996700
AARAMARAAAARARL

ssociates
AAAARARAAARARAR
ARAAA A Asbaco
A epsmassons 235 Ol rgpon. 267,900
AARARARARAAAAAN
ARARAAAAAAA A Msza
L 17 Canso, 242.6662
AAAARANRARAARARSAAA
ARARAAA Abba M
Storage. 366.0237
AARARARAARAAAAR
ARARAAALAAA A Acc
1A Hacelton. 9640138
AAAAAAAAAAAAAAA
ARARAAAAAAAA Adrian The
StClai . 9442018
AARAAARAAAAAAAAAAAAA
ARAAA Abba Auto Colisiont
S TT74505

it A
AAAAAA ALK A A Affordabie And ARAA bMilMFlth 4992144
Agoreasvs Defence 4950 vongest_ 2217108 AAAAAAA AAAA
AARAAAAAAAA Campbel AR A Lo 30 Miner, 263.6688
2654433 AAAAAAAAAARAAARAAAARA
ARARARARAAAY) lds To ction Law 5233 DundasSt . 2530888
53 Dynevor. 787:8039 AAAAAAAAA AAAAAAA
ARARAARARA sttt ‘AllangAssociates 401 Bay . 3635431
Ecors 621177 AAAARARRARAAAAAAAAAL
ARARAAAAAAAABEEOf The uto 334773
0253039 AAARAAKAAAARAAAAR
AlAlAlAAAAAl!IH!SMIw\ Rlarms 557 Daonds- 2470000
RoyuiYork. 2558518 AAAAAAAAARARAAAAB
Tawing 18Canso_ 2457676

Can be really redundant

ARARARAAAAAAAAAAB
18 Carso.. 245-7676

ARARARAAAARAAAAR
ot torage
236 NorthQueen. 620-1212

Rezz. 6525252
AAKAARAAAARAAA R Aectis

ARARAAARALAAAA K Aiciont
Accompany
o 000 e seam
ARARRAAARARARAR Accden
s 2 SICSH 3442313
Auuuuuuumy;umn
‘SheppaALE.
AAAAAAAuuuum
i ocx e fnan
ARARARARRAAARAA AN
Buecithe's Choie. 9209390
AAAAAAAG:AAA

4 Carton. 7887820
AAAMMAAMMAACW
280 Co 4949777

s
ARAAAARAAAARARA Hegint
Meature Escorts_ 923.3333
ARARRARARARARAR
essioal pres

S msicen_soas111
ARAARARARAAAAA A SWEdt
Escoris&You, 259-3990
A RAAA AAAA AAAA AARA A
Marco 1205 Siclair#y. 651-2299
A RAAA AAAA AAAA AARA Domenic

Yool 1108 6512299

valble 465.9191
AAAAAAAARAAARRAAAA A To

Clas Escort Sevice. 461:8110

o i
oty

Cardinal Custom 2 Slosri . 966-4728
uuunum« Movers. .. 693-2403

1800 506-5665

A e s

AAAARAES Movers
643 LansdowneAv. 588-1489
A Ak ARBBCCDEF Locksmith
BO Stclaie . 922:2255
AARAABCMovers inc
Scomhus 353413
RARALGS st wouers

RARAA M Systems

955 Wicdiefield. 299-4239
200 Cledoiahd. . 7874964
miths .

i Goncod 311548
fdow Co

ronto 748.3667

Missssougs
Toronta 748.3667

Choices: CS Research Jargon Generator

Pick one from each column

an integrated mobile network

a parallel functional preprocessor
a virtual programmable compiler

an interactive distributed system

a responsive logical interface

a synchronized digital protocol

a balanced concurrent architecture
a virtual knowledge-based database

a meta-level multimedia algorithm

"

E.g., “a responsive knowledge-based preprocessor.

http://www.cs.purdue.edu/homes/dec/essay.topic.generator.html

SClgen: An Automatic CS Paper Generator

Rooter: A Methodology for the Typical Unif
of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

ABSTRACT

Many physicists would agree that, had it not been for
congestion control, the evaluation of web browsers might never
have occurred. In fact, few hackers worldwide would disagree
with the essential unification of voice-over-IP and public-
private key pair. In order to solve this riddle, we confirm that
SMPs can be made stochastic, cacheable, and interposable.

I. INTRODUCTION

Many scholars would agree that, had it not been for active
networks, the simulation of Lamport clocks might never have
occurred. The notion that end-users synchronize with the
investigation of Markov models is rarely outdated. A theo-
retical grand challenge in theory is the important unification

http://pdos.csail.mit.edu/scigen/

The rest of this paper is organized as foll
we motivate the need for fiber-optic cable
work in context with the prior work in tl
dress this obstacle, we disprove that even tl
tauted autonomous agorithm for the constri
to-analog converters by Jones [10] is NP-c
oriented languages can be made signed, d
signed. Along these same lines, to accomplist
concentrate our efforts on showing that the f
agorithm for the exploration of robots by S
Q((n + logn)) time [22]. In the end, we cor

I1. ARCHITECTURE

Our research is principled. Consider the e
by Martin and Smith; our model is similar,

hey Jude

'

take a sad song and make it better —
- you wera made to go out and get her —|

you have found her, now go and get her —|
lat her inta your heart —
g remember to
let her under your skin —
m{=] Rl

Ioweallthis tumblrcam yrics @ sony atv

http://loveallthis.tumblr.com/post/506873221

How about more structured collections of things?

The boy eats hot dogs.

The dog eats ice cream.

Every happy girl eats candy.

A dog eats candy.

The happy happy dog eats hot dogs.

N
happy hot
o
The / \ boy dogs.
girl - eats ice
Every dog cream.

candy.

Pinker, The Language Instinct

Lexical Analysis

Lexical Analysis (Scanning)

Translate a stream of characters to a stream of tokens

foo_=_a+_bar (0, _ 42, _q) ;

—_ —_

(EQUALS (1D |[PLUS (1D][LPAREN][NUM |[cCOMMA |

[LPAREN | SEMI|

Token Lexemes Pattern

EQUALS = an equals sign

PLUS + a plus sign

ID a foo bar letter followed by letters or digits

NUM 0 42 one or more digits

Lexical Analysis

Goal: simplify the job of the parser and reject some wrong
programs, e.g.,

%H#@IN# | @GH%H S
—

is not a C program?
Scanners are usually much faster than parsers.

