
Gridworld: Final Project Documentation

Andrew Phan, Kevin Weng, Loren Weng, Zikai Lin
Uni: ap3243, kw2538, lw2504, zl2442

December 23, 2015

Professor Edwards
PLT

Columbia University

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Project Overview . 4
1.3 Gridworld’s Focus . 5
1.4 Language Advantages . 5

2 Language Tutorial 5
2.1 Pre-requisites . 5
2.2 Using Gridworld . 6

3 Language Manual 7
3.1 Lexical Conventions . 7

3.1.1 Tokens . 7
3.1.1.1 Keywords 7
3.1.1.2 Identifiers 7

3.1.2 Whitespaces . 8
3.1.3 Comments . 8

3.2 Types/Meaning of Identifiers 9
3.2.1 Primitive Types 9

3.3 Expressions and Operators 9
3.3.1 Primary Expressions 9
3.3.2 Unary Operators 9

3.3.2.1 Logical Negation 9
3.3.3 Function Call . 10
3.3.4 Multiplicative Operators 10
3.3.5 Additive Operators 10
3.3.6 Relational Operators 11
3.3.7 Equality Operators 11
3.3.8 Boolean Operators 12
3.3.9 Assignment Operators 12

3.4 Declarations . 13
3.4.1 Type Specifier . 13
3.4.2 Variable Declaration 13
3.4.3 Node Declaration 13
3.4.4 Function Declaration 13

1

3.5 Statements . 14
3.5.1 Expression Statement 14
3.5.2 Conditional Statement 14
3.5.3 Loop Statement 14
3.5.4 Return Statement 14
3.5.5 Built-in Function Statement 14

3.6 Built-in Functions . 15
3.6.1 print . 15
3.6.2 readInt() . 15
3.6.3 readStr() . 15
3.6.4 list() . 16
3.6.5 choose . 16
3.6.6 goto . 16
3.6.7 roll . 17

3.7 Language Scope . 18
3.7.1 Global Scope . 18
3.7.2 Scope within a Function/Node 18

3.8 Sample Game Code . 20
3.8.1 Pokeyman Sample Game Code 20
3.8.2 Small Test Game 26

4 Project Plan 28
4.1 Stage of Prototype Development 28
4.2 Style Guide . 28
4.3 Project Timeline . 29
4.4 Roles and Responsibilities 30

4.4.1 Roles . 30
4.4.2 Responsibilities . 30

4.5 Software Development Environment 31
4.6 Project Log . 32

5 Architectural Design 33
5.1 The Components of our Translator 33
5.2 Interfaces between Components 33
5.3 Component Implementation/Responsibilities 34

2

6 Testing Plan 35
6.1 Source Language Programs and Target Language Program . 35
6.2 Test Suites Used . 36

6.2.1 Token and Logic 36
6.2.2 Game . 36

6.3 Test Cases and Why we chose them 37
6.4 Type of Automation used in Testing 37

7 Conclusion 38
7.1 Lessons Learned . 38

7.1.1 Andrew Phan . 38
7.1.2 Kevin Weng . 39
7.1.3 Loren Weng . 40
7.1.4 Zikai Lin . 40

7.2 Advice for Future Teams 41

Appendix 41

3

1 Introduction

There are many people who play games that also want to start getting into
game development. Little do many know that playing a game and developing
a game are two completely different things. Making a game involves many
game related functions, actions, and rules to keep track of, which not only
removes the fun out of creating a game but may also scare the user away
from creating a game altogether. The Gridworld language streamlines the
game creation experience by offering simple tools to create a node-driven
based game. Our goal is to allow the designer to quickly delve into writing
Gridworld code with ease, and create a modular game based on the content
creator’s own storyline, plot, and their own integrated functions.

1.1 Motivation

Since none of us really know how to develop any games, we thought it
would be a good idea to make a language that would not only teach us about
game design but also let you develop games easily. Our target users are for
inexperienced developers, who have little to no experience in programming
but still want to make a functional game. For this reason, our language has to
be simple. We came up with a node-based language, which does not do any
type-checking at compile time. With a node-based implementation, we have
nodes that may represent for example a story or an event, which can lead
to other nodes. Many games, movies or stories have a linear representation
of how plots are developed through time. There is usually a beginning,
middle and end, and by using nodes, we think novice programmers can easily
understand this concept.

1.2 Project Overview

Gridworld is a simple language used for RPG game design. It gives the
node function that can help the user easily develope their own game. Node
is something that looks like the function but much easier to understand than
the function because it has no argument, function type or return values.
Node just look like a small part of the story,so users just need to write many
nodes and combine them as an open-end story with setting some choices.
The story goes on when the player jumps from one node to another. Also,

4

nodes can be reuse so there is no need for the user to write the same story
again in different storyline.

1.3 Gridworld’s Focus

• Simplifies game development, requiring little, if any, programming ex-
perience.

• Allows the user to design a game world based on their own rules, needs
and specifications.

• Offers useful game-related tools and functions for content creator.

1.4 Language Advantages

• Rapid object/class declarations.

• Easy to add and modify attributes.

• Allows for the randomization of objects in the game world.

• Node-based game storyline developed by user via setting choices.

2 Language Tutorial

2.1 Pre-requisites

• Python: required for translation.

• Ocaml/Opam: required for compiling compiler.

• Unix variant/Cygwin with gcc: Used with ocamldep to create Makefile.

• tar: Used to extract .tar file.

5

2.2 Using Gridworld

Assuming that you have downloaded the ”gridworld.tar.gz” file to your
user directory, we must untar the file that you just downloaded. First, make
sure that you have changed your directory to using ”cd ˜”. There should
be a ”gridworld.tar.gz” file in your user directory. Finally, type in ”tar xvzf
gridworld.tar.gz” into the terminal.

Now change to the new source directory with ”cd gridworld-src”. Type
in ”make” so that it can create all of the ocaml objects and dependencies.
An executable file named ”gw” should be ready and fully compiled. We have
included an example below on how to compile and run a sample program as
well, including other available options as well.

Listing 1: Running a Sample Game

1 cd ˜
2 ls -la
3 tar xvzf gridworld.tar.gz
4 cd gridworld -src
5 make
6 ./gw <samplegames/textAdventure.gw > output.py

2>&1 # or replace textAdventure with another
name such as pokeySim.gw or
smallTestgame.gw

7 python output.py

Listing 2: Other Options

1 make clean # will remove object files , log files ,
executables etc

2 make test # will start testing individual
components of the compiler

6

3 Language Manual

3.1 Lexical Conventions

3.1.1 Tokens

3.1.1.1 Keywords

Keywords are pre-defined words in the Gridworld compiler. Each keyword
has has their own function. The keywords are reserved in the compiler and
therefore cannot be used as variable names. Below is a table of reserved
keywords in Gridworld:

Keywords
if else
while int
bool str
node print
goto list
choose readint
readstr function
return main
roll

3.1.1.2 Identifiers

An identifier is an element in the Gridworld language that has been given
a name for a particular function, and variables. An identifier begins with a
letter or underscore followed by any alphanumeric characters. Special char-
acters such as punctuation and brackets are not allowed, except for the un-
derscore. Identifiers should give a clear indication of what the label does, if
it is an action then a name should define that action. Finally, it should not
be a keyword.

7

Listing 3:

1 string player1_Name // player1_Name is the
identifier

2 int hitPoints // hitPoints is the identifier
3 int sum // sum is the identifier
4 bool attackPlayer // attackPlayer is the

identifier

3.1.2 Whitespaces

Whitespaces is any character or a series of whitespace characters that are
unused or space between objects. Their purpose is to separate tokens and
format programs. Whitespace characters are usually typed in by using the
return, spacebar or the tab key. Gridworld ignores all whitespaces, as the
language uses the spacing for differentiating tokens. If we look above at code
listing ?? above, int and sum are separated by a whitespace. Unlike Ocaml,
Gridworld does not care about indentations.

3.1.3 Comments

Like most programming languages, Gridworld supports single line and
also multi-line commenting. The language encourages readable, organized
and logical source code. With that in mind, being able to comment source
code not only helps debug Gridworld, but also helps clarify what a func-
tion does, why the creator decided to do something, or to create notes and
reminders on what the next step is in terms of game development.

Symbol Syntax Uses Example

/∗ ∗ / Multi-line comments, nested comments

/∗ This is a multi-line comment,
intended to allow the user to
provide more info on what’s
happening during execution ∗/

8

3.2 Types/Meaning of Identifiers

3.2.1 Primitive Types

The Gridworld languages uses several primitive types in order to describe
the user’s game environment. The primitive types are listed below and may
be used, although not limited to, for example describing a world with hit-
points, weapon damage, name, and dialog of players, monsters and other
objects.

Primitive Type Description Range Example
Int A 32 bit Integer type -2.147.483.648 to 2.147.483.647 int maxLife = 2000;
Bool A Boolean value True (Binary 1) / False (Binary 0) bool playerGodlike = TRUE;
String A sequence of characters Not Applicable String bossName = ”Diablo”

3.3 Expressions and Operators

The precedence of expression operators are indicated by the order of the
following subsections, from highest precedence to the lowest.

3.3.1 Primary Expressions

Identifiers: An identifier refers to a variable or a function.

Constants: A constant can be a number, string, boolean etc. with the
different types defined in lexical conventions.

String literals: String literals are directly translated to strings by the com-
piler.

Parenthesized expressions: The expression is equivalent to the result
without parentheses, but the presence of parentheses indicates the prece-
dence as a primary expression.

3.3.2 Unary Operators

3.3.2.1 Logical Negation

Types used with the logical negation operator are Bool and Int. The
result of the logical negation of a Bool is true if the value of the expression

9

is false, and false if value is true. The result of the logical negation of an Int
is 1 if the value of the expression is 0, and 0 if the value of the expression is
non-zero.
!expression

3.3.3 Function Call

To call a function, it must have been declared and defined previously.
A function call has the form functionName(expression1, expression2,...), fol-
lowing the form defined in its declaration. The result is a value of the type
defined as a return type in the function declaration.

3.3.4 Multiplicative Operators

The multiplicative operators are left associative. Types of both expressions
used with the * operator are Int. The result is the first expression multiplied
by the second.
expression ∗ expression;

Types of both expressions used with the / operator are Int. The result is the
first expression divided by the second, and division by zero is not allowed.
expression / expression;

Types of both expressions used with the % operator are Int. The result
is the remainder from the division of the first expression by the second. Di-
vision by zero is not allowed.
expression % expression;

3.3.5 Additive Operators

The Additive operators are left associative. Types of both expressions used
with the + operator are Int.

The result is the sum of the two expressions.
expression + expression;

10

Types of both expressions used with the - operator are Int. The result is
the first expression minus the second.
expression− expression;

3.3.6 Relational Operators

The relational operators are left associative. The type of the relational op-
erators are Int.

The result is of type Bool and the value is true if the first expression is
less than the second expression, and false otherwise.
expression < expression;

The result is of type Bool and the value is true if the first expression is
greater than the second expression, and false otherwise.
expression > expression;

The result is of type Bool and the value is true if the first expression is
less than or equal to the second expression, and false otherwise.
expression <= expression;

The result is of type Bool and the value is true if the first expression is
greater than or equal to the second expression, and false otherwise.
expression >= expression;

3.3.7 Equality Operators

The equality operators are left associative. Types used with equality opera-
tors are Int, Bool, and String.

The result is type Bool and the value is true if both expressions have the
same value, and false otherwise.
expression == expression

11

Types used with equality operators are Int, Bool, and String. The result
is type Bool and the value is false if both expressions have the same value,
and false otherwise.
expression ! = expression

3.3.8 Boolean Operators

The boolean operators are left associative. Types used with the Boolean
operators are Bool.

The result is type Bool and the value is true if both expressions are true
and false otherwise.
expression & expression

The result is type Bool and the value is true if at least one of the expressions
is true and false otherwise.
expression | expression

3.3.9 Assignment Operators

The assignment operators are right associative. The types used with the
assignment operators are Int, Bool, String. Assignment stores the value of
the second expression in the first expression, both expressions must be of the
same type.
expression = expression

12

3.4 Declarations

3.4.1 Type Specifier

The type specifiers are int, bool, and string.

