FRAC: Recursive Art Compiler

Anne Zhang az2350

Kunal Kamath kak2211

Calvin Li ctl12124

Justin Chiang jc4127

Table of Contents

e 1. Introduction
e 2. Language Tutorial
o 2.1 Compiling and Running
o 2.2 Writing a FRAC Program
o 2.3 Example Programs
= 2.3.1 Hello World
2.3.2 GCD
2.3.3 Koch Snowflake
2.3.4 Sierpinski Triangle

= 2.3.5 Heighway Dragon
e 3. Language Reference Manual
o 3.1 Data Types & Data Structures
= 3.1.1 Primitive Types
= 3.1.2 Complex Types
o 3.2 Lexical Conventions
= 3.2.1 Identifiers
= 3.2.2 Keywords
= 3.2.3 Literals
= 3.2.4 Comments
= 3.2.5 Operators
= 3.2.6 Punctuators
o 3.3 Syntax
= 3.3.1 Program Structure
= 3.3.2 Expressions

= 3.3.3 Statements

o 3.4 Special Functions
= 3.4.1 Terminal Functions
= 3.4.2 System Functions

4. Project Plan
o 4.1 Process & Timeline
o 4.2 Team Roles
o 4.3 Development Tools
5. Architectural Design
o 5.1 Compiler Structure
o 5.2 Turtle Graphics in C
o 5.3 GIF Generation
6. Testing

7. Lessons Learned
o Calvin Li
o Anne Zhang
o Kunal Kamath
o Justin Chiang

8. Appendix
o 8.1 Scanner
o 8.2 Parser
o 8.3 AST
o 8.4 Semantic Checker
o 8.5 SAST
o 8.6 Code Generator
o 8.7 FRAC

1. Introduction

FRAC is a domain-specific programming language that enables the programmer to
generate fractals in the form of bitmap image files (BMPs). The language is meant for
those interested in the mathematical manipulation of recursively generated images like
fractals. We designed this language to be simple, intuitive, and a joy to use!

Our language uses the L-system method, which uses grammars (similar to those we
learned in COMS W3261) to generate fractals. A basic FRAC program is composed of

function and grammar declarations. The true power of FRAC is its ability to use simple L-
system grammars to generate both static and dynamic fractal images. As you will see in
examples of our compiled C code, the code for generating a fractal in C is incredibly
verbose and repetitive. Grammar declarations in FRAC allow the programmer to easily
play around with different rules and commands to see what fun new fractals they can
generate.

2. Language Tutorial

2.1 Compiling and Running

Run make in the top level directory of our source code to compile the frac compiler.
Then, simply run the shell script run.sh with a flename argument to compile and run
your FRAC code. The filename must have extension .frac.

$./run.sh test.frac

If your FRAC program generates an image, it requires the turtle graphics C library (the
necessary files, turtle.c and turtle.h are included in our source code directory).
Additionally, if you are using the grow() function to generate an animated GIF, it
requires the GraphicsMagick and gifsicle libraries. The GIF generation libraries are
somewhat large, so we did not include them in our submitted directory. Please refer to
our README to find instructions on downloading and installing those tools.

The idea of turtle graphics is that there is a “turtle” that walks around the screen with a
pen, and it is given commands to move around, drawing an image based on its
movement. On compilation, a C program is generated in which each gram is separated
into two separate functions, one which determines the start state based on the init
string, and one that recursively evaluates the rules based on the number of iterations and
the symbol being used. The terminals of each rule map to one of three functions:
turtle_turn_right(), turtle_turn_left, and turtle_ forward() , corresponding to
rturn() , 1turn() and move() from FRAC, respectively. The main function generates a
2000x2000 grid of pixels by default, which should be enough space for most drawings. It
also saves a static bmp image if draw() is called on the gram from the FRAC program,
or it strings together multiple bmp files based on each iteration if grow() is called, in

which case gifsicle is used to turn them into a GIF. Finally, it cleans up the memory used
with turtle cleanup() .

2.2 Writing a FRAC Program

At a high level, FRAC programs are composed of function and grammar declarations. A
main function is required in every program. Grammars must be declared and defined
outside of functions, thus giving every grammar a global scope. The main function is the
entry point of the program.

The two system functions draw(gram g, int n) and grow(gram g, int n) are called on
defined grammars to generate images. Grammars can be defined without being used in
a system function call, but if you do that your grammar will be lost in the ether, which we
do not recommend. draw() can be called multiple times, but grow() must only be
called once. Both functions can only be called in the main function. A call to the
draw(gram g, int n) system function will generate a BMP image from the specified
grammar g. The integer n specifies how many times the recursive rules defined in g are
evaluated, which affects the size and complexity of the generated fractal. A call to the
grow(gram g, int n) function will generate a series of BMPs that will be linked into a
GIF, showing the growth of the fractal generated by grammar g. Each frame of the GIF is
an image from iteration i of the fractal generation, where i <= n.

Below are several example programs, from basic to somewhat complex, which will help
give you a sense of how FRAC works.

2.3 Example Programs

2.3.1 Hello World

This simple program prints "hello world":

main() {
print("hello world");

}

2.3.2GCD

This program calculates and prints the greatest common divisor (GCD) of 8 and 12:

gcd(int x, int y) {
while(x !=vy) {

if(x > y) {
a = a-b;
}
else {
b = b-a;
}
}
return a;
}
main() {
int n = gcd(8, 12);
print(n);
}

2.3.3 Koch Snowflake (Static BMP)

As our language is designed to facilitate generation of fractals, the best way to program
in FRAC is to define grammars and draw them! For example, you can create a Koch
snowflake using the following FRAC program:

gram koch = {
alphabet: [F, p, m],
init: 'Fpp FppeF',

rules: {
'F'" ->'FmFppFmF",
"F' -> move(l),
'm'" -> rturn(60),
'p' -> 1lturn(60)
}
}
main() {

draw(koch, 6);
¥

s
P L

.
R

il

VY

Y g

S

2.3.4 Sierpinski Triangle (Static BMP)

Another fun fractal is the Sierpinski triangle. The grammar for generating a Sierpinski
triangle is somewhat more complex than the Koch snowflake (but still easy to write):

gram sierp = {
alphabet: [A, B, p, m],
init: 'A',

rules: {
‘A’ -> 'p BmAmMBPp',
A" -> move(l),
'B' -> ' mApBpAMmM,
'B' -> move(l),
'p' -> 1lturn(60),
'm' -> rturn(60)
}
}
main() {

draw(sierp, 9);

}

2.3.5 Heighway Dragon (Animated GIF)

One of the most exciting things that FRAC can do is create animated GiFs depicting the
growth of the fractal that you are generating. Here is an example of a FRAC program that
uses the grow() system function to create a dynamic GIF of the Heighway dragon
fractal (one of our favorites!). Each frame of the resulting GIF is included here, but in our
source code you can open up the GIF in a browser to view the animated version.

gram dragon = {
alphabet: [F, X, Y, p, m],
init: 'F X',
rules: {
X' -> 'XpYF',
Y'" -> '"FXmY'",
"F' -> move(5),
p' -> lturn(99),
m' -> rturn(99)

}

main() {
grow(dragon, 15);
}

Hhoo
T D

g

Hh
H

3. Language Reference Manual

3.1. Data Types & Data Structures

The language supports two categories of data types: primitive types and complex types.

3.1.1 Primitive types

The primitive types in FRAC are int, double, string, and bool .

int x = 3.5;
double y = x;
string s

bool b

= "Stephen";

true;

3.1.2 Complex types

A complex type contains multiple named fields and requires a larger and variable amount
of memory to store a structured collection of values. A complex type is similar to the
familiar object type in so far as it contains fields, but a complex type does not contain
any methods. In fact, all instantiated complex types are immutable; operating on them
requires the use of functions.

Two complex types are supported in the language: gram and rule .

A gram represents a formal grammar that is used to specify a fractal that can be drawn.
It contains an alphabet , an init string, and a set of rules . A rule represents a
production rule that is a part of the formal grammar. A recursive rule consists of a rule
symbol and a successor string, while a terminal rule consists of a rule symbol and a
terminal function. Later sections expand on how such grammars and rules can be
declared in code.

