Marmalade

A Music Creation Language

Savvas Petridis (sdp2137) Language Guru
Uzo Amuzie (ua2144) Tester
Cathy Jin (ckj2111) System Architect

Raphael Norwitz (rsn2117) Manager

Table of Contents:

Introduction
1 Marmalade White Paper
Language Tutorial

[Running the Compiler

Language Reference Manual........c.oecvevininieenenincnncneceeneeeee

Lexical Conventions
Data Types

Lists

Operator Usage
Reserved Words
Other Expressions
Funktions

cooouooQu

Project Plan

4 Process
[Roles & Responsibilities

Architectural DESIZNcoeeeeerienieierieeeee et

O Block Diagram
O Interface Between Components

Test Plan

1 Sample Marmalade Programs
U Translator Test Suite

Lessons Learned

d Description
[Advice for Future Teams

APPENAIX ettt

d Instrument List
0 Code Listing

Introduction:

alade is a very readable musical programming language. Similar languages and
libraries use clunky object-oriented syntax and require language-specific knowledge,
thereby preventing users from composing right away. We wanted to create a tool that
would minimize the distance from one’s conception of a musical idea to actually writing
and playing it. So we tossed aside classes and anything else that seemed unnecessary and
left the bare bones: integers, notes, time signatures, instruments, functions, lists, and lists
of lists.

Why Marmalade?

This list structure, along with intuitive operators, simple function syntax, clear control flow,
and a spartan standard library, gives the composer the freedom to write what they want
without compromise. Marmalade breaks a musical piece into four discrete building blocks:
notes, measures, phrases, and songs. The user must define and combine notes to form
measures, then combine these measures into phrases to be played simultaneously. This
bottom-up approach encourages the user to think about his composition as discrete pieces
to be arranged and rearranged.

Marmalade can suit any user from those who only seek to use Marmalade's core features
and create songs, to those who'd like to create as well as experiment with their pieces by
defining complicated functions to transform them. Perhaps the most enticing feature of
Marmalade is its low learning curve. One can easily define a series of measures, turn them
into phrases and combine them into a song. While doing so, one can define and redefine
the time signature at the measure level, instruments at the phrase level, and tempo at the
song level to tweak the song to his or her particular liking. And in a few minutes a song has
been created, played, and outputted as a midi file!

Language Tutorial:

Running the compiler and executing a program:

Steps to run the compiler:

1. $ make

2. $./make_java.sh

3. $./marmac name.marm executable_name
4. $./executable_name

It’s that easy!
marmac is a bash script which calls an executable named ‘marmalade’ created by our

compiler (marmalade.ml). It takes in two arguments: a marmalade file and the name of the
executable to be created.

— Sample programs are available in the “marmalade_sample_programs” directory

Language Reference Manual:

cal entions:

Comments:

Comments are ignored by the compiler and have no effect on the behavior of programs.
There are is only one style of comments in Marmalade: multi-line.

Multi-line comments are initiated with a slash and star character /*" and terminated with a
star and slash character '*/'. the compiler ignores all content between the indicators. This
type of comment does not nest.

/* thisis a comment */

Whitespace:

Whitespace consists of any sequence of blank and tab characters. Whitespace is used to
separate tokens and format programs. All whitespace is ignored by the marmalade
compiler. As a result, indentations are not significant in Marmalade.

Tokens:

In Marmalade, a token is a string of one or more characters consisting of letters, digits, or
underscores. Marmalade has 3 kinds of tokens:

1. ldentifiers
2. Keywords
3. Operators

Identifier Tokens:

An identifier consists of a sequence of letters and digits. An identifier must start with a
letter. A new valid identifier cannot be the same as reserved keywords or pitch literals (see
Keywords and Literals). An identifier has no strict limit on length and can be composed of
the following characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Keywords:

funk Function declaration
return Function return keyword
if Conditional Expression
else Conditional Expression
while Conditional Expression
and Boolean AND
or Boolean OR
int Integer data type
int_list Integer list data type
string String data type
str_list String list data type
measure Measure data type
phrase Phrase data type
song Song data type
timesig Time signature data type
play Standard library function to play data types
print Standard library function to print data types

output_ midi

Standard library function to write data type to a .midi file

Operator tokens:

\%

These will be detailed in the ‘Operator Usage’ section.

Integer:

An integer declaration consists of the ‘int’ declaration, a variable name, an assignment
operator and an optional sign and any number of operators. Any arithmetic operators can
be applied to integers as in any other programming language.

Example Declarations:

e int i = 5;
e int i = -5;
String:

A string declaration consists of the ‘string’ declaration, a variable name, an assignment
operator, followed by a string defined in quotes. The string can contain any of the following
characters:

letter = [a"-'Z 'A'-"Z']

digit = ['0"-'9"]

Symbols — |_| | T | |-| | |,| | '!‘ | |$| | |:| | |;| | l(‘ | |)' | |[| | |]| | |{' ||}| | |&| | |#| | |@| |
|?| | |<| | |>| | |+' | '=| | |_|

Example Declarations:

e string s
e string s

“string”;
“Hello World!”;

Note:

A note consists of the ‘note’ declaration, a positive integer, a period and a character
indicating the note value. The positive integer represents the specific note to be played and
the type indicates the note value. For example:

44 — C4 (the 4th C on a piano)

The character after the period represents the note value, or length that the note is played.

*s - sixteenth note
*e - eighth note
*q - quarter note
*h - half note

*wo - whole note

Example Declarations:

e note n_0 = 44.s
e note n_1 = 44.e;
e note n 2 = 44.q;
e note n 3 = 54.h;
e note n_4 = 68.w;

Time-Signature:

A time-signature consists of the ‘timesig’ declaration and two integers indicating how a sets
of notes should be played. The time signature should be separated by a colon to indicate
the numerator and denominator.

Example Declaration:

$(4:4);
$(6:8);

e timesig t sig ©
o timesig t_sig 1

Instrument:

An instrument is a set of capital letters which indicate what set of sounds a given set of
notes will map to.

See the appendix for the full list of instruments that can be used in Marmalade.
Tempo:
The tempo of a song is defined as the speed that a passage of music should be played. In

the case of this language, tempo must be a positive integer that can only be applied to a
song. Examples can be found in the Song section.

In Marmalade, lists are the only container for storing sets of data. Lists are of variable
length. The lists below are list types defined in this language. See * ator e’ for
more specifics.

Integer List:

An integer list declaration consists of the ‘int_list’ declaration, a variable name, an
assignment operator, followed by a list of integers or variable names representing integers.

Example Declarations:
e int list i

e int list i
e int list i

[42, 47, 54, 19, 22];
[0];
[1;

String List:

A string list declaration consists of the ‘str_list’ declaration, a variable name, an assignment
operator, followed by a list of strings or variable names containing strings.

Example Declarations:
e str_list s

e str list s
e str list s

[“marmalade”, “language”, “plt”];
[“Hello World!”];

[1;

Measure:
Lists of notes in Marmalade are treated as measures. Given a list of notes:

measure m_© = $() [44.q, 64.h, 89.q];
If the user would like to add a time signature, he defines it between the parentheses
following the $ symbol. If nothing is typed between these parentheses the time-signature is
automatically inferred to be 4/4. Thus ‘$()’ represents the default time signature of a
measure.
Here is an example with a time signature (6/8) included by the user:

measure m_1 = $(6:8) [42.e, 36.q, 50.h];

If notes are predefined, a measure can also be declared as such:

note nl = 44.q;

note n2 = 55.q;
measure m_1 = $(3:4) [nl, n2];

Phrases:

A Phrase is a list of measures to be played in succession from first to the last element. Each
phrase is associated with an instrument. For instance:

ph @ = $$() [m @, m 1]; /* m_© and m_1 are measures defined above */
The '3() indicates that the user opted to not specify an instrument for the phrase, and so
the default instrument, piano, will be used. (Note: the default symbol of the phrase has one
more ‘$’ than the default symbol of the measure).
The user can also input his own instrument:

ph_1 = $(GUITAR) [m 0@, m_1];

which would make ph_1 the same set of notes with the same time signature as ph_0 played
by a guitar instead of a piano.

If the measures are not predefined, a phrase can also be declared as below:
ph_0 = $$() [$(6:8)[44.q, 64.h, 89.q], $(3:4) [36.q, 50.h]];
As mentioned in the introduction, the programmer should note that a phrase does not
need to represent all the notes being played by a given instrument at a given time. Rather it
is more analogous to the left hand of a piano, which can play at the same time as the right
hand.
Songs:
A song is a list of phrases to be played concurrently. An example of a song could be:
song_@ = $$$() [ph_@, ph_1];
This song will play phrases ph_0 and ph_1 simultaneously. ‘$$$()' represents the default
tempo (beats per minute) a song is set to, which is 60 bpm. (Note: the default symbol here
has one more ‘$' than the phrase default symbol, and two more ‘$' than the measure
default symbol).
Of course the user can set one himself as well:

song 1 = $(120) [ph_@, ph_1];

As demonstrated above, phrases can also be declared directly to create a song. For
example:

song 1 = $(120) [[
$(PIANO) [$(6:8)[64.h, 89.q], $(3:4) [36.q9, 50.h]],
$$() [$(6:8)[44.q, 64.h, 89.q], $(3:4) [36.q, 50.h]

115
ator e:
Operators Description Example
+ Addition X + 3
- Subtraction X - 2
* Multiplication 5 * x
/ Division 12 / x

Arithmetic operators are listed in increasing precedence, addition and subtraction having
the least and multiplication and division having the most. Also, addition and subtraction
can be applied to notes. For example:

45.q + 5
Operator Description Example
= Assigns value from left int a =5
hand side to right hand
side
Operator Description Example
& Access Element list&l

List Operator Example:
m_1 = $() [35.9, 35.h];
n_1 = m_1&1;

Precedence of Operations :

ASSIGNMENT, LAST ELEMENT INSERTION (lowest)

10

ACCESS LIST ELEMENT
TIMES, DIVISION

PLUS, MINUS (highest)
Operator Description Example
and AND A and B
or OR A or B
== EQUALS A==8B
I= NOT EQUAL Al=B
A or B
A and B
A ==B
Al=B
Operator Description Example
$ Define time signature, Instrument:
instrument, and tempo. $(GUITAR)
Also indicates a function call | Time Signature:
returns something. $(4:4)
Tempo:
$(120)

(]

Define list

[35.q, 46.h, 42.q]

0

Define funk list (application
shown later in funktions)

(play(), print(), play())

11

rved S:

Functions:
funk

The keyword ‘funk’ is used to indicate the beginning of a function. For more detailed usage
of functions, see the ‘Funktions’ section.

return

The keyword ‘return’ is used only in functions to signify a return value from the function.
This keyword can only return one object, since a function can only return one object. A
function must have a return value, or else an error will be thrown. For examples of use, see
the ‘Funktions’ section.

Control Flow:
if else

‘if must be followed by an expression that evaluates to a boolean in parentheses and the
body following must be contained in braces, such as:

if (/* boolean expression here */) {
/* body */
}

An ‘if block can stand alone, but ‘else’ must be accompanied by at least an ‘if'.

if (/* boolean expression here */) {
/* if body */
}

else {
/* else body */

}

while

The keyword ‘while’ is implemented similarly to how ‘if. The expression following ‘while’
must evaluate to a boolean expression. For example:

while (i <5) {

/* body */
}

12

Standard Library:

play
The ‘play’ keyword will allow a user to play any set of notes once the code is run. This
includes a single note or any list object containing a series of notes. ‘play’ only takes in one

argument. Notice that the measure it's playing is in a list and how play is surrounded by
parentheses; function application will be discussed in the functions section.

m2 = $() [25.9, 26.9];
(play()) [m_2]; /* play m_2 */

print
The ‘print’ keyword will be able to print a string literal or any defined data type in the
language. It will print out to the standard output in a way that is readable to the user, and
only takes in one argument, which is the argument directly after the keyword. The usage of
this keyword is similar to that of the ‘play’ keyword.

(print()) [“hello world!”]; /* print ‘hello world!’ */

write

The ‘write’ keyword performs almost the same as ‘play’ but will output a midi file, called
‘out.mid’.

m2 = [25.q9, 26.9];
(write()) [m_2]; /* writes m_2 to a .midi file */

length_measure

The ‘length_measure’ keyword represents a function that can only be applied to measures
and will return the length of the measure’s note list.

int m_len = $length_measure(m); /* the $ signifies that the function is
returning a value */

/* m has type measure */
length_phrase

The ‘length_phrase’ keyword represents a function that can only be applied to phrases and
will return the length of the phrase’s measure list.

int p_len = $length_phrase(ph); /* ph has type phrase */

length_song

13

The ‘length_song’ keyword represents a function that can only be applied to songs and will
return the length of the song’s phrase list.

int s_len = $length_measure(song); /* song has type song */
length_int_list

The ‘length_int_list’ keyword represents a function that can only be applied to int_lists and
will return the length of the int_list.

int il_len = $length_measure(inli); /* inli has type int_list */
length_string_list

The ‘length_string_list’ keyword represents a function that can only be applied to string_lists
and will return the length of the string_list.

int strl len = $length measure(strl); /* strl has type string list */
evaluate note

The ‘evaluate_note’ keyword represents a function that can only be applied to a note. It
creates a new copy of the note the function was applied to.

evaluate_measure

The ‘evaluate_measure’ keyword represents a function that can only be applied to a
measure. It creates a new copy of the measure the function was applied to.

evaluate_phrase

The ‘evaluate_phrase’ keyword represents a function that can only be applied to a phrase. It
creates a new copy of the phrase the function was applied to.

evaluate_song

The ‘evaluate_song’ keyword represents a function that can only be applied to a song. It
creates a new copy of the song the function was applied to.

14

r essions:

All expressions are made up of a sequence of variables, operators, & string literals.

Variables

All variables are of type string literal or one of the defined data types in the language.
Variables must begin with a letter and can contain any combination of letters, digits, or the
underscore ‘.

