
Alex Kalicki, Alexandra Medway,
Daniel Echikson, Lilly Wang

The Team
Alexandra - The Manager

Alex - The System Architect

Danny - The Language Guru

Lilly - The Tester

The Process
Branch, add a feature

Make a pull request

Travis

Merge with master

Repeat

The Process

Language Description
“A simple mathematical distribution language.”

Odds is a functional programming language that centers around mathematical
distributions, and expresses operations on them in a direct and
uncomplicated way.

Challenges
Functional → Imperative

Static Scoping

Immutable data

Anonymous Functions

Challenges
Type Inference → Type Ignorant

Python is type ignorant - catches errors at runtime

Odds catches type errors at compile time

Hindley Milner type inference, no runtime errors in generated python

Distribution type

When to make conversion to python function calls?

Static Scoping
Python doesn’t have static scoping, it has dynamic scoping

We mimic “static scoping” with a table →

each id corresponds to a “statically scoped” id

Keep integer value at top, every time we create a new id, replace name in
python with id_integer

This also makes variables immutable, any assignment leads to a new statically
scoped id

Static Scoping
do a = 5

do adda = (x) -> return x + a

do a = 10

do print(adda(0))

do adda = (x) -> return x + a

do print(adda(0))

a a_0

adda adda_1

x x_2

Static Scoping
do a = 5

do adda = (x) -> return x + a

do a = 10

do print(adda(0))

do adda = (x) -> return x + a

do print(adda(0))

a a_3

adda adda_1

x x_2

Static Scoping
do a = 5

do adda = (x) -> return x + a

do a = 10

do print(adda(0))

do adda = (x) -> return x + a

do print(adda(0))

a a_0

adda adda_1

x x_2

Static Scoping
do a = 5

do adda = (x) -> return x + a

do a = 10

do print(adda(0))

do adda = (x) -> return x + a

do print(adda(0))

a a_3

adda adda_4

x x_5

Static Scoping
do a = 5

do adda = (x) -> return x + a

do a = 10

do print(adda(0))

do adda = (x) -> return x + a

do print(adda(0))

a a_3

adda adda_4

x x_5

Static Scoping

Anonymous Functions
do call = (f, x) -> return f(x)

do y = call((x) -> return x + 2, 4)

do print(y)

… how does this work?

Anonymous Functions
Python doesn’t have anonymous functions

As we move from sast → past

- pull up anonymous functions one statement
- replace occurrence of anonymous function with function name

Anonymous Functions
Odds Python

Anonymous Functions
Odds Python

Prints “6”

Anonymous Functions
What else can we do?

“caking” → calling the function immediately after it is declared
Odds Python

Everything Is An Expression
In python, most things are statements.

Not in Odds, because we are a functional language!

Everything Is An Expression
So, we needed to replace all instances of “python non-expressions” in odds
with their expression value (an id)

Similar to anonymous functions…

Whenever we have an expression in odds which is not an expression in
python (assignment, conditionals)

Assign expression value to temporary id, replace expression instance with id

Everything Is An Expression
Conditionals need to be encapsulated in a “conditional” function which returns
the value of the conditional evaluation

Everything Is An Expression
Odds Python

Type Inference
Python is not type checked; it is ‘type ignorant’. Odds is type checked.

Odds has no type annotations. Problem: how to get type information with
which to check?

Solution: Hindley-Milner style type inference →

- variables start out unconstrained
- constrain where and when possible to a type
- If the variable has been constrained and there is a type mismatch, throw a

compile-time error at that user!

Type Inference
Simple Case

Odds

Sast Printer Output

‘n’ must be a Num

‘n + 2’ is OK because ‘n’
is a number. ‘success’
must also be a number.

Program passes Semantic
Checking!

Type Inference
Slightly harder case...

What do we do?

‘x’ and ‘y’ are unconstrained because
they are parameters

Is ‘x && y’ valid? We don’t know what
types ‘x’ and ‘y’ are...