Discard as many irrelevant details as possible (e.g.,
whitespace, comments).

Parser does not care that the the identifer is
“supercalifragilisticexpialidocious.”

Parser rules are only concerned with tokens.

It is what you type when your head hits the keyboard

Describing Tokens

Alphabet: A finite set of symbols
Examples: {0, 1}, {A, B, C, ..., Z}, ASCIl, Unicode

String: A finite sequence of symbols from an alphabet

Examples: € (the empty string), Stephen, afy

Language: A set of strings over an alphabet

Examples: ¢ (the empty language), {1, 11, 111, 1111}, all
English words, strings that start with a letter followed by
any sequence of letters and digits

Operations on Languages

Let L={¢, wo}, M={man, men}

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

Union: All strings from each language

LUM = {e, wo, man, men }

Kleene Closure: Zero or more concatenations

M*={cfUMUMMUMMM:---=
{e, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, ...}

Kleene Closure

“*" ijs named after Stephen Cole
Kleene, the inventor of regular
expressions, who pronounced his last
name “CLAY-nee.”

His son Ken writes “As far as | am
aware this pronunciation is incorrect in
all known languages. | believe that
this novel pronunciation was invented
by my father.”

Regular Expressions over an Alphabet X

A standard way to express languages for tokens.

1. eis a regular expression that denotes {¢}
2. If aeZ, ais an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

(r)|(s) denotes L(r)uL(s)
(r)(s) {tu:teL(r),ue L(s)}
(r* U, L(r)!

where L0 = {e}
and L(r)i=L(rL(r)i!

Regular Expression Examples

2 ={a, b}

Regexp. Language

alb {a, b}

(alb)(a|b) {aa,ab,ba,bb}

a* {€,a,aa,aaa,aaaa,...}

(alb)* {e,a,b,aa,ab,ba,bb,aaa,aab,aba,abb,...}
ala*b {a,b,ab,aab,aaab,aaaab,...}

Specifying Tokens with REs

Typical choice: £ = ASCIl characters, i.e.,
{L"#%,...,01,...,9,...,A,...,Z,...,~}

letters: A|B|---|Z]a]| |z
digits: 0[1]---|9
identifier: letter (letter | digit)*

Implementing Scanners Automatically

Regular Expressions (Rules)

’ Nondeterministic Finite Automata ’

Subset Construction

] Deterministic Finite Automata ’

Talr;les

Nondeterministic Finite Automata

1. Set of states

“All strings containing S:{ @ @ }

an even number of 0's ,
v Y 2. Set of input symbols X : {0, 1}

3. Transition function o :Sx %, — 25
state [¢ 0 1

A ¢ {B} {C
B | ¢ {A (D}
C |o (D} {A
D |¢ {C (B}

4. Start state sg :

5. Set of accepting states

r{()

and 1's”

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the
start state to an accepting state that “spells out” x.

Show that the string “010010” is accepted.

02000 0R0N0

Translating REs into NFAs (Thompson'’s algorithm)

a HQ—LZ'@) Symbol

rir @@ Sequence

Choice

Why So Many Extra States and Transitions?

Invariant: Single start state; single end state; at most two
outgoing arcs from any state: helpful for simulation.

What if we used this simpler rule for Kleene Closure?

€
PN

I
€
Now consider a*b* with this rule:
€ €
HQ a b
€ €

Is this right?

Translating REs into NFAs

Example: Translate (a| b)*abb into an NFA. Answer:

€ €

3

Show that the string “aabb"” is accepted. Answer:

OO S OEOR OSSO

Simulating NFAs

Problem: you must follow the “right” arcs to show that a
string is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the e-closure of the start state

2. For each character ¢,

» New states: follow all transitions labeled ¢
» Form the e-closure of the current states

3. Accept if any final state is accepting

Simulating an NFA: -aabb, Start

€

FOEOR
s
€ 09 €

€

Simulating an NFA: -aabb, e-closure

Simulating an NFA: a-abb

€

€

e:“
e ecﬂ_a> bb
€ 09 €

€

Simulating an NFA: a-abb, e-closure

Simulating an NFA: aa-bb

€

€

e:“
e ecﬂ_a> bb
€ 09 €

€

Simulating an NFA: aa-bb, e-closure

Simulating an NFA: aab-b

€

o
20 ‘DB
eb

€

€

Simulating an NFA: aab-b, e-closure

Simulating an NFA: aabb-

Simulating an NFA: aabb-, Done

Deterministic Finite Automata

Restricted form of NFAs:

» No state has a transition on ¢
» For each state s and symbol a, there is at most one edge
labeled a leaving s.

Differs subtly from the definition used in COMS W3261
(Sipser, Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining
current state. Accept if you end up on an accepting state.
Reject if you end on a non-accepting state or if there is no
transition from the current state for the next symbol.

Deterministic Finite Automata

{
type token = ELSE | ELSEIF

rule token =
parse "else" { ELSE }
| "elseif" { ELSEIF }

e ~ | ~s ~e ~ i ~f
—O—0O—0O—~0O—0—0O—0

Deterministic Finite Automata
{ type token = IF | ID of string | NUM of string }

rule token =
{ IF }

parse "if"
1 [’a’-"z” ’0’-"9’]% as 1it { ID(lit) }

| [!a1_721
| [70°-"9"]+ as num { NUM(num) }

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states
that appear.

Each unique state during simulation becomes a state in the
DFA.

Subset construction for (a| b)*abb

Subset construction for (a| b)*abb

Subset construction for (a| b)*abb

Subset construction for (a| b)*abb

Subset construction for (a| b)*abb

Result of subset construction for (a| b)*abb

Is this minimal?

Minimized result for (a| b)*abb
a
O
—(
a

Transition Table Used In the Dragon Book

Problem: Translate (a| b)* abb into an NFA and perform

subset construction to produce a DFA.

Solution:

NFA State DFAState a b
{0,1,2,4,7} A B C
{1,2,3,4,6,7,8} B B D
{1,2,4,5,6,7} C B C
{1,2,4,5,6,7,9} D B E
{1,2,3,5,6,7,10} E B C

Subset Construction

An DFA can be exponentially larger than the corresponding
NFA.

n states versus 2"

Tools often try to strike a balance between the two
representations.