Scope:

The scope of all variables is contained to the the area limited between the outermost level
of braces in which a variable is defined. For example, in the transpose function the scope of
i is from lines 1-6 and the scope of m_1 is from lines 2-5. Local variables cannot be defined
in a function however, so ‘i’ and ‘m_1" exist outside the transpose function.

funk transpose(int i, measure m_1) {
m_1 = [40.h];
while (i < 5) {
/* body */
}

AUV h WNPRE

}

If there is a program with no outer braces, then the scope of the variable exists within the
entire program. Scope will be fleshed out in more detail in the Funktions section.

Boolean Expressions:

Boolean expressions are defined as any expression that returns true or false. There is no
boolean data type in our language. There must be a boolean expression using an operator
like ‘and’, ‘or’, and ‘<’ between the parentheses of an if statement or while loop. So the while
loop displayed below does not compile:

int i = 9;
while (i) {

/* body */
}

15

tions:

Local variables cannot be declared within the body of a function, if block,
or while block.

This is the reason why function transpose_measure_w has so many arguments; the
variables it takes in are all the variables being used within the function. For this reason,
there is function ‘transpose_measure’ which takes in the two crucial arguments, then calls
‘transpose_measure_w' with all of the necessary arguments.

/* This function transposes a measure by some value steps */

funk measure measure transpose _measure w(measure m, int steps, int
counter, int j, note k, measure 1)

{
j = $length_measure(m); /* standard library function */
counter = 0;
1 = $evaluate_measure(m); /* standard library function */
while(counter < j)
{
k = l&counter; /* access 1 element at position counter */
l&counter = k + n; /* put new value at position counter in
1 */
counter = counter + 1;
}
return 1;
}
funk measure measure transpose_measure(measure m, int steps)
{
return $transpose_measure_w(m, steps, 0, 0, 44.q9, $() [55.h]);
}
/* keyword indicates following code block is a function */

/* the function is scoped with curly brackets */

All functions need to have an implicit parameter, which can either be a measure, phrase, or
song. The first ‘measure’ following ‘funk’ indicates that the only implicit parameter this
function takes is a measure. The second ‘measure’ indicates the return type, which in this
case is a measure. The string after the return type is the name of the function:
‘transpose_measure_w'. The list in the parentheses after the name of the function are all
the variables used within the function, as none can be declared within.

16

Applying multiple functions:
/* m_1 is a phrase */

(play(), play(), play()) [m_1, $transpose measure(m 1, 3),
$transpose_measure(m_1,5)];

Functions that do not return anything can be placed in a list and applied to a list of
arguments. In the example above, the first ‘play’ is applied to m_1, the second play is
applied to the return value of $transpose_measure(m_1, 3), and the third play is applied to
the return value of $transpose_measure(m_1,5).

(print(), play()) [“hello”, m_1];

/* this prints ‘hello’ and plays measure m_1 */

17

Project Plan:

Specification

We used our weekly meetings in the first half of the semester to shell out our Language
Proposal and Language Reference Manual. We often encountered issues adding features
exactly as defined in our original LRM (i.e. static vs dynamic type system), so we had to
update it as we went along.

Development

The development Marmalade’s compiler began with implementing the features defined in
the original Proposal and LRM in Marmalade’s parser and scanner. The project was
source-controlled through a git repository, and only the main branch was used, so as to
prevent unnecessary merges conflicts. After creating a scanner, parser, and abstract syntax
tree, we then created an initial java generator for Hello World. Afterwards we implemented
a symbol table as well as an SAST to for semantic analysis. Then, we made a more robust
java generator, using the verified objects from the SAST. Once the complete front-to-back
progress was compiling marmalade tests and into Java executables, we added features
one-by-one through the architecture, wrote tests for that feature, and ran our test suite to
verify the functionality of the feature.

Testing

The tester script (run_tests.sh) was inspired by the MicroC version and was added around
the Hello World stage of the project, so that tests could be added in. Every time a new
feature was implemented, new tests were added to verify that the feature was working.
Programming Style Guide

Generally, we conformed to these general style conventions:

e |ndentation - 4 spaces (or 8 for small branches)
e Characters/Line - Max 100

Roles and Responsibilities

Cathy Jin - System Architect
Savvas Petridis - Language Guru
Uzo Amuzie - Tester

Raphael Norwitz - Manager

18

Development Environment

Text Editor - Sublime Text 2/3

Development Machines - Mac OS X, ArchLinux Virtual Machine
Compiler Environment - OCaml 4.02.03

Automatic Build (OCaml) - Make

Testing Environment - Shell Scripts

Version Control - Github/git

Project Log

Our git commit log can be found here:
— https://github.com/savvaspetridis/marmalade/commits/master

Our team meeting log can be found here:
— https://docs.google.com/document/d/12bon RbHgjMtegHVUValESTC7hQV3rASFgyrxrVgQ3Y

19

Architectural Design:

Scanner

The Scanner is passed an input marmalade (.marm) source file and converts the file to a
tokenized output. It discards all whitespace and comments and raises an error if any invalid
character sequences are encountered (e.g. invalid identifier or escape sequence).

Parser

The Parser is passed the tokenized stream from the scanner. It matches the tokens to a
grammar defining the marmalade language. (This is the language structure defined in AST.)
Syntax errors in the marmalade code will be identified during parsing, resulting in a raised
exception.

Abstract Syntax Tree (AST)

The AST defines the rules and structure for the marmalade language in a Context Free
Grammar (CFG). This includes all primitive types and things like variables, blocks, and
funktions. This is the intermediate phase of a marmalade program, after being parsed but
before being semantically checked.

Symbol Table

Using an approach adapted from corgi, we used the block ids set by the parser and
translated these block ids into scope ids. The symbol table is a string map of declared
variables and funktions. The symbol table is also used to enforce unique funktion and
variables names within each scope (i.e. declaring “int swag" twice in the same scope) and to
verify that each variable and funktion is visible within the current scope.

20

Semantically-checked Abstract Syntax Tree (SAST)

A SAST is generated at this stage with the data types from the AST but with additional
information of the type attached. Through the construction of the SAST, the additional
typing information allows us to check for type compatibility. Additionally, we check to make
sure that funktion calls and return types of the funktions match the funktion declarations
that we parsed. Any type mismatches or semantic errors will be reported during this step.

Java Generation

After doing research into music libraries developed for several different languages, we
settled on using jMusic since it had some of the functionality most similar to what we were
looking to implement in Marmalade. Although we were able to use certain functionalities in
jMusic, a custom library (implemented as marmalade.jar in the project) was created to help
create common functions for different objects.

Marmac

Marmac is an all-purpose shell script utility that (1) streamlines marmalade environment
setup, (2) compiles marmalade source compilation to down to .JAVA and binary .CLASS files,
and (3) creates a new shell script -- given the same base name as the marmalade source --
that will run the JAVA executable upon its own execution. A vital piece of marmac is loading
the location of the jMusic JAR dependency to your CLASSPATH variable in your local file
system, enabling jMusic library calls to be made in Generated Java Code.

21

Testing Plan:

Script & Regression Testing

Our test script and testing infrastructure was adapted from MicroC. We developed a shell
script that automated testing from a directory named "tests" that contained both unit tests
written in marmalade source code, as well as target ".out" files with the expected standard
output from each respective marmalade test. Source files were ran from the "tests"
directory and their output (.java, .class, .out files) was sourced to a "testdir" directory that
was timestamped. We also enabled automatic regression testing by adding an automated
archival feature where each time the test script was run, all "testdir" directories from
previous runs were automatically sourced to a "previous_tests" directory, with the most
recently time-stamped "test_output" directory remained in the project's TLD. This allowed
for our file system to remain clean and for previous test results to be easily referenced.

Issues Faced
Slightly inconsistent jMusic standard output: Our test suite adopted a MicroC like process

where we utilize the “diff” utility to compare the output generated when marm source is
compiled and run versus expected output pre-populated in a separate .out file.

[ua2144@uzo marmalade]$./test_note_play

jMusic Play: Playing score One note score using JavaSound General MIDI soundbank.
jMusic Play: Waiting for the end of One note score.

[ua2144@uzo marmalade]$

[ua2144@uzo marmalade]$

[ua2144@uzo marmalade]$./test _note_play

jMusic Play: Playing score One note score using JavaSound General MIDI soundbank.
jMusic Play: Waiting for the end of One note score.

jMusic MidiSynth: Stopped JavaSound MIDI playback

The “test_note_play” test has a corresponding “test_note_play.out” file that contains the
stdout in green. The orange output is the typical/expected output, but once every now and
then, the stdout in yellow is generated, which makes the test “fail”. This has popped up on
occasion for tests with the format “test_<musicStructure>_play*”

Testing MIDI Creation: It was a challenge to add tests for the “write” library funktion call
directly to the structure of test suite because of the .MIDI files generated by write. Upon
Instructor/TA suggestion, time was spent looking for an alternate to the “diff” tool for .MIDI
files but no useful solution was found. Instead, .MIDI files generated were compared to
samples with “diff” straight from the command line (byte code was compared). They were
also physically played and compared back-to-back as an informal sanity check.

Deprecated Tests: We made major adjustment to our language features in the last few
weeks. We moved the test suite to “tests_deprecated "and populated a new “tests” folder
with relevant unit tests.

22

Lessons Learned:

Uzo Amuzie (Tester)

All'in all, I was glad to hear Professor Edwards say, "oh, that's cool," as anticlimactic as that
sounds. This was a long semester that reaped a lot of lessons learned. For one, our group
would've benefitted greatly from maintaining our early regularity with team meetings. As
the semester unravelled, there was a bit of reluctance to keep our regular meeting time for
fear of not accomplishing much in meetings, but we recently learned that the more time we
spend together, the better. Even if it is to go over the concepts from lecture or the project
plan/structure together and ensure that everyone was on the same page. Open and honest
communication was a huge factor as well.

Personally, | wish | would have spoken up more and asked questions (to the TA team,
professor, and my teammates) as soon as | was confused or didn't understand a concept.
Often times, | had an idea of what | thought | needed to do, only to find out there were
corners that | didn't cover. Developing good relationships early on with teammates will help
to mitigate the feeling of apprehension of asking of help or clarification.

I'd advise heavily considering 3 things before taking PLT: (1) your potential group, (2) your
potential semesterly workload, and (3) your learning/working/communication style. |
noticed that most people had their groups set up on/before the first day of class, so
strongly consider -- even plan ahead for -- taking this class with a cohort of friends you've
gone through some CS classes with, if possible. Think twice about taking 3 (or even 2) heavy
programming classes in the same semester. And lastly, know thyself.

Cathy Jin (System Architect)

Some of the biggest challenges we faced were organizing a semester-long group project
efficiently, both in terms of working as a group and working on the code. Although we
started off at the beginning of the semester meeting regularly, we weren't able to continue
this pattern. Even though we thought meeting as a group took up more of everyone's time
and sometime seemed like a fruitless use of time, | think meeting up in person would have
put more responsibility on people and forced us to talk about and work on the project
more consistently.

Something else that was a challenge was planning our work around the language better.
We spent a lot of time thinking about interesting features to implement and how they
would function within our language, but by the end we realized we should have focused on
some of the more basic features first before trying to get other ones to work.

23

Even though I think we were able to turn in a reasonably cool project, having better time
management skills as a team and better communication and accountability for work would
have given us the chance to implement a few more features.

Savvas Petridis (Language Guru)

In the end, PLT was a positive experience. It was an incredible opportunity to build a
significant piece of software from the bottom up in a semester. The process of deciding
what kind of language we wanted to make and what tools we were going to use to actually
implement the language was very insightful. | learned to maintain my reservations and not
jump into programming without a clear idea of what | wanted to do. We started off with
high expectations and an idea for a music creation language that was more clever than the
one we actually implemented. But, this is to be expected. In the end we scrapped a few of
the more complicated ideas and built a particularly solid, easy-to-read music language.

There were challenges of course, the primary one being team management. We would
meet and perhaps only two to three of us would actually be thinking about the project at
once. We needed to define more concrete roles and really hold people accountable for
their work and define a strict set of deadlines. Because of this, we never really had a good
testing system during the entire semester, which of course hurts our project.

A big piece of advice for other teams is to really be careful with who you take. Be sure to
choose reliable workers. Finally, my last piece of advice is to get the core details of your
language hammered out first before attempting to add any fancy functions. We wasted a
great deal of time on parts of our language that made it ‘cool’. We should have really nailed
down a robust testing system and solidified our language.

Raphael Norwitz (Manager)

Overall this was a terrific experience. Building a substantial piece of software from the
ground up is not something you'll get to do all that often and though it's really daunting
and potentially horrible if you push it off till the last minute, you'll really get out what you
put in. Expect to have mixed feelings throughout the process, especially before you start
generating code. Were | to have written this a few days ago, before | started coding in
Marmalade, | may have voiced different sentiments.

Given that our goal was to create something that would allow people to quickly and
efficiently write readable code that played music, I'd absolutely call Marmalade a success.
The way we break music down into discrete interchangeable parts removes the inherent
clunky-ness associated with writing music in a typical object oriented language and the way
we evaluate functions via lists allows the user to perform many more operations in a tiny
fraction of the code, which when you're doing something as involved as writing music is a
blessing. We did have to scrap two of our biggest features at the last minute, but in
retrospect they weren't critical to the core functionality of the language. To that end, were |

24

to do it again | would start off focusing more on the actual structure of the language, rather
than what Edwards calls 'syntactic sugar’. Our decisions to make Marmalade almost script
like, so a user can just start coding and in two or three lines produce a useable program,
ended up being a really cool, but if we had a different purpose in mind this may not have
worked out so nicely.

In terms of general advice, there’s a lot of finicky stuff you'll have to do but if you're
resourceful and aren’t scared to ask help from Edwards and the TA's (provided you're not
wasting their time) you'll be fine. Though OCaml looks completely intractable to begin with,
if you go to Edwards with specific questions, he'll really clear things up. One thing we as a
group could have done better is get an understanding of the bigger picture before diving in
and writing a parser. Had | spent a good 10-15 hours at the beginning of the semester
looking at other projects and making sure | at least had a sense of what each of the files
were doing, it would have saved us the chore of rewriting the parser. On the other hand, |
think the way we looked closely at three different languages, Corgi, Sheets and Fry (all
from Fall 2014), each of which had a few features we wanted to emulate but which were
otherwise very different, worked really well. The case studies gave us a wide view of
different implementations which helped us implement some of our more unorthodox
features.