3.4.2 Variable Declaration

The variables can be initialized with a constant, literal value, or an ex-
pression as long as the type of the value and the type of the variable are the
same. Variables are declared as:
typeSpecifier varName

3.4.3 Node Declaration

Nodes consist of a node header and a node body. The header takes the
form of: node nodeName{}

In the example above, the node body would be enclosed in the brackets
after the node header.

3.4.4 Function Declaration

Functions consist of a function header. The header takes the form of:
typeSpecifier function fname (params)

13

3.5 Statements

3.5.1 Expression Statement

Expression statements are the most common form of statement, which
are simply of the form:
expression;

3.5.2 Conditional Statement

There are two basic forms of conditional statements:

1. if (expression) statement

2. if (expression) statement else statement

The expressions must be of type Bool and if the value is true, the state-
ment directly after it will be executed, and once one is executed, any expres-
sions afterwards will not be considered.

3.5.3 Loop Statement

The while statement has the form:
while (expression) statement

The statement is executed repeatedly as long as the value of the expression
remains true. This expression is checked before each execution.

3.5.4 Return Statement

A function returns to its caller by the return statement. If an expression
follows return, the value is given to the caller of the function and must be of
the type specified by the function.
return expression;

3.5.5 Built-in Function Statement

All the built-in functions are parts of the statements, to call the built-in
functions like the functions you defined.
print(”Hello World”);

14

3.6 Built-in Functions

3.6.1 print

The print function outputs text to either stdout or a file. The first param-
eter, being the output text, must be a string. The second parameter, also a
string, specifies the filepath of output. The absence of the second parameter
causes print to default to stdout.

Listing 4: Print

1 // print example
2 print("Hello gridworld!");

3.6.2 readInt()

The readInt function stores the user integer input into the specified vari-
able.

Listing 5: readInt()

1 // readInt () example
2 health = "100";
3 readInt(health);

3.6.3 readStr()

The readStr function stores the user String input into the specified vari-
able.

Listing 6: readstr()

1 // readStr () example
2 defaultNPC_text = "Hello Traveler!"
3 readStr(defaultNPC_text);

15

3.6.4 list()

The list function takes any number of string inputs and prints them in a
numbered list

Listing 7: List

1 // list() example
2 list("go up","go down","go home")

3.6.5 choose

The choose function takes any number of nodes as input and prompts the
user for an integer input that moves them to said node.

Listing 8: Choose

1 // choose example
2 list("go up","go down","go home")
3 choose(sky ,underground ,home)

3.6.6 goto

The goto function takes a single node as an input and moves the user to
said node.

Listing 9: Goto

1 // goto example
2 print("you fall into a hole")
3 goto(hole)

16

3.6.7 roll

Roll generates a random integer ranging from 1 to 6. This simulates the
rolling of a 6-sided die.

Listing 10: roll

1 // roll example
2 int dice = 0;
3 roll(dice)

17

3.7 Language Scope

3.7.1 Global Scope

All variables defined at the top-level of a program will be by default part
of the global scope, and be visible, modifiable to the entire program. Be
careful, to define the variables at the beginning of the program. If a variable
is defined at the middle of the program, code written before this variable
declaration can not access to this variable.

Listing 11: Global Scope

1 int sum;
2 int moverange;
3 bool canMove (int a, int b){
4 sum = a + b;//able to use varibale sum
5 abs_distance = abs(a - b);// unable to use

variable abs_distance
6 if (abs_distance <= moverange) return true;
7 else return false;
8 }
9 int abs_distance

3.7.2 Scope within a Function/Node

Variables defined within the function and the mode are the local variables
to that function, and it will be expired automatically when the function ends.
Codes outside that function can not access or modify those variables.

Listing 12: Scope with a Function

1 int function sum (int a, int b){
2 return a+b;
3 }
4 a = a - b;// unable to use a, b outside the

function sum()

18

Listing 13: Scope with a Node

1 node sum (int a, int b){
2 c= a + b;
3 return c;
4 }
5 c = 10;// unable to use c outside the node sum()

19

3.8 Sample Game Code

3.8.1 Pokeyman Sample Game Code

Listing 14: Pokeyman Sample Game

1 object player
2 object pokeyman
3 #can we use print and println?
4 node start{
5 print ("Welcome to Pokeymans , the premium

creature slaying game in the world!")
6 trainer = new player ()
7 print ("What’s your name?")
8 trainer.name = read();
9 trainer.gold = 100;

10 trainer.balls = 0;
11 print ("Are you a boy or a girl?")
12 list("Boy","Girl")
13 choice = read();
14 if(choice ==1){
15 trainer.gender = "boy"
16 }
17 elif(choice ==2){
18 trainer.gender = "girl"
19 }
20 else{
21 trainer.gender = "undefined"
22 }
23 print("Choose your starter pokeyman!")
24 list("Charitard","Blakbois","Penusaur")
25 choice = read();
26 if(choice ==1){
27 tempPokey = new pokeyman;
28 tempPokey.name = "Charitard"
29 tempPokey.lvl = 1
30 addSkills(tempPokey ,"Hot Breath","Spicy

Breath")
31 trainer.starter = tempPokey
32 }

20

Listing 15: Pokeyman Sample Game

34 elif(choice ==2){
35 tempPokey = new pokeyman;
36 tempPokey.name = "Blakbois"
37 tempPokey.lvl = 1
38 addSkills(tempPokey ,"Splash","Waterboard"

)
39 trainer.starter = tempPokey
40 }
41 elif(choice ==3){
42 tempPokey = new pokeyman;
43 tempPokey.name = "Penusaur"
44 tempPokey.lvl = 1
45 addSkills(tempPokey ,"Thorn Whip","Throw

Leaf")
46 trainer.starter = tempPokey
47 }
48 else{
49 tempPokey = new pokeyman;
50 tempPokey.name = "Potatochu"
51 tempPokey.lvl = 1
52 addSkills(tempPokey ,"Hurp","Derp")
53 trainer.starter = tempPokey
54 }
55 print("Time to start your adventure !:")
56 goto(mainMenu)
57 }
58 node mainMenu{
59 while (1){}
60 print ("What would you like to do?")
61 list("Battle!","Shop!","Procrastinate!")
62 choose(initBattle ,shop ,procrastinate)
63 }
64 }

21

Listing 16: Pokeyman Sample Game

65 node procrastinate{
66 #IMPORTANT: FIGURE OUT FORMATTING FOR FOR

LOOPS
67 sum = 0
68 for(i from 1 to 2,1){
69 sum = sum + roll (6)
70 }
71 print("you roll 2 dice and you get a total of

")
72 print(sum)
73 goto(mainMenu)
74 }
75 node shop{
76 print ("you are in the store")
77 print ("you have :")
78 print(trainer.gold)
79 list("buy a sandwich (20g)","Buy a pokeyball

(10g)","Leave")
80 choose(sandwich ,buyBall ,leaveShop)
81 }
82 node sandwich{
83 rand = roll (3)
84 if(trainer.gold >=20){
85 trainer.gold = trainer.gold -20;
86 if(rand ==0){
87 print("you ate a molded sandwich ...

Disgusting! (HP -10)"
88 trainer.hp = trainer.hp - 10
89 }
90 else{
91 print("you ate an overpriced sandwich

... The inflation these days ... (HP
+10)"

92 trainer.hp = trainer.hp + 10
93 }
94 }
95 else{
96 print("you can’t afford it..."
97 }
98 goto(shop)
99 }

22

Listing 17: Pokeyman Sample Game

100

101 node buyBall{
102 if(trainer.gold >=10){
103 print ("you buy a designer pokeyball(TM)"

)
104 trainer.gold -=10;
105 trainer.balls = trainer.balls+1
106 }
107 else{
108 print("you can’t afford it..."
109 }
110 goto(shop)
111 }
112 node leaveShop{
113 goto(mainMenu)
114 }
115 node initBattle{
116 enemy = new pokeyman ()
117 enemy.name = "ratatatatata"
118 enemy.lvl = trainer.starter.lvl
119 addSkills(enemy ,"bite","rabies")
120 goto(fight)
121 }
122 node fight{
123 print("you are fighting a")
124 print(enemy.name)
125 print("what will you do?")
126 list(trainer.starter.skill[0], trainer.starter

.skill[1],"use pokeyball","flee")
127 choose(useSkill(trainer.starter.skill[0],

enemy),useSkill(trainer.starter.skill[1],
enemy),useBall ,flee)

128 useSkill(enemy.skill[0], trainer)
129 goto(processBattle)
130 }

23

Listing 18: Pokeyman Sample Game

131

132 node processBattle{
133 if (enemy.hp <=0){
134 goto(victory)
135 }
136 elif (trainer.hp <=0){
137 goto(defeat)
138 }
139 else{
140 goto(fight)
141 }
142 }
143 node useSkill(skillName ,target){
144 print(target.name)
145 print(" takes ")
146 if(skillName = "Hot Breath"){
147 print("10");
148 target.hp -=10
149 }
150 if(skillName = "Spicy Breath"){
151 target.hp -=10
152 }
153 if(skillName = "bite"){
154 target.hp -=10
155 }
156 print(" damage")
157 }

24

Listing 19: Pokeyman Sample Game

158 node useBall{
159 if(trainer.balls >=1){
160 print("you throw the ball as hard as you

can and deal critical damage to the
enemy")

161 trainer.balls = trainer.balls -1
162 enemy.hp = 0
163 }
164 else{
165 print("you don’t have any balls you dunce

")
166 }
167 goto(fight)
168 }
169 node flee{
170 print("only cowards flee , you lose the game")
171 goto(end)
172 }
173 node victory{
174 player.hp = player.hp + 30
175 print("VICTORY")
176 gold = roll (100);
177 player.gold = player.gold + gold
178 goto(mainMenu)
179 }
180 node defeat{
181 print("You have been defeated. That was a

shameful display. Go home.")
182 goto(end)
183 }
184 main{
185 goto(start)
186 }

25

3.8.2 Small Test Game

Listing 20: Small Test Game

1 int gold = 0;
2 string name = "";
3 main{
4 goto(start);
5 }
6 node start{
7 print ("welcome to the game!");
8 print ("enter your name:");
9 readName = "";

10 readStr(readName);
11 name = readName;
12 print("\ngreetings");
13 print(readName);
14 print("\nHow much gold do you want?");
15 readInt(gold);
16 list("go to the store","go home");
17 choose(store ,lose);
18 }
19 node store{
20 print ("you are in the store");
21 print ("you have: ");
22 print(gold);
23 print("gold");
24 list("buy a sandwich (20g)","win (0g)");
25 choose(sandwich ,win);
26 }
27

28 node sandwich{
29 if (gold >20){
30 print("you bought a sandwich");
31 gold = gold -20;
32 }
33 else{
34 print("you can’t afford a sandwich ...");
35 }
36 goto(store);
37 }

26

Listing 21: Small Test Game

39 node win{
40 print("you win!\ nCongratulations!");
41 print(name);
42 }
43 node lose{
44 print ("Who goes home as a first choice? You

lose");
45 }

27

4 Project Plan

4.1 Stage of Prototype Development

A large scale project needs many steps. Planning, specification, develop-
ment and testing are the 4 steps to complete our project.

During the planning, we met and talked about topics about the previous
projects and list them as choices. Then we discussed about how we were
familiar with these topics, and whether we had enthusiasm to work on this
topic in a whole semester. When it came to the game topic, we both had
interests to work a project about it, and that’s the process we decided the
topic. After that we decide the time to meet every week if we can.

Once we decided our project topic, we needed to specified it for the fu-
ture working. We had another meeting to talk about the game feature in
our project. We decided to do a board game so we called our project Grid-
world(even now it is no longer a board game maker). We designed the board
game maker with the board design, charter design and object design. Com-
bining these three features and some built-in functions, such as save, load,
undo and so on, it should be an excellent board game maker.

Learning Ocaml was difficult and took some time to learn. Having the
scanner, parser, AST, code generator and other files took longer to develop
than anticipated. We began our language from the ”Hello World”, which is
the basic function for a language. After that, we add the calculation, variable
assignment and access, judgement and loop statements into the language to
implement the gcd() function. With the basic components of a language
implemented, we tried to add some game features into the language to fulfill
its functions and check if the new function worked well. By adding new
features one by one, we finally get our language.