Lexical Analysis with
Ocamllex

Constructing Scanners with Ocamllex

ocamllex
scanner.mll ~ scanner.ml

(subset construction)
An example:

scanner.mll

{ open Parser }

rule token =
parse [’ ’ ’\t’ ’\r’ ’\n’]
+

{ token lexbuf }
{ PLUS }
- { MINUS }
* { TIMES }
{ DIVIDE }
{ LITERAL(int_of_string 1lit) }
{

[’0°-"9"]+ as 1lit
eof EOF }

{0)

Ocamllex Specifications

{
(* Header: verbatim OCaml code; mandatory =)

3

(+ Definitions: optional =)
let ident = regexp
let ...

(* Rules: mandatory =)
rule entrypointl [argl ... argn] =
parse patternl { action (% OCaml code =) }
| ...
| patternn { action }
and entrypoint2 [argl ... argn]} =

am;l....

(* Trailer: verbatim OCaml code; optional =)

3

Patterns (In Order of Decreasing Precedence)

Pattern Meaning

¢’ A single character

_ Any character (underline)

eof The end-of-file

"foo" A literal string

[’1” ’5 ’a’-’z’] “1," “5," or any lowercase letter
[~ ’0°-"9"] Any character except a digit

(pattern) Grouping

identifier A pattern defined in the let section
pattern x Zero or more patterns

pattern + One or more patterns

pattern ? Zero or one patterns

pattern, pattern; pattern; followed by pattern;

pattern, | pattern, Either pattern, or pattern,

pattern as id Bind the matched pattern to variable id

An Example

{ type token = PLUS | IF | ID of string | NUM of int }

let letter = [’a’-’z’ ’A’-’Z’]
let digit = ['0’-"9"]

rule token =

parse [’ ’ ’\n’ ’\t’] { token lexbuf } (* Ignore whitespace
| *+" { PLUS } (* A symbol #)
| "if" { IF } (* A keyword =)
(* Identifiers =*)
| letter (letter | digit | ’_’)+ as id { ID(id) }

(* Numeric literals =*)
digit+ as 1it { NUM(int_of_string lit) }

"/&" { comment lexbuf } (* C-style comments =)

and comment =
parse "x/" { token lexbuf } (+ Return to normal scanning =)

| _ { comment lexbuf } (* Ignore other characters =x)

:‘:)

Free-Format Languages

Typical style arising from scanner/parser division

Program text is a series of tokens possibly separated by
whitespace and comments, which are both ignored.

» keywords (if while)

v

punctuation (, (+)

v

identifiers (foo bar)
numbers (10 -3.14159e+32)
strings ("A String")

v

v

Free-Format Languages

Java C C++ C# Algol Pascal

Some deviate a little (e.g., C and C++ have a separate
preprocessor)

But not all languages are free-format.

FORTRAN 77

FORTRAN 77 is not free-format. 72-character lines:

100 IF(IN .EQ. 'Y’ .OR. IN .EQ. 'y’ .OR.
$ IN .EQ. 'T’ .OR. IN .EQ. 't’) THENJ

~ . ST
Statement label Continuation Normal

When column 6 is not a space, line is considered part of the
previous.

Fixed-length line works well with a one-line buffer.

Makes sense on punch cards. '

Python

The Python scripting language groups with indentation

i=0
while i < 10:
i=1+1
print 1 # Prints 1, 2, ..., 10
i=0
while i < 10:
i=1+1
print i # Just prints 10

This is succinct, but can be error-prone.

How do you wrap a conditional around instructions?

Syntax and Language Design

Does syntax matter? Yes and no

More important is a language’s semantics—its meaning.
The syntax is aesthetic, but can be a religious issue.

But aesthetics matter to people, and can be critical.
Verbosity does matter: smaller is usually better.

Too small can be problematic: APL is a succinct language
with its own character set.

There are no APL programs, only puzzles.

Syntax and Language Design

Some syntax is error-prone. Classic fortran example:

5 | Loop header (for i = 1 to 25)
5

D
)] | Assignment to variable DO5I

(=N=]

Trying too hard to reuse existing syntax in C++:

vector< vector<int> > foo;
vector<vector<int>> foo; // Syntax errorJ

C distinguishes > and >> as different operators.

Bjarne Stroustrup tells me they have finally fixed this.

Modeling Sentences

Simple Sentences Are Easy to Model

The boy eats hot dogs.

The dog eats ice cream.

Every happy girl eats candy.

A dog eats candy.

The happy happy dog eats hot dogs.

N
happy hot
o
The / \ boy dogs.
girl - eats ice
Every dog cream.

candy.

Pinker, The Language Instinct

Richer Sentences Are Harder

If the boy eats hot dogs, then the girl eats ice cream.

Either the boy eats candy, or every dog eats candy.

0
happy
. the 7 \ boy hot dogs
Eltheg a il — eats — ice _,or
If g cream then

every dog candy

Does this work?

Automata Have Poor Memories

Want to “remember” whether it is an “either-or” or
“if-then” sentence. Only solution: duplicate states.

¢

happy
the - \ boy hot dogs O
Either » a —— girl > eats > ice cream - or ha
every dog candy \ P ppy
/ O the boy hot dogs
a ——— girl > eats » ice cream
\ /happy\‘ every dog candy
the boy hot dogs A
If »a ——— girl > eats » ice cream - then

every dog candy

Automata in the form of Production Rules
Problem: automata do not remember where they’ve been

S— Either A
S— If A
A— the B
A— the C

A—aB

A— a C 3 A: C:
A— every B Either [»|"® N *g’;’g(
A— every C If every dog

Dl

E:
hot dogs
ice cream
candy

F:

¥ or

then

B— happy B ‘_/
B — happy C

C— boy D

C— girl D

C— dog D

D — eats E

E— hot dogs F
E— ice cream F
E— candy F
F— or A

F— then A

F— ¢

Solution: Context-Free Grammars

Context-Free Grammars have the ability to “call
subroutines:”

S— Either P, or P. Exactlytwo Ps

S —
P —
A—
A—
A—
H—
H—
N —
N —
N —
0O —
0O —
0O —

If P, then P.

