
Scanning and Parsing

Stephen A. Edwards

Columbia University

Fall 2015

The First Question

How do you represent one of many things?

Compilers should accept many programs;
how do we describe which one we want?

Use continuously varying values?

Very efficient, but has serious noise issues
Edison Model B Home Cylinder phonograph, 1906

The ENIAC: Programming with Spaghetti

Have one symbol per thing?

Works nicely when there are only a few things
Sholes and Glidden Typewriter, E. Remington and Sons, 1874

Have one symbol per thing?

Not so good when there are many, many things
Nippon Typewriter SH-280, 2268 keys

Solution: Use a Discrete Combinatorial System

Use combinations of a small number of things to represent
(exponentially) many different things.

Every Human Writing System Does This

Hieroglyphics (24+) Cuneiform (1000 – 300)

Sanskrit (36) Chinese (214 – 4000) IBM Selectric (88–96)

Mayan (100) Roman (21–26)

The Second Question

How do you describe only certain combinations?

Compilers should only accept correct programs;
how should a compiler check that its input is correct?

Just List Them?

Gets annoying for large numbers of combinations

Just List Them?

Can be really redundant

Choices: CS Research Jargon Generator

Pick one from each column

an integrated mobile network
a parallel functional preprocessor
a virtual programmable compiler
an interactive distributed system
a responsive logical interface
a synchronized digital protocol
a balanced concurrent architecture
a virtual knowledge-based database
a meta-level multimedia algorithm

E.g., “a responsive knowledge-based preprocessor.”
http://www.cs.purdue.edu/homes/dec/essay.topic.generator.html

SCIgen: An Automatic CS Paper Generator

Rooter: A Methodology for the Typical Unification
of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

ABSTRACT

Many physicists would agree that, had it not been for
congestion control, the evaluation of web browsers might never
have occurred. In fact, few hackers worldwide would disagree
with the essential unification of voice-over-IP and public-
private key pair. In order to solve this riddle, we confirm that
SMPs can be made stochastic, cacheable, and interposable.

I. INTRODUCTION

Many scholars would agree that, had it not been for active
networks, the simulation of Lamport clocks might never have
occurred. The notion that end-users synchronize with the
investigation of Markov models is rarely outdated. A theo-
retical grand challenge in theory is the important unification
of virtual machines and real-time theory. To what extent can
web browsers be constructed to achieve this purpose?

Certainly, the usual methods for the emulation of Smalltalk
that paved the way for the investigation of rasterization do
not apply in this area. In the opinions of many, despite the
fact that conventional wisdom states that this grand challenge
is continuously answered by the study of access points, we
believe that a different solution is necessary. It should be
noted that Rooter runs in Ω(log logn) time. Certainly, the
shortcoming of this type of solution, however, is that compilers
and superpages are mostly incompatible. Despite the fact that
similar methodologies visualize XML, we surmount this issue
without synthesizing distributed archetypes.

We question the need for digital-to-analog converters. It
should be noted that we allow DHCP to harness homoge-
neous epistemologies without the evaluation of evolutionary
programming [2], [12], [14]. Contrarily, the lookaside buffer
might not be the panacea that end-users expected. However,
this method is never considered confusing. Our approach
turns the knowledge-base communication sledgehammer into
a scalpel.

Our focus in our research is not on whether symmetric
encryption and expert systems are largely incompatible, but
rather on proposing new flexible symmetries (Rooter). Indeed,
active networks and virtual machines have a long history of
collaborating in this manner. The basic tenet of this solution
is the refinement of Scheme. The disadvantage of this type
of approach, however, is that public-private key pair and red-
black trees are rarely incompatible. The usual methods for the
visualization of RPCs do not apply in this area. Therefore, we
see no reason not to use electronic modalities to measure the
improvement of hierarchical databases.

The rest of this paper is organized as follows. For starters,
we motivate the need for fiber-optic cables. We place our
work in context with the prior work in this area. To ad-
dress this obstacle, we disprove that even though the much-
tauted autonomous algorithm for the construction of digital-
to-analog converters by Jones [10] is NP-complete, object-
oriented languages can be made signed, decentralized, and
signed. Along these same lines, to accomplish this mission, we
concentrate our efforts on showing that the famous ubiquitous
algorithm for the exploration of robots by Sato et al. runs in
Ω((n+ logn)) time [22]. In the end, we conclude.

II. ARCHITECTURE

Our research is principled. Consider the early methodology
by Martin and Smith; our model is similar, but will actually
overcome this grand challenge. Despite the fact that such
a claim at first glance seems unexpected, it is buffetted by
previous work in the field. Any significant development of
secure theory will clearly require that the acclaimed real-
time algorithm for the refinement of write-ahead logging by
Edward Feigenbaum et al. [15] is impossible; our application
is no different. This may or may not actually hold in reality.
We consider an application consisting of n access points.
Next, the model for our heuristic consists of four independent
components: simulated annealing, active networks, flexible
modalities, and the study of reinforcement learning.

We consider an algorithm consisting of n semaphores.
Any unproven synthesis of introspective methodologies will
clearly require that the well-known reliable algorithm for the
investigation of randomized algorithms by Zheng is in Co-NP;
our application is no different. The question is, will Rooter
satisfy all of these assumptions? No.