Type Inference
Solution!

Odds

‘x’ and y are unconstrained, so
on ‘x && y’ make ‘x’ a Bool
and make ‘y’ a Bool. ‘result’
must also be a Bool.

Type Inference
Solution!

Odds

‘x’ and y are unconstrained, so
on ‘x && y’ make ‘x’ a Bool
and make ‘y’ a Bool. ‘result’
must also be a Bool.

‘x || y’ is OK because
‘x’ and ‘y’ are Bools

Type Inference
Solution!

Odds

Sast Printer

‘x’ and y are unconstrained, so
on ‘x && y’ make ‘x’ a Bool
and make ‘y’ a Bool. ‘result’
must also be a Bool.

‘x || y’ is OK because
‘x’ and ‘y’ are Bools

‘and’ must be a function that
takes 2 Bools and returns a Bool.

Type Inference
Now all we have to do is generalize the process we just outlined:

1. If assigning a literal to a var - do x = 2 - give the var the type of the
literal.

Type Inference
Now all we have to do is generalize the process we just outlined:

1. If assigning a literal to a var - do x = 2 - give the var the type of the
literal.

2. If a var is included in some sort of operation - x && y - ensure that the
var is the appropriate type, in this case Bool. If a var is not the
appropriate type - If x or y is not a Bool - spit out an error.

Type Inference
Now all we have to do is generalize the process we just outlined:

1. If assigning a literal to a var - do x = 2 - give the var the type of the
literal.

2. If a var is included in some sort of operation - x && y - ensure that the
var is the appropriate type, in this case Bool. If a var is not the
appropriate type - If x or y is not a Bool - spit out an error.

3. If the type of a var is not known - i.e. because the var is a parameter -
place constraints on its type where possible. For example:

/* var x has unknown type. The function add_two adds 2
to the argument it is fed and returns */
do a _num = add_two(x)
/* We know x must now be a Num */

Type Inference
Generalization was a challenge; there are many corner cases…
What about constraining recursive functions?

Error!

‘inf_recursion’
expected to return
Num

‘inf_recursion’ returns
a Bool

Distributions
“A distribution is a measurable set of data to which a function of a discrete
variable is applied. This function will map the set of data to a new set of
outcomes.”

Distributions
Two Type: Continuous and Discrete

Continuous:

Declare minimum, maximum, and the weight to apply to the range of
values

Discrete:

Have two lists, variables and the respective weights of the variables

Distributions
Operations:

Addition, multiplication, exponentiation between distributions -- use cross
product

Operations with constants -- apply value and operation to each element of
distribution

Distributions

Set min and max of
distribution, mimic infinity
with large number The probability density function

P(20, d) will calculate the
probability that X (in d) < 20,
works the same way as
normal distribution table

Subtract from 1 to
get P(X>20)

do print(d)

Lottery Question
You can buy one ticket to one of four different lotteries:

Lottery One:
90% chance of winning $2, 8% → $50, 2% → $5,000, 1% → $10,000

Lottery Two:
Distributed with 1/x along 5->100

Lottery Three:
Distributed with 1/x*x along 10->400

Lottery Four:
99.9% chance of winning $1, 0.1% → $1,000,000

Lottery Question
Which ticket should you buy?

… examine expected value

… sort dists by expected value

merge sort!

buy ticket to lottery with the highest expected value for their distribution

Lottery Question
You have 10 dollars. You can buy a ticket to four different lotteries:

Lottery One: 90% chance of winning $2, 8% of $50, 2% of $5,000, 1% of
$10,000

Lottery Two: Distributed with 1/x along [5, 100]

Lottery Three: Distributed with 1/x*x along [10, 400]

Lottery Four: 99.9% chance of winning $1, 0.1% of winning $1,000,000

Lottery Question

Lottery Question
So which one should you buy? Let’s run the program!