Maybe the most valuable thing | got out of this class was experiencing firsthand the
difficulties that come with trying to manage people in the context of a sizable project. An
accommodating, hands-off leader may work when you have an all around solid team, but in
the grand scheme of PLT those are rare. Don't assume your teammates’ code works just
because they say it works, or they show you it working on their machine or in a specific
case. Look at their code and if you see something fishy, be vocal about it and don't be
scared to threaten and go to Edwards if there’s repeated misbehavior. Though Marmalade
feels like such an excellent project now, | recognize that there’s a high likelihood there are
fixable bugs because our test suite isn't comprehensive. This would not have been the case
had | been more forceful and proactive.

As a manager, | also learned how judicious one needs to be in delegating work. Especially if
you've worked something out in your head, make sure you understand exactly how it'll
churn out code on the other end before dumping it on a teammate. Much of one of my
teammates time was spent building a complicated function to parse expressions which was
a million times more complicated than it needed to be, and made code generation on the
front end totally impossible. Though mistakes happen, this one could easily have been
avoided and hopefully this mistake will finally teach me to plan rigorously before | code.

All complaints aside though, I'm extremely happy with the end result and I've gained so
much experience and programmatic maturity that I'd unquestionably do it again,
irrespective of the team.

25

Appendix:

List:
The following instruments can be applied in Marmalade:
AC_GUITAR FRENCH_HORN POLYSYNTH
ACCORDION GLOCK RECORDER
AGOGO GUITAR REED_ORGAN
ALTO HARMONICA SAXOPHONE
ALTO_SAX HARP SITAR
BAGPIPE HARPSICHORD STEELDRUM
BANJO HONKYTONK STRINGS
BARITONE_SAX HONK TOM_TOMS
BASSOON HORN TROMBONE
BELLS JAZZ_GUITAR TRUMPET
BRASS JAZZ_ORGAN TUBA
CELLO KALIMBA VIBRAPHONE
CHOIR MARIMBA VIOLA
CHURCH_ORGAN MUSIC_BOX VIOLIN
CLARINET OBOE VOICE
CYMBAL OOH WHISTLE
DOUBLE_BASS ORGAN WOODBLOCKS
DRUM PAN_FLUTE XYLOPHONE
ECHO PHONE
ELECTRIC_BASS PIANO
ELECTRIC_GUITAR PICCOLO
FIDDLE PIPE_ORGAN
FLUTE PIPES

27

Marmac and marmalade.ml:

#!/bin /bash

run the marmalade compiler
./marmalade $2 < $1

N

s # compile the java source
javac —classpath ./javaclasses/jMusicl.6.4.jar:./ javaclasses/
marmalade. jar :. $2.java

~

o # create a Bash script which runs the java program and set the
privilages so it ’s accessable

10 STR=$’#!/bin/bash\njava —classpath ./javaclasses/jMusicl.6.4.jar:.
javaclasses /marmalade. jar :. ~’

11 echo ”STR2” > ./$2

12 chmod 755 ./$2

Listing 1: marmac

e
2 % Compiler for Marmalade
3 %)
1
5 open Printf
6
7 let - =
8 let lexbuf = Lexing.from_channel stdin in
9 let program = Parser.program Scanner.token lexbuf in
10 let env = Table.create_table program in
11 let sast_pgm = Sast.confirm_semantics program env in
12 let compiled_program = (xCompile.to_java program Sys.argv.(1l)x)
Javagen.gen_pgm sast_-pgm Sys.argv.(l) in
13 let file = open_out (Sys.argv.(l) "~ ”.java”) in
14 fprintf file ”"%s” compiled_program;
Listing 2: marmalade.ml
Scanner:

{ open Parser }

1

5 let digit = [’0°—'9"]

. let letter = [’a’—’z’ 'A’—'7Z’]

s rule token = parse

> \t’ ’\r’ ’\n’] { token lexbuf } (x Whitespace x)
comment lexbuf }

LPAREN
RPAREN
LBRACE
RBRACE
LBRACK
RBRACK
SEMI }
COMMA }
PLUS }
MINUS }
TIMES }
DIVIDE }
ASSIGN }

s |
9 ‘
10 |
11 ‘
12|

13 ‘

e o e eSS

14|
15 |
16 | ,
17| T4
15 | —
19| Tk
20 | 7/

‘ 7:’

21

A A Ay Ay Ay A A A o ey o o A A

28

let x = scope_id.contents in
scope_id = x + 1; x

29

| = { EQ }
| 7= { NEQ }
| < { LT }
‘ 77<:77 { LEQ }
| > { GT }
‘ N { Gm }
= { DASH }
\ T { APPEND }
| { NoT }
\ if” { IF }
| else { ELSE }
\ elif { ELIF }
| “and” { AND }
‘ ”Or” { OR}
\ 7 { PERIOD }
\ 9g P { COLON }
| return” { RETURN }
| ”while” { WHILE }
\ ? funk” { FUNK }
\ 7int” { INT }
| ”note” { NOTE}
| "int_list” { INTLIST }
| 7str_list” { STRL}
\ "string” { STRING }
| ”measure” { MEASURE }
| ?phrase” { PHRASE }
| 7song” { SONG }
| 7 list” { LIST }
| ”timesig” { TIMESIG }
| "instr” { INSTR }
‘ 77temp077 { }
| @ { AT }
| '&’ { INDEX }
| ’'$’ { DOLLAR }
\ 7 ((’s’]’e’|’q’| ’h’|’w’) as lxm) { NOTE.TYPE(lxm) }
| (digit)+ as Ixm { INT.LIT(int_of_string lxm) }
‘ 19 ((letter ‘ dlglt | ’77 | 9’ b 7. | 777 |7!7 | ’$7
ST A R N0 T A Y A N G S 2 B B
‘ 7?7 ‘ 7<5 ‘ 7>7 ‘ 7+7 ‘ 7:7 ‘ I b)* as lxm) 1 {
STRING_LIT (1xm) }
\ (letter | digit | ’-’)+ as lxm { ID(lxm) }
| 777 ((letter digit | ’) as lxm) '’’’ { BOUND(lxm) }
\ (letter)+ as lxm { INSTRUMENT(lxm) }
| eof { EOF }
| _ as char { raise (Failure(”Error: Illegal character: ”
escaped char)) }
5 and comment = parse
Tk /7 { token lexbuf }
| _ { comment lexbuf }
Listing 3: scanner.mll
Parser:
%{ open Ast
let scope-id = ref 1
let inc-block_-id (u:unit) =

.

@’

Char.

< %}

10 %token LPAREN RPAREN LBRACE RBRACE LBRACK RBRACK

11 %token SEMI COMMA PLUS MINUS TIMES

12 %token <char> BOUND

13 %token INT NOTE STRING MEASURE PHRASE SONG LIST TIMESIG INSTR TEMPO
INTLIST STRL

11 %token DIVIDE ASSIGN EQ NEQ LT LEQ

15 %token GT GEQ DASH APPEND NOT

16 %token <char> NOTE.TYPE

17 %token IF ELSE ELIF AND OR

12 %token PERIOD COLON

19 %token RETURN WHILE

0 %token FUNK AT DOLLAR INDEX

1 %token <int> INT_LIT

> %token <string> STRING_LIT ID INSTRUMENT

3 %token EOF

A

Y%nonassoc ELSE

s %nonassoc NOELSE

: %right ASSIGN

s %left OR

9 %left AND

50 %left EQ NEQ

351 Bleft LT GT LEQ GEQ
32 %left PLUS MINUS

33 %left TIMES DIVIDE
34 %right NOT

36 %start program
37 %type <Ast.program> program

39 %%

10 program:

41 /* nothing %/ {{stmts = []; funcs = []} }

12 /+ List is built backwards =/

a3 | program fdecl {{ stmts = $1.stmts; funcs = $2 :: $1.funcs }}
11 | program stmt {{stmts = $2 :: $1.stmts; funcs = $1.funcs}}

6 /+* Function Declaration x/

iz fdecl:
19 t_dec-1 ID LPAREN arguments RPAREN LBRACE stmt_list RBRACE
50 {{ ret_type = List.hd (List.rev $1);
51 f_type = List.tl (List.rev $1);
52 fname = $2;
53 args = $4;
1

body = {locals = $4; statements = List.rev $7; block.id =
inc_block-id ()}

S

56

57 t_dec_l:

58 FUNK { [] }

59 | t-dec-1 type-dec { $2 :: $1 }

61 /+ Argument list creator for Function Declarations x/

63 arguments:
64 /* nothing */ { [] }
65 | arg-list { List.rev $1 }

67 /* Argument list x/

30

6o arg_list:
o fvmod { [$1] }
| arg_list COMMA fvmod { $3 :: $1 }

1
3 fvmod:
+ INT ID {(3%2, false, Int)}
5 | STRING ID {($2, false, String)}
| NOTE ID {($2, false, Note)}
| SONG ID {($2, true, Song)}
| MEASURE ID {($2, true, Measurepoo)}
9 | INTLIST ID {($2, true, Intlist)}
| STRL ID {($2, true, Stringlist)}
| PHRASE ID {($2, true, Phrase)}

82 | TIMESIG ID {($2, false, TimeSig)}
83 | INSTR ID {($2, false, Instr)}
84 | TEMPO ID {($2, false, Tempo)}

s6 /* a stmt can be an expression, variable modification, a
conditional stmt, or return x/

sz stmt:

so expr SEMI { Expr($1) }

90 | vmod SEMI { VarDecl($1) }

91 | conditional_stmt { $1 }

92 | RETURN expr SEMI { Return($2)}

94 /+ all type declarations x/

96 type_dec:

97 INT {Int}
| NOTE {Note}
| MEASURE {Measurepoo }
| PHRASE {Phrase}
| SONG {Song}

102 | STRING {String}

103 | LIST {List}
}
\
\
\

99
100

101

10s | INTLIST {Intlist}
STRL {Stringlist}
TIMESIG {TimeSig}
INSTR {Instr}

TEMPO {Tempo}

105
106
107
108
109
110 conditional_stmt :

111 IF LPAREN expr RPAREN block %prec NOELSE { If($3, $5, {locals =

[]; statements = []; block_.id = inc_-block_id ()}) }

112 | IF LPAREN expr RPAREN block ELSE block { If($3, $5,
.15 | WHILE LPAREN expr RPAREN block { While($3, $5) }

$7) }

115 block:
116 LBRACE stmt-list RBRACE { {locals = []; statements = List.rev $2;
block_-id = inc_block_id ()} }

s stmt_list :

9 /* mnothing *x/ { [] }
0 | stmt_list stmt { $2 :: $1 }

2 vmod :

3 | type_dec ID ASSIGN expr {Assign($1, $2, $4)}

1+ | ID ASSIGN expr {Update($1, $3)}

5 | list-index ASSIGN expr { Index_Update($1, $3) }

31

27 expr:

25 app-gen {$1}

20 | list_index {81}
30 | arith {$1}

51 | add-on_expr {$1}

34 list_index:

35 ID INDEX INT_LIT { Index($1, IntLit($3)) }

136 | ID INDEX ID {Index($1, Id($3))}

137

135 add_on_expr:

139 DOLLAR LPAREN RPAREN reg_list { Measure($4, TimeSig(4, 4))}

140 | DOLLAR DOLLAR LPAREN RPAREN reg_list { Phrase($5, Instr (”PIANO”

)) }
141 | DOLLAR DOLLAR DOLLAR LPAREN RPAREN reg_list { Song($6, Tempo(60))

}
142 | DOLLAR LPAREN INT_LIT COLON INT_LIT RPAREN reg_list { Measure(
$7, TimeSig($3, $5)) }
143 | DOLLAR LPAREN ID RPAREN reg_list { Phrase($5, Instr($3)) }
144 | DOLLAR LPAREN INT_LIT RPAREN reg_list { Song($5, Tempo($3)) }

145
146 /* beginning of chain of expressions, ordered by precedence x*/

147

148 arith:

149 I.OR { $1 }

150

151 primary_expr:

152 ID { Id($1) }
1535 | literal { 81 }

154 | LPAREN expr RPAREN { $2 }
155

156 bound_list :

!