Reality aside, we would like to deploy a methodology for
how Rooter might behave in theory. Furthermore, consider
the early architecture by Sato; our methodology is similar,
but will actually achieve this goal. despite the results by Ken
Thompson, we can disconfirm that expert systems can be made
amphibious, highly-available, and linear-time. See our prior
technical report [9] for details.

III. IMPLEMENTATION

Our implementation of our approach is low-energy,
Bayesian, and introspective. Further, the 91 C files contains
about 8969 lines of SmallTalk. Rooter requires root access
in order to locate mobile communication. Despite the fact
that we have not yet optimized for complexity, this should be
simple once we finish designing the server daemon. Overall,

http://pdos.csail.mit.edu/scigen/

http://loveallthis.tumblr.com/post/506873221

How about more structured collections of things?

The boy eats hot dogs.

The dog eats ice cream.

Every happy girl eats candy.

A dog eats candy.

The happy happy dog eats hot dogs.

The
A
Every

happy

boy
girl
dog

eats

hot
dogs.
ice
cream.
candy.

Pinker, The Language Instinct

Lexical Analysis

Lexical Analysis (Scanning)

Translate a stream of characters to a stream of tokens

f o o = a + bar (0 , 42 , q) ;

ID EQUALS ID PLUS ID LPAREN NUM COMMA

ID LPAREN SEMI

Token Lexemes Pattern

EQUALS = an equals sign
PLUS + a plus sign
ID a foo bar letter followed by letters or digits
NUM 0 42 one or more digits

Lexical Analysis
Goal: simplify the job of the parser and reject some wrong
programs, e.g.,

%#@$^#!@#%#$

is not a C program†

Scanners are usually much faster than parsers.

Discard as many irrelevant details as possible (e.g.,
whitespace, comments).

Parser does not care that the the identifer is
“supercalifragilisticexpialidocious.”

Parser rules are only concerned with tokens.

† It is what you type when your head hits the keyboard

Describing Tokens

Alphabet: A finite set of symbols

Examples: { 0, 1 }, { A, B, C, . . . , Z }, ASCII, Unicode

String: A finite sequence of symbols from an alphabet

Examples: ε (the empty string), Stephen, αβγ

Language: A set of strings over an alphabet

Examples: ; (the empty language), { 1, 11, 111, 1111 }, all
English words, strings that start with a letter followed by
any sequence of letters and digits

Operations on Languages
Let L = { ε, wo }, M = { man, men }

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

Union: All strings from each language

L∪M = {ε, wo, man, men }

Kleene Closure: Zero or more concatenations

M∗ = {ε}∪M ∪M M ∪M M M · · · =
{ε, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, . . . }

Kleene Closure

“*” is named after Stephen Cole
Kleene, the inventor of regular
expressions, who pronounced his last
name “CLAY-nee.”

His son Ken writes “As far as I am
aware this pronunciation is incorrect in
all known languages. I believe that
this novel pronunciation was invented
by my father.”

Regular Expressions over an Alphabet Σ

A standard way to express languages for tokens.

1. ε is a regular expression that denotes {ε}

2. If a ∈Σ, a is an RE that denotes {a}

3. If r and s denote languages L(r) and L(s),

(r) | (s) denotes L(r)∪L(s)

(r)(s) {tu : t ∈ L(r),u ∈ L(s)}

(r)∗ ∪∞
i=0L(r)i

where L(r)0 = {ε}
and L(r)i = L(r)L(r)i−1

Regular Expression Examples

Σ= {a,b}

Regexp. Language

a | b {a,b}
(a | b)(a | b) {aa, ab,ba,bb}
a∗ {ε, a, aa, aaa, aaaa, . . .}
(a | b)∗ {ε, a,b, aa, ab,ba,bb, aaa, aab, aba, abb, . . .}
a | a∗b {a,b, ab, aab, aaab, aaaab, . . .}

Specifying Tokens with REs

Typical choice: Σ= ASCII characters, i.e.,
{ , !,",#,$, . . . ,0,1, . . . ,9, . . . ,A, . . . ,Z, . . . ,~}

letters: A | B | · · · | Z | a | · · · | z

digits: 0 | 1 | · · · | 9

identifier: letter (letter | digit)∗

Implementing Scanners Automatically

Regular Expressions (Rules)

Nondeterministic Finite Automata

Deterministic Finite Automata

Tables

Subset Construction

Nondeterministic Finite Automata

“All strings containing
an even number of 0’s
and 1’s”

A B

C D

0

0
11

0

0
1 1

1. Set of states

S :

{
A B C D

}
2. Set of input symbols Σ : {0,1}
3. Transition function σ : S×Σε → 2S

state ε 0 1
A ; {B} {C }
B ; {A} {D}
C ; {D} {A}
D ; {C } {B}

4. Start state s0 : A

5. Set of accepting states

F :

{
A

}

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the
start state to an accepting state that “spells out” x.

A B

C D

0

0
11

0

0
1 1

Show that the string “010010” is accepted.

A B D C D B A
0 1 0 0 1 0

Translating REs into NFAs (Thompson’s algorithm)

a
a

Symbol

r1r2
r1 r2r1 Sequence

r1 | r2

r1

r2

ε

ε

ε

ε

Choice

(r)∗ rε ε

ε

ε

Kleene Closure

Why So Many Extra States and Transitions?

Invariant: Single start state; single end state; at most two
outgoing arcs from any state: helpful for simulation.

What if we used this simpler rule for Kleene Closure?

r

ε

ε

Now consider a∗b∗ with this rule:

a b

ε

ε

ε

ε

Is this right?