3.2. Lexical Conventions

3.2.1 Identifiers

An identifier is a sequence of alphanumerics and underscores. An identifier may begin

with neither a digit nor an underscore. Both uppercase and lowercase letters are
permitted. The following are valid identifiers: kunal_43, hello_ANNIE , and

do_this justin . The following are invalid: helloworld& , _dothis , and 4calvin.

3.2.2 Keywords

The following are a list of reserved keywords in the language:

rule
gram
if
else
while
return
true
false

as well as the literal types:

int
double
bool
string

No keyword may be used as an identifier.

3.2.3 Literals

A literal is a notation that represents the value itself as written. Literals can only be of one
of the primitive types, which are discussed below. A literal may not be used as an
identifier.

Integer constants

An integer consists of a sequence of digits not containing a decimal point.

int x = 10;

Floating point constants

A floating point constant consists of two sequences of digits, where one may be the
empty sequence, separated by a decimal point.

double y = 4.55;

Boolean constants

There exist only two boolean constants:

bool is there = true;

bool is there = false;

String constants

A string constant consists of a sequence of characters enclosed by single quotes.

string name = 'Anne Zhang’;

3.2.4 Comments

Just like in Java, // are used for single line comments and /* */ for nested or multi-
line comments.

// This is a single line comment
/* This is
a multi-line
comment
*/

In a single line, all characters after // are ignored by the compiler.

With multi-line comments, the compiler will ignore everything from /* to */ . Note,

however, that multi-line comments cannot be nested within one another like so:

/* Multi-line comments
/* cannot be nested */
like in this example!
*/

This will result in a syntax error, as the compiler will treat the first */ as the end of the
comment.

3.2.5 Operators
Operators specify logical or mathematical operations to be performed.

Arithmetic operators:
+ addition

- subtraction

* multiplication

/ division

modulo

N

= assignment

Logical operators:

I negation

== equivalence

I= non-equivalence
< less than

> greater than

&& AND

|| OR

The arrow -> is a special operator used in rule definitions in grammars. In a rule, the

string to the left of the arrow can be replaced by the string or system function to the right
of the arrow. For example:

'F' ->'F1FrrF1F',
'r' -> turn(60)

are both valid rules. The arrow has no meaning outside of rule definitions, and an error
will be thrown if it is used outside of this context.

3.2.6 Punctuators

e terminate statements

e separate function parameters, separate key-value pairs in grammar definitions

e string literal declaration
{}

e grammar definitions
e scope

e function arguments

* expression precedence
e type casting

e conditional parameters

3.3 Syntax

3.3.1 Program Structure

FRAC programs should be written in a single file. A FRAC program consists of grammar
definitions, function definitions, and a main() function. Functions and grammars are
defined first and subsequently used in the main() function, although they cannot be
defined within the main() function itself.

The main() function is the entry point for the program. It may contain variable and literal
declarations, expressions, and statements. It may also use any previously defined
functions and grammars. In addition, the main() function must use one, and only one, of
the following system functions: draw() , grow() . This function specifies the type of

image output that the program will create.

The following is an example of a valid FRAC program:

gram my_grammar = {

alphabet: [F, r, 1],

init: 'Frr FrrF',

rules: {
'F* ->'F1FrrF1F',
'r' -> rturn(60),
'1' -> 1turn(-60),
'F' -> move(1)

}
}
main() {
grow(my_function(my_grammar), 2);
}

In this example, the program will construct a grammar given in the declaration of
my_grammar. Then, it will output a GIF showing the growth of the fractal generated by
that grammar (the fractal will have undergone 2 iterations, as specified by the second
parameter to the grow() function).

3.3.2 Expressions
Variable Declarations

Variables can be declared and assigned to a value simultaneously, or declared without
assignment and assigned to a value later on. Variable can only be declared at the top of
functions, before any other statements. If a variable is declared and not defined, but
used later in the program, our compiler will not throw an error (and neither will gcc), but
the variable will be evaluated to a garbage value. Declarations take the form:

// declaration without assignment
var_type var_name;
var_name = value;

// declaration with assignment
var_type var_name = value;

where var_type is any of the four literal type keywords (int , double, bool, string),
var_name is any valid identifier as defined in 3.1, and value is either a literal of type
var_type Or an expression that evaluates to a literal of that type.

Function Definitions

Functions are declared and defined simultaneously - unlike variables, they cannot be
declared without definition and defined later. All functions must return a value, although
the return type is not be specified in the function declaration. Functions have any return
type, except for gram . Any function except for the main() function is defined as follows:

my _name(params) {
// function body

while the main() function must not have any formal parameters:

main() {

// main function body

Additionally, the main() function should not contain any return statements.

Function Calls

All functions except for the main() function must be called explicitly, with the correct
number of arguments as specified in the function definition. Functions can take
arguments of any type, except type gram . The main() function is called implicitly at the
start of every program run, and calling main() explicitly in the program will throw an

error.

// valid function call
my_func(args);

// this will throw an error
main();

Function calls may be placed on the right-hand side of an assignment expression, in
which case the identifier on the left-hand side will be assigned the return value of the
function call.

// n is assigned the return value of my_func(args)

int n = my_func(args);

Function calls may also be nested. They can be passed as arguments into other
functions, in which case the return value of the inner function call will be passed as an
argument to the outer function call. The return value of the inner function call must match
the argument type specified in the outer function’s definition. A type mismatch will throw
an error.

/* my_func must return an object of type gram, otherwise this
expression will throw an error */
draw(my_func(args), 2);

Grammar Definitions

Grammar definitions are similar to function definitions, but the grammars themselves are
more similar to objects. Grammars are defined as follows:

gram my_gram {
alphabet: [// comma-separated symbol list]
init: // init string here,
rules: {
// symbol -> end string

// OR
// symbol -> terminal function

}

Grammars are defined with three comma-separated fields: alphabet, init, and rules. The
alphabet specifies the symbols that will be used in the rules. The init string specifies the
start state of the grammar. The rules specify how the init string will be evaluated.

Every grammar must contain at least one recursive (string-to-string) rule - it wouldn’t
generate a fractal otherwise! Every symbol in the alphabet must have at least one, and at
most two, rules corresponding to it. Every symbol in the init string and in the rule list
must be included in the alphabet. If a symbol has two rules, one rule must be recursive
and the other must be non-recursive. There cannot be two recursive rules of the same
name, or two terminal rules of the same name. Any other combination of rules is
ambiguous and will throw an error.

Grammars are evaluated when they are passed into a drawing system function (draw()
or grow()). Grammar evaluations start with the init string, which is then evaluated
recursively for the number of times specified in the second argument to the drawing
function call. For every recursive evaluation, the compiler will look for a recursive rule for
each symbol, and will only use a terminal rule for a symbol if it cannot find a recursive
rule, or if it has reached the end of its required iterations.

Arithmetic Expressions

Arithmetic expressions are expressions that contain an arithmetic operator, and evaluate
to a literal value. They can be placed on the right-hand side of variable assignments, or
passed as arguments to function calls.

int x = 3;

int y = 8;

intz=x+y; // z =11

my func(x + y); // 11 is passed into my_func

Boolean Expressions

Boolean expressions are expressions that contain logical operators, and evaluate to a
boolean value true or false . They are used to evaluate conditional and loop
statements.

bool isTrue = true;

bool isFalse = false;

if(isTrue || isFalse) {
print(“truth”);

3.3.3 Statements

A statement is a complete instruction that can be interpreted by the computer.
Statements are executed sequentially within a function.

Expression Statements

Expression statements are the most common type of statement, and can include any of
the previously covered expressions. In FRAC, all statements are terminated with a

semicolon ; .
Conditional Statements

Conditional statements first check the truth condition of a boolean expression, and then
execute a set of statements depending on the result. Here is an example if / else
conditional statement:

if (expression) {
statement

}

else if (expression) {
statement

}
else {
statement

Only the if clause of the conditional statement is required. The else statementis

executed only if none of the previous conditions return true.
Loop Statements

Loop statements are constructed using the while and for keywords, which allow you
to iterate over blocks of code.

while (expression) {

statement

}

for(int 1 = @; i < 5, i=i+l) {
statement

}

In the case of while loops, the truth condition of the boolean expression is checked
before every execution of the body of the while loop, which is executed only if
expression returns true.