158 | bound_list BOUND DASH BOUND {(Ranges($2, $4) :: $1)}

159

160 literal:

161 INT_LIT {IntLit($1)}

162 ‘ note {$1}

163 | STRING_LIT {String-Lit(%$1)}

162 | DOLLAR function_invocation { $2 }

165

166 /* multiplication x*/

167

168 mul_expr:

169 primary_expr /x1litx*/ { %1 }

170 | mul_expr TIMES primary-expr { Binop($1, Times,$3) }

171 | mul_expr DIVIDE primary_-expr { Binop($1, Divide, $3) }
172
173 /% addition =/

174

175 add_expr:

176 mul_expr { $1 }

177 | primary_expr PLUS mul_expr { Binop($1, Plus, $3) }
178 | primary_expr MINUS mul_expr { Binop($1, Minus, $3) }
179

180 [x <, <=, >, >= %/

181

182 T_eXPpTr :

153 add_expr { $1 }

184 | r_expr LT r_expr { Binop($1, Less, $3) }

185 | r_expr LEQ r_expr { Binop($1, Leq, $3) }

32

186 | r_expr GT r_expr { Binop($1, Greater, $3) }
187 | r_expr GEQ r_expr { Binop (%1, Geq, $3) }

189 /% equal and not equal x/

191 eq_exp:
192 r_expr { $1 }

193 | eq_exp EQ eq_exp { Binop($1, Equal,
104 | eq-exp NEQ eq-exp { Binop (%1, Neq, $3

3

— &

196 /% logical And %/

198 I.LAND:

199 eq-exp { $1 }

200 | 1.AND AND 1_.AND { Binop($1, And, $3) }

202 /* logical Or x/

203

204 1.OR:

205 ILAND { $1 }

206 | I_.AND OR 1.OR { Binop (%1, Or, $3) }

207

208 /% app-gen creates lists , as well as lists of functions for
application x*/

209

210 app-gen:

211 | funk reg_list {FuncList($1, $2)}

212 | reg_list {BasicList($1)}

213

214 /% parenthesis contain the list of functions to be applied x/

215

216 funk:

217 LPAREN f_arithmetics RPAREN {$2}

218

219 /+* make list of function_invocations x/

220

221 f_arithmetics:

222 f_arithmetics COMMA function_invocation {$3 :: $1}

223 | function_invocation {[$1]}

224

225 [+ ID and arguments of function in list =x/

226

227 function_invocation:

228 ID LPAREN funk_args RPAREN {FunkCall($1, List.rev $3)}

220 | ID LPAREN RPAREN {FunkCall($1, [])}

230

231 /+ make list of function arguments x/

232

233 funk_args:

234 funk_args COMMA arithmeticID_arg {$3 :: $1}

235 | arithmeticID_arg {[$1]}

236

237 /% arguments can be many expressions: another list , addition expr,
logical expr, etc x*/

238

230 arithmeticID_arg:

240 list_index {$1}

241 | app-gen {$1}

242 | arith {$1}

243 | add-on_expr { $1 }

244 | function_invocation { $1 }

245

33

246
247
248
249

250

reg_list:

LBRACK funk_args RBRACK {List.rev $2}

note:
INT_.LIT NOTE.TYPE {Note($1, $2)}

Listing 4: parser.mly

Abstract Syntax Tree:

(=
% Marmalade Abstract Syntax Tree

*)

Assign of declare_type * string * expr

with its type x)

| Update of string = expr (x
declared variable =)

| Index_-Update of expr * expr

type stmt
Expr of expr
| VarDecl of vmod

| If of expr x block % block

34

reassign

type op = Plus | Minus | Times | Divide | Equal | Neq | Less | Leq
| Greater | Geq | And | Or
type declare_type = Int | Note | String | Song | Phrase |
Measurepoo | TimeSig |
Instr | Tempo | List | Intlist | Stringlist | Wild | Null.-Type |
Default | SongArr
type char_pair = Ranges of char * char
type var = string * bool x declare_type
type range = int x int
type expr =
IntLit of int
| Id of string
| String_Lit of string
| Note of int = char
| TimeSig of int * int
| Instr of string
| Tempo of int
| Index of string = expr
| Default
| Msk_list of expr % expr
| Measure of expr list x expr (x list of notes, and its time
signature x)
| Phrase of expr list * expr (x list of measures and an
instrument)
| Song of expr list * expr (% list of phrases and a BPM x)
| Binop of expr * op * expr
| BasicList of expr list
| FuncList of expr list = expr list
| FunkCall of string * expr list
and special_exp = {ids: string list; bounds: char_pair list list}
7 type vmod =

declare a new variable

(=

a value to a previously

| While of expr * block
| Return of expr

| Fdecl of fdecl

| Null_-Type

| None

(* each block has a list of variables, statments, and an id x*)

and block = {
locals: var list;
statements: stmt list;
block_id: int

}

(* function declaration =)

and fdecl = {
fname : string;
ret_type : declare_type;
f_type : declare_type list;
args : var list;
body : block;

s }
type scope_var_decl = string x bool *x declare_type * int

type scope_func_decl = string * declare_type x declare_type list x
declare_type list = int

type decl =
Func_Decl of scope_func_decl
| Var_Decl of scope_var_decl

;. type program = {stmts: stmt list; funcs: fdecl list}
Listing 5: ast.ml

Symbol Evaluation Table:

(=
* table.ml of marmalade
x Creates table for checking SAST

*)

7 open Ast

module StrMap = Map.Make(String)

let table_env (table,_) = table

let scope_env (-,scope) = scope

let type-of_funct_args (-,_,p-type) = p-type

let over_scope = Array.make 1000 0

let rec map func lst env =
match lst with

[] — env
| head :: tail —>
let new_env = func head env in

map func tail new_env

35

1
5 let name_scope_str (name:string) env =
6 name 7.7 % (string-of_int (scope_env env))

~

s let rec get_scope name env =
if StrMap.mem (name_scope_str name env) (fst env) then (snd env

)

NN NN NN

30 else if (snd env) = 0 then raise(Failure(”Error: Symbol 7 ~
name ~ ” not declared. ” string_of_int (snd env)))
31 else get_scope name (fst env, over_scope.(snd env))

33 let rec get_-decl name env =

34 let key = name_scope_str name env in

35 if StrMap.mem key (fst env) then StrMap.find key (fst env)

36 else

37 if (snd env) = 0 then raise (Failure(”Error: Symbol 7 " name
” not declared in current scope” "~ string-of_int (snd env)

"))

38 else get_decl name ((fst env), over_scope.(snd env))

”

10 let insert_symb (name:string) (decl:decl) env =

11 let key = name_scope_str name env in
42 if StrMap.mem key (table_env env)
13 then raise(Failure(”Error: Symbol ” ° name "~ 7 declared twice

in same scope.”))
14 else ((StrMap.add key decl (table_env env)), (scope_-env env))

46 let insert_var var env =

17 let (name, p_type) = var in

48 let is_implicit_array =

19 (match p-type with

50 (Int | Note | String | TimeSig | Instr | Tempo) —> false
51 | - —> true) in insert_symb name (Var_Decl(name,

is_implicit_array , p-type, (scope_env env))) env

let insert_astvar var env =

54 let (name, arr_b, typ) = var in

55 insert_var (name, typ) env

56

7 (% insert stmt — matches first , then inserts =x)

o let rec insert_stmt stmt env =
60 (match stmt with
61 Expr(exp) —> env

62 | If(e, blol1, bl-2) —> let env.l = insert_-code_block bl_-1 Wild
env in insert_code_block bl_2 Wild env_1
63 | While(e, bl) —> insert_code_block bl Wild env

64 | Fdecl(fdec) —> insert_funk fdec env

65 | VarDecl(chan) —> (match chan with

66 Assign (typ, id, blah) —> insert_var (id, typ) env
67 | Update(str, exr) —> env

68 | Index_Update(-, -) —> env)

69 | - —> ‘env)

(x insert contents of a block of code x)

73 and insert_code_block block return_tp env =

7 let (table, scope) = env in

75 let id = block.block_id in

76 let env = map insert_astvar block.locals (table, id) in
77 let env = map insert_stmt block.statements env in

78 over_scope.(id) <— scope;

36

88

89

90

92

93

94

96

98

99

102

104

108

109

110

((table_env env), scope)

(*

;3 and

insert contents of a function into the table x)

insert_funk func env =

let (table, scope) = env in

let arg_names

List .map type_of_funct_args func.args in

let env = insert_symb func.fname (Func_-Decl(func.fname, func.

ret_type, func.f_type, arg_-names, scope)) env in

insert_code_block func.body (func.ret_type) ((table_env env),

(%

let

scope)
initialize start_env =)

start_env =

let table = StrMap.add ”print_0” (Func-Decl(” print”, Null_Type,

Int; Note;

String; Song; Phrase; Measurepoo; TimeSig; Instr; Tempo; List
Intlist ; Stringlist; Wild], [], 0)) StrMap.empty in

let table = StrMap.add ”evaluate_note_0” (Func_Decl(”
evaluate_note” , Note, [Int; Note;

String; Song; Phrase; Measurepoo; TimeSig; Instr; Tempo; List
Intlist ; Stringlist; Wild], [Note], 0)) table in

let table = StrMap.add ”"evaluate_-measure_0” (Func_Decl(”
evaluate_measure”, Measurepoo, [Int; Note;

String; Song; Phrase; Measurepoo; TimeSig; Instr; Tempo; List
Intlist ; Stringlist; Wild], [Measurepoo], 0)) table in

let table = StrMap.add ”evaluate_phrase_0” (Func_-Decl(”
evaluate_phrase”, Phrase, [Int; Note;

String; Song; Phrase; Measurepoo; TimeSig; Instr; Tempo; List
Intlist ; Stringlist; Wild], [Phrase], 0)) table in

let table = StrMap.add ”evaluate_song_0” (Func_Decl(”
evaluate_song”, Song, [Int; Note;

[

String; Song; Phrase; Measurepoo; TimeSig; Instr; Tempo; List ;
Intlist ; Stringlist; Wild], [Song], 0)) table in
let table = StrMap.add ”length_note_0” (Func_Decl(”length_mnote
”, Int, [Measurepoo; Note; Phrase; Song; Intlist; Stringlist],
[Note], 0)) table in
let table = StrMap.add ”length_measure_0” (Func_Decl(”
length_measure”, Int, [Measurepoo; Note; Phrase; Song; Intlist;
Stringlist], [Measurepoo], 0)) table in
let table = StrMap.add ”length_phrase_0” (Func-Decl(”
length_phrase”, Int, [Measurepoo; Note; Phrase; Song; Intlist;
Stringlist], [Phrase], 0)) table in
let table = StrMap.add ”length_song_-0” (Func_Decl(”
length_measure” , Int, [Measurepoo; Note; Phrase; Song; Intlist;
Stringlist], [Song], 0)) table in
let table = StrMap.add ”length_int_list_0” (Func_Decl(”
length_int_list”, Int, [Measurepoo; Note; Phrase; Song; Intlist
; Stringlist], [Intlist], 0)) table in
let table = StrMap.add ”length_string_list_0” (Func_-Decl(”
length_string_list”, Int, [Measurepoo; Note; Phrase; Song;
Intlist; Stringlist], [Stringlist], 0)) table in

let table = StrMap.add ”play-0” (Func-Decl(”play”, Null-Type, |
Note; String; Song; Phrase; Measurepoo; Wild], [], 0)) table in

let table = StrMap.add ”write_-0” (Func-Decl(”write”, Null_-Type, |
Note; String; Song; Phrase; Measurepoo], [], 0)) table in

let table = StrMap.add "main_0” (Func-Decl(”main”, Null-Type, [],
[1, 0)) table in

(table, 0)

113 (% main function in this file — initiates table, inserts

37

114
115
116
117
118
119

120

AR W N e

e R R Rk e
o © ®w N o

AR S U C R

[STNCY

-
o0

statements and funks x)

let create_table p =

let env = start_env in

let env = map insert_stmt (List.rev p.stmts) env in

let env = map insert_funk (List.rev p.funcs) env in

let () = Printf.printf ”// Symbol Table Created” in
env

Listing 6: table.ml
Semantic Analysis:

(%

* Semantic analysis for Marmalade

*
*)

open Ast

let fst_of_three (t, -, -) =t
let snd_of_three (-, t, _) =t
let thrd_-of_-three (-, -, t) =t

(* verified expressions)

type s_expr =
S_Int_Lit of int * declare_type
| S_Id of string * declare_type
| S_String_Lit of string % declare_type
| S_Note of int * char * declare_type
| S-Measure of s_expr list * s_expr * declare_type (x S_Note
, S_TimeSig, declare_type =)

list

| S_Phrase of s_expr list * s_expr x declare_type (% S_Measure

list , S_Instr, declare_type x)

| S_Song of s_expr list =+ s_expr x declare_type (x S_Phrase

list , *)
| S_TimeSig of int * int * declare_type (* ex: ((4:4),
TimeSig))

| S_Instr of string * declare_type (x ex: (BASS,
Instr) =x)

| S-Tempo of int * declare_type (x ex: (120, Tempo)

*)

| S_Binop of s_expr * op * s_expr % declare_type

| S_Call of string * s_expr * s_expr list * declare_type list

declare_type

S_Index of string * s_expr * declare_type

S_Arr of s_expr list % declare_type

S_Db_Arr of s_expr * s_expr

S_Call_lst of s_expr list

S_Noexpr (* Default — No value x*)

(x verified statemnets x)

type s-stmt =
S_CodeBlock of s_block
| S_expr of s_expr
| S_Assign of string * s_expr % declare_type
| S_Arr_Assign of string * s_expr * s_expr * declare_type
| S_Return of s_expr
|

*)

38

*

S_If of s_expr * s_stmt * s_stmt (* stmts of type D_CodeBlock

66
67
68

69

aoRs W oN

® ® N N 4 NN N
[S e N R R S

w0 o
0

83

95
96
97
98
99

| S_For of s_stmt * s_stmt * s_stmt * s_block

*)
| S_While of s_expr % s_block

(* stmts of type
D_Assign | D_Noexpr * D_Expr of type bool x D_Assign |

| S-Append_Assign of declare_type * string * s_expr list
| S_.Index_Update of string * s_expr * s_expr * declare_type

s and s_block = {

s_locals : scope_var_decl list;
s_statements: s_stmt list;
s_block_id: int;

}

(x verified function declaration =x)

type s_-func = {
s_fname : string;

D_Noexpr

s-ret_type : declare_type; (% Changed from types for comparison

error in confirm_stmt)

s_f_type : declare_type list;

s_formals : scope_var_decl list;
s_fblock : s_block;

}

type s_program = {
s_gvars: scope_var_decl list;
s_pfuncs: s_func list;

}

let rec get_-range 1 (a:char) b =

let lower = Char.code a in
let upper = Char.code b in
if lower = upper then
a :: 1
else
get_range (a :: 1) (Char.chr (lower+1)) b
let get_-dt fdc = match fdc with
| Func-Decl(-, dt, it, -, den) —> (dt,
| Var_Decl(-, -, dt, den) —> (dt,

(x returns string of the primitive type)

let string_of_prim_type = function
| Int —> ”int”
| String —> ”string”
| Note —> "note”
| Measurepoo —> ”measure”
| Phrase —> ”phrase”
| Song —> ”song”
| TimeSig —> ”timesig”
| Instr —> ”instr”
| Tempo —> ”tempo”
ntlist —> 7int_list
I 1' ” 3 1’ ”
ringlist —> "str_list
Stringlist 7 list”
| Null.-Type —> ”null”