Translating REs into NFAs

Example: Translate (a | b)∗abb into an NFA. Answer:

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Show that the string “aabb” is accepted. Answer:

0 1 2 3 6 7 8 9 10
ε ε a ε ε a b b

Simulating NFAs

Problem: you must follow the “right” arcs to show that a
string is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the ε-closure of the start state
2. For each character c,

Ï New states: follow all transitions labeled c
Ï Form the ε-closure of the current states

3. Accept if any final state is accepting

Simulating an NFA: ·aabb, Start

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: ·aabb, ε-closure

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: a·abb

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: a·abb, ε-closure

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: aa·bb

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: aa·bb, ε-closure

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: aab·b

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: aab·b, ε-closure

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: aabb·

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Simulating an NFA: aabb·, Done

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Deterministic Finite Automata

Restricted form of NFAs:

Ï No state has a transition on ε

Ï For each state s and symbol a, there is at most one edge
labeled a leaving s.

Differs subtly from the definition used in COMS W3261
(Sipser, Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining
current state. Accept if you end up on an accepting state.
Reject if you end on a non-accepting state or if there is no
transition from the current state for the next symbol.

Deterministic Finite Automata

{
type token = ELSE | ELSEIF

}

rule token =
parse "else" { ELSE }

| "elseif" { ELSEIF }

e l s e i f

Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =
parse "if" { IF }

| [’a’-’z’] [’a’-’z’ ’0’-’9’]* as lit { ID(lit) }
| [’0’-’9’]+ as num { NUM(num) }

NUM

ID IF

ID

0–9

i

a–hj–z

f

a–z0–9

a–eg–z0–9

0–9

a–z0–9

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states
that appear.

Each unique state during simulation becomes a state in the
DFA.

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

b

a

b

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

Result of subset construction for (a | b)∗abb

a

b

a
b

b

a

a

ba

b

Is this minimal?

Minimized result for (a | b)∗abb

a

a
b

b

a

bab

Transition Table Used In the Dragon Book

Problem: Translate (a | b)∗abb into an NFA and perform
subset construction to produce a DFA.

Solution:

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

NFA State DFA State a b

{0,1,2,4,7} A B C
{1,2,3,4,6,7,8} B B D
{1,2,4,5,6,7} C B C
{1,2,4,5,6,7,9} D B E
{1,2,3,5,6,7,10} E B C

A B

C

a

b

D

a
b

b

a

E

a
ba

b

Subset Construction

An DFA can be exponentially larger than the corresponding
NFA.

n states versus 2n

Tools often try to strike a balance between the two
representations.

Lexical Analysis with
Ocamllex

Constructing Scanners with Ocamllex

scanner.mll scanner.ml
ocamllex

(subset construction)

An example:

scanner.mll

{ open Parser }

rule token =
parse [’ ’ ’\t’ ’\r’ ’\n’] { token lexbuf }

| ’+’ { PLUS }
| ’-’ { MINUS }
| ’*’ { TIMES }
| ’/’ { DIVIDE }
| [’0’-’9’]+ as lit { LITERAL(int_of_string lit) }
| eof { EOF }

Ocamllex Specifications

{
(* Header: verbatim OCaml code; mandatory *)

}

(* Definitions: optional *)
let ident = regexp
let ...

(* Rules: mandatory *)
rule entrypoint1 [arg1 ... argn] =
parse pattern1 { action (* OCaml code *) }

| ...
| patternn { action }

and entrypoint2 [arg1 ... argn]} =
...

and ...

{
(* Trailer: verbatim OCaml code; optional *)

}

Patterns (In Order of Decreasing Precedence)
Pattern Meaning

’c’ A single character
_ Any character (underline)
eof The end-of-file
"foo" A literal string
[’1’ ’5’ ’a’-’z’] “1,” “5,” or any lowercase letter
[^ ’0’-’9’] Any character except a digit
(pattern) Grouping
identifier A pattern defined in the let section

pattern * Zero or more patterns
pattern + One or more patterns

pattern ? Zero or one patterns

pattern1 pattern2 pattern1 followed by pattern2

pattern1 | pattern2 Either pattern1 or pattern2

pattern as id Bind the matched pattern to variable id

An Example

{ type token = PLUS | IF | ID of string | NUM of int }

let letter = [’a’-’z’ ’A’-’Z’]
let digit = [’0’-’9’]

rule token =
parse [’ ’ ’\n’ ’\t’] { token lexbuf } (* Ignore whitespace *)

| ’+’ { PLUS } (* A symbol *)

| "if" { IF } (* A keyword *)
(* Identifiers *)

| letter (letter | digit | ’_’)* as id { ID(id) }
(* Numeric literals *)

| digit+ as lit { NUM(int_of_string lit) }

| "/*" { comment lexbuf } (* C-style comments *)

and comment =
parse "*/" { token lexbuf } (* Return to normal scanning *)

| _ { comment lexbuf } (* Ignore other characters *)

Free-Format Languages

Typical style arising from scanner/parser division

Program text is a series of tokens possibly separated by
whitespace and comments, which are both ignored.

Ï keywords (if while)
Ï punctuation (, (+)
Ï identifiers (foo bar)
Ï numbers (10 -3.14159e+32)
Ï strings ("A String")

Free-Format Languages

Java C C++ C# Algol Pascal

Some deviate a little (e.g., C and C++ have a separate
preprocessor)

But not all languages are free-format.