In the case of for loops, there are three expressions within the parentheses, separated

by semicolons. However, only the middle expression is required, and it must be an
expression that evaluates to a boolean value, which is used to check if the for loop
should continue running or if it should terminate.

Return Statements

Ends the execution of a function with the use of the keyword return . If a function does
not have a return statement at the end, it is assumed to be a void function without a
return type.

3.4. Special Functions

3.4.1 Terminal Functions

There are three possible terminal functions that are used in grammar declarations in
FRAC: move(), rturn and 1turn . There should be at least one rule in your grammar
that evaluates to a terminal function, in order to generate a fractal image. These
functions correspond to the turtle graphics "pen”, which draws the image that you are
generating.

move()

This is one of two possible terminals in a FRAC grammar:

move(int distance)

The function draws a line of length distance .

turn()

The other two possible terminals in a FRAC grammar:

rturn(int angle)

or

lturn(int angle)

The function indicates to the grammar that the current line being drawn should be re-
oriented by angle degrees, which can be in the positive or negative direction (abiding by
the right hand rule).

3.4.2 System Functions

draw()

This is one of two functions in a FRAC program that generates a fractal image:

draw(gram g, int n)

The function creates a static BMP image of the fractal described by the grammar g over
n number of iterations.

grow()

grow(gram g, int n)

The function resembles draw() , except instead of creating a static image, it creates a
dynamically “growing” GIF (by linking together a collection of static BMP images) of the
fractal described by the given grammar g over n iterations.

print()

print(string s)

The function prints out the string s to the standard output. The same escape sequences
as Java would be interpreted correspondingly (i.e. \n for newline).

4. Project Plan

4.1 Process & Timeline

We decided that we wanted to create a fractal-generating language in late September.
We began to design the language in early October, and continued to flesh out ideas until

the beginning of November. Programming of the compiler began in earnest in November.
We completed a basic front-end and basic code generator in mid-November. We
worked on building the semantic checker and code generator, as well as expanding the
front-end, well into December. Finally, we linked all the parts together, obtaining our first
successful fractal images in mid-December.

While building our language and the compiler, members of our group tried to work
together as much as possible. Pair programming was a crucial part of our strategy - we
recognized that this allowed us to catch errors much more easily, as well as write clearer
and more readable code.

4.2 Team Roles

* Anne Zhang: Manager / Language Guru / System Architect
e Kunal Kamath: Language Guru / System Architect / Tester
e Calvin Li: System Architect

Throughout the semester members of our group stepped up to take on various tasks, so
no member had a static role. Anne was the primary author of the front-end (scanner,
parser, AST). She and Kunal worked together on the semantic checker and the code
generator, the core parts of our compiler. Kunal worked on building out a robust test
suite for the language, as well as using libraries to generate dynamic GlIFs. Calvin
worked on using the turtle graphics library to write the C code into which FRAC is
generated.

The following is an extensive log of our git commits , which show the work that each
team member put into each part of the project.

commit a97091a7f3bdad4e37d98781e80fbf3496df3df60
Author: Annie Zhang
Date: Tue Dec 22 15:09:05 2015 -0500

Finished final report
commit ela®@876bb684184b19b430c3d66d57d6325896F7
Author: Annie Zhang

Date: Tue Dec 22 04:48:18 2015 -0500

Added to final report

commit 2eb906746e9b6+db5307218494851b526alelel?
Author: Annie Zhang
Date: Tue Dec 22 00:50:27 2015 -0500

Started color stuff

commit 4c25b61803afa2698a49e4c2321326998280e888
Merge: 8835df8 ©45aff8

Author: Annie Zhang

Date: Mon Dec 21 16:40:28 2015 -0500

Merge branch 'master' of github.com:kunalkamath/FRAC

commit 8835df821cbcOb497c4786923d21af7b3ed4bd220
Author: Annie Zhang
Date: Mon Dec 21 16:40:18 2015 -0500

Merging

commit 045aff8898640480026dfa770dcad9eflfccafa7
Author: Kunal Kamath
Date: Mon Dec 21 16:36:05 2015 -0500

Added config files
commit 766e4e7811f078feeb3392a052ce8279e65189¢eel
Author: Kunal Kamath
Date: Mon Dec 21 06:58:32 2015 -0500

Made sutre test suite works for demo
commit ecf51d9eb59ecceca759296delaa7al3cOfd99c1
Author: Kunal Kamath
Date: Mon Dec 21 06:36:29 2015 -0500

Now really ready for demo
commit 156fcf98f365b9a5d79511278ac62f7705cc50db
Author: Kunal Kamath
Date: Mon Dec 21 ©06:14:51 2015 -0500

Ready for demo

commit 622f1206fc3b653alfcf46a86e06fef5980b2dc9
Author: Kunal Kamath

Date: Mon Dec 21 03:10:14 2015 -0500

Finished tests

commit 898319875067f90c2431e6dfdellfallaf4cb517
Merge: f9ce528 5c3e367

Author: Kunal Kamath

Date: Mon Dec 21 ©2:31:35 2015 -0500

Merge branch 'master' of https://github.com/kunalkamath/FRAC

commit f9ce5283724e31495789c6508542b0cd0309a2d4
Author: Kunal Kamath
Date: Mon Dec 21 02:31:30 2015 -0500

More tests still

commit 5c3e36760bcfedebac20cBe34a70fad56b022fc7
Author: Annie Zhang
Date: Mon Dec 21 02:29:31 2015 -0500

Fixed another small error

commit ©34e6bb7b7ebdcb@e9abc8ea2a79460b36b54745
Merge: d429566 3clalbc

Author: Annie Zhang

Date: Mon Dec 21 02:28:47 2015 -0500

Merge branch 'master' of github.com:kunalkamath/FRAC

commit d429566d21be5452a77cb80b5f1e673081b2eaab
Author: Annie Zhang
Date: Mon Dec 21 02:28:39 2015 -0500

Fixed small error

commit cbe6ddaf4c47b4cfofblb61f0e3a0f9f30cades5e
Author: Annie Zhang
Date: Mon Dec 21 02:07:46 2015 -0500

IM SO SORRY

commit 3clalbcbe@d079480349d6c5585187132c00d164
Merge: 611dc4f 607aaa9

Author: Kunal Kamath

Date: Mon Dec 21 ©01:39:15 2015 -0500

Merge branch 'master' of https://github.com/kunalkamath/FRAC

commit 611dc4fdf8f9254ff416a0a83be3e214e2eab27a
Author: Kunal Kamath
Date: Mon Dec 21 01:39:06 2015 -0500

Added more failure tests

commit 6072aa9674b2b897219b666186de76042567d0al
Author: Annie Zhang
Date: Mon Dec 21 ©01:03:37 2015 -0500

Void print checking

commit 3fb6901950d83278a8045d499f9ff1308b431aeb
Author: Kunal Kamath
Date: Mon Dec 21 ©00:19:03 2015 -0500

Failure tests

commit b9c6cfdfc7a5a6b5bfc6ff15249ca8fa90ebbd2f
Merge: a7ffaébb 8c5ealf

Author: Annie Zhang

Date: Sun Dec 20 23:47:04 2015 -0500

Merge branch 'master' of github.com:kunalkamath/FRAC

commit a7ffabb6e87fee56168b3al15728c679953997148
Author: Annie Zhang
Date: Sun Dec 20 23:46:11 2015 -0500

Parser warnings fixed

commit 8c5eadf6de9e83e8c186bc428d92fb9239f66249
Author: Kunal Kamath
Date: Sun Dec 20 23:26:57 2015 -0500

Did some restructuring
commit 8651d1e5c2944d9ed79f496bfce@9eef006be392
Merge: e18a9f4 229815c
Author: Kunal Kamath

Date: Sun Dec 20 23:11:31 2015 -0500

Merge branch 'master' of https://github.com/kunalkamath/FRAC

commit e18a9f412583fc47c63497a5066el1f34e1f148d7
Author: Kunal Kamath
Date: Sun Dec 20 23:11:24 2015 -0500