(x returns type of expr x)

let rec type_of_expr here = match here with

39

it , den)

101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128

129

130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152
153
154
155
156

157

158
159

160

S_Int_Lit(-,t) —> t
S_String_Lit(-,t) —> t
S Id(-,t) > t

|
|
| S_Note(-,-,t) —> t
| S_-TimeSig(-,-,t) —> t
| S_Instr(_,t) —> t
| S_-Tempo(-,t) —> t
| S_-Measure(-, -, t) —> t
| S_Phrase(-, -, t) —> t
| S_Song(-, -, t) >t
| S_Binop(_,_,_,t) —> t
| S_Arr (-, t) —> let tpe = (match t with
Int —> Intlist
| String —> Stringlist
| Note —> Measurepoo
| Measurepoo —> Phrase
| Phrase —> Song) in tpe
| S_Call (-, -, -, -, t) —> t
| S-Index (-, -, t) —> let tpe = (match t with
Intlist —> Int
| Stringlist —> String
| Measurepoo —> let hack = S_Note (5, ’a’, Note) in
let bs = (match hack with S_Note(i, d, k) —> k) in
bs
| Phrase —> Measurepoo
| Song —> Phrase) in tpe
| S.Db_Arr(., ar) —> let b = type_of_expr ar in b
| S-Noexpr —> Null_Type
| - —> raise(Failure(”Error: Could not match type in type_of_expr
)
let rec map-to_-list_.env func Ist env =
match 1lst with
= [
| head :: tail —>
let r = func head env in
r map-to_list_env func tail env
let rec traverse_main func Ist =
match 1st with
(1 =1l
| head tail —>
let r = func head in
r :: traverse_main func tail
let drop_-funk 1li =
match 1i with
Expr(v) —> Expr (v)
| VarDecl(v) —> VarDecl (v)
| If(exp-1, blk, exp-2) —> If(exp-1, blk, exp-2)
| While(exp, blk) —> While (exp, blk)
|

= =

Null_Type

let confirm_var var env =
let decl =
match decl
Func_Decl(f) —> raise(Failure(” Error: symbol

)
|

Table. ge

with

Var_Decl(v) —>

(vname,

varray ,

t_decl

(fst_of_three var) env in

let (vname, varray, vtype,

vtype,

id)

40

is not a variable”

id) = v in

161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

202

214

215

let confirm_func_decl name env =
let decl = Table.get_decl name
match decl with
Func_Decl(f) —> name
| - — raise(Failure(”Error:

let confirm_id_get_type id env =

let decl = Table.get_-decl id env

match decl with
Var_Decl(v) — let (-, -, t,
| - —> raise(Failure(”Error:

(x get variables x)

let get_vars li =
(match 1li with
VarDecl(v) —>
(match v with
Assign (dt, iden, v) —>
(match dt with

Int —> (iden, false , dt)

| Note —> (iden, false , dt)
| Measurepoo —> (iden,
| String —> (iden, false,

| Instr —> (iden,
| Tempo —> (iden,
|

TimeSig —> (iden,

env in
id 7 name ” not a function”))
in
_) =v in t
id 7 © id ” not a variable.”))
false , dt)
dt)
false , dt)
false , dt)
false , dt)
true , dt))

- —> (iden,

| Update(iden, v) —> (77,

| Index_-Update(expr-1, expr-2) —> ("7,

| - — (77, false, Wild))

false , Wild)

false , Wild))

(* confirm correct format of a binary operation =)

let confirm_binop 1 r op =
let tl = type_of_expr 1 in
let tr = type_of_expr r in
match op with

Plus | Minus | Times | Divide

Int, Int —> Int
| Note, Int —> Note

—> (match (tl, tr) with

| -, - — raise(Failure(”Error: Cannot apply + — % / op to

”

types

tr)))

| Equal | Neq —> if tl = tr then Int else
_ —> raise(Failure(”Error: Cannot apply = != op to types

=9
”

string_of_prim_type tl

Int, Int —> Int
| Note, Int —> Int
| Note, Note —> Int

string_of_prim_type tl

”

+

”

” Al ”

string_of_prim_type

(match(tl, tr) with

string_of_prim_type tr)))
| Less | Greater | Leq | Geg—> (match (tl, tr) with

| -, - —> raise(Failure(”Error: Cannot apply < > <=>= op to

types ” string_of_prim_type tl 74 string_of_prim_type
£r)))
| And | Or —> (match (tl, tr) with

Int, Int—> Int

| -, - —> raise(Failure(”Error: Cannot apply && || op to
types 7 ° string_of_prim_type tl ~ 7 + 7 string_of_prim_type

tr)))

(* map function to list =)

41

let rec mapl lst func env boo =
match lst with

(1 — 1
| head :: tail —>
let ret = func head env boo in
ret :: mapl tail func env boo

(* map function to 2d list x)

let rec map2 lst func env boo =
match lst with

(1 — I
| head :: tail —>
let ret = mapl head func env boo in
ret :: map2 tail func env boo

(* map function to 3d list =x)

let rec map3 lst func env boo =
match lst with

(1 = I
| head :: tail —>
let ret = map2 head func env boo in
ret :: map3 tail func env boo

(x convert AST expressions into SAST expressions)

let rec confirm_expr ex env boo =
match ex with

IntLit (i) —> S_Int_Lit (i, Int)

| Id(st) —> S_Id(st, confirm_id_get_type st env)

| String_Lit(st) —> S_String_Lit(st, String)

| Note(ct, nt) —> S_Note(ct, nt, Note)

| Measure(nt_list , time) —> let new_time = confirm_expr time env
true in

let s_note_list = mapl nt_list confirm_expr env

true in

S_-Measure(s-note_list , new_time, Measurepoo)
| Phrase(m.l, inst) —> let verified_list = mapl m_l confirm_expr
env boo in
S_Phrase(verified_list , confirm_expr inst env boo,
Phrase)
| Song(s_-1, tempo) —> S_Song(mapl s_l confirm_expr env boo,
confirm_expr tempo env boo, Song)
| TimeSig(num, den) —> S_TimeSig(num, den, TimeSig)

| Instr(st) —> S_Instr(st, Instr)
| Tempo(i) —> S_Tempo (i, Tempo)
| Index(str, i) =

let st = get_id_-type str env in
let rl_int = (match i with IntLit(v) —> S_Int_Lit (v,
Int)
| Id(nme) —> S_Id (nme, Int)) in
S_Index(str, rl_int, st)
| Binop(lft , op, rgt) —>

let 1 = confirm_expr 1ft env false in
let r = confirm_expr rgt env false in
let tp = confirm_binop 1 r op in

let 1t = type-of_expr 1 in

let rt = type_of_expr r in

if 1t = rt then S_Binop(l, op, r, tp)
else (match (lt,rt) with

Note, Int —> S_Binop(l, op, r, Note)

42

NN NN NN NN
[N RN BEEN TN X R BN |
S © ® N Gk W

o0

318
319
320
321
322
323

324

| - — raise(Failure(”Error: Illegal operation on illegal pair
of types ” string_of_prim_type 1t = 7 and 7 °
string_of_prim_type rt)))
BasicList (li) —>
let (it , ty) = check_arr 1li env in
S_Arr(it, ty)
FuncList(li, fl) —>
let mapval fu (arg:expr) = (x for array to be created =x)
let (nme, ag) =
(match fu with
FunkCall(i, e) —> (i, e)
| - —> raise(Failure(”Error: Specified string in FuncList
is not a valid function.”))) in
let fn_decl = Table.get_decl nme env in
let (dt, it, de) = get_-dt fn_decl in
let typ = (match arg with
IntLit (i) —> Int
| Note(-, -) —> Note
| String_Lit(-) —> String
| Id(st) — let v_decl = Table.get_decl st env in
let (t-st, -, -) = get_dt v_decl in
t_st
| FunkCall(id, args) —> let f_decl = Table.get_decl id env
in
let (ty-funk, _, _) = get_dt f_decl in ty_funk
| Index(id, place) —> let var_dec = Table. get_decl
id env in
let (t-obj, -, -) = get_dt var_dec in t_obj
| Measure(-, -) —> Measurepoo
| Phrase(-, -) —> Phrase
| Song(-, -) —> Song
| - —> raise(Failure(”A function cannot be called
on this type.”))

) in
let verify_type_and_vars tok =
let nwvar = check_ex_list tok env in
let nwtp = check_call_and_type nme nwvar env in
nwvar in
let verify_mod_expr tok = confirm_expr tok env false in
let ags = verify_type_and_vars ag in
let i_arg = verify_mod_expr arg in

if List.mem typ it then
(match dt with
Null_Type —>

i_arg
| - —> S_Call(nme, i_arg, ags, it, dt))
else raise(Failure(”Error: Illegal function call 7 ° nme "~ 7
on argument 7)) in
let mapcall fu (arg:expr) = (* for void calls to be executed
before)

let (nme, ag) =
(match fu with
FunkCall(i, e) —> (i, e)
| - — raise(Failure(”Error: Specified string in FuncList
is not a valid function.”))) in
let fn_decl = Table.get_decl nme env in
let (dt, it, de) = get_-dt fn_decl in
let typ = (match arg with
IntLit (i) —> Int
| Note(-, -) —> Note
| String_Lit(-) —> String
| Id(st) —> let v_decl = Table.get_decl st env in

43

362

363

364

365

366

367

368

369

370

37

37
37
.
37
7
7
7

3
376
377

1
2
3

1
5

378

379

380

let (t-st, -, -) = get_dt v_decl in
t_st

| Default — Wild

| FunkCall(nme, arg_vals) —> Wild

| Index(id, place) —> let var_dec = Table.get_decl

id env in

let (t-obj, -, -) = get_dt var_dec in t_obj

| Measure(-, -) —> Measurepoo
| Phrase(-, -) —> Phrase

| Song(-, -) —> Song
\

_ —> raise(Failure (”A function cannot be called

on this type.”))

) in
let verify_type_and_vars tok =
let nwvar = check_ex_list tok env in
let nwtp = check_call_and_type nme nwvar env in
nwvar in
let verify_mod_expr tok = confirm_expr tok env false
let ags = verify_type_and_vars ag in
let i_arg = verify_mod_expr arg in

if List.mem typ it then

(match dt with

Null-Type —>

S_Call (nme, i_arg, ags, it, dt)

| - —> S_Noexpr)

else raise(Failure(”Error: Illegal function call
on an argument.”)) in
let 1_calls = List.map2 mapval 1i fl in
let r_calls = List.map2 mapcall (List.rev 1i) fl in
let (it, ty) = check-arr fl env in
let ret = (match boo with

”

true —> S_Db_Arr(S_Call_lst(r_calls), S_Arr(l_calls, ty))

| false —> S_Db_Arr(S_-Call_lst(r_calls), S_Noexpr)

) in ret
| FunkCall(i, lis) —>
let arg_var = check_ex_list lis env in

let rt_typ = check_call_and_-type i arg-var env in
let decl_f = Table.get_decl i env in

in

let (implicit_-parm_type , explicit-param_types, arg_-types) =

get_dt decl_f in
S_Call(i, (confirm_expr Default env false), arg_var,
explicit_param_types, rt_typ)

| Default —> S_Noexpr

and check_arr arr env =
match arr with
[] = ([], Null.Type) (x* Empty =)

| head :: tail —>
let verified_-head = confirm_expr head env false in
let head_type = type-of_expr verified_head in
let rec verify_list_and_type 1 t e = match 1 with

(] (}, ¢)

—>
| hd :: t1 —>

let ve = confirm_expr hd e false in

let te = type_-of_expr ve in

(ve :: (fst (verify_list_and_-type tl te e)), t) in
(verified_-head :: (fst (verify_list_and_-type tail head_type env

)), head_type)

and check_ex_list (lst: expr list) env =
match 1st with

44

382

383
384
385
386

387

389

390

391

392
393
394
395
396

397

399
400
401

403
404
405
406
407
408
409
410

411
412
413
414
415
416
417
4

8
419

420

NN

NN R
a B oW N

426
427
428
429

430

(1 =1l
| head :: tail —> confirm_expr head env false :: check_ex_list
tail env

(x confirm correct function calls)

and check_call_and_type name vargs env =

let decl = Table.get-decl name env in (* function name in symbol
table)
let fdecl = match decl with
Func_Decl(f) —> f (* check if it is a
function x*)
| - — raise(Failure (”Error: ” ~ name ~ 7 is not a function.”)
) in
if name = ”print” then Int (% note returns wrong type x)
else if name = ”write” then Wild (% note returns wrong type x*)
else if name = ”play” then Wild (* note returns wrong type)
else if name = ”"evaluate” then Wild
else
let (-,rtype, -, params,.) = fdecl in

if (List.length params) = (List.length vargs) then
let arg_types = List.map type_-of_expr vargs in
if params = arg_types then rtype

else raise (Failure(”Error: Argument types in ” "~ name ~ 7
call do not match formal parameters.”))
else raise(Failure(”Error: Function ” "~ name ~ 7 takes ”

” 9

string_of_int (List.length params) arguments , called with

string_of_int (List.length vargs)))

(x get the type of an id of a variable =)

and get_id_type den env =

let mark = Table.get_decl den env in

let var = match mark with

Var_Decl(sk) —> sk

| - — raise(Failure (”Error:
in

let (-, -, tp, -) = var in

tp

? den ~ ” is not a variable.”))