FORTRAN 77

FORTRAN 77 is not free-format. 72-character lines:

100 IF(IN .EQ. ’Y’ .OR. IN .EQ. ’y’ .OR.
$ IN .EQ. ’T’ .OR. IN .EQ. ’t’) THEN

1 · · · 5︸ ︷︷ ︸
Statement label

6︸︷︷︸
Continuation

7 · · · 72︸ ︷︷ ︸
Normal

When column 6 is not a space, line is considered part of the
previous.

Fixed-length line works well with a one-line buffer.

Makes sense on punch cards.

Python

The Python scripting language groups with indentation

i = 0
while i < 10:

i = i + 1
print i # Prints 1, 2, ..., 10

i = 0
while i < 10:

i = i + 1
print i # Just prints 10

This is succinct, but can be error-prone.

How do you wrap a conditional around instructions?

Syntax and Language Design

Does syntax matter? Yes and no

More important is a language’s semantics—its meaning.

The syntax is aesthetic, but can be a religious issue.

But aesthetics matter to people, and can be critical.

Verbosity does matter: smaller is usually better.

Too small can be problematic: APL is a succinct language
with its own character set.

There are no APL programs, only puzzles.

Syntax and Language Design

Some syntax is error-prone. Classic fortran example:

DO 5 I = 1,25 ! Loop header (for i = 1 to 25)
DO 5 I = 1.25 ! Assignment to variable DO5I

Trying too hard to reuse existing syntax in C++:

vector< vector<int> > foo;
vector<vector<int>> foo; // Syntax error

C distinguishes > and >> as different operators.

Bjarne Stroustrup tells me they have finally fixed this.

Modeling Sentences

Simple Sentences Are Easy to Model

The boy eats hot dogs.

The dog eats ice cream.

Every happy girl eats candy.

A dog eats candy.

The happy happy dog eats hot dogs.

The
A
Every

happy

boy
girl
dog

eats

hot
dogs.
ice
cream.
candy.

Pinker, The Language Instinct

Richer Sentences Are Harder

If the boy eats hot dogs, then the girl eats ice cream.

Either the boy eats candy, or every dog eats candy.

Either
If

the
a
every

happy

boy
girl
dog

eats

hot dogs
ice
cream
candy

or
then

Does this work?

Automata Have Poor Memories

Want to “remember” whether it is an “either-or” or
“if-then” sentence. Only solution: duplicate states.

Either
the
a
every

happy

boy
girl
dog

eats
hot dogs
ice cream
candy

or

If
the
a
every

happy

boy
girl
dog

eats
hot dogs
ice cream
candy

then

the
a
every

happy

boy
girl
dog

eats
hot dogs
ice cream
candy

Automata in the form of Production Rules
Problem: automata do not remember where they’ve been

S → Either A
S → If A
A → the B
A → the C
A → a B
A → a C
A → every B
A → every C
B → happy B
B → happy C
C → boy D
C → girl D
C → dog D
D → eats E
E → hot dogs F
E → ice cream F
E → candy F
F → or A
F → then A
F → ε

S :
Either
If

A :
the
a
every

B : happy

C :
boy
girl
dog

D : eats

E :
hot dogs
ice cream
candy

F :
or
then

Solution: Context-Free Grammars

Context-Free Grammars have the ability to “call
subroutines:”

S → Either P, or P. Exactly two Ps
S → If P, then P.
P → A H N eats O One each of A, H , N , and O
A → the
A → a
A → every
H → happy H H is “happy” zero or more times
H → ε

N → boy
N → girl
N → dog
O → hot dogs
O → ice cream
O → candy

A Context-Free Grammar for a Simplified C

program → ε |program vdecl |program fdecl

fdecl → id (formals) { vdecls stmts }

formals → id | formals , id

vdecls → vdecl | vdecls vdecl

vdecl → int id ;

stmts → ε | stmts stmt

stmt → expr ; | return expr ; | { stmts } | if (expr) stmt |
if (expr) stmt else stmt |
for (expr ; expr ; expr) stmt | while (expr) stmt

expr → lit | id | id (actuals) | (expr) |
expr + expr | expr - expr | expr * expr | expr / expr |
expr == expr | expr != expr | expr < expr | expr <= expr |
expr > expr | expr >= expr | expr = expr

actuals → expr | actuals,expr

Constructing Grammars
and Ocamlyacc

Parsing

Objective: build an abstract syntax tree (AST) for the token
sequence from the scanner.

2 * 3 + 4 ⇒
+

*

2 3

4

Goal: verify the syntax of the program, discard irrelevant
information, and “understand” the structure of the
program.

Parentheses and most other forms of punctuation removed.

Ambiguity

One morning I shot an elephant in my pajamas.

How he got in my pajamas I don’t know. —Groucho Marx

Ambiguity

One morning I shot an elephant in my pajamas.
How he got in my pajamas I don’t know. —Groucho Marx

Ambiguity in English

I shot an elephant in my pajamas

S → NP VP
VP → V NP
VP → V NP PP
NP → NP PP
NP → Pro
NP → Det Noun
NP → Poss Noun
PP → P NP
V → shot
Noun → elephant
Noun → pajamas
Pro → I
Det → an
P → in
Poss → my

S

NP

Pro

I

VP

V

shot

NP

NP

Det

an

Noun

elephant

PP

P

in

NP

Poss

my

Noun

pajamas

S

NP

Pro

I

VP

V

shot

NP

NP

Det

an

Noun

elephant

PP

P

in

NP

Poss

my

Noun

pajamas

Jurafsky and Martin, Speech and Language Processing

The Dangling Else Problem

Who owns the else?

if (a) if (b) c(); else d();

Should this be

if

a if

b c() d()

or

if

a if

b c()

d() ?