A H N eats O One each of A, H, N, and O
the

a

every

happy H H is “happy” zero or more times
€

boy

girl

dog

hot dogs

ice cream

candy

A Context-Free Grammar for a Simplified C

program — €| program vdecl | program fdec/
fdecl — id (formals) { vdecls stmts }
formals — id| formals , id
vdecls — vdecl | vdecls vdec/
vdec/ — int id ;
stmts — ¢ | stmts stmt

stmt — expr ; |return expr ; | { stmts } | if (expr) stmt|
if (expr) stmt else stmt|
for (expr ; expr ; expr) stmt|while (expr) stmt
expr — 1lit|id|id C actuals) | C expr) |
expr + expr|expr - expr|expr = expr|expr / expr|
expr == expr|expr !=expr|expr < expr|expr <= expr |
expr > expr|expr >= expr|expr = expr

actuals — expr|actuals,expr

Constructing Grammars
and Ocamlyacc

Parsing

Objective: build an abstract syntax tree (AST) for the token
sequence from the scanner.

/\

2 % 3+ 4 > x4
/\

Goal: verify the syntax of the program, discard irrelevant
information, and “understand” the structure of the
program.

Parentheses and most other forms of punctuation removed.

Ambiguity

One morning | shot an elephant in my pajamas.

Ambiguity

One morning | shot an elephant in my pajamas.
How he got in my pajamas | don’t know. —Groucho Marx

SN ANIMAL

‘;‘ CRACKER

Ambiguity in English

S

VP
VP
NP
NP
NP
NP
PP

"4
Noun
Noun
Pro
Det

P
Poss

L T A e

I shot an elephant in my pajamas

NP VP

V NP

V NP PP
NP PP
Pro

Det Noun
Poss Noun
P NP

shot
elephant
pajamas

|

an

in

my

NP VP

| NP VP

Pro V. NP | ya

. AN

| shot NP PP
/ \ / \ | shot NP P NP
Det Noun P NP \ |/ \
‘ ‘ ‘ / \ Det Noun in Poss Noun

an elephant in Poss Noun ‘ ‘ ‘ ‘
‘ an elephant my pajamas

my pajamas

Jurafsky and Martin, Speech and Language Processing

The Dangling Else Problem
Who owns the else?

if (@) if (b) c(); else dO);

if if
\ [\
Should this be a/ if or a/if (@)
/ I\ /\
b c(O dO b cO

Grammars are usually ambiguous; manuals give
disambiguating rules such as C's:

As usual the “else” is resolved by connecting an
else with the last encountered elseless if.

The Dangling Else Problem

stmt : IF expr THEN stmt
| IF expr THEN stmt ELSE stmtJ

Problem comes after matching the first statement. Question
is whether an “else” should be part of the current
statement or a surrounding one since the second line tells
us “stmt ELSE” is possible.

The Dangling Else Problem

Some languages resolve this problem by insisting on nesting
everything.

E.g., Algol 68:

if a < b then a else bfi;J

“fi" is “if" spelled backwards. The language also uses do-od
and case-esac.

Another Solution to the Dangling Else Problem

Idea: break into two types of statements: those that have a
dangling “then” (“dstmt”) and those that do not (“cstmt”).
A statement may be either, but the statement just before an

“else” must not have a dangling clause because if it did, the
“else” would belong to it.

stmt : dstmt
| cstmt

dstmt : IF expr THEN stmt
| IF expr THEN cstmt ELSE dstmt

cstmt : IF expr THEN cstmt ELSE cstmt
| other statements...

We are effectively carrying an extra bit of information
during parsing: whether there is an open “then” clause.

Unfortunately, duplicating rules is the only way to do this in
a context-free grammar.

Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider

parsing

with the grammar

e—e+ele—elexele/e|N

/+\ A PN A,
/ \ - + /
3 \ */ 5 /\ /\ \
/ \ 4/ \2 3 42 5 / \

/\
* 5

/\

2

/\
3 4

Operator Precedence and Associativity

Usually resolve ambiguity in arithmetic expressions
Like you were taught in elementary school:
“My Dear Aunt Sally”

Mnemonic for multiplication and division before addition
and subtraction.

Operator Precedence

Defines how “sticky” an operator is.

1+2+3=*4

+
= at higher precedence than +: /.
(1%2)+ (3 4) ANEAN
1 2 3
/\
+ at higher precedence than =: ¥ 4
17’:(2+3)7’:4 1/\+
/\

Associativity

Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1-2-3-4

N\
- 4
N\
- 3
N\
1 2
(1-2)-3)-4

left associative

/\
N\
/\
I\
/\
3 4
1-2-(3-4))

right associative

Fixing Ambiguous Grammars

A grammar specification:

expr :
expr PLUS expr
| expr MINUS expr
| expr TIMES expr
| expr DIVIDE expr
| NUMBER

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”

Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

4

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”

Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term
| expr MINUS term
| term

term : term TIMES atom
| term DIVIDE atom
| atom

atom : NUMBER

This is left-associative.

No shift/reduce conflicts.

Statement separators/terminators

C uses ; as a statement terminator.

if (a<b)

printf("a less");
else {

printf("b"); printf(" less");
}

Pascal uses ; as a statement separator.

if a < b then

writeln(’a less’)
else begin

write(’a’); writeln(’ less’)
end

Pascal later made a final ; optional.

Ocamlyacc Specifications

9
A{(* Header: verbatim OCaml; optional =)
%3

/% Declarations: tokens, precedence, etc. */
%%

/% Rules: context-free rules =/

%%

(* Trailer: verbatim OCaml; optional =)

Declarations

» %token symbol ...
Define symbol names (exported to .mli file)

» %token < type > symbol ...
Define symbols with attached attribute (also exported)
» %start symbol ...
Define start symbols (entry points)
» %type < type > symbol ...
Define the type for a symbol (mandatory for start)
» %left symbol ...
» %right symbol ...
» %nonassoc symbol ...
Define predecence and associtivity for the given
symbols, listed in order from lowest to highest
precedence

Rules

nonterminal :
symbol ... symbol { semantic-action }
| ...
| symbol ... symbol { semantic-action }

» nonterminal is the name of a rule, e.g., “program,”
lleXprll
» symbol is either a terminal (token) or another rule

» semantic-action is OCaml code evaluated when the rule
is matched

» In a semantic-action, $1, $2, ...returns the value of the
first, second, ...symbol matched

» A rule may include “%prec symbol” to override its
default precedence

An Example .mly File

%token <int> INT
%token PLUS MINUS TIMES DIV LPAREN RPAREN EOL

%left PLUS MINUS /+ lowest precedence =/
%left TIMES DIV
%nonassoc UMINUS /+ highest precedence =/

%start main /* the entry point =/
%type <int> main

%%
main
expr EOL { $1 }
expr:
INT {$13}
| LPAREN expr RPAREN { $2 }
| expr PLUS expr { $1 + $3 3}
| expr MINUS expr { %1 - 333}
| expr TIMES expr { %1 = $3 }
| expr DIV expr {$1/ %31}
| MINUS expr %prec UMINUS { - $2 }

Parsing Algorithms

Parsing Context-Free Grammars

There are 0(n%) algorithms for parsing arbitrary CFGs, but
most compilers demand O(n) algorithms.