More testing

commit 229815c50da7bfe6239fc8d2el12c4f17cb256¢c7b
Merge: f72a5f3 bacd55b

Author: Annie Zhang

Date: Sun Dec 20 23:09:37 2015 -0500

Merge branch 'master' of github.com:kunalkamath/FRAC
commit f72a5f39d9f1f685a20da3e92070726d75f2b87F

Author: Annie Zhang
Date: Sun Dec 20 23:09:22 2015 -0500

Updated vdecl checking
commit bacd55be230c732bf54644e593a157b2cdodbb5e
Merge: 9d617b9 4b062b6

Author: Kunal Kamath
Date: Sun Dec 20 23:01:50 2015 -0500

Merged
commit 9d617b9aadb3411a5255ddd@5bc1f527997fa205
Author: Kunal Kamath
Date: Sun Dec 20 23:00:45 2015 -0500

Still testing
commit 4b062b617597bbb6b41d950fb5c515fbc7aeb2e6
Author: Annie Zhang
Date: Sun Dec 20 22:58:47 2015 -0500

Checks duplicate variables
commit 3d06b8dcf1a49c98c04022ddbaed4ded25ab814aa
Author: Annie Zhang
Date: Sun Dec 20 22:32:09 2015 -0500

All warnings fixed, parser rules still not reduced tho

commit ff1d32894e48b36a21097e985al1ab85a35109fc0O

Merge: 124cbf4 fdebdel
Author: Annie Zhang
Date: Sun Dec 20 22:26:47 2015 -0500

Fixed conflicts

commit 124cbf4ebclfc278cfa505f5fbe5a0968a81403b
Merge: d@6878e 306b315

Author: Annie Zhang

Date: Sun Dec 20 22:15:52 2015 -0500

Merge branch 'cleanup'

commit 306b3153e0132007de7749911f7091592d196f2e4
Author: Annie Zhang
Date: Sun Dec 20 22:14:18 2015 -0500

5 warnings left woo
commit fdebdelcf@d5524f41bfed8b69591be5176e7325

Author: Kunal Kamath
Date: Sun Dec 20 22:11:05 2015 -0500

Adding tests

commit 56f302f79fffb4e5bav02204edf2laea8aa295c3
Author: Annie Zhang
Date: Sun Dec 20 22:10:54 2015 -0500

5 warnings left

commit f5a62eb8a2eb078f9ff36763064a02e3129bb1b9
Author: Annie Zhang
Date: Sun Dec 20 21:04:12 2015 -0500

Working on final report

commit cl1l5c2e29e7fcb565fd6a86621ebf267a200ea364
Author: Kunal Kamath
Date: Sun Dec 20 20:41:33 2015 -0500

Grow() working, consider adding step sizes
commit 46afb00540a3f236dbedbfdofc482c926288b9al

Author: Kunal Kamath
Date: Sun Dec 20 18:55:11 2015 -0500

Grams fully integrated, basics of Grow() working too

commit ed5069b3d2c68fbbaldad4ca67949eac8454dlce
Author: Kunal Kamath
Date: Sun Dec 20 15:24:36 2015 -0500

Documentation added

commit e822dfd459f25cdc77e6886384086603283fd36e
Merge: d06878e e3384e8

Author: Annie Zhang

Date: Sun Dec 20 13:53:45 2015 -0500

Merge pull request #17 from kunalkamath/gram-gen

Gram gen

commit e3384e81d88680cedb8bff83db6ae0389333464b
Author: Annie Zhang
Date: Sun Dec 20 13:52:43 2015 -0500

It works

commit 8f425333e5b31bb7322533eb328667fccbOb25fb
Author: Annie Zhang
Date: Sat Dec 19 19:19:18 2015 -0500

Code gen working for draw() function

commit 95e51570d5el1f8cfb891a2ce®3a2b39bbff109d9
Author: Annie Zhang
Date: Sat Dec 19 18:47:15 2015 -0500

Basic gram code gen WORKING

commit dO6878e0126851d0e7f617332103ff6629200021
Merge: 34b123c 5cd899b

Author: Kunal Kamath

Date: Sat Dec 19 14:54:18 2015 -0500

Merged gram semantics
commit 34b123claddc904195e45af254fc7+54da38fc99

Author: Kunal Kamath
Date: Sat Dec 19 14:51:00 2015 -0500

Refactored var_decls

commit 5cd899bf3ae3c85bad4a6c392871dffb742be7687
Merge: 82doff5 c68052e

Author: Annie Zhang

Date: Sat Dec 19 14:16:13 2015 -0500

Merging gram
commit c68052eecf210036180e0c718bc3e7adcfo4844f
Author: Annie Zhang
Date: Sat Dec 19 14:06:57 2015 -0500

Draw function semantic checking

commit c5871604398a61dc39be5f6868d9be27c528e003
Author: Annie Zhang
Date: Sat Dec 19 13:33:19 2015 -0500

Checks that every element of alphabet has a
commit 85c46e284b059aeb438090442dab8600c48395F3
Author: Annie Zhang
Date: Sat Dec 19 11:19:58 2015 -0500

Gram semantics work basically
commit 3cfb38d0a5170f268f0c4a5d2881bf27elee8aab
Author: Annie Zhang
Date: Sat Dec 19 11:11:53 2015 -0500

BASIC GRAM SEMANTICS WORK
commit e60e85c70adf252c8ff9ec855840f4af78efe9do
Author: Annie Zhang
Date: Sat Dec 19 10:52:18 2015 -0500

Alphabet and init checking
commit 82dOff5cafl11da61168fdo8b2088969108bea9d6
Author: Kunal Kamath

Date: Sat Dec 19 04:52:16 2015 -0500

More tests, assignment equality working

corresponding rule

commit 4e5aa8e7d38b4cPa25e6cceb30e3758b71408731
Author: Kunal Kamath
Date: Sat Dec 19 ©02:45:36 2015 -0500

Added tests, working on var_decls

commit b92e7183acPa346b77fad53f2cb3ablaeeecald71
Author: Annie Zhang
Date: Fri Dec 18 15:19:10 2015 -0500

Slight code cleanup

commit dfec4202dad4448b5f11865517508aaad95b3ced6
Author: Annie Zhang
Date: Fri Dec 18 15:12:35 2015 -0500

Working on semantic checking for grams

commit 8607ccPBce8a72969b8b3bef56928209e60a7230
Author: Annie Zhang
Date: Fri Dec 18 14:04:30 2015 -0500

Parsing and scanning works for grams

commit 997f3e89f6c403f2ddaa32ble®737d8ad3e488c3
Author: Annie Zhang
Date: Fri Dec 18 10:48:15 2015 -0500

Saving changes before checking out

commit 6c53df94230e18delf025d2c03223a644538dcbo
Author: Annie Zhang
Date: Fri Dec 18 ©1:31:39 2015 -0500

Slowly but surely, semantic for grammars
commit c42a20e50e1d7454865376d0deb6c0d9211beado

Author: Annie Zhang
Date: Thu Dec 17 20:23:49 2015 -0500

Added grams and rules to scanner, parser, and AST
commit 51a80145bafd857301119adb9bdc4b7231a279bf

Author: Calvin Li
Date: Thu Dec 17 18:05:27 2015 -0500

improved c graphics code, adding comments to
indicate where a FRAC gram maps in

commit 7ef9fad4lac82ee87828238741b9571fafOb6b215
Merge: ©3dodef 23e0298

Author: Annie Zhang

Date: Thu Dec 17 15:16:17 2015 -0500

Fixed actual parameters scoping error

commit 23e0298394e6e193660e1104c62072d6bcf65da7
Author: Kunal Kamath
Date: Thu Dec 17 ©02:32:19 2015 -0500

Code gen flow complete

commit ©3dodef9fe62a7ael098b73b5aae3b4b5a89dfce
Author: Annie Zhang
Date: Wed Dec 16 23:23:24 2015 -0500

Added return types to function code gen

commit 24390afcdffed8882112965bc87c8340c26579b3
Author: Annie Zhang
Date: Wed Dec 16 19:42:10 2015 -0500