(* convert AST statements into SAST statements x)

let rec confirm_stmt stmt ret_type env =

(match stmt with
Return(e) —>

let verified_expr = confirm_expr e env false in
S_Return (verified_expr)

| Expr(e) —>
let verified_expr = confirm_expr e env false in

S_expr(verified_expr)
| VarDecl(mo) —> (match mo with

Assign (typ, id, e) —> (* Verify that id is compatible type to
e x)

let ve = confirm_expr e env true in

let eid_-type = type-of_expr ve in

if typ = eid_type

then S_Assign(id, ve, typ)

else raise(Failure(”Error: Return type does not matchsx
string_of_prim_type eid_type = 7 7 string_of_prim_type typ
’7.77))

| Update(st, ex) —>

wm A

45

432
433

134
435

436

139

440
441

442
443
144
145
446
447
148
449
150
451
152
153
454

455

156
457
458
159

460

461

162

463
164
165
466
467
4168
469

170

let vid_-type = get_id_-type st env in

let de = confirm_expr ex env true in

let de_-tp = type-of_expr de in

if de_tp = vid_type then S_Assign(st, de, de_tp)

else raise(Failure(” Attempting to assign variable name

» A

st © 7 to value of type ” string_of _prim_type de_tp "~ 7
when 7 ° st ° 7 is already defined as a variable of type
7 string_of_prim_type vid_-type ~ 7.7))

| Index_-Update(expr-1, expr-2) —> let type-1 = (match expr_1
with
Index (str, exp) —> let typ_-known = Table.get_decl str

env in
let (plz, typ, den) = get_dt typ_-known in plz
| - —> raise(Failure(”Error in matching index type”))
) in
let iden = (match expr_1 with
Index (str, exp) —> str) in
let idx = (match expr_1 with
Index (str, exp) —> exp) in
let v_expl = confirm_expr idx env false in
let v_exp2 = confirm_expr expr_2 env false in

S_Index_-Update(iden, v_expl, v_exp2, type-1))
If (e, bl, b2) —>
let verified_expr = confirm_expr e env false in
if (type-of_expr verified_expr) = Int then
let vbl = confirm_block bl ret_-type (fst env, bl.block-id) in
let vb2 = confirm_block b2 ret_type (fst env, b2.block_id) in
S_If(verified_expr , S_CodeBlock(vbl), S_CodeBlock(vb2))
else raise(Failure(”Error: Condition in IF statement must be a
boolean expression.”))
While (condition, block) —>
let vc = confirm_expr condition env false in
let vt = type-of_expr vc in
if vt = Int then
let vb = confirm_block block ret_-type (fst env, block.
block_id) in
S_While (ve, vb)
else raise(Failure(”Error: Condition in WHILE statement must be
boolean expression.”))
- —> raise(Failure (”Error: Can’t map to statement.”)))

iterates through a list of statements and confirms them)

and confirm_stmt_list stmt_list ret_type env =
match stmt_list with

—>
| head :: tail —> (confirm_stmt head ret_type env) :: (
confirm_stmt_list tail ret_type env)

function to confirm a block —> confirms each variable and
statement)

and confirm_block block ret_type env =

let verified_-vars = map-to_list_env confirm_var block.locals (fst
env, block.block_id) in

let verified_stmts = confirm_stmt_list block.statements ret_type
env in

{ s_-locals = verified_vars; s_statements = verified_stmts;

s_-block_id = block.block_id }

(x goes through each fun, verifies block, arguments, and finally

the declaration =)

46

180
481

182

484

185

186
487
4188
489
190
491

192

193

494

195

196

497

let confirm_func func env =
let verified_-block = confirm_block func.body func.ret_type (fst
env, func.body.block_id) in

let verified-args = map-to_list_env confirm_var func.args (fst
env, func.body.block_id) in

let verified_func_-decl = confirm_func_decl func.fname env in
{ s_f_type = func.f_type; s_-fname = verified_-func-decl;
s_.ret_type = func.ret_type; s_formals = verified_args; s_fblock

= verified_block }
(* SAST begins here — first function called: confirm_semantics x)

let confirm_semantics program env =

let main_stmts = traverse_main drop-funk (program.stmts) in

let main_vars = traverse_main get_vars main_stmts in

let g_var_val = List. filter (fun x —> x <> (77, false, Wild))
main_vars in

let verified_gvar_list = map-to_list_env confirm_var g_var_val
env in

let main_func = confirm_-func ({fname = ”"main”; ret_type =
Null_-Type; f_-type = []; args = []; body = {locals = [];
statements = List.rev main_stmts; block_id = 0}}) env in

let verified_func_-list = main_func :: map_-to_list_env
confirm_func program.funcs env in

let () = prerr_endline ”// Passed semantic checking \n” in
{ s_pfuncs = List.rev verified_func_list; s_gvars = List.rev

verified_gvar_list}

Listing 7: sast.ml

Java Generator:

(x Java generator for Marmalade x)

open Ast
open Sast

(x rewrite AST types as the actual java types in the file. x)

let write_.type = function
| Int —> 7j_int”

| String —> ”j_string?”

| Note —> ”j_note”

| Measurepoo —> ”j_measure”

| Phrase —> ”j_phrase”

| Song —> ”j_song”

| TimeSig —> ”TimeSig”

| Instr —> 7int”

| Tempo —> ”int”

| Intlist —> 7 j_intlist?”

| Stringlist — ”j_stringlist”

| - —> raise(Failure ”Error: Type string of PD_Tuple or

Null_Type being generated”)

(x rewrite operations to their actual expressions in java. x)
let write_op_-primitive op el e2 =

match op with
Plus —> ”"new j_int (j-int.add(” "~ el =~ 7, 7 ~ e2 ~ 7))”

47

N

o

S T RS BN BN S R B |

o =

Minus —> ”"new j_int (j-int.sub(” "~ el =~ 7, 7 ° e2

Times —> ”new j_int (j_int.mult(” ~ el =~ 7, 7 " e
Divide —> ”new j_int (j-int.divide(” ~ el =~ 7, 7
Equal —> 7 j_int.eq(” "~ el =~ 7,7 " e2 "~ 7)”

Neq - ”j,int.neq(” el 7,7 » o~ e N 77)77

Leq _> ’7j7int.leq(77 ~ el ~ 7?7 ” ~ ez ~ 77)77
Greater —> "j_int.gt(”? "~ el ~ 7,7 " e2 " 7)”

Geq —> ”j_int.geq(” ~ el ~ 7, 7 "~ e2 ~ 7))
And —> 7 (7 " el ©) && (7 " e2 © V)

|
|
|
|
|
| Less —> ”j,int.lt(” Sel 77 0 e2 7 77)77
|
|
|
T R

_ —> raise (Failure ”Error: and/or begin applied to a java

primitive”)
(* notes map to values in jmusic x)

let write_rhythm dr =
match dr with
’s’ —> 70.125” (x sixteenth note maps to 0.125 =x)
| e’ —> 70.25” (% eigth note maps to 0.25 x)
| 7q’ > ”0.5”
| 7h7 7> 771.077
| wlo—> 72.0”

(x get type of expression x*)

let rec get_typeof_dexpr = function
S_Int_Lit (intLit, t) —> t

S_String_Lit (strLit, t) —> t

S_Id (str, t) —> ¢t

S_Arr(dexpr_list , t) —> t

S_Binop (dexprl, op, dexpr2, t) —> t
S_Noexpr —> Null_Type

S_Call(str, _, dexpr_list, _, t) —> t

(x write actual java compare expression)

let write_op_-compares el op e2 =
match op with
Equal —> 7 (7 " el " ”).equals(” "~ e2 "~ 7)”
| Less —> 7(” ~ el "~ 7).compareTo(” ~ e2 "~ 7)” °
| Leq — ”(” ~ el "~ 7).compareTo(” "~ e2 "~ 7)” "~ 7
| Greater — 7 (” "~ el "~ 7).compareTo(” "~ e2 "~ 7)”
| Geq —> ”(” ~ el "~ 7).compareTo(” "~ e2 "~ 7)” "~ 7
| Neq = 7(” ~ el " 7).compareTo(” "~ e2 "~ 7)” "~ 7
|

- —> raise (Failure(”Error: Not a comparator operation.”))

” < 077
<= 07
~ ” >
>= 07
1= 0”

0”

(x convert marmalade’s sast expressions into java expressions

let rec write_expr = function

S_Int_Lit(intLit, t) —> ”(new j_int(” ~ string-of_int

77))77
| S_String_-Lit (strLit, t) —> ”(new j_string(\””

)7’
I
|

S_Id (str, yt) —> str

dexpr2 t

| S.Db_Arr(call, mark) —> (
match mark with
S_Arr(l-one, l_-two) —> write_expr call
| S_Noexpr —> write_expr call)

48

intLit

strLit

S_Arr(dexpr-list , t) —> write_array_expr dexpr_list t
S_Binop (dexprl, op, dexpr2, t) —> write_binop_expr dexprl op

"7\

88

90

91

93
94
95
96

97

98

100

101

107

109

110

111

113
114
115
116

117

| S-Measure(s-note_list , s_time, typ) —> ”new j_-measure (new
j-note[] {? ° (String.concat 7, 7”7 (List.map write_expr

s_note_list)) ~ 7}, new TimeSig (7 ~ write_expr s_time "~ 7))”
| S_Phrase(s_measure_list , s_instr, typ) —> “new j_phrase (new
j-measure [| {” ° (String.concat 7, ” (List.map write_expr
s.measure_list)) ~ 7}, 7 ° write_expr s_instr °~ 7)”

| S_Song(s-phrase_list , s_tempo, typ) —> ”new j_song (new

j-phrase[] {” ° (String.concat 7, ” (List.map write_expr

s_phrase_list)) =~ 7}, 7 ° write_expr s_tempo "~ 7)”

| S-Noexpr —> 77

| S_Note(i, ch, tp) —> ”"new j_note(” "~ string_of_int i ~ 7, 7 ~
write_rhythm ch ~ 7)”

| S_-TimeSig(i, i-2, tp) —> string_of_int 1 =~ 7, 7 °

string_of_int 1.2

| S_.Instr(str, tp) —> str

| S.Tempo(i, tp) —> string_-of_int i

| S-Index(str, i, tp) —> str ~ ”7.get(” "~ write_expr i "~ 7)”

S_Call(str, exp, dexpr_list ,t_-ret, t_send) —> (match str with

print”? —> ”?System.out.println (” ° write_expr exp

a 77);\n77

| 7play” —> write_expr exp ~ ”.play();\n”
| ”"write?” —> "Write.midi(” ~ write_expr exp "~ ”.getObj

() ; \”Out mld\”) ;\nﬁ

| 7evaluate_measure” —> "new j_measure(” " String.
concat 7”7 (List.map write_expr dexpr_list) ~ 7) ”
| ”evaluate_phrase” —> ”"new j_phrase(” °
String.concat ”” (List.map write_expr dexpr_list) ~ 7) 7
| 7evaluate_song” —> "new j_song(” ~ String

.concat 7”7 (List.map write_expr dexpr_list) =~ 7) ”

| 7evaluate_note” —> "new j_note(” ° String
.concat 7”7 (List.map write_expr dexpr-_list) = 7) ”

| 7length_measure” —> “new j_int(” ~ String

.concat 7”7 (List.map write_expr dexpr_list) ~ 7 .length())”

| ”length_phrase” —> ”new j_int(” ~ String.
concat 7”7 (List.map write_expr dexpr_list) ~ 7 .length())”

| ?length_song” —> ”"new j_int(” "~ String.
concat ”” (List.map write_expr dexpr_list) ~ ”.length())”

| 7length_int_list” —> "new j_int (”
(List .map write_expr dexpr_list) ~ ”.length())

2 9

String.concat
ength_string_list” —> "new j_int
?71 g h M g 1 ” ” j' ” ~
(List .map write_expr dexpr-list) ~ 7 .length())

9 9

String.concat
”
| - — (match exp with
S_Noexpr —> str ~ 7(” ° String.concat ”,” (List
.map write_expr dexpr_list) ~ ”)”
| - —> write_expr exp 7.7 % str 7 (7 ° String.
concat ”,” (List.map write_expr dexpr_list) ~ 7);/n”)

S_Call_lst (s) —> String.concat ”” (List.map write_expr s)

- —> raise(Failure (”Error: Not a valid expression.”))

this function matches to each kind of s_stmt, calling the
function write_expr to write each of them in Java. x)

and write_stmt d vg = (match d with

S_CodeBlock (dblock) —> write_block dblock vg
| S_expr(dexpr) —> write_expr dexpr ~ 7;”
| S_Assign (name, dexpr, t) —> (match vg with
true —> (
match dexpr with

49

133
134
135

136

137

139

159

160

161

162

163
164
165
166
167

168

S_Db_Arr(al, a2) —> write_expr (S-Db_Arr(al, a2)) °
write_assign name a2 t true ~ 7;\n”

| - —> write_assign name dexpr t true "~ ”7;\n”)

| false —> (match dexpr with

S_Db_Arr(al, a2) —> write_expr (S_Db_Arr(al, a2)) °
write_assign name a2 t false ~ 7;\n”

| - — write_assign name dexpr t false ~ 7;\n”))
| S_Return(dexpr) —> ”return ” ° write_expr dexpr ~ 7;\n”
| S_If(dexpr, dstmtl, dstmt2) —> ”if(” ° write_expr dexpr ~ 7
write_stmt dstmtl vg ~ 7else” ~ write_stmt dstmt2 vg
| S_While (dexpr, dblock) —> ”while(” "~ write_expr dexpr "~ 7)”
° write_block dblock vg (% check true =)
| S_.Index_Update (nme, expr_1, expr_2, typ) —>
(match typ with

(* jMusic syntax for setting a note, measure, and part (
which is the same as a phrase in marmalade))

Measurepoo —> nme ~ ”.set_Note(” ~ write_expr expr_-2 ~ 77

write_expr expr-1 ~ 7);\n”

| Phrase —> nme 7 .set_Measure (

write_expr expr-2 ~ 7);\n”

| Song —> nme °~ ”.set_Part(” "~ write_expr expr-1 ~ 7, 7 °
write_expr expr-2 ~ 7);\n”)
| - — raise(Failure(” is not a valid statement”)))

” ”

write_expr expr_1
”

and write_stmt_true d = write_stmt d true
and write_stmt_false d = write_stmt d false
(* function that matches the expression on each side of the binop,

then writes it =)

and write_binop_expr exprl op expr2 t =

(*

let el = write_expr exprl and e2 = write_expr expr2 in
let write_binop_-expr_help el op e2 =
match t with
Int —> (match op with
(Plus | Minus | Times | Divide | Equal | Neq |
Less | Leq | Greater | Geq | And | Or) —>
write_op_primitive op el e2)
| String —> (match op with
Plus —> 7new j_string (j-string.add(” ~ el ~ 7