Grammars are usually ambiguous; manuals give
disambiguating rules such as C’s:

As usual the “else” is resolved by connecting an
else with the last encountered elseless if.

The Dangling Else Problem

stmt : IF expr THEN stmt
| IF expr THEN stmt ELSE stmt

Problem comes after matching the first statement. Question
is whether an “else” should be part of the current
statement or a surrounding one since the second line tells
us “stmt ELSE” is possible.

The Dangling Else Problem

Some languages resolve this problem by insisting on nesting
everything.

E.g., Algol 68:

if a < b then a else b fi;

“fi” is “if” spelled backwards. The language also uses do–od
and case–esac.

Another Solution to the Dangling Else Problem

Idea: break into two types of statements: those that have a
dangling “then” (“dstmt”) and those that do not (“cstmt”).
A statement may be either, but the statement just before an
“else” must not have a dangling clause because if it did, the
“else” would belong to it.

stmt : dstmt
| cstmt

dstmt : IF expr THEN stmt
| IF expr THEN cstmt ELSE dstmt

cstmt : IF expr THEN cstmt ELSE cstmt
| other statements...

We are effectively carrying an extra bit of information
during parsing: whether there is an open “then” clause.
Unfortunately, duplicating rules is the only way to do this in
a context-free grammar.

Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider
parsing

3 - 4 * 2 + 5

with the grammar

e → e +e | e −e | e ∗e | e /e | N

+

-

3 *

4 2

5

-

3 +

*

4 2

5

*

-

3 4

+

2 5

-

3 *

4 +

2 5

-

*

+

3 4

2

5

Operator Precedence and Associativity

Usually resolve ambiguity in arithmetic expressions

Like you were taught in elementary school:

“My Dear Aunt Sally”

Mnemonic for multiplication and division before addition
and subtraction.

Operator Precedence

Defines how “sticky” an operator is.

1 * 2 + 3 * 4

* at higher precedence than +:

(1 * 2) + (3 * 4)

+

*

1 2

*

3 4

+ at higher precedence than *:

1 * (2 + 3) * 4

*

*

1 +

2 3

4

Associativity
Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1 - 2 - 3 - 4

-

-

-

1 2

3

4

-

1 -

2 -

3 4

((1−2)−3)−4 1− (2− (3−4))

left associative right associative

Fixing Ambiguous Grammars

A grammar specification:

expr :
expr PLUS expr

| expr MINUS expr
| expr TIMES expr
| expr DIVIDE expr
| NUMBER

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”

Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”

Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term
| expr MINUS term
| term

term : term TIMES atom
| term DIVIDE atom
| atom

atom : NUMBER

This is left-associative.

No shift/reduce conflicts.

Statement separators/terminators

C uses ; as a statement terminator.

if (a<b)
printf("a less");

else {
printf("b"); printf(" less");

}

Pascal uses ; as a statement separator.

if a < b then
writeln(’a less’)

else begin
write(’a’); writeln(’ less’)

end

Pascal later made a final ; optional.

Ocamlyacc Specifications

%{
(* Header: verbatim OCaml; optional *)

%}

/* Declarations: tokens, precedence, etc. */

%%

/* Rules: context-free rules */

%%

(* Trailer: verbatim OCaml; optional *)

Declarations

Ï %token symbol . . .
Define symbol names (exported to .mli file)

Ï %token < type > symbol . . .
Define symbols with attached attribute (also exported)

Ï %start symbol . . .
Define start symbols (entry points)

Ï %type < type > symbol . . .
Define the type for a symbol (mandatory for start)

Ï %left symbol . . .
Ï %right symbol . . .
Ï %nonassoc symbol . . .

Define predecence and associtivity for the given
symbols, listed in order from lowest to highest
precedence

Rules

nonterminal :
symbol ... symbol { semantic-action }

| ...
| symbol ... symbol { semantic-action }

Ï nonterminal is the name of a rule, e.g., “program,”
“expr”

Ï symbol is either a terminal (token) or another rule
Ï semantic-action is OCaml code evaluated when the rule

is matched
Ï In a semantic-action, $1, $2, . . . returns the value of the

first, second, . . . symbol matched
Ï A rule may include “%prec symbol” to override its

default precedence

An Example .mly File
%token <int> INT
%token PLUS MINUS TIMES DIV LPAREN RPAREN EOL

%left PLUS MINUS /* lowest precedence */
%left TIMES DIV
%nonassoc UMINUS /* highest precedence */

%start main /* the entry point */
%type <int> main

%%

main:
expr EOL { $1 }

expr:
INT { $1 }

| LPAREN expr RPAREN { $2 }
| expr PLUS expr { $1 + $3 }
| expr MINUS expr { $1 - $3 }
| expr TIMES expr { $1 * $3 }
| expr DIV expr { $1 / $3 }
| MINUS expr %prec UMINUS { - $2 }

Parsing Algorithms

Parsing Context-Free Grammars

There are O(n3) algorithms for parsing arbitrary CFGs, but
most compilers demand O(n) algorithms.