Main function included in checked_fdecls

commit 8117eellc7452a0b486da3c2ef372f34a7a552f7
Merge: 84d7eca bofafc9

Author: Kunal Kamath

Date: Wed Dec 16 19:25:46 2015 -0500

Merge branch 'master' of https://github.com/kunalkamath/FRAC

commit 84d7eca576ab70219da2lad4e5fdodf2e28a838af
Author: Kunal Kamath
Date: Wed Dec 16 19:25:08 2015 -0500

Codegen flow almost working

commit be@fafc9afded36e97aa423824a863aaf055fe2b5s
Merge: 78abde8 834bd60

Author: Calvin Li

Date: Wed Dec 16 16:51:16 2015 -0500

Merge branch 'master' of https://github.com/kunalkamath/FRAC

commit 78abde8922e4f225a1217c30e9f246f3c2723ae6
Author: Calvin Li
Date: Wed Dec 16 16:50:50 2015 -0500

added c graphics stuff

commit 834bd6001302b71f5e@aa8fa347ccOb2ae271542
Merge: 806c27b fc12231

Author: Kunal Kamath

Date: Wed Dec 16 ©5:26:56 2015 -0500

Merged with semantic branch

commit fc122315a8del19c22018c3c825e83b04a915c4b4
Merge: 70079el 586928f

Author: Kunal Kamath

Date: Wed Dec 16 ©5:21:30 2015 -0500

Resolving conflicts in semantic branch

commit 806c27b7a838ealad7beddb614ff8185c48190aa
Author: Kunal Kamath
Date: Wed Dec 16 ©5:16:37 2015 -0500

Semantics mostly in place, now working on code generation

commit 586928f81a33dd6ba336ee96b5b2ac85585b6452
Author: Annie Zhang
Date: Wed Dec 16 ©1:13:51 2015 -0500

Print function call checked
commit 8ddo00f6a36e80934ea95fe2al73ad5e88b733e2
Author: Kunal Kamath
Date: Wed Dec 16 ©1:02:31 2015 -0500

For loops implemented
commit c80bfedd7f9dal70c30472a5e721fd936d151c87
Author: Annie Zhang

Date: Wed Dec 16 ©0:39:28 2015 -0500

Function call checking works

commit e7aa3fe2d99b85f3cc4533df8e7f469de28b5all
Author: Kunal Kamath
Date: Wed Dec 16 ©00:32:42 2015 -0500

If, while, and more operators added

commit ©2024da48f5ce7l1ad47a29fa3c3d4779bcO80a7e5
Author: Kunal Kamath
Date: Tue Dec 15 23:07:58 2015 -0500

Fixed small merge error

commit 70079e117a08019bb081b8bOaccf8a4318adadas
Merge: a546a09 aad94cd

Author: Kunal Kamath

Date: Tue Dec 15 23:04:39 2015 -0500

Merged Annie's semantic work

commit a5462098db311d1674a7cca8603020d10c4127el
Merge: e90cfe9 fb3a301l

Author: Kunal Kamath

Date: Tue Dec 15 22:53:08 2015 -0500

Merge branch 'semantic_kunal'

commit fb3a301b74c3f945c6e5f6a29280cedb7bac8d79
Merge: 57f68b8 e90cfe9

Author: Kunal Kamath

Date: Tue Dec 15 22:52:56 2015 -0500

Merging semantic with master
commit aad94cd6ff491d72a0434e595ec81992408230c3
Author: Annie Zhang
Date: Tue Dec 15 22:43:23 2015 -0500

Updated vdecl
commit f3ce8ad9e6c6c79c4f476ebeb7053014535afc50
Author: Annie Zhang
Date: Tue Dec 15 22:26:57 2015 -0500

Scope kind of working

commit 57f68b836d66c57fb606933f65879ff80b4cbaff

Author: Kunal Kamath
Date: Tue Dec 15 21:31:23 2015 -0500

Variable environment shit is impossible
commit 6c57c6f57598f5ef460416799e81cd374e8f89ab
Author: Kunal Kamath
Date: Tue Dec 15 17:59:30 2015 -0500

Problems with vdecl stuff

commit 622c148f7ad8a2f367dd9c5c9372f9091aa4doc?2
Author: Kunal Kamath
Date: Tue Dec 15 15:13:23 2015 -0500

More semantic progress
commit bc91535c5009650d1e58f2e4c4175d1ad8033e4d

Author: Annie Zhang
Date: Tue Dec 15 15:05:36 2015 -0500

Return type checking
commit d8707bfcflad04el11562b63e71d4clblec2c2c7a
Author: Annie Zhang
Date: Tue Dec 15 14:13:41 2015 -0500

A commit

commit ©8e212b94c97c2c11fbc9ca8f0f54ce3bf3cc5b4
Author: Annie Zhang
Date: Sat Dec 5 16:58:29 2015 -0500

func decl checking works woo
commit f192a9cedfb4734c0d203e440e46129d45165e07
Author: Annie Zhang
Date: Sat Dec 5 16:57:20 2015 -0500

func decl checking works woo
commit 3f2dbecffe71e594507a8a0e6aa028bt7198b288
Author: Kunal Kamath

Date: Sat Dec 5 16:55:36 2015 -0500

Assignment checking in progress

commit 1f53b1b873c7360b0dc850132b35acac30e633eb
Author: Kunal Kamath
Date: Mon Nov 30 17:09:42 2015 -0500

Binop semantic analysis underway
commit 252b8c797f32c3174e92cc589606d627453f816a

Author: Annie Zhang
Date: Sun Nov 29 19:34:27 2015 -0500

Updated repeat function testing

commit c56¢95035860df124d5363c2f6b61976493e0al5
Author: Annie Zhang
Date: Sat Nov 28 15:06:21 2015 -0500

Mutually recursive functions not compiling for some reason

commit e9d07d2e9d891cfalb4cad82a9b63cle3ae51611
Author: Annie Zhang
Date: Sat Nov 28 14:45:44 2015 -0500

Starting function body/statement checking

commit bSbadc9f2fad94dfel62ad8176799abf0735676c2
Author: Annie Zhang
Date: Sat Nov 28 13:46:26 2015 -0500

Function declaration checking WORKS

commit a8bffddb8731db83969c712bfb820742fc53fbf4
Author: Annie Zhang
Date: Fri Nov 27 23:53:14 2015 -0500

Function declaration checking, failing tests tho
commit 832d228fa32044c7a9c64a53ae66decaedlls56bl
Author: Annie Zhang
Date: Tue Nov 24 13:43:02 2015 -0500

Updated Makefile to include semantic stuff
commit 8384235ac4b58c4flef5e030ff271d0Obe235ea7

Author: Annie Zhang
Date: Tue Nov 24 02:01:11 2015 -0500

Started semantic checking

commit e90cfe936f61f09705ac9c8deb4ffb551d0602685
Author: Kunal Kamath
Date: Tue Nov 17 16:48:11 2015 -0500

Fixed escape sequence error in strings

commit 9fc71731ade6993c4d721e0d58ecceffd8554347
Author: Annie Zhang
Date: Tue Nov 17 13:38:52 2015 -0500

Working demo

commit 321c6e6ad3702dc94e2elb53cc44e009f75de247
Author: Kunal Kamath
Date: Tue Nov 17 00:43:57 2015 -0500

Finishing touches before hello world deliverable

commit 25630b78d5cc4d29a9db884faddd76392118db7b
Merge: dff3882 8c66cb@

Author: kunalkamath

Date: Tue Nov 17 00:37:40 2015 -0500

Merge pull request #2 from kunalkamath/symbol-table

Symbol table merged

commit 8c66cb084b71062e911ffle53e45fcOcel9fcfie
Author: Annie Zhang
Date: Tue Nov 17 ©00:35:59 2015 -0500

Non-main function declarations working

commit dff3882d4c8095c4eb476e05788c97d24b608987
Author: Kunal Kamath
Date: Tue Nov 17 ©00:22:53 2015 -0500