Testing is needed during the coding stage or optimization stage after
the project is done. We referenced the regression test in the microc, and
developed the regression test file for our own. By looking at the LRM, we
added enough tests for each tokens, functions and logical operations to make
sure our language was robust during the development stage.

4.2 Style Guide

We used the following rules when writing our code to ensure maximum
readability:

28

• Each line of code should remain under 100 characters
• Write utility functions for commonly reused code
• Use camelcase function names and lowercase type names

4.3 Project Timeline

Time Event
Sept 8 - Sept 15 Project team formed.
Sept 16 - Sept 30 Topic selected and proposal submitted.
Oct 16 Meet with TA and receive proposal feedback.
Oct 18 - Oct 26 LRM done and submitted, parser, scanner, AST started.
Oct 27 - Nov 4 Meet with TA, LRM feedback returned.
Nov 5 - Nov 15 Parser, Scanner, AST, Pretty printer done with basic features.
Nov 16 Hello World and gcd demo to professor. Linear Test Reg. incomplete.
Nov 17 Meeting with TA. Demo hello world and ask why test does not work.
Nov 20 Meeting with TA. Talk about our game and what to do.
Nov 22 - Nov 30 More features added into the language, test script started
Dec 2 Meeting with TA
Dec 3 - Dec 10 Regression test script and some test cases done
Dec 10 - Dec 13 Worked on SAST and Semantic analyzer
Dec 14 - Dec 17 More tests cases added and optimized the language
Dec 17 - Dec 19 Worked on the Final Report
Dec 19 - Dec 20 Prepared for presentation to professor
Dec 21 Presentation and final demo to professor
Dec 22 Proofread then Submit Final report and Code

29

4.4 Roles and Responsibilities

4.4.1 Roles

Student Roles
Andrew Phan Project Manager/Latex Document Organizer/Testing
Loren Weng Language Developer
Kevin Weng Systems Guru
Zikai Lin Testing and Validation

4.4.2 Responsibilities

Student Responsibilities
Andrew Phan Email TA/Prof, Doc. submission, Overleaf, Trello, Github, UML diagram

Meetings and Deadlines, GoogleDocs, Soft. Deployment, Powerpoint
Final Document, Proofreading, Makefile, Testing, RegTest script, RefManual

Loren Weng Game Features and Design, AST, Parser, Compiler writing.
Kevin Weng Language structure design. AST, SAST, Parser, Scanner, Analyzer writing.
Zikai Lin Test Cases, Regression Test Script, Powerpoint.

Report what works and what does not. Document writing.

As a group, we have noticed that each member has different strengths and
weaknesses. We have therefore assigned each individual in the group with
their own responsibilities. As a collective group, we did not strictly impose
limitations. If a team member does not have any work in the pipeline then
they will be assigned to work on something else. Each individual team mem-
ber has more or less played an integral part in every phase of the development
process, meaning that everyone had to work on the latex pdf document and
also delve deep down into ocaml code for testing and validation. If a member
was stuck on a problem, it was common for another member to help and solve
the problem together. We have noticed that peer programming makes pro-
gramming a lot less stressful and that GitHub is a great middleman, which
allows everyone to share and improve their code.

30

4.5 Software Development Environment

Each member of the group used a variety of tools. The only manda-
tory software was Github and Ocaml. Half of our group used the Windows
operating system but instead of installing Cygwin, it seemed easier to in-
stall VMware Workstation 12 and just virtualize a linux distribution such
as Ubuntu. From there, we could setup Github to track and manage source
code changes, source code using sublime text and compiling with ocaml,
without having to worry about whitespaces in directory structures or other
incompatibility issues between operating systems.

Testing was done with the linear regression tester, which we had to rewrite
from the microc testall.sh file provided by Professor Edwards. We also used
menhir to see if there were any problems with parser.mly, which proved
to be quite useful because it generated the automaton and displayed the
shift/reduce conflicts if there were any. This was installed via the ocaml
package manager called Opam.

In terms of organization and work management, we used a mixture of
Google Docs, Overleaf, and Trello. Initially, Google Docs was used to or-
ganize everything and also allow us all to simultaneously edit one docu-
ment, with all of the pertinent information and deadlines. But this was later
changed to accomodate the two programs Overleaf and Trello. Overleaf does
the same thing as Google Docs, however, it does it better when it comes
to .pdf files mostly because it supports the popular Latex language. It was
more convenient for everyone to edit the latex file at the same time instead
of having just one person recompiling the .tex file each time there is a change
to the entire document. Trello was used to share deadlines, important links,
to-do lists and attachments. It would send notifications to each member’s
email when there are any changes to the project board.

31

4.6 Project Log

Figure 1: GitHub Commit Analysis

Github has provided us with an idea of how many commits we have made
over the course of our project. We have also included our ”git log”, which
shows the date, time and comments made during our commits. The log
can be found under the Appendix section or more specifically in Gridworld
Project Log. Please keep in mind that some users are not represented as
accurately as some of my team members decided to use git for cloning the
repository only.

32

5 Architectural Design

5.1 The Components of our Translator

Figure 2: UML Block diagram of Major Translator Components

5.2 Interfaces between Components

The gridworld compiler has the following components:
front-end : scanner, parser, AST.
back-end : SAST, analyzer, and compiler

33

The block diagram above shows a brief overview of each component, and
in this part, their interfaces between each other are described more clearly.

The scanner of a compiler, as its name shows, will scan through the
stream of characters from the source code and change them to the recogniz-
able tokens for the parser. It will recognize the commented parts and the
whitespaces for the program style and remove them. And since our compiler
translates the source code into Python code, the scanner will also recognize
some meaningful spaces for the indent, which is necessary in the Python
code. Finally, other useful characters will be transferred into the tokens.

The parser sequence the tokens from the scanner into an abstract syntax
tree(AST) with the help of the ast.ml. It analyzes the sequence of the tokens
and produces the structure that the Gridworld language has. Here, the parser
will checks the syntax and catch the syntax errors, but it will not check for
type or semantics, which will be done by the semantic analysis part (SAST).

The analyzer will check the type and semantics for every line of code. In
semantically-checked Abstract Syntax Tree (SAST), it gives the exact types
and helps to keep track of the types when the python code generates.

After the semantics check, the compiler is able to generate Python code
by matching the declarations, functions, built-in functions in the main. The
compiler should able to distinguish the functions users defined and the built-
in function, and if users define the same function name as the default one, it
should not able to pass the compiling.

Finally, the Python code is produced and is now ready to be executed.
For one of our sample games, we have saved the user from writing at least
200 lines of code.

5.3 Component Implementation/Responsibilities

Student Components
Andrew Phan Makefile, grid.ml
Loren Weng + Kevin Weng Scanner, parser, AST, SAST, analyzer, compile.ml
Zikai Lin + Andrew Phan Scanner, AST, parser in the beginning.

34

6 Testing Plan

6.1 Source Language Programs and Target Language
Program

Listing 22: example1: Source

1 main{
2 print(5 + 2 + 1);
3 print("hello world");
4 }

Listing 23: example1: Target

1 print 5 + 2 + 1
2 print "hello world"

Listing 24: example2: Source

1 main{
2 int a = 5;
3 if (a <= 5){
4 a = a + 5;
5 print(a);
6 }
7 }

Listing 25: example2: Target

1 a=5
2 if a <= 5:
3 a = a + 5
4 print a

35

Listing 26: example3: Source

1 main{
2 int a = 0;
3 while(a < 5){
4 print(a);
5 a = a + 1;
6 }
7 }

Listing 27: example3: Target

1 a=0
2 while (a < 5):
3 print a
4 a = a + 1

6.2 Test Suites Used

6.2.1 Token and Logic

We created the automated tests for the parsing, scanning, and translation
of the AST. All of the tests are chosen based on the tokens in the AST and
provides some basic logical calculations.

6.2.2 Game

We created the game by using our language to determine whether the
game is running as intended. Since we wanted some level of user interaction,
we could not write an automated test script because in our sample games
we prompt the user who plays the game to type in a number. The output is
therefore based on what the user types. For this reason, we decided not to
write an automated test script for these sample games. Instead, we tested it
manually to see if the output is the same as our expectations.

36

6.3 Test Cases and Why we chose them

We tested our language from the following parts: the basic calculations,
the logical operation, variables, functions, and built-in functions. In the
basic calculations, we tested the binary operators one by one, which also
includes the logical operators. Secondly, we tested the precedence of the
these operators and the calculations of different value types. We tested the
assignments, access to the variable, some calculations of the variables and
the scope of the variables. Furthermore, we tested the declarations and calls
of the functions, using different types of arguments. Finally, we tested our
built-in functions and made sure it can be called correctly. We consider all
aspects of our project and gave enough tests(actually we reference the tests
in microc). In the test, we tested each part separately case by case so that
when something failed, we would immediately know what the problem was.

6.4 Type of Automation used in Testing

Testing each part of the project manually is tedious and requires more
work than necessary so we took the professor’s advice to use a linear regres-
sion test, similarly to his microc testall script. Regression tests (having a
shell script to run the small tests automatically, compares the results, and
gives the outcome of whether a component of our compiler is working or
not) help us test our project efficiently, especially after we had made some
changes to our code. Every change in the project may cause some unexpected
changes in the language so we should perform a linear test regression every
time there has been any new changes to our code. Thus a regression test can
quickly check every little component of our compiler to see if anything fails.

Automation test is done by using a shell script (the code is shown after).
In the script, it will run all of the test cases in the ./tests directory and
compare the results executed to the .out file of the same base name. It will
display an ”OK” if the result is the same as the expected output otherwise it
will show ”FAILED” if the result is different and prints the difference in the
.diff file, which deals with the validation part of this process. The developer
can then quickly know what the problem is and can then modify the code
accordingly. The linear regression test is another useful way of debugging
our compiler.

37

7 Conclusion

7.1 Lessons Learned

7.1.1 Andrew Phan

I have learned that it is never a good idea to start late on any project.
This especially goes for programming because something always comes up.
Maybe you don’t have the necessary tools to do the work you set out to do
or because more bugs were introduced after you git pushed something to a
repository. Either way, you have to spend additional time on the logistics of
the entire process. Making decisions and communicating with each other is
extremely difficult and is not something to be taken lightly. I would almost
equate project management to a full-time job that nobody wants to do. It is
a necessary evil, unfortunately. Someone has to do it. I felt bad for having
to remind my team members about deadlines and what they had to do but
on the other hand I needed to get things done because PLT was not my only
commitment.

On top of that, there is quality control, something that not many people
account for until the very end. Proofreading and checking whether or not
something works can only be done when you presumably have something
tangible and presentable. Thus it is necessary to map out everything and
finish things at least on time or before the deadline. Project management
is not just about managing people and the work they have to do but it
encompasses everything that pertains to the project. I also learned the TA
is there to help you and that even if the entire team could not make it, you
should still meet up and talk about the project.

I had my doubts about creating a game language because I do not have
much experience with developing games. I have not seen many languages
that focuses on games either. Also, our group does not entirely consist of
Computer Science majors, which is another reason why I was a little hesitant
on making a language for games. The group as a majority was very noncha-
lant about almost every decision and frankly I would have appreciated some
more enthusiasm. I learned that a project is only as good as the effort you
put into it and that depending on other people is going to be a part of work-
ing at a larger establishment whether you like it or not. Choosing a project
that everyone in the group wants to do is better than doing something just
for the sake of doing it, which is why I think transfer students and those who

38

do not know many computer science majors are at a slight disadvantage.
I learned about Trello in my User Interface Design class this semester. It

seemed to have a linear way of allowing multiple users to track the progress
of a project and I thought it could be of use for this PLT project. The reason
for introducing it was because I could easily distribute links and attachments
to whoever was invited to the Trello board and I could also add deadlines
similar to an online calendar.

Although I have gone over some similar concepts (NFA, DFA) in Com-
puter Science Theory, this class was a lot harder due to the functional pro-
gramming language Ocaml. After spending a little time with it, it is one
of those love hate relationships because you appreciate what it can do but
figuring it out is a long and painful process. I learned how useful it is to
integrate Merlin with vim, menhir to check for shift/reduce errors and also
ocamldebug to step through a program to find out what is wrong with it.