7?))77
| (Equal | Less | Leq | Greater | Geq) —>
write_op_-compares el op e2
| - — raise(Failure(write_op_primitive op el
e2 ~ 7 is not a supported operation for String_Type”)))
| Note —> (match op with (Plus | Minus | Divide |
Times) —> “new j_note(” write_op_primitive op el e2 ~ 7 7
el © 7 .getLength())”
| - —> raise(Failure(”Error: Cannot add to
note.”)))
| - — raise(Failure(”Error:

1

op el e2 ° is not a supported operation for

)

in write_binop_expr_help el op e2

? write_op_primitive

? write_type t

writes an array expression)

and write_array_expr dexpr-list t =

match t with

50

)

169

1
S

180
181
182
183
184 and
185
186
187
188 and
189
190
191 and
192

193

(%

Int —> ”"new j_intlist (new j_int [] {”
if Int,

concat
(List .map write_expr dexpr_list) =~ 7})”

concat

helper

let

(

» 9
)

= =

” »
)

function to apply java toString

then write an int list =x)

List .map write_expr dexpr_list) =~ 7})”
String —> "new j_stringlist (new j_string []
list

(* if String, then write a string

9 ”

new © write_type t ~ 7 []7 © 7 {”
(List .map write_expr dexpr-list) =~ 7}”

7 and tostring_str dexpr =

t = get_typeof_dexpr dexpr in
match t with

Int —> write_expr dexpr
String —> write_expr dexpr

- >

(7?7 ° write_expr dexpr

write_scope_var_decl_func svd =
let (n, b, t, -) = svd in

A n o A

write_type t n

write_scope_var_decl svd =
write_scope_var_decl_func svd *~ 7;\n”

write_global_scope_var_decl gsvd =

”static

”

write_scope_var_decl_func gsvd

194 (% write assign expression in java)

195

196 and write_assign name dexpr t vg =
match vg with

197
198
199

200

207 and

213 (%
214

true —> (match t with
Instr | Tempo | Intlist | Stringlist —> name
write_expr dexpr

| Note | TimeSig | Measurepoo | Phrase

”

String |

Int

—_”»

- —> raise(Failure (”Error:

2 (77

write_expr dexpr ~ 7)”
? write_type t

valid assign_type.”)))
false —> (match t with

String | Instr | Tempo

”

”

name =
- —> raise(Failure (” Error:

” ? write_expr dexpr

? write_type t

valid assign_type.”)))

write_block dblock vg =

match vg with

true — 7 {\n”

dblock.s_statements) ~ ”\n}”

false — 7 {\n”
write_scope_var_decl dblock.s_locals)

function

String.concat ”\n” (List.map
String.concat ”\n”

*)

7).toString ()”

” ;\1’177

String .concat

{7 Str
*)
String .

Song

9

9

is

is

» 9
)

ing .

9 ”

—> name

not a

not a

List .map write_stmt_false dblock.s_statements) ~ ”\n}”

include necessary java lines —> main x)

215 let write_func_wrapper x str =
String.concat ”\n”

(let write_-func dfunc =

match (dfunc.s_fname, str) with
"main”, String) —> ”public static void main(String []

216
217

218

219

o1

| Intlist | Stringlist —> write_type t

String.concat ”\n” (List.map write_stmt_true

(

args)

? * write_block dfunc.s_fblock true
| (-, -) —> (String.concat ”\n” (let match_type ftype =
match ftype with
str —> ”static ”? ° write_.type dfunc.s_ret_type
dfunc.s_fname °~ 7 (” ° String.concat 7 ,” (List.map
write_scope_var_decl_func
dfunc.s_formals) =~ 7)” °
| _ _> 7N in
List .map match_type dfunc.s_f_type)) in
List .map write_func x)

» N A

write_block dfunc.s_fblock true

(x Below is necessary java placed into the file =)

let gen_pgm pgm name =

”import java.util.Arrays;\n”
”import java.util.ArrayList;\n”
”import jm.JMC;\n” °
”import jm.music.data.*;\n”
import jm.util.x;\n” °
”import marmalade.x*;\n”
import jm.midi.event.TimeSig;\n”

”

"public class " name ~ 7 implements JMC{\n” ° String.concat
\n” (List.map write_global_scope_var_decl pgm.s_gvars)
write_func_wrapper pgm.s_pfuncs Strin
gm g

” \1’1\1’1” A

”public static class j_int extends m_Int {\n”
”public j-int (int n) {\n”
»super (n) :\n}\n’ *

”public j-int(j-int n) {\n”

»super (n);\n}” -

(write_func_wrapper pgm.s_pfuncs Int)

\nP\n\n”

"public static class j_intlist extends m_Int_List {\n” °
"public j-intlist (j-int[] j) {\n” °
»super (j);\n}” -

»public j-int get(int i) {\n” °
"return new j_int (getList()[i]);\n}”
(write_-func_wrapper pgm.s_pfuncs Intlist) °

“\n}\n\n” ~

”

”public static class j_string extends m_String {\n”
"public j-string (j-string x) {\n” °
»super (x);\n}> °
”public j-_string (String x) {\n”
"super(x);\n}” °
(write_-func_wrapper pgm.s_pfuncs String)

\np\n\n” °

”public static class j_stringlist extends m_String_List {\n”
"public j-stringlist (j-string [] j) {\n” °

»super (j);\n}” -

"public j-_string get(int i) {\n”
"return new j_string (getList()[i]);\n}”
(write_-func_wrapper pgm.s_pfuncs Stringlist)

P\np\n\n” °

52

280 ”public static class j_note extends m_Note {\n” ~

281 ”public j_note(Note n) {\n” ~

282 ”super (n);\n}”

283 "public j_note(int pitch, double length) {\n” °

284 ”super (pitch , length);\n}” ~°

285 ”public j_note(j-int pitch, double length) {\n” ~

286 ”super (pitch , length);\n}”

287 (write_func_wrapper pgm.s_pfuncs Note)

288 "\n}\n\n” ~

289

290

291 »public static class j_measure extends Measure {\n\n” ~

202 public j.measure(j-note [|] m, TimeSig n) {\n” °

293 7 super(m, n);\n}” °

294 ”public j_measure (Phrase p) {\n”

295 7 super(p);\n}” °

296 ”»public j-measure(j-measure 1) \n

297 {\n super (1l.getObj()); \n}\n”"

298 ”public j_note get(int i) {\n”

299 ” Note n = getObj().getNote(i);\n j-note m = new j_note(n
)\ n return m;\n}”

300 ”public j_note get(j-int i) {\n” ~

301 7 Note n = getObj().getNote(i.get());\n j-note m = new
j-note (n);\n return m;\n}” °

302 ”public void set_-Note(j-note i, j-int k){

303 this.p.setNote(i.getObj(), k.get());\n

304 H\n” °

305 ”public void set_Note(j-note i, int k){

306 this.p.setNote(i.getObj(), k);

307 N\n” °

308 (write_-func_wrapper pgm.s_pfuncs Measurepoo)

309 "\n}\n” °

310

311

312 ”public static class j_phrase extends

313 m_Phrase {\n” ~

314 ” public j-phrase(Part p) {\n” ~

315 ”super (p);\n}” °

316 ” public j-phrase(j-measure[] m, int n) {\n”

317 ”super (m, n);\n}” °

318 7 public j_phrase(j-measure[] m, j-int n) {\n”

319 ”super (m, n);\n}\n”

320 ”public j_phrase(j_-phrase 1) \n

321 {\n super (l.getObj()); \n}\n” °

322 ” public j_measure get(int i) {\n” °

323 ”Phrase p = getObj().getPhrase(i);\n” ~

324 ” return (new j_measure(p));\n}” °

325 ”public j-measure get(j-int i) {\n”

326 ” Phrase p = getObj().getPhrase(i.get());\n”

327 "return (new j_measure(p));\n}”

328

329 ”public void set_Measure(j-int idx, j-measure n_measure)\n

330 {\n

331 this.set_-Measure (idx.get (), (Measure) n_measure); \n

332 N\n”

333

334 "public void set_-Measure(int idx, j-measure n_measure)\n

335 {\n

336 this.set_Measure (idx, (Measure) n_measure); \n

337 Nn” °

338

53

339
340
341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

362
363
364
365
366
367
368

369

1
2
3
1
5

(write_-func_wrapper pgm.s_pfuncs Phrase)

P\npin” -

”public static class j_song

extends Song {\n”

»public j_song(j-phrase[] m, int n) {\n”

9

super (m, n);\n}”

»public j_song(j-phrase[] m, j-int n) {\n” °

)

super (m, n);\n

Moo °

”public j_song(j-song 1) \n

{\n super(1);
”public j_phrase

\n}\n” ~

get (int i) {\n” ~

” Part s = getObj().getPart(i);\n” °

"return (new j_phrase(s));\n}”

”public j_phrase

get (j-int i) {\n” ~

"Part s = getObj().getPart(i.get());\n

return (new j_phrase(s));\n}”

”»public void set_Part(j_-int idx, j_phrase n_phrase)\n

{\n

this.set_-Part (idx.get (), (m-Phrase) n_phrase); \n

AV

”»public void set_Part(int idx, j-phrase n_phrase)\n

{\n

this.set_Part(idx, (m_Phrase) n_phrase); \n

Fn”

(write_-func_wrapper pgm.s_pfuncs Song)

"\n}\n}\n”

Listing 8: javagen.ml

Script to Test Java:

make_java.sh

cd javaclasses

javac —cp ./jMusicl.
javac —cp ./jMusicl.
javac —cp ./jMusicl.
javac —cp ./jMusicl.
javac —cp ./jMusicl.
javac —cp ./jMusicl.
javac —cp ./jMusicl.
javac —cp ./jMusicl.
javac —cp ./jMusicl.
javac —cp ./jMusicl.
jar cvf marmalade. jar

DI DIDIO OO OO

4.jar:./ marmalade/m_Int.java
4.jar:./ marmalade/m_Int_List.java
4.jar:./ marmalade/m_String.java
4.jar:./ marmalade/m_String_List.java
4.jar:./ marmalade/m_Note.java
4.jar:./ marmalade/Measure. java
4.jar:./ marmalade/m_Phrase.java
4.jar:./ marmalade/Song.java

4.jar:./ marmalade/m_Tempo.java
4.jar:./ marmalade/Tester.java

marmalade /*. class

java —cp ./jMusicl.6.4.jar:./ marmalade/Tester

cd

Listing 9: script to make java

Script to Run Test Suite:

#!/bin /bash

run_tests.sh

5 # Based on MicroC Regression Test Suite Script (microc/testall

54

.sh)

19

45

0 stdin
1 stdout
2 stderr

MARMALADE=" . / marmac”

#marmac depends on ”marmalade” compiler

Set time limit for all operations
ulimit —t 30

globallog=tests.log
rm —f $globallog
error=0
globalerror=0

keep=0

Usage () {
echo ”Usage: run_tests.sh [options]
echo 77—k Keep intermediate files”
echo ”—h Print this help”
exit 1

}

SignalError () {
if [$error —eq 0 | ; then
echo ”FAILED”
error=1
fi
echo 7 $1”

}

Compare <outfile> <reffile > <difffile >

Compares the outfile with reffile. Differences,

to difffile
Compare () {

generatedfiles="$generatedfiles $3”
echo diff —b $1 $2 ”>" $3 1>&2
cat $1 >&2
diff —b 7$17 7827 > "$3” 2>&1 || {

SignalError 7?81 differs”

echo "FAILED $1 differs from $27 1>&2

}
}

Run <args>
Report the command, run it, and report
Run() {
echo $x 1>&2
eval $x || {
SignalError ”$1 failed on $x”
return 1

}
}

Check () {
81 name of basename file (i.e.
$2 name of testdir (i.e.

)

55

[.marm files]”

any errors

if any,

test_arith_addl)
testdir_2015 —11-24_061339

66 error=0
67 basename=‘echo $1 | sed ’s/.x\\///

68 s/.marm/ /¢

69 reffile=‘echo $1 | sed ’s/.marm$// *

70 basedir=" ‘echo $1 | sed ’s/\/["\/]1*$// ‘/.”
1

2 echo —n ”$basename...”