Merged testing branch and cleaned up Makefile

commit 4eeabb8d739e140ab3c966371b06183170baabbl
Merge: c2337c7 7a589e5

Author: kunalkamath

Date: Tue Nov 17 00:18:48 2015 -0500

Merge pull request #1 from kunalkamath/testing

Testing

commit bf298bb78df7be6a5d07629959285c10ab83e691
Author: Annie Zhang
Date: Tue Nov 17 ©00:11:50 2015 -0500

Function calls working

commit 8ed2368c64ab990316e839e6fe6felde60fbc5bd3
Author: Annie Zhang
Date: Tue Nov 17 00:01:39 2015 -0500

Compiles most expressions and statements

commit 7a589e588c20d829dbadcd6327c84a9ffbbc824b
Author: Calvin Li
Date: Mon Nov 16 22:32:50 2015 -0500

took out redundant copying of compiled file

commit 418c845dfa50754dbf4eee3f6814f4ad8f63d9c2
Author: Kunal Kamath
Date: Mon Nov 16 19:44:45 2015 -0500

Testing fully functional

commit e9186dc93ad49+590712dadlc465ccfc8eaddf2a
Author: Kunal Kamath
Date: Mon Nov 16 01:04:50 2015 -0500

Testing script in early stages

commit 9e48bf2b8b25ced92d7131eb7301fddbc733b743
Author: Kunal Kamath
Date: Sun Nov 15 21:14:54 2015 -0500

Hello world workingclear

commit 6a5d6cfd32baateat924011084bbc5df69596265
Merge: aac8615 dd5d636

Author: Kunal Kamath

Date: Sun Nov 15 18:49:01 2015 -0500

through mktemp

Merge branch 'hello-world' of https://github.com/kunalkamath/FRAC into hello-wo

commit dd5d63621e3aea390d4elfcadb6bb75f6d9651blf
Author: Annie Zhang
Date: Sun Nov 15 18:48:38 2015 -0500

Compiling but not working

commit aac8615abd@02d157b81b4fale5d3f3aa977cd3c
Merge: 339blbl 140936e

Author: Kunal Kamath

Date: Sun Nov 15 17:16:07 2015 -0500

Merge branch 'hello-world' of https://github.com/kunalkamath/FRAC into hello-wo
commit 140936ef5090731f2d613024138c87460b7baael
Author: Annie Zhang
Date: Sun Nov 15 04:10:30 2015 -0500
Basic untested code generator
commit ©@dea5b880828aad40de28b0193bcaa33ccac4447
Author: Annie Zhang
Date: Sun Nov 15 02:42:13 2015 -0500
A lotta shit
commit 339blbl5a7a7ca8d155c03592f3e77a8b96da994
Merge: c2337c7 b44adbo
Author: Kunal Kamath
Date: Sat Nov 14 11:17:11 2015 -0500
Merge branch 'hello-world' of https://github.com/kunalkamath/FRAC into hello-wo
commit b44adb089003e740535f8e9c993706cfa80537ff
Author: Annie Zhang
Date: Sat Nov 14 11:12:22 2015 -0500
Modified AST
commit 57988bccbb017fd20a3ac6c901falf49b589ae6
Author: Annie Zhang

Date: Fri Nov 13 14:07:21 2015 -0500

Initial commit

commit c2337c73d6l1lef821f704497e7bcd554f1d57399c2
Author: Kunal Kamath
Date: Thu Nov 5 20:58:38 2015 -0500

Added microc files with hello-world functionality

commit 54d34e86651091149b72742da271eb3efla2alf3
Author: Kunal Kamath
Date: Tue Nov 3 16:41:22 2015 -0500

Added to AST

commit cc66415d5878e2e5eda9cac2dcafeb®85b99ed69
Author: Annie Zhang
Date: Mon Nov 2 19:13:58 2015 -0500

Finished scanner
commit 220e425d54a3cd24fb5cac5e3cab9eat947b44bc

Author: Kunal Kamath
Date: Mon Nov 2 18:06:43 2015 -0500

Parser tokens added
commit 457636453bb594ddc05b4d8532753d3a412b3bfa
Author: Calvin Li
Date: Mon Nov 2 15:00:12 2015 -0500

fixed ' characters
commit 1fe7f7a51b8d29bac3ea75b31558d4c77a6032d9
Author: Calvin Li
Date: Sun Nov 1 16:02:39 2015 -0500

copied in scanner and parser for MicroC
commit 5332f24964f5b77a677b15736353a124e343b6da
Author: kunalkamath

Date: Tue Oct 6 16:35:19 2015 -0400

Initial commit

4.3 Development Tools

We used ocaml to write the entirety of our compiler, specifically using ocamllex and
ocamllyacc for the front-end, and regular ocaml for the semantic checker and the code
generator. Our team used the Bash shell to run testing scripts, as well as Sublime Text
and Atom as text editors for writing code. Finally, we used Github extensively for version
control throughout the building of our project.

5. Architectural Design

FRAC

Program [—* Scanner —> Parser — AST
l

Target Code Semantic

C Program Generator) Checker

7

SAST /

5.1. Compiler Structure

The scanner scanner.mll parses a FRAC program into a list of recognizable tokens. The
parser parser.mly makes sure that there are no syntax errors, and uses this list of
tokens to generate an abstract syntax tree (AST). Then, the semantic checker
semantic.ml walks through the AST, making sure that there are no semantic errors, and
generates an SAST. Finally, the code generator compile.ml walks through the SAST and
generates the C target code.

5.2. Turtle Graphics in C

Our compiled C code uses a turtle graphics library to generate fractal images. The library
that we use, which can be found in our source code, uses simple commands like

turtle_forward() , turtle_turn_right() , and turtle_turn_left() to generate graphics.
The terminal functions used in FRAC grammar declarations map directly to these
functions.

When compiled into C, each grammar declaration in a FRAC program is transformed into
two functions. The first function, [gram_name]() , represents the rules of the grammar.
The second function, [gram_name]_start() , represents the init string of the grammar.
Each rule symbol becomes a call to the [gram_name]() function.

If any draw() or grow() functions are called in the main function, the compiler
generates the C code necessary for creating, saving, and cleaning up and image. The
following is an example of the C program generated from the Koch snowflake FRAC
program included in Section 2.2.3.

#include "turtle.h"
#tinclude
#tinclude

void koch(char var, int iter) {
if (iter < @) {
if (var == 'F") {
turtle forward(1l);

}
} else {

if(var == 'F') {
koch('F', iter - 1);
koch('m', iter - 1);
koch('F', iter - 1);
koch('p', iter - 1);
koch('p', iter - 1);
koch('F', iter - 1);
koch('m', iter - 1);
koch('F', iter - 1);

}

if (var == 'm') {
turtle _turn_right(60);

}

if (var == "p') {
turtle turn_left(60);

}

void koch_start(int iter) {
koch('F', iter);
koch('p', iter);
koch('p', iter);
koch('F', iter);
koch('p', iter);
koch('p', iter);
koch('F', iter);

int main(){
turtle_init (2000, 2000);
koch_start(6);
turtle_save bmp("koch.bmp");
turtle_cleanup();
return 0;

5.3. GIF Generation

Our compiler uses two libraries, GraphicsMagick and gifsicle , which can be found in
our source code directory. These are used to create animated GlFs when a FRAC
program uses the grow() system function. When the run.sh shell script is run on a
FRAC program that uses grow() , a series of BMP images showing the growth of the
fractal is generated. Then, we use the GraphicsMagick library to link those images
together into a single GIF image, and the gifsicle library to animate that GIF.

6. Testing

We primarily conducted full stack integration tests during the development of our
compiler, with a focus on testing semantic checking and C-code generating. We stuck to
writing a new test as we implemented a new feature of the language, ensuring that the
new feature would work and compile as intended in our LRM. Our testing boiled down to
3 main areas of focus: correctly catching errors in the semantic checking, testing
generated syntax based on our LRM, and testing cases of ambiguity in frac programs.
Towards the end, we tried to cover all of our bases by testing as many features as
written in our LRM. We also separated out our tests into two folders: a folder of frac
programs that should compile and run as intended (pass) and a folder of frac programs

that we intentionally wrote to throw a compile error (fail).

The following are examples of some of the tests in our test suite. The rest can be found
in our source code directory.