7.1.2 Kevin Weng

There were a number of things that I learned from this project, especially
as my first large programming assignment to be done as a group. There
were difficulties for each person to complete their assigned task as it took
us a while to get the end to end complete compiler working. This meant
that while were theoretically finished with their part, they were unable to
test it as other parts of the code weren’t finished yet. This likely applies to
most programming projects, not just for a compiler and we should probably
have put more emphasis on getting the bare-bones compiler done before
adding more complex parts about the language. However, once this was
done, GitHub allowed for easy version control and for each person to add to
certain parts of the code which made the programming go much smoother.
Another thing I learned was just how important the initial design of the
language was. We made many changes to the design of our language as
we realized that certain parts wouldn’t work very well or we needed more
functions to be implemented; this made writing the code very inefficient,
as often, after a change, entire parts of the code had to be scrapped and
rewritten. Giving more thought and having a more complete idea of the
exact design of our code would likely have made things easier.

39

7.1.3 Loren Weng

What I took away from this project was a deeper understanding of com-
pilers, as was probably the point of the assignment. It’s fine to talk about
how compilers function theoretically and draw an abstract syntax tree, but
having to go knee deep in writing your own definitely is a different task al-
together. Throw in other group members working at the same time and we
have a party. The importance of version control has been imprinted onto me.
The most important thing I’ve learned from this experience is that sometimes
you just have to reduce some of your innate civility to get a group working.
People need to admit when they don’t know or can’t do something, so that
work can be redistributed to people that can do it. I honestly feel that the
group formation process in the class could be improved, as arbitrarily cre-
ating a group out of people that later figure out what they want seems less
productive than people spearheading a project and having other people join
the group.

7.1.4 Zikai Lin

I regret having chosen this class without any prior computer science
knowledge. I didn’t know what a compiler was before this lecture and it
took me a lot of time to understand this concept. But, understanding one
thing is different from working that thing out by yourself, the latter is much
more harder. Although we decided our project’s content quickly, we wasted
many hours on our project due to the fact that we scheduled to meet weekly
but plans fell through due to group members, who did not have the time
to meetup until a couple of days before a deadline. Meeting regularly is
important especially for a project of this size.

The complaints stop here. Now, let me talk about some positive parts of
this project. To work as a group, I learn many platforms. For example, use
Overleafs to write the proposal and LRM together, use Github to work on
the same code, use Trello to manager our work schedule. Both of these are
very helpful and can be used in the future. Also, applying the knowledge to
something more hands on is important.

We learned a lot in the lectures and from doing the homework assign-
ments. However, when I actually worked on the program, I find that I maybe
did not learn as much as I wanted before starting this project. When shift/re-
duce conflicts were found in the code, I fixed it and learned much more about

40

these concepts compared to the homework assignments. Also, I was responsi-
ble for the testing part of our project and learned a lot when nothing worked.
Before this project, I have no idea about the testing phase, or I just think the
test is running something, that was it. But I was wrong, the regression test
actually gave me many ideas about testing the project. Using shell script to
do the automatically tests, to compare the running result and the excepted
results and gives the ”OK” or ”FAILED”, it is efficient to do the test in this
way. In this way, we can easily check our project every time we add new
features in it. In total, I learned a lot during working this project and it
gives me more preparation to do a harder project.

7.2 Advice for Future Teams

Always start early even if you can’t think of an idea or seem to get
anywhere with the project. Just attempt to map everything out. As long as
you start early when there is very little coursework, then you will be okay.
As you have more people in your group, there will be a higher chance of
conflicting schedule and deadlines, which means getting this out of the way
(similar to FIFO) means you can finish your deadlines for other classes or
even socialize. Socializing is actually important because you want to get to
know form a group that functions well together and by doing so you should
be able to know what each individual’s strength and weaknesses are. So get
to know your group early!

It also helps to have more people in the group so that someone can take
over for another person in case they are busy or not sure about how to imple-
ment something. It is near impossible to just have one person designated to a
particular job. Everyone has to contribute to documentation, programming,
and testing. Giving people a designated job just means they do more of one
thing than something else. Due to the limited time constraints, everyone
basically needs to contribute to the project in almost every possible way.

The TA and professor is there to help you. Rather than being stuck for
days on a particular problem, they might be able to share some insight or
guide your project towards the correct direction. Don’t be afraid to use them.
Contacting them can only make your project better.

41

Appendix

Gridworld Source Code

Listing 28: scanner.mll

1 { open Parser } (* Get the token types *)
2 rule token = parse
3 (* Whitespace *)
4 [’ ’ ’\t’ ’\r’ ’\n’] { token lexbuf }
5

6 (* Comments *)
7 | "/*" { comment lexbuf }
8

9 (* Basic tokens *)
10 (* Parenthesis *)
11 | ’(’ { LPAREN } | ’)’ { RPAREN }
12 (* Braces *)
13 | ’{’ { LBRACE } | ’}’ { RBRACE }
14 (* Brackets *)
15 | ’[’ { LBRACKET } | ’]’ { RBRACKET }
16

17 | ’;’ { SEMI } | ’:’ { COLON }
18 | ’,’ { COMMA } | ’=’ { ASSIGN }
19

20 (* Arithmetic operators *)
21 | ’+’ { PLUS } | ’-’ { MINUS }
22 | ’*’ { TIMES } | ’/’ { DIVIDE }
23 | ’%’ { MOD }
24

25 (* Logic operators *)
26 | "==" { EQ } | "!=" { NEQ }
27 | ’<’ { LT } | "<=" { LEQ }
28 | ’>’ { GT } | ">=" { GEQ }
29 | ’!’ {NOT}
30 | ’&’ {AND} | ’|’ {OR}

42

Listing 29: scanner.mll

31 (* Keywords *)
32 | "if" { IF } | "else" { ELSE }
33 | "for" { FOR } | "elif" { ELIF }
34 | "function" {FUNCTION} | "return" { RETURN }
35 | "break" { BREAK } | "continue" { CONTINUE }
36 | "while" { WHILE } | "node" {NODE}
37 | "main" {MAIN}
38

39 (* Type *)
40 | "int" { INT }
41 | "bool" { BOOL }
42 | "char" { CHAR }
43 | "string" { STRING }
44

45 (* Built -in Func *)
46 | "print" {PRINT}
47 | "list" {LIST}
48 | "goto" {GOTO}
49 | "choose" {CHOOSE}
50 | "readInt" {READINT}
51 | "readStr" {READSTR}
52 | "roll" {ROLL}
53 | eof { EOF } (* End of file *)
54

55 (* Integers *)
56 | [’0’ - ’9’]+ as lxm { INT_LIT(int_of_string lxm

) }
57

58 (* Bool *)
59 | ("true"|"false") as boolean {BOOL_LIT(

bool_of_string boolean)}
60

61 (* String *)
62 | ’"’([’\000’ - ’\033’ ’\035’ - ’\127’]* as str)’

"’ {STR_LIT(str)}

43

Listing 30: scanner.mll

64 (* ID *)
65 | [’a’ - ’z’ ’A’ - ’Z’][’a’ - ’z’ ’A’ - ’Z’ ’0’ -

’9’ ’_’]* as lxm { ID(lxm) }
66 | _ as char { raise (Failure("illegal character "

ˆ Char.escaped char)) }
67

68 and comment = parse
69 "*/" { token lexbuf } (* End of comment *)
70 | _ { comment lexbuf } (* Eat everything else *)

Listing 31: ast.ml

1 type op =
2 Add | Sub | Mult | Div | Equal | Neq | Less

| Leq | Greater | Geq | Mod | And | Or |
Not

3

4 type scope = Local | Global
5

6 type expr =
7 Int_Lit of int
8 | Bool_Lit of bool
9 | String_Lit of string

10 | Id of string
11 | Uniop of op * expr
12 | Binop of expr * op * expr
13 | Assign of string * expr
14 | Call of string * expr list
15 | Noexpr

44

Listing 32: ast.ml

16 type stmt =
17 Print of expr
18 | List of expr list
19 | Choose of expr list
20 | Goto of expr
21 | If of expr * stmt list * stmt list
22 | While of expr * stmt list
23 | Expr of expr
24 | Return of expr
25 | ReadInt of expr
26 | ReadStr of expr
27 | Roll of expr
28

29 type mytypes =
30 Int
31 | Bool
32 | String
33 | Void
34

35

36 type vdecl = {
37 vtype : mytypes;
38 vname : string;
39 vexpr : expr;
40 }
41

42 type param_decl =
43 Param of mytypes * string
44

45 type fdecl = {
46 ftype: mytypes;
47 fname : string;
48 params : param_decl list;
49 body : stmt list;
50 }

45

Listing 33: ast.ml

52 type ndecl = {
53 nname: string;
54 body: stmt list;
55 }
56 type program = vdecl list * fdecl list * ndecl

list

Listing 34: parser.mly

1 %{ open Ast %}
2 %token LPAREN RPAREN LBRACE RBRACE LBRACKET

RBRACKET SEMI COLON GET COMMA ASSIGN AT
3 %token PLUS MINUS TIMES DIVIDE PERCENT EXP MOD
4 %token EQ NEQ LT LEQ GT GEQ NOT AND OR
5 %token BREAK CONTINUE ELIF ELSE FOR FUNCTION

RETURN WHILE IF
6 %token INT VOID BOOL CHAR STRING
7 %token PRINT GOTO LIST CHOOSE MAIN NODE READINT

READSTR ROLL
8 %token EOF
9

10 %token <int > INT_LIT
11 %token <bool > BOOL_LIT
12 %token <string > STR_LIT
13 %token <string > ID
14

15 %nonassoc NOELSE
16 %nonassoc ELSE
17 %nonassoc RETURN

46

Listing 35: parser.mly

18 %right ASSIGN
19 %left AND OR
20 %right NOT
21 %left EQ NEQ LT GT LEQ GEQ
22 %left PLUS MINUS
23 %left TIMES DIVIDE
24 %left MOD
25 %nonassoc LPAREN RPAREN
26

27 %start program
28 %type <Ast.program > program
29 %%
30

31 program:
32 /* nothing */ { [], [], [] }
33 | program vdecl { let (var , func , node) = $1 in

$2::var , func , node }
34 | program fdecl { let (var , func , node) = $1 in

var , $2::func , node }
35 | program ndecl { let (var , func , node) = $1 in

var , func , $2::node }
36

37 fdecl:
38 mytypes FUNCTION ID LPAREN params_opt RPAREN

LBRACE stmt_list RBRACE
39 {{
40 ftype = $1;
41 fname = $3;
42 params = $5;
43 body = List.rev $8
44 }}

47

Listing 36: parser.mly

46 ndecl:
47 NODE ID LBRACE stmt_list RBRACE
48 {{
49 nname = $2;
50 body = List.rev $4
51 }}
52 | MAIN LBRACE stmt_list RBRACE {{
53 nname = "main";
54 body = List.rev $3
55 }}
56

57 vdecl:
58 mytypes ID ASSIGN expr SEMI {{ vtype = $1;
59 vname = $2;
60 vexpr = $4 }}
61 mytypes:
62 INT {Int}
63 | BOOL {Bool}
64 | STRING {String}
65 | VOID {Void}
66

67

68 params_opt:
69 /* nothing */ { [] }
70 | params_list { List.rev $1 }
71

72 params_list:
73 mytypes ID { [Param($1, $2)

]}
74 | params_list COMMA mytypes ID { Param($3,$4)

::$1 }
75

76 stmt_list:
77 /* nothing */ { [] }
78 | stmt_list stmt { $2 :: $1 }

48

Listing 37: parser.mly

79 stmt:
80 expr SEMI {Expr($1)}
81 | PRINT LPAREN expr RPAREN SEMI { Print($3) }
82 | LIST LPAREN actuals_opt RPAREN SEMI{ List(

$3) }
83 | CHOOSE LPAREN actuals_opt RPAREN SEMI{

Choose($3) }
84 | GOTO LPAREN expr RPAREN SEMI { Goto($3) }
85 | IF LPAREN expr RPAREN LBRACE stmt_list