Fortunately, the LL and LR subclasses of CFGs have O(n)
parsing algorithms. People use these in practice.

Rightmost Derivation of Id « Id + Id

e

lie—t+e
2:e—t
3:t—Id =t
4:1r—Id

At each step, expand the rightmost nonterminal.

nonterminal

L"handle": The right side of a productionJ

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id « Id + Id

e

lie—t+e L+to
2:e—t

3:t—Id =t

4:1r—Id

At each step, expand the rightmost nonterminal.

nonterminal

L"handle": The right side of a productionJ

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id « Id + Id

e

lie—t+e +o
2:e—t t+
3:t—Id =t

4:1r—Id

At each step, expand the rightmost nonterminal.

nonterminal

L"handle": The right side of a productionJ

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id « Id + Id

e

l:e—t+e +e
2:e—t t+
3:t—Id *t t +(d)
4:t—Id

At each step, expand the rightmost nonterminal.

nonterminal

L"handle": The right side of a productionJ

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id « Id + Id

e

l:e—t+e +e
2:e—t t+
3:t—Id *t ¢ +(d)
4:t—Id

Id + 9+ Id

At each step, expand the rightmost nonterminal.

nonterminal

| “handle”: The right side of a production |

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id « Id + Id

e

lie—t+e +o
2:e—t r+
3:t—Id *t ¢ +(d)
4:r—Id
Id + o+ 1d
Id «(d)+ Id

At each step, expand the rightmost nonterminal.

nonterminal

| “handle”: The right side of a production |

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id « Id + Id

e

l:e—t+e +e
2:e—t t+@
3:t—Id *t ¢ +(d)
4:t—Id
id « 9+ Id
Id «(d)+ Id

At each step, expand the rightmost nonterminal.

nonterminal

| “handle”: The right side of a production |

Dragon-book style: underline handles

e—t+e—t+t—t+ld—Id«r+1d—Idx*Id+Id

Rightmost Derivation: What to Expand

e

l:e—t+e C+te
2:e—t t+
3:t—Id *1¢ t+
4:t—Id CEm
Id *+ Id
e

t +{)
¢ +lid
+ id
Id «lid)+ Id

Expand here { Terminals only

Reverse Rightmost Derivation

e

l:e—t+e +e
2:e—t t+
3:t—1Id *¢ ¢t +d)
4:1r—Id CEm
Id «(d)+ Id
Id «Id + Id

viable prefixes terminals

Reverse Rightmost Derivation

e

l:e—t+e ¢+ e
2:e—t t+
3:t—Id *t t +(1d)
4:t—Id Id x o+ Id
Id «(d)+ Id
Id «fd+Id I‘d
Id*7+I1d t

viable prefixes terminals

Reverse Rightmost Derivation

e

l:e—t+e ¢+ e
2:e—t r+
3:t—Id x¢ t +(d
4:t—Id CEm
Id «(d)+ Id
Id@ﬂd I‘d
+Id Id *
\|/
t+1d t

viable prefixes terminals

Reverse Rightmost Derivation

e

l:e—t+e ¢+ e
2:e—t r+
3:t—Id =t t +(d
4:1r—Id CEm
Id «(d)+ Id
Idwﬂd I‘d
@Hd Id * ¢t
\|/
t+d t 'f'
t+t t

viable prefixes terminals

Reverse Rightmost Derivation

e

l:e—t+e Zte
2:e—t r+
3:t—Id *¢ t +(d)
4:1r—Id CEm
Id «(d)+ Id
Id «d+ 1d Ifl
+Id Id * ¢
t +d \‘t/ Id
\
t+(D T
t+e e

viable prefixes terminals

Reverse Rightmost Derivation

e

l:e—t+e C+e
2:e—t t+
3:r—10d %t t +(d)
4:t—1d (d)+ 1d
Id «(d)+ Id
Id «d+ 1d I‘d
+Id Id = ¢
t+d \‘t/ Id
\
L +(D T‘
+ e
e e//

viable prefixes terminals

Shift/Reduce Parsing Using an Oracle

e

l:e—t+e +e
2:e—t t+
3:t—Id *t t +(1d)
4:1r—Id CEm
Id «(d)+ Id

Id = Id +1d shift

stack input

Shift/Reduce Parsing Using an Oracle

e

l:e—t+e +e
2:e—t t+
3:t—1Id *¢ ¢t +d)
4:1r—Id CEm
Id «(d)+ Id

Id = Id +1d shift
Id«Id +Id shift

stack input

Shift/Reduce Parsing Using an Oracle

e
l:e—t+e ¢+ e
2:e—t t+
3:r—Id =t ¢t +(d)

4:t—Id id o+ 1Id
Id «(d)+ Id

Id = Id +1d shift

Id«Id +1d shift
Id «Id + Id shift

stack input

Shift/Reduce Parsing Using an Oracle

e
l:e—t+e ¢+ e
2:e—t t+
3:t—Id =t ¢t +(d)

4:t—Id id o+ 1Id
Id «(d)+ Id

Id = Id +1d shift

Id«Id +1d shift
Id «Id + Id shift

Id < Id + Id reduce 4

stack input

Shift/Reduce Parsing Using an Oracle

e
l:e—t+e ¢+ e
2:e—t t+
3:r—Id =t t +Ud)