A passing test:

test-fdecl_return.frac

foo(string x, bool b) {
print(x);
return b;

bar(double d) {
return d * 2.0;

}

main() {
print(bar(11.11));
if(foo("hello",100000 > -1) == true) {
print("sweet!");
}
}

Expected output:

test-fdecl_return.txt

foo(string x, bool b) {
print(x);
return b;

bar(double d) {
return d * 2.0;

}

main() {
print(bar(11.11));
if(foo("hello",100000 > -1) == true) {
print("sweet!");

}

And a failing test:

gram_no_alph.frac

gram koch = {
alphabet: [],
init: 'Fpp FppF',
rules: {
'F' -> 'FmFppFmF',
"F' -> move(1),
'm" -> rturn(60),
'p' -> 1lturn(60)

}
}
main() {
draw(koch, 6);
}

Expected output:

gram_no_alph.txt

Fatal error: exception Parsing.Parse_error

We built a regression test suite by automating the testing process with a shell script,
testing.sh. This script went through the list of tests we had amassed and compared the
compiled output of each frac program to the intended output. Note that there are some
.c files in these folders as well because we began the testing process by comparing the
c program generated by the compiled frac program with the intended c file before
realizing that this would be too laborious. The regression test suite was an effective
strategy because, since we wrote a new test each time we implemented a new feature,
checking all of our old tests continuously helped ensure that our new features didn't
break any old ones. Below is the intended output of our test script, if all of the tests in
the pass/ directory pass as expected, and all of the tests in the fail/ directory fail as
expected:

testing.sh

#!/bin/bash

NC='\0@33[om"
CYAN="\033[0;36m'
RED="'\033[0;31m’
GREEN='\033[0;32m"’

PASS FILES="pass/*.frac"
FAIL FILES="fail/*.frac"
EXEC=".././frac"
C_EXEC="./a.out"

printf "${CYAN}Starting tests...\n\n"
printf "${CYAN}Tests that should pass:\n${NC}"
for input in $PASS_FILES; do

c_file=${input/.frac/.c}
output=${input/.frac/.txt}
name=${input:5}
tmp=${name/.frac/.c}
$EXEC $input
if [-e "$c_file"]; then
diff -wB $c_file $tmp
if ["$?" -ne @]; then
printf "%-60s ${RED}ERROR\n${NC}" "checking contents of $c_file..." 1>&
exit 1
fi
fi

if [-e "$output”]; then
gcc -g -Wall $tmp
$C_EXEC > $tmp
diff -wB $output $tmp
if ["$?" -ne @]; then

printf "%-60s ${RED}ERROR\n${NC}" "checking output of $output..."” 1>8&2
rm -rf a.out.dSYM a.out
exit 1

fi
fi

rm -f $tmp

printf "%-60s ${GREEN}SUCCESS\n${NC}" "checking $input..."
done

printf "\n${CYAN}Tests that should fail:\n${NC}"

for input in $FAIL_FILES; do

output=${input/.frac/.txt}
error="$($EXEC $input 2>&1)"

if [-e "$output"]; then
diff -u <(cat "$output") <(echo "$error")
if ["$?" -ne @]; then
printf "%-60s ${RED}DIDN'T FAIL\n${NC}" "checking output of $output...”
exit 1
fi
fi

rm -f $tmp
printf "%-60s ${GREEN}FAILED!\n${NC}" "checking $input..."

done

rm -rf a.out.dSYM a.out .DS Store $tmp error
exit @

Testing output

dyn-160-39-132-154:tests kunalkamath$./testing.sh
Starting tests...

Tests that should pass:

checking pass/test-arith_ops.frac...
checking pass/test-assignment.frac...
checking pass/test-assignment_equality.frac...
checking pass/test-comment.frac...
checking pass/test-fdecl.frac...

checking pass/test-fdecl_return.frac...
checking pass/test-for.frac...

checking pass/test-gram_funcs.frac...
checking pass/test-gram_grow.frac...
checking pass/test-gram_return.frac...
checking pass/test-hello_world.frac...
checking pass/test-if.frac...

checking pass/test-koch_gram.frac...
checking pass/test-logical_ops.frac...
checking pass/test-relational_ops.frac...
checking pass/test-while.frac...

Tests that should fail:

checking fail/builtin_funcs.frac... FATLED!
checking fail/draw_call.frac... FAILED!
checking fail/dup_vars.frac... FAILED!
checking fail/gram_actual.frac... FAILED!
checking fail/gram_decl_order.frac... FAILED!
checking fail/gram_dup.frac... FAILED!
checking fail/gram_dup_alph.frac... FATLED!
checking fail/gram_excess_alph.frac... FAILED!
checking fail/gram_excess_rule.frac... FAILED!
checking fail/gram_inc_alph.frac... FAILED!
checking fail/gram_inc_rules.frac... FAILED!
checking fail/gram_no_alph.frac. .. FAILED!
checking fail/gram_no_init.frac... FAILED!
checking fail/gram_no_rules.frac... FAILED!
checking fail/gram_printed.frac... FAILED!
checking fail/gram_term_types.frac... FAILED!
checking fail/gram_undefined.frac... FAILED!
checking fail/gram_valid_IDs.frac... FATLED!
checking fail/main_formals.frac... FAILED!
checking fail/main_return.frac... FAILED!
checking fail/multiple_return.frac... FAILED!
dyn-160-39-132-154: tests kunalkamath$ I

7. Lessons Learned

Calvin Li

Like everyone says, don't wait until the last minute to do the work, and instead come up
with good concrete goals that your group can deliver incrementally. Also, periodically
giving each team member a clear idea of his/her task is a good way to ensure that
everyone is at least doing something, even if it's not just code. | had a tough semester,
so | often found myself falling way behind my team, and sometimes | was afraid to admit
it. However, my teammates were willing to help me catch up once | asked. Even so, |

really wish | could have contributed more. So, if you want to feel more useful, don't be
afraid to ask your team to fill you in on what's going on if you feel behind.

Anne Zhang

Perhaps the most surprising thing that | learned, which | suppose is a big part of the
material in this course, is just how much goes into semantic checking in a compiler. |
foolishly assumed in the beginning that implementing basic language features would be
easy, and we ended up struggling with that quite a bit. However, that was also the most
interesting part of writing the compiler for me, and | now have a much better
understanding of, and appreciation for, everything that compilers do. In terms of team
roles, | feel that | could have done a better job as manager in bringing our team together.
It was difficult to get our team members motivated to work on the project when there
weren't any impending hard deadlines, but | should have created and enforced
additional deadlines in order to keep our team on track. | also feel that | could have
pushed some of our team members to contribute more to the project.

Kunal Kamath

| learned that pair programming is imperative in a project of this magnitude. | found
myself staring at my OCaml code trying to debug far too many times, and would’ve
significantly benefitted from a fresh pair of eyes. Whenever | was working with Annie,
even though we were usually tackling separate problems, having a partner to bounce
ideas off of and talk through your code is extremely helpful. This expands to a larger
lesson learned: figuring out how to best work within your team is crucial to a good
experience. Communicate with your teammates every day, figure out a good workflow,
and meet regularly (like, actually) if you want to do well.