RBRACE { If($3, $6, [])}
86 | IF LPAREN expr RPAREN LBRACE stmt_list

RBRACE ELSE LBRACE stmt_list RBRACE { If($3
, $6, $10)}

87 | WHILE LPAREN expr RPAREN LBRACE stmt_list
RBRACE { While($3, $6) }

88 | RETURN expr SEMI { Return($2) }
89 | READINT LPAREN expr RPAREN SEMI { ReadInt (

$3)}
90 | READSTR LPAREN expr RPAREN SEMI { ReadStr (

$3)}
91 | ROLL LPAREN expr RPAREN SEMI { Roll ($3) }
92

93 expr:
94 INT_LIT { Int_Lit($1) }
95 | BOOL_LIT { Bool_Lit($1) }
96 | STR_LIT { String_Lit($1) }
97 | ID { Id($1) }
98 | NOT expr { Uniop(Not , $2) }
99 | expr PLUS expr { Binop($1, Add , $3) }
100 | expr MINUS expr { Binop($1, Sub , $3) }
101 | expr TIMES expr { Binop($1, Mult , $3) }
102 | expr DIVIDE expr { Binop($1, Div , $3) }
103 | expr MOD expr { Binop($1, Mod , $3) }
104 | expr EQ expr { Binop($1, Equal , $3) }
105 | expr NEQ expr { Binop($1, Neq , $3) }
106 | expr LT expr { Binop($1, Less , $3) }
107 | expr LEQ expr { Binop($1, Leq , $3) }

49

Listing 38: parser.mly

108 | expr GT expr { Binop($1, Greater , $3)
}

109 | expr GEQ expr { Binop($1, Geq , $3) }
110 | expr AND expr { Binop($1, And , $3) }
111 | expr OR expr { Binop($1, Or, $3) }
112 | ID ASSIGN expr { Assign($1, $3) }
113 | ID LPAREN actuals_opt RPAREN { Call($1, $3)

}
114 | LPAREN expr RPAREN { $2 }
115

116 actuals_opt:
117 /* nothing */ { [] }
118 | actuals_list { List.rev $1 }
119

120 actuals_list:
121 expr { [$1] }
122 | actuals_list COMMA expr { $3 :: $1 }

Listing 39: sast.ml

1 open Ast
2 type t =
3 SInt
4 | SString
5 | SBool
6 | SVoid
7

8 type sexpr =
9 SInt_Lit of int * t

10 | SBool_Lit of bool * t
11 | SString_Lit of string * t
12 | SId of string * t

50

Listing 40: sast.ml

13 | SUniop of op * sexpr * t
14 | SBinop of sexpr * Ast.op * sexpr * t
15 | SAssign of string * sexpr * t
16 | SCall of string * sexpr list * t
17 | SNoexpr of t
18

19 type sstmt =
20 SPrint of sexpr
21 | SList of sexpr list
22 | SChoose of sexpr list
23 | SGoto of sexpr
24 | SIf of sexpr * sstmt list * sstmt list
25 | SWhile of sexpr * sstmt list
26 | SExpr of sexpr
27 | SReturn of sexpr
28 | SReadInt of sexpr
29 | SReadStr of sexpr
30 | SRoll of sexpr
31

32

33 type svdecl = {
34 svtype : t;
35 svname : string;
36 svexpr : sexpr;
37 }
38

39 type sfdecl = {
40 ftype : t;
41 fname : string;
42 sparams : svdecl list;
43 sbody : sstmt list;
44 }
45

46 type sndecl = {
47 nname : string;
48 sbody : sstmt list;
49 }

51

Listing 41: analyzer.ml

1 open Ast
2 open Sast
3 type symbol_table = {
4 mutable parent : symbol_table option;
5 mutable variables: (string * svdecl * t) list

;
6 mutable functions: sfdecl list;
7 mutable nodes: sndecl list;
8 mutable return_found: bool;
9 }

10

11 type environment = {
12 mutable scope : symbol_table;
13 }
14

15 let type_expr (se : Sast.sexpr) : Sast.t =
16 match se with
17 SInt_Lit(_, t) -> t
18 | SBool_Lit(_,t) -> t
19 | SString_Lit(_,t) -> t
20 | SId(_,t) -> t
21 | SUniop(_,_,t) -> t
22 | SBinop(_,_,_,t) -> t
23 | SAssign(_,_,t) -> t
24 | SCall(_,_,t) -> t
25 | SNoexpr(t) -> t
26

27 let rec check_id (scope : symbol_table) id =
28 try
29 let (_, decl , t) = List.find(fun (n, _, _

) -> n = id) scope.variables in t
30 with Not_found ->
31 try let _ = List.find(fun c -> c.nname =

id) scope.nodes in SString
32 with Not_found ->
33 match scope.parent with
34 Some(parent) -> check_id parent

id
35 | _ -> raise Not_found

52

Listing 42: analyzer.ml

36 let rec find_func (scope : symbol_table) f =
37 let l = scope.functions in
38 try
39 List.find(fun c -> c.fname = f) l
40 with Not_found -> match scope.parent with
41 Some(parent) -> find_func parent f
42 | _ -> raise Not_found
43

44 let rec find_node (scope : symbol_table) n =
45 let l = scope.nodes in
46 try
47 List.find(fun c -> c.nname = n) l
48 with Not_found -> match scope.parent with
49 Some(parent) -> find_node parent n
50 | _ -> raise Not_found
51

52 let rec check_expr_nodes (scope : symbol_table) (
e: Ast.expr) =

53 match e with
54 Noexpr -> SNoexpr(SVoid)
55 | Int_Lit(a) -> SInt_Lit(a,SInt)
56 | Bool_Lit(a) -> SBool_Lit(a,SBool)
57 | String_Lit(a) -> SString_Lit(a,SString)
58 | Id(str) -> SId(str , SString)
59 | _ -> raise (Failure("wrong arguments"))
60

61 let rec check_expr (scope : symbol_table) (e: Ast
.expr) =

62 match e with
63 Noexpr -> SNoexpr(SVoid)
64 | Int_Lit(a) -> SInt_Lit(a,SInt)
65 | Bool_Lit(a) -> SBool_Lit(a,SBool)
66 | String_Lit(a) -> SString_Lit(a,SString)
67 | Id(str) -> (try
68 let t = check_id scope

str in SId(str , t)
69 with Not_found -> raise (

Failure ("Unrecognized Id "
ˆ str)))

53

Listing 43: analyzer.ml

71 | Uniop(_,_) as u -> check_uniop scope u
72 | Binop(_,_,_) as b -> check_binop scope b
73 | Assign(_,_) as a -> check_assign scope a
74 | Call(_,_) as c -> check_call scope c
75

76 and check_uniop (scope : symbol_table) uniop =
match uniop with

77 Ast.Uniop(op, expr) -> (
78 match op with
79 Not ->
80 let e = check_expr scope expr in
81 let t = type_expr e in
82 if (t <> SBool) then raise (

Failure "Incorrect type for ! "
) else SUniop(op, e, SBool)

83 | _ -> raise (Failure "Not a uniop")
84)
85 | _ -> raise (Failure "Not a uniop")
86

87 and check_binop (scope : symbol_table) binop =
match binop with

88 Ast.Binop(a1, op, a2) ->
89 let e1 = check_expr scope a1 and e2 =

check_expr scope a2 in
90 let t1 = type_expr e1 and t2 = type_expr

e2 in
91 let t = match op with
92 Add ->
93 if (t1 <> SInt || t2 <> SInt)

then
94 if (t1 <> SString || t2 <>

SString) then raise (
Failure "Incorrect types
for +")

95 else SString
96 else SInt
97 | Sub -> if (t1 <> SInt || t2 <> SInt

) then raise (Failure "Incorrect
types for ") else SInt

54

Listing 44: analyzer.ml

98 | Mult -> if (t1 <> SInt || t2 <>
SInt) then raise (Failure "
Incorrect types for * ") else SInt

99 | Div -> if (t1 <> SInt || t2 <> SInt
) then raise (Failure "Incorrect
types for / ") else SInt

100 | Mod -> if (t1 <> SInt || t2 <> SInt
) then raise (Failure "Incorrect
types for % ") else SInt

101 | Equal -> if (t1 <> t2) then raise (
Failure "Incorrect types for = ")
else SBool

102 | Neq -> if (t1 <> t2) then raise (
Failure "Incorrect types for != ")
else SBool

103 | Less -> if (t1 <> SInt || t2 <>
SInt) then raise (Failure "
Incorrect types for < ") else SBool

104 | Leq -> if (t1 <> SInt || t2 <> SInt
) then raise (Failure "Incorrect
types for <= ") else SBool

105 | Greater -> if (t1 <> SInt || t2 <>
SInt) then raise (Failure "
Incorrect types for > ") else SBool

106 | Geq -> if (t1 <> SInt || t2 <> SInt
) then raise (Failure "Incorrect
types for >= ") else SBool

107 | Or -> if (t1 <> SBool || t2 <>
SBool) then raise (Failure "
Incorrect types for | ") else SBool

108 | And -> if (t1 <> SBool || t2 <>
SBool) then raise (Failure "
Incorrect types for & ") else SBool

109 | Not -> raise (Failure "! is a unary
operator.")

110 in SBinop(e1, op, e2, t)
111 | _ -> raise (Failure "Not an op")

55

Listing 45: analyzer.ml

112 and check_assign (scope : symbol_table) a = match
a with

113 Ast.Assign(id, expr) ->(
114 try(
115 let t = check_id scope id in
116 let e = check_expr scope expr in
117 let t2 = type_expr e in
118 if t <> t2 then raise (Failure "

Incorrect type assignment.")
119 else SAssign(id, e, t))
120 with Not_found -> let e = check_expr

scope expr in
121 let t = type_expr e

in
122 let v={ svtype = t;

svname = id; svexpr
= e}

123 in scope.variables <- (v.svname ,v,t) ::
scope.variables; SAssign(id, e, t))

124

125 | _ -> raise (Failure "Not an assignment")
126

127 and check_call (scope : symbol_table) c = match c
with

128 Ast.Call(id, el) ->
129 (try
130 let f = find_func scope id in
131 let exprs = List.fold_left2 (fun a b

c ->
132 let t = b.svtype in
133 let expr = check_expr scope c

in
134 let t2 = type_expr expr in
135 if t <> t2
136 then raise (Failure "

wrong type")
137 else expr :: a) [] f.

sparams el in
138 SCall(id, exprs , f.ftype)

56

Listing 46: analyzer.ml

139 with
140 Not_found ->
141 raise (Failure ("Function not

found with name " ˆ id)))
142 | _ -> raise (Failure ("Not a call"))
143

144 let rec check_stmt (scope : symbol_table) (stmt :
Ast.stmt) = match stmt with

145 Expr(e) -> SExpr(check_expr scope e)
146 | Return(e) -> SReturn(check_expr scope e)
147 | If(expr , stmt1 , stmt2) ->
148 let new_expr = check_expr scope expr in
149 let t = type_expr new_expr in
150 if t <> SBool then raise (Failure "If

statement must have a boolean
expression")

151 else
152 let new_stmt1 = check_stmt_list scope

stmt1 in
153 let new_stmt2 = check_stmt_list scope

stmt2 in
154 SIf(new_expr , new_stmt1 , new_stmt2)
155 | While(expr , stmt) ->
156 let expr = check_expr scope expr in
157 let t = type_expr expr in
158 if t <> SBool then raise (Failure "If

statement must have a boolean
expression")

159 else
160 let new_stmt = check_stmt_list scope

stmt in
161 SWhile(expr , new_stmt)

57

Listing 47: analyzer.ml

162 | Print(e) ->
163 let expr = check_expr scope e in
164 let t = type_expr expr in
165 if (t = SString || t = SInt) then
166 SPrint(expr)
167 else raise (Failure "Print takes

only type string or int")
168 | List(e) ->
169 let exprs = List.fold_left (fun a b ->
170 let expr = check_expr scope b in
171 let t = type_expr expr in
172 if t <> SString then
173 raise (Failure "List takes

only type string")
174 else expr :: a) [] e in
175 SList(exprs)
176 | Choose(e) ->
177 let exprs = List.fold_left (fun a b ->
178 let expr = check_expr_nodes scope b

in
179 let t = type_expr expr in
180 expr :: a) [] e in
181 SChoose(exprs)
182 | Goto(e) ->
183 let expr = check_expr_nodes scope e in
184 SGoto(expr)
185 | ReadInt(e) -> SReadInt(check_expr scope e)
186 | ReadStr(e) -> SReadStr(check_expr scope e)
187 | Roll(e) ->
188 let expr = check_expr scope e in
189 let t = type_expr expr in
190 if (t = SInt) then
191 SRoll(expr)
192 else raise (Failure "Roll takes

only type int")