4:t—Id id o+ 1Id
Id «(d)+ Id

Id = Id +1d shift
Id«Id +1d shift
Id «Id + Id shift

Id «(0d)+ Id reduce 4
Id =7+ Id reduce 3

stack input

Shift/Reduce Parsing Using an Oracle

e

l:e—t+e ¢+ e
2:e—t t+
3:r—Id =t t +Ud)
4:t—Id id o+ 1Id
Id «(d)+ Id
Id = Id +1d shift
Id«Id +1d shift
Id «Id + Id shift
Id «0d)+ Id reduce 4
id+n+Id reduce 3
t+1d shift

stack input

Shift/Reduce Parsing Using an Oracle

e

l:e—t+e ¢+e
2:e—t t+
3:r—Id =t t +Ud)
4:t—Id id o+ 1Id
Id «(d)+ Id
Id = Id +1d shift
Id«Id +1d shift
Id «Id + Id shift
Id «0d)+ Id reduce 4
id+n+Id reduce 3
t+1d shift
t+I1d shift

stack input

Shift/Reduce Parsing Using an Oracle

e

l:e—t+e +e
2:e—t t+
3:r—Id =t t +Ud)
4:1—Id (id 9+ Id
Id «(d)+ Id
Id = Id + Id shift
Id «Id +Id shift
Id«Id +1d shift
Id «0d)+ Id reduce 4
d=72+Id reduce 3
t+Id shift
t+1d shift
t+1d reduce 4

stack input

Shift/Reduce Parsing Using an Oracle

l:e—t+e
2:e—t
3:t—Id *¢
4:t—Id

stack

e

@ + e
t +(g
t +Ud)
d = o)+ Id
Id «(d)+ Id
Id «Id + Id shift
Id « Id + Id shift
Id «Id + Id shift
Id «0d)+ Id reduce 4
id+n+Id reduce 3
t+1d shift
t+I1d shift
t+0d reduce 4
t+t reduce 2

input

Shift/Reduce Parsing Using an Oracle

l:e—t+e
2:e—t
3:t—Id *¢
4:t—Id

stack

e

@ + e
r+
t +Ud)
d = o)+ Id
Id «(d)+ Id
Id = Id +1d shift
Id«Id +1d shift
Id«Id +1d shift
Id «0d)+ Id reduce 4
id+n+Id reduce 3
t+1d shift
t+I1d shift
t+0d reduce 4
r+@ reduce 2
r+e reduce 1

input

Shift/Reduce Parsing Using an Oracle

l:e—t+e
2:e—t
3:t—Id *¢
4:t—Id

stack

e

@ + e
t +1
t +Ud)
(d = o)+ Id
Id «(d)+ Id
Id = Id +1d shift
Id«Id +1d shift
Id = Id + Id shift
Id «0d)+ Id reduce 4
id+n+Id reduce 3
t+1d shift
t+I1d shift
t +0d reduce 4
t+(@ reduce 2
e reduce 1
e accept

input

Handle Hunting

Right Sentential Form: any step in a rightmost derivation

Handle: in a sentential form, a RHS of a rule that, when
rewritten, yields the previous step in a rightmost derivation.

The big question in shift/reduce parsing:
When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match
against them? Usually infinitely many; let’s try anyway.

Some Right-Sentential Forms and Their Handles

l:e—t+e
2:e—t
3:t—Id =1t
4:t—1d
e
/ \
Id«z¢ Id

VRN
Id«Id«¢ Id=Id
RN
Id«Id«ld*zs Idx«Id=Id

/\

Some Right-Sentential Forms and Their Handles

l:e—t+e
2:e—t
3:t—Id = ¢
4:t—Id

/N

Id«z Id t+t+e / \
RN /\

Id«Ild+¢ Id«ld t+t+t+e

SN /
Id«Id*Id+r Id=Ild=Id t+t+t+t

/\ - /\

Some Right-Sentential Forms and Their Handles

l:ie—t+e Patterns: Ids«Id«---«ldx¢---
20t Idsld s xId--
3:t—1d ¢ Ehik-tite
) t+t+--+t+1d
4:1—1d t+t+-+r+ldsld s xld 7
E+Ettt
e
e
z/ \u
Id*/t \@ t+ﬂ/ >+g
/N /\ RN
Id«ld«zs Id«ld r+i+rte t+ld=t t+1d
N /\ /\ VAN
Id«Id«ld*zs Idx«Id=Id t+t+t+1 Id«t+I1d 1d+Id
/\ /\ i 1>
Id+ld«r+1d 1d1d+1d

— N
Id«ld*Id*¢+I1d Id=Id=Id+Id

/\

The Handle-ldentifying Automaton

Magical result, due to Knuth: An automaton suffices to
locate a handle in a right-sentential form.

Idsld s xld s 7o
IdsId - xId---
t+t+-+t+e
t+t+--+t+1d
t+t+-+t+ldsld s ld* ¢
F+btett Id
e

Building the Initial State of the LR(0) Automaton

e — e
l:e—t+e

2:e—t
3:t—Id x¢
4:t—Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition "¢’ — @e”

Building the Initial State of the LR(0) Automaton

e —@e
l:e—t+e

e—Qt+e
2:e—t e — @f
3:t—Id x¢
4:t—Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition "¢’ — @e”

There are two choices for what an e may expand to: r+e
and t. So when ¢’ — @e, e — @t + ¢ and e — @t are also true,
i.e., it must start with a string expanded from r.

Building the Initial State of the LR(0) Automaton

e —@e
l:e—t+e
e—Qt+e
2:e—t e — @f
3:t—Id x¢
4 r—1d t—@ld ¢
) t—celd

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition "¢’ — @e"

There are two choices for what an e may expand to: r+e
and t. So when ¢ — @e, e — @t + ¢ and e — @t are also true,
i.e., it must start with a string expanded from r.

Also, t must be ld =t or Id, so t —@ld = r and ¢ — cld.

This is a closure, like e-closure in subset construction.

Building the LR(0) Automaton

e — Qe
e—Qt+e
S0:e—Qt
t—Qld ¢t
t—Qld

The first state suggests a
viable prefix can start as any
string derived from e, any
string derived from ¢, or Id.