Fortunately, the LL and LR subclasses of CFGs have O(n)
parsing algorithms. People use these in practice.

Rightmost Derivation of Id∗ Id+ Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e

t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id∗ Id+ Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id∗ Id+ Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id∗ Id+ Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id∗ Id+ Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id∗ Id+ Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation of Id∗ Id+ Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Dragon-book style: underline handles

e → t +e → t + t → t + Id→ Id∗ t + Id→ Id∗ Id+ Id

Rightmost Derivation: What to Expand

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

Expand here ↑ Terminals only

e

t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

Reverse Rightmost Derivation

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

viable prefixes terminals

Id ∗ Id+ Id

Id

tId ∗ t + Id ∗Id

tt + Id Id

tt + t

et + e

e

+
e

Reverse Rightmost Derivation

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

viable prefixes terminals

Id ∗ Id+ Id Id

tId ∗ t + Id

∗Id

tt + Id Id

tt + t

et + e

e

+
e

Reverse Rightmost Derivation

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

viable prefixes terminals

Id ∗ Id+ Id Id

tId ∗ t + Id ∗Id

tt + Id

Id

tt + t

et + e

e

+
e

Reverse Rightmost Derivation

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

viable prefixes terminals

Id ∗ Id+ Id Id

tId ∗ t + Id ∗Id

tt + Id Id

tt + t

et + e

e

+
e

Reverse Rightmost Derivation

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

viable prefixes terminals

Id ∗ Id+ Id Id

tId ∗ t + Id ∗Id

tt + Id Id

tt + t

et + e

e

+
e

Reverse Rightmost Derivation

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

viable prefixes terminals

Id ∗ Id+ Id Id

tId ∗ t + Id ∗Id

tt + Id Id

tt + t

et + e

e

+
e

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4
t + t reduce 2
t + e reduce 1

e accept

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4
t + t reduce 2
t + e reduce 1

e accept

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift

Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4
t + t reduce 2
t + e reduce 1

e accept

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4

Id ∗ t + Id reduce 3
t + Id shift

t + Id shift
t + Id reduce 4

t + t reduce 2
t + e reduce 1

e accept

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4
t + t reduce 2
t + e reduce 1

e accept

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift

t + Id shift
t + Id reduce 4

t + t reduce 2
t + e reduce 1

e accept

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4
t + t reduce 2
t + e reduce 1

e accept

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4

t + t reduce 2
t + e reduce 1

e accept

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4
t + t reduce 2

t + e reduce 1
e accept

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4
t + t reduce 2
t + e reduce 1

e accept

Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4
t + t reduce 2
t + e reduce 1

e accept

Handle Hunting

Right Sentential Form: any step in a rightmost derivation

Handle: in a sentential form, a RHS of a rule that, when
rewritten, yields the previous step in a rightmost derivation.

The big question in shift/reduce parsing:

When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match
against them? Usually infinitely many; let’s try anyway.

Some Right-Sentential Forms and Their Handles

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e

t

Id∗ t

Id∗ Id∗ t

Id∗ Id∗ Id∗ t Id∗ Id∗ Id

Id∗ Id

Id

Some Right-Sentential Forms and Their Handles

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e

t

Id∗ t

Id∗ Id∗ t

Id∗ Id∗ Id∗ t Id∗ Id∗ Id

Id∗ Id

Id

t +e

t + t +e

t + t + t +e

t + t + t + t

Some Right-Sentential Forms and Their Handles

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

Patterns: Id∗ Id∗·· ·∗ Id∗ t · · ·
Id∗ Id∗·· ·∗ Id · · ·
t + t +·· ·+ t +e
t + t +·· ·+ t + Id
t + t +·· ·+ t + Id∗ Id∗·· ·∗ Id∗ t
t + t +·· ·+ t
e

e

t

Id∗ t

Id∗ Id∗ t

Id∗ Id∗ Id∗ t Id∗ Id∗ Id

Id∗ Id

Id

t +e

t + t +e

t + t + t +e

t + t + t + t

t + t

t + Id∗ t t + Id

Id∗ t + Id

Id∗ Id∗ t + Id

Id∗ Id∗ Id∗ t + Id Id∗ Id∗ Id+ Id

Id∗ Id+ Id

Id+ Id

The Handle-Identifying Automaton
Magical result, due to Knuth: An automaton suffices to
locate a handle in a right-sentential form.

Id∗ Id∗·· ·∗ Id∗ t · · ·
Id∗ Id∗·· ·∗ Id · · ·
t + t +·· ·+ t +e
t + t +·· ·+ t + Id
t + t +·· ·+ t + Id∗ Id∗·· ·∗ Id∗ t
t + t +·· ·+ t
e

Id

t

Id∗ t

t +e

e

t

+t

e

Id
Id

∗Id

t

e

Building the Initial State of the LR(0) Automaton

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e ′ → e

e → t +e
e → t
t → Id∗ t
t → Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.
At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition “e ′ → e”

There are two choices for what an e may expand to: t +e
and t . So when e ′ → e, e → t +e and e → t are also true,
i.e., it must start with a string expanded from t .
Also, t must be Id∗ t or Id, so t → Id∗ t and t → Id.
This is a closure, like ε-closure in subset construction.

Building the Initial State of the LR(0) Automaton

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e ′ → e
e → t +e
e → t

t → Id∗ t
t → Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.
At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition “e ′ → e”
There are two choices for what an e may expand to: t +e
and t . So when e ′ → e, e → t +e and e → t are also true,
i.e., it must start with a string expanded from t .