58

Listing 48: analyzer.ml

193 and check_stmt_list (scope : symbol_table) (stml
: Ast.stmt list) =

194 List.fold_left (fun a s -> let stmt =
check_stmt scope s in stmt::a) [] stml

195

196 let rec check_stmt_snd (scope : symbol_table) (
stmt : Ast.stmt) = match stmt with

197 | If(expr , stmt1 , stmt2) ->
198 check_stmt_list_snd scope stmt1;
199 check_stmt_list_snd scope stmt2
200 | While(expr , stmt) ->
201 check_stmt_list_snd scope stmt
202 | Choose(e) -> (
203 List.fold_left (fun a b ->
204 let expr = check_expr scope b in
205 let t = type_expr expr in
206 if t <> SString then
207 raise (Failure ("Choose

takes only type string"
))

208 else
209 (try
210 let id = match b with
211 String_Lit(a) -> a
212 | Id(str) -> str
213 | _ -> raise (Failure

"Wrong expression
type in Choose") in

214 let _ = find_node
scope id in

215 expr :: a
216 with
217 Not_found ->
218 raise (Failure ("Node

not found")))) []
e)

59

Listing 49: analyzer.ml

219 | Goto(e) -> (
220 let expr = check_expr scope e in
221 let t = type_expr expr in
222 if t <> SString then
223 raise (Failure ("Goto takes

only type string"))
224 else
225 (try
226 let id = match e with
227 String_Lit(a) -> a
228 | Id(str) -> str
229 | _ -> raise (Failure "

Wrong expression type
in Goto") in

230 let _ = find_node scope
id in

231 [expr]
232

233 with
234 Not_found ->
235 raise (Failure ("Node not

found"))))
236 | _ -> [SNoexpr(SVoid)]
237

238 and check_stmt_list_snd (scope : symbol_table) (
stml : Ast.stmt list) =

239 let _ = List.fold_left (fun a s -> let stmt =
check_stmt_snd scope s in stmt::a) [] stml
in [SNoexpr(SVoid)]

240

241 let rec check_var_type (scope : symbol_table) (v
: Ast.mytypes) = match v with

242 Ast.Void -> SVoid
243 | Ast.Int -> SInt
244 | Ast.String -> SString
245 | Ast.Bool -> SBool

60

Listing 50: analyzer.ml

246 let process_var_decl (scope : symbol_table) (v :
Ast.vdecl) =

247 let t = check_var_type scope v.vtype in
248 let expr = check_expr scope v.vexpr in
249 let t2 = type_expr expr in
250 if t <> t2 then raise (Failure "wrong type

for variable initialization")
251 else (let v={ svtype = t; svname = v.vname;

svexpr = expr}
252 in scope.variables <- (v.svname ,v,t) ::

scope.variables; v)
253

254 let rec check_func_stmt (scope : symbol_table) (
stml : Sast.sstmt list) (ftype : Sast.t) =

255 List.iter (fun s -> match s with
256 SReturn(e) ->
257 let t = type_expr e in
258 if t <> ftype then raise (Failure "

func return type is incorrect")
else ()

259 | SIf(_, s1, s2) ->
260 check_func_stmt scope s1 ftype;

check_func_stmt scope s2 ftype
261 | SWhile(_, s) ->
262 check_func_stmt scope s ftype
263 | _ -> ()) stml
264

265 let rec check_node_stmt (scope : symbol_table) (
stml : Sast.sstmt list) =

266 List.iter (fun s -> match s with
267 SIf(_, s1, s2) ->
268 check_node_stmt scope s1;

check_node_stmt scope s2
269 | SWhile(_, s) ->
270 check_node_stmt scope s
271 | _ -> ()) stml

61

Listing 51: analyzer.ml

272 let process_func_stmt (scope : symbol_table) (
stml : Ast.stmt list) (ftype : Sast.t) =

273 List.fold_left (fun a s -> let stmt = check_stmt
scope s in

274 match stmt with
275 SReturn(e) ->
276 let t = type_expr e in
277 if t <> ftype then raise (Failure "

incorrect return type") else
278 scope.return_found <- true; stmt :: a
279 | SIf(_, s1, s2) ->
280 check_func_stmt scope s1 ftype;

check_func_stmt scope s2
281 ftype; stmt :: a
282 | SWhile(_, s) ->
283 check_func_stmt scope s ftype; stmt

:: a
284 | _ -> stmt :: a) [] stml
285

286 let process_node_stmt (scope : symbol_table) (
stml : Ast.stmt list)=

287 List.fold_left (fun a s -> let stmt = check_stmt
scope s in

288 match stmt with
289 SReturn(e) ->
290 raise (Failure "return statement in

node")
291 | SIf(_, s1, s2) ->
292 check_node_stmt scope s1;

check_node_stmt scope s2; stmt :: a
293 | SWhile(_, s) ->
294 check_node_stmt scope s; stmt :: a
295 | _ -> stmt :: a) [] stml
296

297 let process_stmt_snd (scope : symbol_table) (stml
: Ast.stmt list)=

298 List.fold_left (fun a s -> let stmt =
check_stmt_snd scope s in

299 stmt :: a) [] stml

62

Listing 52: analyzer.ml

300 let check_func_decl (env : environment) (f : Ast.
fdecl) =

301 let scope’ = { env.scope with parent = Some(
env.scope); variables = []; nodes = env.
scope.nodes; functions = env.scope.
functions } in

302 let t = check_var_type env.scope f.ftype in
303 let params = List.fold_left (fun a f -> match

f with
304 Ast.Param(t, n) ->
305 let t = check_var_type scope’ t in
306 let v={ svtype = t; svname = n;

svexpr = SNoexpr(SVoid)} in
307 scope’.variables <- (n,v,t) :: scope ’

.variables; v::a) [] f.params in
308 let statements = process_func_stmt scope’ f.

body t in
309 if scope’.return_found then
310 let f = { ftype = t; fname = f.fname;

sparams = params; sbody = statements }
in

311 env.scope.functions <- f :: env.scope.
functions; f

312 else (if f.ftype = Void then
313 let f = { ftype = t; fname = f.fname;

sparams = params; sbody =
statements } in

314 env.scope.functions <- f :: env.scope
.functions; f

315 else raise (Failure ("No return for
function " ˆ f.fname ˆ " when return
expected.")))

316

317

318 let check_node_decl (env : environment) (n : Ast.
ndecl) =

63

Listing 53: analyzer.ml

319 let scope’ = { env.scope with parent = Some(
env.scope); variables = []; nodes = env.
scope.nodes; functions = env.scope.
functions } in

320 let statements = process_node_stmt scope’ n.
body in

321 let n = { nname = n.nname; sbody = statements
} in

322 env.scope.nodes <- n :: env.scope.nodes; n
323 let process_func_decl (env : environment) (f :

Ast.fdecl) =
324 try
325 let _ = find_func env.scope f.fname in
326 raise (Failure ("Function already

declared with name " ˆ f.fname))
327 with Not_found ->
328 if (f.fname = "print" || f.fname = "goto"

|| f.fname = "list" || f.fname = "
choose" || f.fname = "main")

329 then raise (Failure "A function cannot
have same name as built -in function")

330 else
331 check_func_decl env f
332

333 let process_node_decl (env : environment) (n :
Ast.ndecl) =

334 try
335 let _ = find_func env.scope n.nname in
336 raise (Failure ("Node with same name

as function " ˆ n.nname))
337 with Not_found ->
338 if (n.nname = "print" || n.nname= "goto"

|| n.nname = "list" || n.nname = "
choose")

339 then raise (Failure "A node cannot have
same name as built -in function")

340 else
64

Listing 54: analyzer.ml

341 try
342 let _ = find_node env.scope n.

nname in
343 raise (Failure ("Node already

declared with name " ˆ n.
nname))

344 with Not_found ->
345 check_node_decl env n
346

347 let process_nodes (env : environment) (n : Ast.
ndecl) =

348 process_stmt_snd env.scope n.body
349

350 let process_global_decl (env : environment) (g :
Ast.vdecl) =

351 try
352 let _ = check_id env.scope g.vname in
353 raise (Failure ("Variable already

declared with name " ˆ g.vname))
354 with Not_found ->
355 process_var_decl env.scope g
356

357 let check_program (p : Ast.program) =
358 let s = { parent = None; variables = [];

functions = []; nodes = []; return_found =
false} in

359 let env = { scope = s } in
360 let (vs, fs, ns) = p in
361 let globals = List.fold_left (fun a g ->

process_global_decl env g :: a) [] (List.
rev vs) in

362 let funcs = List.fold_left (fun a f ->
process_func_decl env f :: a) [] (List.rev
fs) in

363 let nodes = List.fold_left (fun a n ->
process_node_decl env n :: a) [] ns in

364 let _ = List.fold_left (fun a n ->
process_nodes env n :: a) [] ns in

365 globals , funcs , nodes

65

Listing 55: grid.ml

1 open Printf
2 open Analyzer
3

4 let _ =
5 let lexbuf = Lexing.from_channel stdin in
6 let program = Parser.program Scanner.token lexbuf

in
7 let sast = Analyzer.check_program program in
8 Compile.translate sast

Listing 56: compile.ml

1 open Ast
2 open Sast
3

4 let addTab s = sˆ"\t"
5 let range a b =
6 let rec aux a b =
7 if a > b then [] else a :: aux (a+1)

b in
8 if a > b then List.rev (aux b a) else aux

a b;;
9

10 let rec print_list = function
11 [] -> ()
12 | e::l -> print_int e ; print_string " ";

print_list l;;

66

Listing 57: compile.ml

13 let rec print_expr (e : Sast.sexpr) =
14 match e with
15 SNoexpr(_) -> print_string ""
16 | SId(decl ,_) -> print_string decl
17 | SInt_Lit(i,_) -> print_string (

string_of_int i)
18 | SString_Lit(s,_) -> print_string ("\""

ˆ s ˆ "\"")
19 | SBool_Lit(l,_) -> print_string(

string_of_bool l)
20 | SAssign(v, e,_) -> print_string (v ˆ "

= ") ;
21 print_expr e;
22 | SUniop(o,e,_) -> print_string ("!(");
23 print_expr e;
24 print_string ")";
25 | SBinop(e1, o, e2,_) ->
26 print_expr (e1);
27 print_string (match o with
28 Add -> "+" | Sub -> "-" | Mult -> "*"

| Div -> "/"
29 | Equal -> "==" | Neq -> "!="
30 | Less -> "<" | Leq -> "<=" |

Greater -> ">" | Geq -> ">=" |
Mod -> "%"

31 | And -> " and " | Or -> " or "|_
->"");

32 print_expr(e2);
33 | SCall(f, expr_list ,_) ->
34 print_string f ;
35 print_string "(";
36 let rec print_expr_list_comma =

function
37 [] -> print_string ""
38 | e::[] -> print_expr e
39 | e::tl -> print_expr e;

print_string ", ";
print_expr_list_comma tl67

Listing 58: compile.ml

41 in print_expr_list_comma (List.
rev expr_list);

42 print_string ")";;
43 let rec print_expr_noquote (e : Sast.sexpr) =
44 match e with
45 | SString_Lit(s,_) -> print_string (s);
46 | SId(decl ,_) -> print_string decl;
47 | _ -> print_string"";;
48 let rec print_stmt (s: Sast.sstmt) (tab:

string)= match s with
49 SExpr(e) -> print_string tab;(print_expr

e); print_string"\n";
50 | SPrint(e) ->
51 print_string tab;print_string ("print ("

) ;
52 print_expr e ;
53 print_string (")\n")
54 | SWhile(e, s) ->
55 print_string tab;print_string("while (")