Building the LR(0) Automaton

“Just passed a string

derived fro,m ¢ The first state suggests a
Just passed & yjiaple prefix can start as any

e prefix ending in
a string derived

string derived from e, any

e — Qe from string derived from ¢, or Id.
So_iﬁg” t |y, ¢— 1€-+e| The items for these three
i @ldwr ‘e— 1@ |states come from advancing
r—eld the @ across each thing, then
performing the closure
Id operation (vacuous here).
t—1d@x ¢
St t—1dg

“Just passed a prefix
that ended in an Id”

Building the LR(0) Automaton

e

S0:

e — Qe
e—Qt+e
e—Qt
t—Qld ¢t
t—Qld

Y

Id

ST, 1de

t—1d@x ¢t

1*

S3:

t—Id =@t

e—1Q+e
e—1Q

e—t+Qe

S4.

In S2, a + may be next. This
gives ¢+ Qe.

In S1, * may be next, giving
Id = @r

Building the LR(0) Automaton

e

S0:

e — Qe
e—Qt+e
e—Qt
t—Qld ¢t
t—Qld

Y

Id

ST, 1de

t—1d@x ¢t

1*

S3:

t—Id =@t
t—Qld=t
t—qid

e—1Q+e
e—1Q

e—1+Qe

+ e—Qt+e

S4:e—Qt
t—Qldx*t
t—Qld

In S2, a + may be next. This
gives t+@Qe. Closure adds 4
more items.

In S1, * may be next, giving
Id x @r and two others.

Building the LR(0) Automaton

e

e — Qe e—r+Qe

e—Qt+e ¢ ¢— 1@+ e + e—Qt+e
S0:e—Qt ~52:e @ S4:e—Qt

t—Qld=t t t—Qld*t

t—qld t—Qld

Id Id e

1,1~ de

“t—I1dg

Id(|+

t—Id =@t

§3:1—@ld«r|+[55: (—1d+g]

t—qid

What to do in each state?

hd l:e—t+e
S1:t—4d@*t 2:e—t
t—lde 3:t—Id *¢
4:t—Id

%

Stack Input Action
Id«Id=*---xld *--- Shift
Id=Id=---x1d Reduce 4
Id*Id*---xId Reduce 4
Id«Ild*---xId Id--- Syntax Error

IdsIld«*---xIld*z---

f+t+-
E+t+-
b+ L+
[+E+-

e

+t+e
+tr+1d

+r+ldxld -

+1

The first function

If you can derive a string that starts with terminal ¢ from
some sequence of terminals and nonterminals a, then
t € first(a).

1. Trivially, first(X) = {X} if X is a terminal.

2. If X —¢, then add ¢ to first(X).

3. For each prod. X — Y ---, add first(Y) — {e} to first(X).
If X can produce something, X can start with whatever
that starts with

4. For each prod. X — Y;--- Y3 Z--- where ¢ € first(Y;) for
i=1,...,.k, add first(Z) — {€} to first(X).

Skip all potential ¢'s at the beginning of whatever X

produces
lie—tte first(d) = {Id}
2:e—t first(r) = {ld} because r—1Id *rand t—Id
3:t—1d 1 first(e) = {Id} because e — ¢+ ¢, e — t, and
4:t—Id

first(¢) = {Id}.

The follow function

If ¢ is a terminal, A is a nonterminal, and --- At--- can be
derived, then ¢ e follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. — --- Aq, add first(a) — {¢} to follow(A).
A is followed by the first thing after it

3. For each prod. A—---B or a— ---Ba where ¢ € first(a),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

l:e—t+e follow(e) = {$}
2:e—t follow(r)={ }
Z i_’ :g 1 1. Because e is the start symbol

first(r) = {Id}
first(e) = {Id}

The follow function

If ¢ is a terminal, A is a nonterminal, and --- At--- can be
derived, then ¢ e follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. — --- Aq, add first(a) — {¢} to follow(A).
A is followed by the first thing after it

3. For each prod. A—---B or a— ---Ba where ¢ € first(a),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

l:e—t+e follow(e) = {$}

2:e—t follow(r) = {+ }

3rr—Id x1 2. Because e — t+e and first(+) = {+}
4:t—Id

first(r) = {Id}
first(e) = {Id}

The follow function

If ¢ is a terminal, A is a nonterminal, and --- At--- can be
derived, then ¢ e follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. — --- Aq, add first(a) — {¢} to follow(A).
A is followed by the first thing after it

3. For each prod. A—---B or a— ---Ba where ¢ € first(a),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

l:e—t+e follow(e) = {$}

2:e—t follow(r) = {+,$}

3:r—Id ¢ 3. Because e — t and $ € follow(e)
4:t—Id

first(r) = {Id}
first(e) = {Id}

The follow function

If ¢ is a terminal, A is a nonterminal, and --- At--- can be
derived, then ¢ e follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. — --- Aq, add first(a) — {¢} to follow(A).
A is followed by the first thing after it

3. For each prod. A—---B or a— ---Ba where ¢ € first(a),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

l:e—t+e
2:e—1
3:t—Id =t
4:r—Id
first(r) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t) = {+,$}

Fixed-point reached: applying any rule
does not change any set

Converting the LR(0) Automaton to an SLR Table

S7: ¢ —e-

1

l:ie—t+e
2:e—1
3:t—Id =t
4:r—Id

e—»t-H

e
—Is0]-"[s2:

Id
[st:c—1d]

follow(e) = {$}
follow(t) = {+,$}

State Action Goto
Id + * $ e t
0 |s1 |7 2

From SO, shift an Id and go to S1;
or cross a r and go to S2; or cross
an e and go to S7.

Converting the LR(0) Automaton to an SLR Table

follow(e) = {$}
follow(t) = {+,$}

l:e—t+e
2:e—1
3:t—1Id =1t
4:t—Id State Action Goto
Id + * $ e t
0 s1 7 2
1 rd s3 r4

From S1, shift a «+ and go to S3;
or, if the next input € follow(z),
reduce by rule 4.