Also, t must be Id∗ t or Id, so t → Id∗ t and t → Id.
This is a closure, like ε-closure in subset construction.

Building the Initial State of the LR(0) Automaton

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e ′ → e
e → t +e
e → t
t → Id∗ t
t → Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.
At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition “e ′ → e”
There are two choices for what an e may expand to: t +e
and t . So when e ′ → e, e → t +e and e → t are also true,
i.e., it must start with a string expanded from t .
Also, t must be Id∗ t or Id, so t → Id∗ t and t → Id.
This is a closure, like ε-closure in subset construction.

Building the LR(0) Automaton

S0 :

e ′ → e
e → t +e
e → t
t → Id∗ t
t → Id

S1 :
t → Id ∗ t
t → Id

S7 : e ′ → e

S2 :
e → t +e
e → t

e

Id

t

S3 :
t → Id∗ t

t → Id∗ t
t → Id

S4 :

e → t + e

e → t +e
e → t
t → Id∗ t
t → Id

∗

+

S5 : t → Id∗ t
t

Id

S6 : e → t +e

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a prefix
that ended in an Id”

“Just passed a string
derived from e”

The first state suggests a
viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the across each thing, then
performing the closure
operation (vacuous here).
In S2, a + may be next. This
gives t + e.

Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗ t

and two others.

Building the LR(0) Automaton

S0 :

e ′ → e
e → t +e
e → t
t → Id∗ t
t → Id

S1 :
t → Id ∗ t
t → Id

S7 : e ′ → e

S2 :
e → t +e
e → t

e

Id

t

S3 :
t → Id∗ t

t → Id∗ t
t → Id

S4 :

e → t + e

e → t +e
e → t
t → Id∗ t
t → Id

∗

+

S5 : t → Id∗ t
t

Id

S6 : e → t +e

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a prefix
that ended in an Id”

“Just passed a string
derived from e” The first state suggests a

viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the across each thing, then
performing the closure
operation (vacuous here).

In S2, a + may be next. This
gives t + e.

Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗ t

and two others.

Building the LR(0) Automaton

S0 :

e ′ → e
e → t +e
e → t
t → Id∗ t
t → Id

S1 :
t → Id ∗ t
t → Id

S7 : e ′ → e

S2 :
e → t +e
e → t

e

Id

t

S3 :
t → Id∗ t

t → Id∗ t
t → Id

S4 :

e → t + e

e → t +e
e → t
t → Id∗ t
t → Id

∗

+

S5 : t → Id∗ t
t

Id

S6 : e → t +e

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a prefix
that ended in an Id”

“Just passed a string
derived from e” The first state suggests a

viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the across each thing, then
performing the closure
operation (vacuous here).

In S2, a + may be next. This
gives t + e.

Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗ t

and two others.

Building the LR(0) Automaton

S0 :

e ′ → e
e → t +e
e → t
t → Id∗ t
t → Id

S1 :
t → Id ∗ t
t → Id

S7 : e ′ → e

S2 :
e → t +e
e → t

e

Id

t

S3 :
t → Id∗ t
t → Id∗ t
t → Id

S4 :

e → t + e
e → t +e
e → t
t → Id∗ t
t → Id

∗

+

S5 : t → Id∗ t
t

Id

S6 : e → t +e

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a prefix
that ended in an Id”

“Just passed a string
derived from e” The first state suggests a

viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the across each thing, then
performing the closure
operation (vacuous here).

In S2, a + may be next. This
gives t + e. Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗ t and two others.

Building the LR(0) Automaton

S0 :

e ′ → e
e → t +e
e → t
t → Id∗ t
t → Id

S1 :
t → Id ∗ t
t → Id

S7 : e ′ → e

S2 :
e → t +e
e → t

e

Id

t

S3 :
t → Id∗ t
t → Id∗ t
t → Id

S4 :

e → t + e
e → t +e
e → t
t → Id∗ t
t → Id

∗

+

S5 : t → Id∗ t
t

Id

S6 : e → t +e

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a prefix
that ended in an Id”

“Just passed a string
derived from e” The first state suggests a

viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the across each thing, then
performing the closure
operation (vacuous here).
In S2, a + may be next. This
gives t + e.

Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗ t

and two others.

What to do in each state?

S1 :
t → Id ∗ t
t → Id

∗

Id 1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

Id∗ Id∗·· ·∗ Id∗ t · · ·
Id∗ Id∗·· ·∗ Id · · ·
t + t +·· ·+ t +e
t + t +·· ·+ t + Id
t + t +·· ·+ t + Id∗ Id∗·· ·∗ Id∗ t
t + t +·· ·+ t
e

Stack Input Action

Id∗ Id∗·· ·∗ Id ∗·· · Shift
Id∗ Id∗·· ·∗ Id +·· · Reduce 4
Id∗ Id∗·· ·∗ Id Reduce 4
Id∗ Id∗·· ·∗ Id Id · · · Syntax Error

The first function
If you can derive a string that starts with terminal t from
some sequence of terminals and nonterminals α, then
t ∈first(α).

1. Trivially, first(X) = {X } if X is a terminal.
2. If X → ε, then add ε to first(X).
3. For each prod. X → Y · · · , add first(Y)− {ε} to first(X).