;
56 print_expr (e) ;
57 print_string ("):\n") ;
58 print_string tab;
59 print_stmt_wTab s (addTab tab);
60 print_string "\n"
61 | SReturn(e) ->
62 print_string tab;print_string("return ");
63 print_expr e
64 |SList(e) ->
65 print_string tab;
66 print_string "print (\"\\n";
67 List.iter2 (fun a b-> (print_int a;

print_string ": "; print_expr_noquote b
;print_string"\\n")) (range 1 (List.
length(e))) (List.rev e);

68 print_string "\")\n"

68

Listing 59: compile.ml

70 |SChoose(e) ->
71 print_string tab;
72 print_string"choice = int(input (\" Enter a

choice: \"))\n";
73 print_string tab;print_string "\t";
74 print_string "while(choice !=-1):\n";
75 List.iter2 (fun a b-> (print_string tab;

print_string "\t\tif (choice ==";
print_int a;print_string "):\n";
print_string tab;print_string "\t\t\t";
print_expr b;print_string"()\n")) (

range 1 (List.length(e))) (List.rev e);
76 print_string tab;print_string "\t\telse:\

n";print_string tab;print_string"\t\t\
tchoice = int(input (\" Invalid Input!
Please Re-enter: \"))\n";

77 |SGoto(e) ->
78 print_string tab;print_expr e;

print_string"()\n";
79 |SReadInt(e) ->
80 print_string tab;
81 print_expr e;
82 print_string " = int(raw_input ());\n"
83 |SReadStr(e) ->
84 print_string tab;
85 print_expr e;
86 print_string " = str(raw_input ());\n"
87 |SRoll(e) ->
88 print_string tab;
89 print_expr e;
90 print_string " = randint (1,6);"

69

Listing 60: compile.ml

91 | SIf(e1, s1, s2) ->
92 match s2 with
93 [] ->
94 print_string tab;
95 print_string("if ");
96 print_expr e1 ;
97 print_string(":\n");
98 print_stmt_wTab s1 (addTab tab);
99 print_string("")
100 |_ ->
101 print_string tab;
102 print_string("if ");
103 print_expr e1;
104 print_string(":\n");
105 print_stmt_wTab s1 (addTab tab);
106 print_string ("\n");
107 print_string tab;
108 print_string("\telse:\n");
109 print_stmt_wTab s2 (addTab tab);
110 print_string ""
111 and print_stmt_wTab (s:Sast.sstmt list) (tab:

string) = match s with
112 [] -> print_string "";
113 | hd::[] -> print_string tab;print_stmt

hd tab;
114 | hd::tl -> print_string tab ;print_stmt

hd tab;print_stmt_wTab tl tab;;
115 let rec print_type (t: Sast.t)= function
116 SVoid -> print_string "void ";
117 | SInt -> print_string "int ";
118 | SString -> print_string "String " ;
119 | SBool -> print_string "boolean ";;

70

Listing 61: compile.ml

120 let rec print_param (v: Sast.svdecl)= match v
with

121 |_ -> print_type v.svtype;
122 print_string " ";
123 print_string v.svname ;;
124

125 let rec print_param_list (p : Sast.svdecl
list) =

126 match p with
127 [] -> print_string "";
128 | hd::[] -> print_param hd;
129 | hd::tl -> print_param hd; print_string

", "; print_param_list tl;;
130

131 let rec print_svdecl (f : Sast.svdecl) =
match f with

132 |_ ->
133 print_string f.svname;
134 print_string "=";
135 print_expr f.svexpr;
136 print_string "\n";;
137

138 let rec print_stmt_list (p : Sast.sstmt list)
=

139 match p with
140 [] -> print_string "";
141 | hd::[] -> print_string "\t";print_stmt

hd ""; print_string "\n";
142 | hd::tl -> print_string "\t";print_stmt

hd ""; print_string "\n";
print_stmt_list tl;;

71

Listing 62: compile.ml

143 let rec print_sndecl (f : Sast.sndecl list)(
v: Sast.svdecl list) = match f with

144 [] -> print_string "";
145 | hd::[] ->
146 print_string "def ";
147 print_string hd.nname;
148 print_string "(";
149 print_string "):";
150 print_globals v;
151 print_stmt_list (List.rev hd.sbody);
152 print_string "\texit()\n";
153 | hd::tl ->
154 print_string "def ";
155 print_string hd.nname;
156 print_string "(";
157 print_string "):";
158 print_globals v;
159 print_stmt_list (List.rev hd.sbody);
160 print_string "\texit()\n";
161 print_sndecl tl v;
162 print_string "";
163

164 and print_globals (v:Sast.svdecl list) =
match v with

165 [] -> print_string "";
166 | hd::[] -> print_string("\n\tglobal ");

print_string hd.svname; print_string "
;\n";

167 | hd::tl -> print_string("\n\tglobal ");
print_string hd.svname; print_string ";
"; print_globals tl;;

72

Listing 63: compile.ml

168 let rec print_sfdecl (f : Sast.sfdecl list)(
v: Sast.svdecl list) = match f with

169 [] -> print_string "";
170 | hd::[] ->
171 print_string "def ";
172 print_string hd.fname;
173 print_string "(";
174 print_param_list (List.rev hd.sparams

);
175 print_string "):";
176 print_globals v;
177 print_stmt_list (List.rev hd.sbody);
178 print_string "\texit()\n";
179 | hd::tl ->
180 print_string "def ";
181 print_string hd.fname;
182 print_string "(";
183 print_param_list (List.rev hd.sparams

);
184 print_string "):";
185 print_globals v;
186 print_stmt_list (List.rev hd.sbody);
187 print_string "\texit()\n";
188 print_sfdecl tl v;
189 print_string "";;
190 let translate (variables , functions , nodes) =
191 print_string "from random import randint\

n";
192 List.iter print_svdecl (List.rev

variables);
193 print_sfdecl (List.rev functions)

variables;
194 print_sndecl (List.rev nodes) variables;
195 print_string "if __name__ == ’__main__ ’:\

n\tmain()";

73

Listing 64: Makefile

1 compiler: grid.ml objects
2 ocamlc -c grid.ml
3 ocamlc -o gw ast.cmo parser.cmo scanner.cmo

compile.cmo analyzer.cmo grid.cmo
4

5 objects: scanner parser generator
6 ocamlc -c ast.ml sast.ml parser.mli scanner.

ml parser.ml analyzer.ml compile.ml
7 generator: analyzer.ml compile.ml
8 parser: parser.mly
9 ocamlyacc -v parser.mly

10 scanner: scanner.mll
11 ocamllex scanner.mll
12 .PHONY: test
13 test: compiler
14 ./ testall.sh
15

16 .PHONY: clean
17 clean:
18 rm -f *.py parser.mli scanner.ml parser.ml

parser.output *.cmo *cmi test -*.py test -*.
i.* grid gw *˜

Gridworld Project Log

1 commit 413 b1cfb551061b2bd3ea6bc975b2c396ec70edb
2 Author: Andrew Phan <ap3243@columbia.edu >
3 Date: Tue Dec 22 20:08:23 2015 -0500
4
5 zZz added new README , Makefile , organized everyth
6
7 commit 0ed84e43331b064dd5e39e5e3937df27d27975e7
8 Author: Andrew Phan <ap3243@columbia.edu >
9 Date: Tue Dec 22 19:27:16 2015 -0500

10
11 added the tests. Getting ready for submission.
12
13 commit fc905e9613e9882daa6bfe8e3712d3831c603f06

74

14 Author: Loren <lorenweng@gmail.com >
15 Date: Mon Dec 21 01:08:10 2015 -0800
16
17 fixed bugs in pokeySim
18
19 commit e9310b608ad214deaac5fad6746f99039a728ec2
20 Author: Loren <lorenweng@gmail.com >
21 Date: Mon Dec 21 00:37:24 2015 -0800
22
23 pokeysim now working
24
25 commit bf94990fd811f3a9000cdbe02e724ca559e692c6
26 Merge: fb770b8 f500e48
27 Author: Loren <lorenweng@gmail.com >
28 Date: Sun Dec 20 22:37:42 2015 -0800
29
30 Merge branch ’master ’ of https:// github.com/andyph666/gridworld -proj
31
32 commit fb770b89a7f9a7d661379ba5a7d9b04268f7ac78
33 Author: Loren <lorenweng@gmail.com >
34 Date: Sun Dec 20 22:29:00 2015 -0800
35
36 fixed tabbing issue
37
38 commit f500e48b9c0d2430ed8c844ad0e97ceec7f170ba
39 Author: Andrew Phan <ap3243@columbia.edu >
40 Date: Mon Dec 21 00:18:58 2015 -0500
41
42 edit mkfile to rem more tmp file. Rm arraytests
43
44 commit 643 ec1fcd17c924a20022b2641028d5ec4ec1d9b
45 Author: Loren <lorenweng@gmail.com >
46 Date: Sun Dec 20 20:14:56 2015 -0800
47
48 compile.ml changes
49
50 commit afd3d041c3fa57dbd08ee66d181535f45f136a32
51 Author: Loren <lorenweng@gmail.com >
52 Date: Sun Dec 20 20:08:33 2015 -0800
53
54 added textAdventure.gw
55
56 commit cc6613a417597a08aa1e951711b3e952ee87aa3b
57 Author: Loren <lorenweng@gmail.com >
58 Date: Sun Dec 20 19:54:53 2015 -0800
59
60 test3.gw file
61
62 commit 4b8dc0d21c2abf7351a8cd4c1bd53fb3d7091537
63 Author: Loren <lorenweng@gmail.com >
64 Date: Sun Dec 20 19:51:10 2015 -0800
65
66 test3 working
67
68 commit b39902af6f5091c92ec51be7c8a46405c4980909
69 Merge: ca8a109 4caba07
70 Author: Loren <lorenweng@gmail.com >

75

71 Date: Sun Dec 20 14:59:00 2015 -0800
72
73 Merge branch ’master ’ of https:// github.com/andyph666/gridworld -proj
74
75 commit ca8a109188c88c2c485241dc7a2acb79e255f4b0
76 Author: Loren <lorenweng@gmail.com >
77 Date: Sun Dec 20 14:58:42 2015 -0800
78
79 got test2 working
80
81 commit 4caba0714a55ff7663197ac25ab682bb27f33737
82 Author: weng -kevin <wengkevin2002@gmail.com >
83 Date: Sun Dec 20 14:58:01 2015 -0800
84
85 made changes to analyzer
86
87 commit fc0e01ad2c94b4a2038167fd53e3a53ddbfad444
88 Author: weng -kevin <wengkevin2002@gmail.com >
89 Date: Sat Dec 19 20:39:45 2015 -0800
90
91 update analyzer
92
93 commit 70 d1b8706487dfd365f02938c82c0824c45c6fda
94 Author: weng -kevin <wengkevin2002@gmail.com >
95 Date: Sat Dec 19 20:18:20 2015 -0800
96
97 edit analyzer
98
99 commit 040 efddd0c960518af64ccb13da93822bd1748dc
100 Author: Loren <lorenweng@gmail.com >
101 Date: Sat Dec 19 20:17:21 2015 -0800
102
103 more compiler fixes
104
105 commit 58 f943fac07066bec97eb930f9b527e37e2e563f
106 Author: Loren <lorenweng@gmail.com >
107 Date: Sat Dec 19 16:54:09 2015 -0800
108
109 changes to scanner and parser for missing tokens
110
111 commit 80 efdebf85eed0cfa259ee10b3ba9cc3544656e3
112 Merge: 2ac019f a512769
113 Author: Loren <lorenweng@gmail.com >
114 Date: Sat Dec 19 16:50:56 2015 -0800
115
116 merging testall
117 Merge branch ’master ’ of https:// github.com/andyph666/gridworld -proj
118
119 commit 2ac019ff0e867cea3c1b6fb0c029348f1e8fb4ee
120 Author: Loren <lorenweng@gmail.com >
121 Date: Sat Dec 19 16:50:30 2015 -0800
122
123 changes to scanner and parser for missing tokens
124
125 commit a512769b0ff16507b7cfa08f9a3a73fc2878ccc8
126 Author: Andrew Phan <ap3243@columbia.edu >
127 Date: Sat Dec 19 19:40:13 2015 -0500