Converting the LR(0) Automaton to an SLR Table

l:e—t+e

2:e—t

3:t—Id %1

4:1—Id State Action Goto

Id + * $ e t

0 s1 7 2
1 rd s3 r4
2 s4 r2

From S2, shift a + and go to S4;
or, if the next input € follow(e),
follow(e) = {$} reduce by rule 2.
follow(z) = {+,$}

Converting the LR(0) Automaton to an SLR Table

l:e—t+e

2:e—t

3:t—Id %1

4:1—Id State Action Goto

Id + * $ e t

0 s1 7 2
1 rd s3 r4
2 s4 r2
3 s1 5

t
’ S5: t—‘> Id = - ‘ From S3, shift an Id and go to S1;

or cross a t and go to S5.
follow(e) = {$}

follow(?) = {+,$}

Converting the LR(0) Automaton to an SLR Table

l:e—t+e

2:e—t

3:t—Id %1

4:1—Id State Action Goto

id + * $ e t

0 s1 7 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s 6 2

From S4, shift an Id and go to S1;
or cross an eor a f.

follow(e) = {$}
follow(t) = {+,$}

Converting the LR(0) Automaton to an SLR Table

[s5:1—1d 1]

follow(e) = {$}
follow(t) = {+,$}

l:e—t+e

2:e—t

3:t—Id %1

4:1—Id State Action Goto

Id + * $ e t

0 s1 7 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3

From S5, reduce using rule 3 if

the next symbol € follow(r).

Converting the LR(0) Automaton to an SLR Table

l:ie—t+e
2:e—1
3:t—Id =t
4:r—Id

follow(e) = {$}
follow(t) = {+,$}

State Action Goto
Id + * $ e t
0 s1 7 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1

From S6, reduce using rule 1 if

the next symbol € follow(e).

Converting the LR(0) Automaton to an SLR Table

follow(e) = {$}
follow(t) = {+,$}

l:e—t+e

2:e—t

3:t—Id %1

4:1—1d State Action Goto

Id + * $ e t

0 s1 7 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 v

If, in S7, we just crossed an e,
accept if we are at the end of

the input.

Shift/Reduce Parsing with an SLR Table

Stack Input Action

l:e—t+e

2:e—t

3:t—Id =1

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

O | 1d«Id+Ids Shift, goto 1

Look at the state on top of the
stack and the next input token.

Find the action (shift, reduce, or
error) in the table.

In this case, shift the token onto
the stack and mark it with state 1.

Shift/Reduce Parsing with an SLR Table

Stack Input Action

l:e—t+e

2:e—t

3:t—Id *1¢

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

O | 1d«Id+Id$ Shift, goto 1

old
1 | x1d+Id$ Shift, goto 3

Here, the state is 1, the next
symbol is *, so shift and mark it
with state 3.

Shift/Reduce Parsing with an SLR Table

Stack Input Action
l:e—t+e 0 | id«Id+1d$ Shift, goto 1
2:e—t 0 id
3. told %t 1 | «Id+1d$ Shift, goto 3
) Id *
4:t—Id 09 3 | 1d+1ds Shift, goto 1
0 Id * Id
State Action Goto 131 | +1ds$ Reduce 4

Here, the state is 1, the next

0 s1 7 2 symbol is +. The table says reduce
1 rd s3 r4 using rule 4.

2 s4 r2

3 s1 5

4 s1 6 2

5 r3 r3

6 ri

7 v

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =1

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

Stack Input Action
0 | id«Id+1d$ Shift, goto 1
Id
U «Id+1d$ Shift, goto 3
Id *
09 3 | 1d+1ds Shift, goto 1
oldxId
131 | +1d$ Reduce 4
o ld *
13 +1d$

Remove the RHS of the rule (here,
just Id), observe the state on the
top of the stack, and consult the
"goto” portion of the table.

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =1

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

Stack Input Action
0 | id«Id+1d$ Shift, goto 1
id
U «Id+1d$ Shift, goto 3
Id *
09 3 | 1d+1ds Shift, goto 1
0 Id * Id
131 | +1d$ Reduce 4
0 Id * ¢
135 | +1d$ Reduce 3

Here, we push a ¢ with state 5.
This effectively “backs up” the
LR(0) automaton and runs it over
the newly added nonterminal.

In state 5 with an upcoming +,
the action is “reduce 3.”

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =1

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

Stack Input Action
0 | id«Id+1d$ Shift, goto 1
Id
U «Id+1d$ Shift, goto 3
Id *
09 3 | 1d+1ds Shift, goto 1
0 Id * Id
131 | +1d$ Reduce 4
0 Id * ¢
135 | +1ds Reduce 3
t
02 | ids Shift, goto 4

This time, we strip off the RHS for
rule 3, Id = ¢, exposing state 0, so

we push a r with state 2.

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =1

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

Stack Input Action
O | 1d«Id+Id$ Shift, goto 1
Id
01 | xid+Ids shift, goto 3
Id *
09 3 | 1d+1ds Shift, goto 1
0 Id * Id
131 | +1d$ Reduce 4
0 Id = t
135 | +i1ds$ Reduce 3
t
02 | ids Shift, goto 4
ro+
024 | gs Shift, goto 1
o L% id
241 |3 Reduce 4
A58 B
0242 |5 Reduce 2
r + e
0246 |5 Reduce 1
e
07 |5 Accept

L, R, and all that
LR parser: “Bottom-up parser”:
L = Left-to-right scan, R = (reverse) Rightmost derivation

RR parser: R = Right-to-left scan (from end)
| called them “Australian style”; nobody uses these

LL parser: “Top-down parser”:
L = Left-to-right scan: L = (reverse) Leftmost derivation

LR(1): LR parser that considers next token (lookahead of 1)
LR(0): Only considers stack to decide shift/reduce

SLR(1): Simple LR: lookahead from first/follow rules
Derived from LR(0) automaton

LALR(1): Lookahead LR(1): fancier lookahead analysis
Uses same LR(0) automaton as SLR(1)

Ocamlyacc builds LALR(1) tables.

The Punchline

This is a tricky, but mechanical procedure. The Ocamlyacc
parser generator uses a modified version of this technique
to generate fast bottom-up parsers.

You need to understand it to comprehend error messages:

Shift/reduce conflicts are

) Reduce/reduce conflicts are
caused by a state like

caused by a state like
t— -Elses

t—-

t—Ild=*t-

e—ft+e-
If the next token is Else, do
you reduce it since Else may
follow a ¢, or shift it?

Do you reduce by “¢ — Id « ¢"
orby “e—rt+e"?

	The Big Picture
	Lexical Analysis
	Lexical Analysis with Ocamllex
	Modeling Sentences
	Constructing Grammars and Ocamlyacc
	Parsing Algorithms