4 echo 1>&2

75 echo "#HHHHAH Testing $basename” 1>&2

76

77 generatedfiles=""

78

79

80 # GENERATE .java .class <outfile >.t.out .t.diff FILES

81

82 generatedfiles="$2/${basename }.t.out”

83 Run "$MARMALADE” ”$1” ”${basename}”

84 ./ ${basename} &> ”./$2/${basename}.t.out”

85 mv ”${basename}” ”$2/${basename}”

86 mv " ${basename}.java” ”$2/${basename}.java”

87 mv ”${basename}.class” ”?$2/${basename}.class”

88 mv *.class 78$2/”

89

90 Compare $2/${basename}.t.out ${reffile }.out $2/${basename}.t.
diff

91

92 echo

93

94 generatedfiles=" $generatedfiles $2/${basename}.t.out $2/${
reffile }.out $2%{basename}.t.diff”

95 generatedfiles=" $generatedfiles $2/${basename} $2/${basename }.
java $2/${basename}.class”

96

97

98 # Report the status and clean up the generated files

99

100 if [$error —eq 0] ; then

101 if [$keep —eq 0] ; then

102 # rm —f $generatedfiles

103 echo 77

104 fi

105 echo 7OK”
106 echo V"#HH#H#H SUCCESS” 1>&2

107 else

108 echo "#HHHH FAILED” 1>&2
109 globalerror=$error

110 fi

111 }

112

113

114

115 #BEGINNING OF SCRIPT
116 #BEGINNING OF SCRIPT
117 #BEGINNING OF SCRIPT
118

110 while getopts kdpsh c¢; do

120 case $c in

121 k) # Keep intermediate files
122 keep=1

123 30

124 h) # Help

56

125 Usage

126 oK

127 esac

128 done

129

130 shift ‘expr $OPTIND — 1°¢

131

2 if [$# —ge 1]

133 then

134 files=%@

135 else

136 files="tests/fail_* tests/test_x"
137 # files="tests/fail_*.marm tests/test_+*.marm”
138 fi

139

140

141

142 # AUTO ARCHIVE TEST FILES

143 if [—d " testing_-archive” |; then
144 mv testdir_* testing_archive/
145 else

146 mkdir ”testing_archive”

147 fi

148

149

150 # CREATE NEW TEST DIR FOR INTERMEDIATE FILES
151 date=‘date +%F VLS ¢

152 testdir="testdir_$ {date}”

153 mkdir ”? $testdir”

154

155

156 for file in $files

157 do

158 case $file in

159 *.out)

160 29

161 *test_*)

162 Check $file $testdir 2>> $globallog
163 HH

164 *fail_ x)

165 CheckFail $file $testdir 2>> $globallog
166 20

167 *)

168 echo ”unknown file type $file”

169 globalerror=1

170 HH

171 esac

172 done

173

174

175 exit $globalerror

Listing 10: script to run test suite

57

N}

Makefile:

Makefile for marmalade compiler

OBJS = ast.cmo table.cmo sast.cmo parser.cmo scanner.cmo javagen.

cmo marmalade . cmo
TESTS = \
YACC = ocamlyacc

marmalade : $(OBJS)

ocamlc —o marmalade $(OBJS)

scanner .ml : scanner.mll
ocamllex scanner.mll

parser .ml parser.mli : parser.mly

$ (YACC) parser.mly

%.cmo @ %.ml
ocamlc —c $<

%.cmi @ %.mli
ocamlc —c $<

.PHONY : clean
clean

rm —f marmalade parser.ml parser.mli scanner.ml \

*.cmo *.cmi *x.out *x.diff

ast .cmo:
ast .cmx:

sast .cmo: ast.cmo
sast .cmx: ast.cmx

javagen .cmo: ast.cmo

javagen .cmx: bytecode.cmx ast.cmx

marmalade.cmo: scanner .cmo
marmalade.cmx: scanner.cmx

parser.cmo: ast.cmo parser.
parser .cmx: ast.cmx parser.

scanner.cmo: parser.cmi
scanner .cmx: parser.cmx
parser.cmi: ast.cmo

parser.cmi
parser .cmx
cmi
cmi

compile.cmo
compile.cmx

Listing 1: Makefile for marmalade

Programs:

/* gcd and Fibinnaci algorithm x/

/%
fibinacci number algorithm

*/

/+ recursive algorithm for

funk int int fib(int n, int val_1,

calulating

58

nth fibinacci number x*/
int val_.2)

15

16

if(n <=2 or n<= 0){
return 1;

}
else{

val_1

$fib(n—1, 0, 0);
val_2 = $fib(n—2, 0, 0);
n = val_.1l + val_2;

return n;

}
}
/+ gcd algorthim x*/
funk int int ged(int a, int b){

while (a != b){
if (a>Db) {

a = a— b;
}

else

{
b=b — a;

¥

return a;

/+ prints the gcd and factorial =/

(print (), print()) [ged(30, 90), fib (10, 0, 0)];

Listing 2: a function implementing and testing gcd and fibinacci algorithms

/% 99 bottles of beer in marmalade */

int offset = 0;
int current_bottle = 99;
int next_bottle = 98;

while (offset < 98)
{

current_bottle = current_bottle — 1;
next_bottle = next_bottle — 1;

(print (), print()) [current_bottle, ” bottles of beer on the
wall 7];
(print (), print()) [current_bottle, ” bottles of beer. Take one

down, pass it around 7];
(print (), print()) [next_-bottle, ” bottles of beer on the wall.”

offset = offset + 1;

59

Listing 3: script that prints 99 bottles of beer

/* 99 bottles of beer x/

. i 1

measure t_1 = $(6:8) [67.e, 67.e, 67.e, 62.e, 62.e, 62.e];
measure t_-2 = $(6:8) [67.e, 67.e, 67.e, 67.h];

5 measure t_-3 = $(6:8) [69.e, 69.e¢, 69.e, 64.e, 64.e, 64.¢e];

; measure t_-4 = $(6:8) [69.h, 0.e, 0.e, 67.e];
measure t_5 = $(6:8) [65.e, 65.e, 65.e¢, 62.e¢, 62.e, 62.e];

s measure t_-6 = $(6:8) [65.e, 65.e, 65.e, 65.e, 65.e, 64.e];
measure t-7 = $(6:8) [62.e, 62.e, 62.e, 62.e, 64.e, 65.e];
measure t_8 = $(6:8) [67.e, 67.e, 67.e, 67.h];
phrase phl = $(HARP) [t_-1, t-2, t3, t-4, t-5, t_-6, t.7, t-8];

; phrase ph2 = $(HARP) [t-2, t-3, t-4, t5, t-6, t-7, t_-8];

5 song sl = $(60) [phl];

(print (), play())
int offset = 0;
while (offset < 30)
{
offset = offset + 15;
(print (), play(), print(), play()) [”Original song:”, sl, 7
Transposed song”, $transpose_song(sl, offset)];
while (offset < 60)
{

offset = offset + 15;
(print (), play (), print(), play()) [”Piano:”, $(PIANO) [t_-1, t_2,
t-3, t-4, t5, t.6, t_7, t.8], "Harp:”, ph2];

funk song song transpose_song_w (song s, int n, int counter, int j,
phrase k, song g)

{
j = $length_song(s);
counter = 0;
g = $evaluate_song(s);

while (counter < j)

{

k = s&counter;
g&counter = $transpose_phrase(k, n);
counter = counter + 1;

}

53 return g;

s funk song song transpose_song(song s, int n)

60

90
91
92
93
94
95
96
97
98
99

00

return $transpose_song_w (s, n, 0, 0, $3() [$() [44.q]], $$%() [$$
O [80 [44.q9]]]);

funk phrase phrase transpose_phrase_w (phrase p, int n, int counter,
int j, measure k, phrase h){
j = $length_phrase(p);
counter = 0;
h = S$evaluate_phrase(p);

while (counter < j)

k = p&counter;
h&counter = $transpose_measure(k, n);
counter = counter + 1;

}

return h;

}

funk phrase phrase transpose_phrase(phrase p, int n)

{

return $transpose_phrase-w(p, n, 0, 0, $() [44.q], $$() [$() [44.
h]);

funk measure measure transpose_measure_w (measure m, int n, int
counter, int j, note k, measure 1)

j = $length_measure (m) ;
counter = 0;
1 = Sevaluate_measure (m);

while (counter < j)

k = 1l&counter;
l&counter = k + n;
counter = counter + 1;

}

return 1;

}

funk measure measure transpose_measure (measure m, int n)

return $transpose_measure_w(m, n, 0, 0, 44.q, $() [55.h]);
}
Listing 4: script that implements transpose methods for all musical objects and
uses it to play 99 bottles of beer transposed in different ways

/* Reptilia.marm x/

measure a_1 = $(4:4) [47.e, 4T7.e, 4T7.e, 47.e, 47.e, 47.e, 4T.e, 4T.

measi]r; a2 = $(4:4) [47.e, 4T.e, 4T.e, 47.e, 47.e, 4T.e, 4T7.e, 4AT7.

mease;]rie a3 = $(4:4) [52.e, 52.e, 52.e, 52.e, 52.e, 52.e, 52.e, 52.

measeu]rja a_4
el;

$(4:4) [52.e, 52.e, 52.e, 52.e, 52.e, 52.e, 52.e, 52.

61

© w =

10

62

measure r_1 = $(4:4) [0.e, 0.e, 0.e, 0.e, 0.e, 0.e, 0.e, O0.e];
measure b_1 = $(4:4) [50.e, 50.e, 50.e, 50.e, 50.e, 50.e, 50.e,
el;
measure b_2 = $(4:4) [50.e, 50.e, 50.e, 50.e, 50.e, 50.e, 50.e,
el;
measure b_3 = $(4:4) [55.e, 55.e, 55.e, 55.e, 55.e, 55.e, 55.e,
el;
3 measure b_4 = $(4:4) [55.e, 55.e, 55.e, 55.e, 55.e, 55.e, bH5.¢e,
el;
measure r_2 = $(4:4) [0.e, 0.e, 0.e, 0.e, 0.e, 0.e, 0.e, O.e];
measure c-1 = $(4:4) [62.e, 62.e, O.e, 62.e, 59.e, 0.e, 57.e, O.
measure c-2 = $(4:4) [62.e, 62.e, O.e, 62.e, 59.e, 0.e, 57.e, O.
measure c-3 = $(4:4) [56.e, 56.e, 0O.e, 56.e, 59.e, 0.e, 62.e, O.
measure c_-4 = $(4:4) [56.e, 56.e, 0O.e, 56.e, 59.e¢, 0.e, 62.e, O.
measure r_3 = $(4:4) [0.e, 0.e, 0.e, 0.e, 0.e, 0.e, 0.e, O.e];
phrase ph_01 = $(BASS) [a-1, a-2, a3, a4, r-1, r-1, r.1, r_1,
a_l, a2, a3, a4, r.1, r.1, r.1, r.1 |;
phrase ph_10 = $(BASS) [r-1, r-1, r-1, r.1, a1, a-2, a-3, a-4,
r1, r1, r.1, r.1, a1, a2, a3, a4 |;
phrase ph_02 = $(BASS) [r-2, r-2, r-2, r-2, b1, b2, b3, b4,
r2, r2, r2, r.2, b1, b2, b3, b4 |;
phrase ph_11 = $(PIANO)[c¢-1, ¢-2, ¢c3, ¢4, r.3, r.3, r3, r.3,
c.l, ¢c.2, ¢3, ¢4, r3, r3, r3, r.3 |;
phrase ph_22 = $(PIANO)[r.3, r-3, r3, r-3, c1, ¢c2, ¢c3, c4,
r-3, r-3, r-3, r-3, c1, c-2, ¢c3, c4];
song reptilia = $(80) [ph-01, ph_10, ph_02, ph_11, ph_22];
(play ()) [reptilia];
Listing 5: script which plays Reptilia by the Strokes
/* Script which plays a remix of Clocks by Coldplay x/
measure c-1 = $(4:4) [63.e, 70.e, 66.e, 63.e, 70.e, 66.e, 63.e,
el;
measure c-2 = $(4:4) [62.e, 70.e, 65.e, 62.e, 70.e, 65.e, 62.e,
el;
measure c¢-3 = $(4:4) [62.e, 70.e, 65.e¢, 62.¢e, 70.e, 65.e, 62.e,
el;
measure ¢4 = $(4:4) [60.e, 69.e, 65.¢, 60.e, 69.e, 65.e, 60.e,
el;
measure b_1 = $(4:4) [48.e, 48.e, 48.e, 48.e, 48.e, 48.e, 48.e,
el;
measure b_2 = $(4:4) [67.e, 67.e, 67.e, 67.e, 67.e, 67.e, 67.e,
el;
measure t_1 = $(4:4) [63.h, 70.h];
measure t_2 = $(4:4) [62.h, 70.h];
measure t_-3 = $(4:4) [60.h, 69.h];
measure s_1 = $(4:4) [63.w];

50.

50.

55.

55.

70.

70.

70.

69.

48.

67.

0 measure s_2
measure s_3

$(4:4) [62.w];
$(4:4) 0.w];

measure w_1 $(4:4) [60.s, 60.s, 60.s, 60.s, 60.s, 60.s, 60.s, 60.
s, 60.q, 60.q];

5 measure rest_1 = $(4:4) [0.w];

s phrase ph_1.0 = $(PIANO) [.1, ¢c-2, ¢3, c-4, rest_-1, rest_1,
rest_-1, rest_.1, c.1, ¢c.2, c.3, c.4, rest_1, rest_1, rest_1,
rest_1 |;

20 phrase ph_2_0 = $(BASS) [b.1, b2, b1, b_2, rest_1, rest_1,
rest_-1, rest_1, b_1, b2, b_1, b2, rest_1, rest_1, rest_1,
rest-1 |;

30 phrase ph_3.0 = $(TIMPANI) [t.1, t-2, t-2, t.3, rest_1, rest_1,
rest_1, rest_1, t_-1, t-2, t-2, t_-3, rest_-1, rest_1, rest_1,
rest_1 J;

31 phrase ph_-4.0 = $(TENORSAX)[s-1, s-2, s_-2, s_-3, rest_-1, rest_1,
rest_1, rest_.1, s_.1, s_.2, s.2, s_.3, rest_1, rest_1, rest_1,
rest_1 |;

32 phrase ph_5.0 = $(PIPES) [w1, wol, wol, wol, rest-1, rest-1,
rest_1, rest-1, w_1, w1, w1, w_1, rest_1, rest_-1, rest_1,
rest-1 |;

33

32 phrase ph_-1.1 = $(PIANO) [rest-1, rest-1, rest_-1, rest-1, c_-1,
c.2, c.3, c4, rest_1, rest_1, rest_1, rest_1, c-1, c.2, c_3,
c4d];

35 phrase ph_2_1

= $(BASS) [rest.1, rest_1, rest_1, rest_1, b_1,

b2, b_1, b2, rest_1, rest_1, rest_-1, rest_-1, b_1, b2, b_1,
b2 |;

36 phrase ph_3_1

= $(TIMPANI) [rest_1, rest_1, rest_1, rest_1, t_1,
t2, t.2, t.3,

rest_1, rest_1, rest_1, rest_1, t_1, t_-2, t_2,

t-3 ;
37 phrase ph_5.1 = $(PIPES) [rest-1, rest-1, rest_-1, rest_-1, w.1,
w_l, w1, w1, rest_1, rest_1, rest_1, rest_1, w1, w.1, w_1,

wl];

38

30 song clocks = $(80) [ph-1.0, ph_-2.0, ph-3.0, ph_4.0, ph 5.0, ph_1_1
, ph-2_1, ph.3_.1, ph_5_.1 |;

40

i (play ()) [clocks];
Listing 6: script which plays Clocks

63