76

128
129 removed unicode chinese from testall for latex pdf
130
131 commit c79bfb697087a81a28bf992e81416d8c594e5c3d
132 Author: Loren <lorenweng@gmail.com >
133 Date: Sat Dec 19 16:14:17 2015 -0800
134
135 changed more things
136
137 commit ca275a31e1161e00f80a7e9df824dde95f33b01f
138 Author: Loren <lorenweng@gmail.com >
139 Date: Sat Dec 19 14:49:28 2015 -0800
140
141 kevin’s analyzer changes
142
143 commit 576756 bc2e74058aed5480bb96e2c08033e3aab0
144 Author: Loren <lorenweng@gmail.com >
145 Date: Sat Dec 19 14:21:40 2015 -0800
146
147 hello world is working now kinda
148
149 commit f9c2d881f15cf33293db0cd9ef173fe1cb3974a3
150 Author: Loren <lorenweng@gmail.com >
151 Date: Fri Dec 18 09:57:45 2015 -0800
152
153 grid to sast
154
155 commit f4ab255201c5c099a28aba12434cea7e8076d6e8
156 Author: Loren <lorenweng@gmail.com >
157 Date: Fri Dec 18 09:44:01 2015 -0800
158
159 fixed soem bugs in analyzer sast and compile.ml
160
161 commit 97 be60f5a2c227ba51a279b509506766178ae74f
162 Author: Andrew Phan <ap3243@columbia.edu >
163 Date: Fri Dec 18 11:54:57 2015 -0500
164
165 CODE NOT WORKING. Shift/reduce conflicts gone
166
167 commit 050 f952dc8d29666caa64ac57db1217a8890fbcc
168 Merge: 664 aeeb 812 e82d
169 Author: weng -kevin <wengkevin2002@gmail.com >
170 Date: Thu Dec 17 19:45:05 2015 -0800
171
172 Merge branch ’master ’ of https :// github.com/andyph666/gridworld -proj
173
174 commit 664 aeebb33844af422c57002f84d69d308ec2118
175 Author: weng -kevin <wengkevin2002@gmail.com >
176 Date: Thu Dec 17 19:44:04 2015 -0800
177
178 Added built -in functions
179
180 commit 812 e82d09346c0c1f636856267653c00c2960318
181 Author: Andrew Phan <ap3243@columbia.edu >
182 Date: Thu Dec 17 21:27:02 2015 -0500
183
184 added more test functions

77

185
186 commit d27d87c6946059900916413fd81a7181ef2f1f49
187 Author: Andrew Phan <ap3243@columbia.edu >
188 Date: Thu Dec 17 18:12:13 2015 -0500
189
190 updated makefile
191
192 commit 7f58f0510f0fcad277653a4fcb1201eb381f7eaf
193 Merge: 0c69d71 0d3fe6b
194 Author: weng -kevin <wengkevin2002@gmail.com >
195 Date: Thu Dec 17 15:05:03 2015 -0800
196
197 Merge branch ’master ’ of https :// github.com/andyph666/gridworld -proj
198
199 Conflicts:
200 gridworld -src/ast.ml
201 gridworld -src/grid.ml
202 gridworld -src/parser.mly
203
204 commit 0c69d71ec4bb52148cf79c8f5789019a2c8146b2
205 Author: weng -kevin <wengkevin2002@gmail.com >
206 Date: Thu Dec 17 14:52:34 2015 -0800
207
208 Added semantic analyzer and sast , edited parser ast scanner
209
210 commit 0d3fe6b7aa0591106f560e6601f5480d60adab97
211 Author: Zikai Lin <jotaku@dyn -129 -236 -216 -222. dyn.columbia.edu >
212 Date: Wed Dec 16 20:19:05 2015 -0500
213
214 added tests
215
216 commit 5aa5551bf3a7b74194dc6bc547d42f035ffdc40a
217 Author: Andrew Phan <ap3243@columbia.edu >
218 Date: Sat Dec 12 12:17:34 2015 -0500
219
220 added microc incase we need to reference it
221
222 commit 6499 de41e0c6b0db988d1819d1c854bf5c441edb
223 Author: Andrew Phan <ap3243@columbia.edu >
224 Date: Fri Dec 11 21:27:08 2015 -0500
225
226 Makefile update
227
228 commit d7763123dd2c76a23d8ac4805944021f305771e2
229 Author: Andrew Phan <ap3243@columbia.edu >
230 Date: Fri Dec 11 21:22:09 2015 -0500
231
232 fixed linear regression tester and Makefile. Renamed some files.
233
234 commit 221 dd28b7de7749192f4cc761846a0f520a0a7a1
235 Author: Andrew Phan <ap3243@columbia.edu >
236 Date: Tue Nov 17 13:55:55 2015 -0500
237
238 removed unnecessary files
239
240 commit 248 e14926f93a145d63fa1a4b8094852d7887d5a
241 Author: Andrew Phan <ap3243@columbia.edu >

78

242 Date: Tue Nov 17 13:54:05 2015 -0500
243
244 linear regression tester NOT WORKING
245
246 commit 9ae9ca2fd1dc36e46b484871e64a14d825d03ea6
247 Author: Loren <lorenweng@gmail.com >
248 Date: Sun Nov 15 18:51:06 2015 -0800
249
250 added enough functionality to get gcd to work
251
252 commit b8e513090900ea91342ea7f3236a62f018192679
253 Author: Andrew Phan <ap3243@columbia.edu >
254 Date: Sun Nov 15 20:16:08 2015 -0500
255
256 added makefile
257
258 commit d7a59ce595c9e1ee3b39b29974ab35f2783fca69
259 Author: Andrew Phan <ap3243@columbia.edu >
260 Date: Sun Nov 15 19:42:43 2015 -0500
261
262 deleted stuff
263
264 commit 3abd48bd7eb7eb8689d44820c7308a2214346dba
265 Merge: 48f08b6 0e07ac9
266 Author: Andrew Phan <ap3243@columbia.edu >
267 Date: Sun Nov 15 19:37:25 2015 -0500
268
269 Merge branch ’master ’ of github.com:andyph666/gridworld -proj
270
271 commit 48 f08b6ccc6123f2d8f5cd0e26a30bb6f8eae38c
272 Author: Andrew Phan <ap3243@columbia.edu >
273 Date: Sun Nov 15 19:37:10 2015 -0500
274
275 added playgw
276
277 commit 0e07ac94a65f496dda4fee3199069d2fb2721f09
278 Author: Loren <lorenweng@gmail.com >
279 Date: Sun Nov 15 16:30:19 2015 -0800
280
281 added vdecl stuff
282
283 commit 3764 d85698212dbaf1d3f42e587990868b0183c8
284 Author: Andrew Phan <ap3243@columbia.edu >
285 Date: Sun Nov 15 19:21:22 2015 -0500
286
287 removed objects
288
289 commit 722 a222e0254e7f1aea412c14a58b1082c40da41
290 Author: Loren <lorenweng@gmail.com >
291 Date: Sun Nov 15 15:52:34 2015 -0800
292
293 added working mod (%) functionality
294
295 commit 06 d613c4b21e01a6b68fca1d8729b555eefb29e3
296 Author: lorenweng <lorenweng@gmail.com >
297 Date: Sun Nov 15 18:26:45 2015 -0500
298

79

299 removed references to vdecl
300
301 commit 59 a7a9342867e035fdbcc005297cc824c39e9255
302 Author: lorenweng <lorenweng@gmail.com >
303 Date: Sun Nov 15 18:24:38 2015 -0500
304
305 parser removed vdecl
306
307 commit 7c5c7efdaa35db003e485f5019791e6f0420c263
308 Author: lorenweng <lorenweng@gmail.com >
309 Date: Sun Nov 15 18:21:15 2015 -0500
310
311 fix
312
313 commit dcceaea873651cbc4d802c877e6ab7209ef63818
314 Author: lorenweng <lorenweng@gmail.com >
315 Date: Sun Nov 15 18:18:28 2015 -0500
316
317 mod fix
318
319 commit f2a6ab9fbf4ecce00b16011db54954eae780d6d1
320 Author: lorenweng <lorenweng@gmail.com >
321 Date: Sun Nov 15 18:17:00 2015 -0500
322
323 test mod
324
325 commit 2429 f6efcb2be30adb3e05795d0281e195bafbb9
326 Author: lorenweng <lorenweng@gmail.com >
327 Date: Sun Nov 15 18:15:50 2015 -0500
328
329 added mod(%) and vdecl fixes
330
331 commit 87 bdbfa863a556fa264fe44c559b83e7090f5b1b
332 Author: lorenweng <lorenweng@gmail.com >
333 Date: Sun Nov 15 18:04:36 2015 -0500
334
335 vdecl fixes
336
337 commit 04160 cfb986d3e7acbfff35ca1d3673d144e2b33
338 Merge: 614 fe41 7eb66f7
339 Author: Andrew Phan <ap3243@columbia.edu >
340 Date: Sun Nov 15 18:03:26 2015 -0500
341
342 Merge branch ’master ’ of github.com:andyph666/gridworld -proj
343
344 commit 614 fe4190819546f85b34a2e23d566f7e1f1583c
345 Author: Andrew Phan <ap3243@columbia.edu >
346 Date: Sun Nov 15 18:03:01 2015 -0500
347
348 filenames
349
350 commit 7eb66f73da7b54762b974ef875285d0ef59ac14c
351 Author: lorenweng <lorenweng@gmail.com >
352 Date: Sun Nov 15 17:54:26 2015 -0500
353
354 added vdecl stuff
355

80

356 commit ad004cac21369f7f27da10df8343977f57f0a0d7
357 Author: lorenweng <lorenweng@gmail.com >
358 Date: Sun Nov 15 17:51:43 2015 -0500
359
360 fix2
361
362 commit 48 ba6dedc841d39861bd7bbf9b3ed7b6b555725e
363 Author: lorenweng <lorenweng@gmail.com >
364 Date: Sun Nov 15 17:51:00 2015 -0500
365
366 fix
367
368 commit f4d0fec7598b26a0c1d3afe059e40b777af291e3
369 Author: lorenweng <lorenweng@gmail.com >
370 Date: Sun Nov 15 17:49:41 2015 -0500
371
372 added more stmt
373
374 commit e1584072d27c8fe2c2c9c063a89879c29898e4dd
375 Author: lorenweng <lorenweng@gmail.com >
376 Date: Sun Nov 15 17:46:51 2015 -0500
377
378 paras -> params
379
380 commit 7c61eacf40b417894f77502c3ce68d210d873104
381 Author: lorenweng <lorenweng@gmail.com >
382 Date: Sun Nov 15 17:45:04 2015 -0500
383
384 changed from bodies to program
385
386 commit 728139 d3108c530e77efcff3aafd3ce9ce544033
387 Author: lorenweng <lorenweng@gmail.com >
388 Date: Sun Nov 15 17:42:45 2015 -0500
389
390 change paras to params
391
392 commit e7a35088235c35e2af7294f71cb18bacca9f65fc
393 Author: lorenweng <lorenweng@gmail.com >
394 Date: Sun Nov 15 17:40:16 2015 -0500
395
396 test ast.ml changes
397
398 commit 875 e6b4eaf60452455e96bda00c0cf848c904742
399 Author: lorenweng <lorenweng@gmail.com >
400 Date: Sun Nov 15 17:38:31 2015 -0500
401
402 reverted changes
403
404 commit fe3634f1123a9230e7a6fbb6a4a533190ca5a7b3
405 Author: lorenweng <lorenweng@gmail.com >
406 Date: Sun Nov 15 17:34:28 2015 -0500
407
408 test push
409
410 commit c2a75524b34042af8b3a06d3f3559eecdaa33bff
411 Author: lorenweng <lorenweng@gmail.com >
412 Date: Sun Nov 15 17:31:43 2015 -0500

81

413
414 ast.ml and parser.ply changes
415
416 added stuff like if/while statement handling
417
418 commit f675cb612cbe4b65fc141fc3f5024b97a7bf8ddf
419 Author: Andrew Phan <ap3243@columbia.edu >
420 Date: Sat Nov 14 15:24:18 2015 -0500
421
422 gridworld first commit
423
424 commit 697 ece706e064330717a8d999de6ce9fe6429161
425 Author: Andrew Phan <ap3243@columbia.edu >
426 Date: Sat Nov 14 15:23:01 2015 -0500
427
428 first commit

code/git.c

82