If X can produce something, X can start with whatever
that starts with

4. For each prod. X → Y1 · · ·Yk Z · · · where ε ∈first(Yi) for
i = 1, . . . ,k, add first(Z)− {ε} to first(X).
Skip all potential ε’s at the beginning of whatever X
produces

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

first(Id) = {Id}

first(t) = {Id} because t → Id ∗ t and t → Id

first(e) = {Id} because e → t +e, e → t , and
first(t) = {Id}.

The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. →··· Aα, add first(α)− {ε} to follow(A).
A is followed by the first thing after it

3. For each prod. A →···B or a →···Bα where ε ∈first(α),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t) = {

+ ,$

}

1. Because e is the start symbol

The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. →··· Aα, add first(α)− {ε} to follow(A).
A is followed by the first thing after it

3. For each prod. A →···B or a →···Bα where ε ∈first(α),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t) = {+

,$

}

2. Because e → t+e and first(+) = {+}

The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. →··· Aα, add first(α)− {ε} to follow(A).
A is followed by the first thing after it

3. For each prod. A →···B or a →···Bα where ε ∈first(α),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t) = {+ ,$}

3. Because e → t and $ ∈ follow(e)

The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. →··· Aα, add first(α)− {ε} to follow(A).
A is followed by the first thing after it

3. For each prod. A →···B or a →···Bα where ε ∈first(α),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t) = {+ ,$}

Fixed-point reached: applying any rule
does not change any set

Converting the LR(0) Automaton to an SLR Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

follow(e) = {$}
follow(t) = {+,$}

State Action Goto

Id + ∗ $ e t

0 s1 7 2

1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S0, shift an Id and go to S1;
or cross a t and go to S2; or cross
an e and go to S7.

Converting the LR(0) Automaton to an SLR Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

follow(e) = {$}
follow(t) = {+,$}

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4

2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S1, shift a ∗ and go to S3;
or, if the next input ∈ follow(t),
reduce by rule 4.

Converting the LR(0) Automaton to an SLR Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

follow(e) = {$}
follow(t) = {+,$}

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2

3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S2, shift a + and go to S4;
or, if the next input ∈ follow(e),
reduce by rule 2.

Converting the LR(0) Automaton to an SLR Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

follow(e) = {$}
follow(t) = {+,$}

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5

4 s1 6 2
5 r3 r3
6 r1
7 X

From S3, shift an Id and go to S1;
or cross a t and go to S5.

Converting the LR(0) Automaton to an SLR Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

follow(e) = {$}
follow(t) = {+,$}

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2

5 r3 r3
6 r1
7 X

From S4, shift an Id and go to S1;
or cross an e or a t .

Converting the LR(0) Automaton to an SLR Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

follow(e) = {$}
follow(t) = {+,$}

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3

6 r1
7 X

From S5, reduce using rule 3 if
the next symbol ∈ follow(t).

Converting the LR(0) Automaton to an SLR Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

follow(e) = {$}
follow(t) = {+,$}

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1

7 X

From S6, reduce using rule 1 if
the next symbol ∈ follow(e).

Converting the LR(0) Automaton to an SLR Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

follow(e) = {$}
follow(t) = {+,$}

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

If, in S7, we just crossed an e,
accept if we are at the end of
the input.

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

Look at the state on top of the
stack and the next input token.

Find the action (shift, reduce, or
error) in the table.

In this case, shift the token onto
the stack and mark it with state 1.

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

Here, the state is 1, the next
symbol is ∗, so shift and mark it
with state 3.

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

Here, the state is 1, the next
symbol is +. The table says reduce
using rule 4.

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5

+ Id$

Reduce 3

Remove the RHS of the rule (here,
just Id), observe the state on the
top of the stack, and consult the
“goto” portion of the table.

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

Here, we push a t with state 5.
This effectively “backs up” the
LR(0) automaton and runs it over
the newly added nonterminal.

In state 5 with an upcoming +,
the action is “reduce 3.”

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

0
t
2 + Id$ Shift, goto 4

This time, we strip off the RHS for
rule 3, Id∗ t , exposing state 0, so
we push a t with state 2.

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept

L, R, and all that

LR parser: “Bottom-up parser”:
L = Left-to-right scan, R = (reverse) Rightmost derivation

RR parser: R = Right-to-left scan (from end)
I called them “Australian style”; nobody uses these

LL parser: “Top-down parser”:
L = Left-to-right scan: L = (reverse) Leftmost derivation

LR(1): LR parser that considers next token (lookahead of 1)

LR(0): Only considers stack to decide shift/reduce

SLR(1): Simple LR: lookahead from first/follow rules
Derived from LR(0) automaton

LALR(1): Lookahead LR(1): fancier lookahead analysis
Uses same LR(0) automaton as SLR(1)

Ocamlyacc builds LALR(1) tables.

The Punchline

This is a tricky, but mechanical procedure. The Ocamlyacc
parser generator uses a modified version of this technique
to generate fast bottom-up parsers.

You need to understand it to comprehend error messages:

Shift/reduce conflicts are
caused by a state like

t →·Else s
t →·
If the next token is Else, do
you reduce it since Else may
follow a t , or shift it?

Reduce/reduce conflicts are
caused by a state like

t → Id∗ t ·
e → t +e ·
Do you reduce by “t → Id∗ t”
or by “e → t +e”?

	The Big Picture
	Lexical Analysis
	Lexical Analysis with Ocamllex
	Modeling Sentences
	Constructing Grammars and Ocamlyacc
	Parsing Algorithms