8. Appendix

8.1 Scanner

scanner.mll

{ open Parser }

let num = ('-")?['@'-'9"]+
let dbl = ('-')?(['@'-'9']+'.'['@'-'9"]+ | '.'['0'-'9"']+)
let boolean = "true" | "false"

rule token = parse
(* Whitespace *)

[" "\t" '"\r" '"\n'] { token lexbuf }
(* Comments *)
| "/*" { multi_comment lexbuf }
| "//" { single_comment lexbuf }
(* Punctuation *)
| (¢ { LPAREN } | ")* { RPAREN }
| "{' { LBRACE } | '}' { RBRACE }
| ;¢ {SEMI } | ', { COMMA }
(* Arithmetic Operators *)
| '+ { PLUS } | - { MINUS }
| ' { TIMES } | '/' { DIVIDE }
| %' { MOD } | '=" { ASSIGN }
(* Logical Operators *)
| "==" { EQ } | "1=" { NEQ }
| < { LT } | "<=" { LEQ }
| "> { GT } | ">=" { GEQ }
| { OR } | "&&" { AND }
| 1 { NOT }
(* Grammar Syntax *)
| "gram" { GRAM } | "rules" { RULES }
| "init" { INIT } | "alphabet" { ALPHABET }
| e { COLON } | "' { QUOTE }
| '[' { LSQUARE } | ']" { RSQUARE }
| - { ARROW }
| "rturn” { RTURN } | "lturn" { LTURN }
| "move" { MOVE }

(* Statements *)

| "if" { IF }

| "else" { ELSE }

| "for" { FOR }

| "while" { WHILE }
| "return" { RETURN }

(* Type Names *)

| "int" { INT }

| "double" { DOUBLE }
| "string" { STRING }
| "bool" { BOOL }

| ' { read_string (Buffer.create 17) lexbuf }

| num as 1xm { INT_LIT (int_of_string 1xm) }

| dbl as 1xm { DOUBLE_LIT (float_of_string 1lxm) }

| boolean as 1xm { BOOL_LIT (bool of string 1xm) }

| ['a'-'z" 'A'-'Z']['a'-"z" 'A'-'Z' '©@'-'9" ' _']* as 1lxm { ID (1xm) }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ~ Char.escaped char)) }

and read_string buf =

"\\'" 't" { Buffer.add_char buf '\t'; read_string buf lexbuf }
[~ W
{ Buffer.add_string buf (Lexing.lexeme lexbuf);

parse
| ' { STRING_LIT (Buffer.contents buf) } (*

| "\\'" '/' { Buffer.add_char buf '/'; read_string buf lexbuf }

| "\\' "\\' { Buffer.add _char buf '\\'; read_string buf lexbuf }

| "\\' 'b' { Buffer.add _char buf '\b'; read_string buf lexbuf }

| "\\' 'f' { Buffer.add_char buf '\@12'; read_string buf lexbuf }
| "\\'" 'n' { Buffer.add_char buf '\n'; read_string buf lexbuf }

| "\\' 'r' { Buffer.add _char buf '\r'; read_string buf lexbuf }

|

|

read_string buf lexbuf

| _ { raise (Failure ("Illegal string character: " ~ Lexing.lexeme lexbuf)) } *)
| _ { Buffer.add_string buf (Lexing.lexeme lexbuf); read_string buf lexbuf}
| eof { raise (Failure ("String is not terminated")) }

and multi_comment = parse

"*/" { token lexbuf }
| { multi_comment lexbuf }
and single_comment = parse

‘\n' { token lexbuf }
| { single_comment lexbuf }

8.2 Parser

parser.mly

%{ open Ast %}

%token SEMI COMMA COLON
%token LPAREN RPAREN LBRACE RBRACE
%token PLUS MINUS TIMES DIVIDE MOD ASSIGN

%token EQ NEQ LT LEQ GT GEQ
%token OR AND NOT

%token RETURN IF ELSE FOR WHILE
%token INT DOUBLE STRING BOOL
%»token GRAM ALPHABET INIT RULES
%token LSQUARE RSQUARE ARROW QUOTE HYPHEN
%token RTURN LTURN MOVE

%token 1ID

%token INT_LIT

%token DOUBLE_LIT

%token STRING_LIT

%token BOOL_LIT

%token EOF

%nonassoc NOELSE
%nonassoc ELSE

%right ASSIGN

%left OR AND

%left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS

%left TIMES DIVIDE MOD
%right NOT

%start program
%type program

%%

program:
/* nothing */ { [, [1}
| program gdecl { let (grams, funcs) = $1 in $2::grams, funcs }
| program fdecl { let (grams, funcs) = $1 in grams, $2::funcs }

/* VARIABLES */

var_type:
INT { Int }
| DOUBLE { Double }
| STRING { String }
| BOOL { Bool }
| GRAM { Gram }

vdecl:
var_type ID SEMI { var($1, $2)}
| var_type ID { var($1, $2)}

| var_type ID ASSIGN expr SEMI { Var Init($1, $2, $4)}

vdecl list:
/* nothing */ {11}
| vdecl list vdecl { $2 :: $1 }

/* RULES */

rule_id_list:
1D { [$1] }
| rule_id list ID { $2 :: $1 }

comma_list:

D { [$1] }
| comma_list COMMA ID { $3 :: $1 }

rule:

QUOTE ID QUOTE ARROW RTURN LPAREN expr RPAREN { Term($2, Rturn($7)) }
| QUOTE ID QUOTE ARROW LTURN LPAREN expr RPAREN { Term($2, Lturn($7)) }
| QUOTE ID QUOTE ARROW MOVE LPAREN expr RPAREN { Term($2, Move($7)) }
| QUOTE ID QUOTE ARROW QUOTE rule_id list QUOTE { Rec($2, List.rev $6) }

rule 1list:

rule { [$1] }
| rule_list COMMA rule { $3 :: $1 }

/* GRAMS */

gdecl:
GRAM ID ASSIGN LBRACE
ALPHABET COLON LSQUARE comma_list RSQUARE COMMA
INIT COLON QUOTE rule_id list QUOTE COMMA
RULES COLON LBRACE rule_list RBRACE
RBRACE
{ { gname = $2;
alphabet = $8;
init = $14;
rules = List.rev $20 } }

/* FUNCTIONS */

fdecl:
ID LPAREN formals_opt RPAREN LBRACE vdecl list stmt_list RBRACE
{ { fname = $1;
formals = $3;
locals = List.rev $6;

body = List.rev $7 } }

formals opt:
/* nothing */ { [] }
| formal_list { List.rev $1 }

formal list:
vdecl { [$1] }
| formal list COMMA vdecl { $3 :: $1 }

/* STATEMENTS */

stmt:
expr SEMI
| RETURN expr SEMI
| LBRACE stmt_list RBRACE
| IF LPAREN expr RPAREN stmt %prec NOELSE
| IF LPAREN expr RPAREN stmt ELSE stmt
| FOR LPAREN expr SEMI expr SEMI expr RPAREN stmt
| WHILE LPAREN expr RPAREN stmt

stmt_list:
/* nothing */ { [] }
| stmt_list stmt { $2 :: $1 }

/* EXPRESSIONS */

expr
INT_LIT { Int_1lit($1) }
DOUBLE_LIT { Double 1lit($1) }
ID { Id(%$1) }
STRING_LIT { String_1lit($1) }
BOOL_LIT { Bool lit($1) }

LPAREN expr RPAREN { ParenkExpr($2) }

|

|

|

|

|

| NOT expr { Unop(Not, $2) }

| expr PLUS expr { Binop($1, Add, $3) }
| expr MINUS expr { Binop($1, Sub, $3) }
| expr TIMES expr { Binop($1, Mult, $3) }
| expr DIVIDE expr { Binop($1, Div, $3) }
| expr MOD expr { Binop($1, Mod, $3) }
| expr EQ expr { Binop($1, Equal, $3) }
| expr NEQ expr { Binop($1, Neq, $3) }
| expr LT expr { Binop($1, Less, $3) }
| expr LEQ expr { Binop($1, Leq, $3) }
| expr GT expr { Binop($1, Greater, $3) }
| expr OR expr { Binop($1, Or, $3) }

P N P e e T

Expr($1) }

Return($2) }
Block(List.rev $2) }
If($3, $5, Block([])) }
If($3, $5, $7) }
For($3, $5, $7, $9) }
While($3, $5) }

| expr AND expr { Binop($1, And, $3) }
| expr GEQ expr { Binop($1, Geq, $3) }
| ID ASSIGN expr { Assign($1, $3) }

| ID LPAREN actuals opt RPAREN { Call($1, $3) }

actuals_opt:
/* nothing */ { [] }
| actuals_list { List.rev $1 }

actuals_list:

expr { [$1] }
| actuals_list COMMA expr { $3 :: $1 }

8.3 AST

ast.ml

(* Operators *)
type op = Add | Sub | Mult | Div | Mod | Equal | Neq | Less | Leq
| Greater | Geq | Or | And | Not

(* Variable types *)
type var_type =
Void
| Int
| Double
| String
| Bool
| Gram

(* Expressions *)

type expr =

Int_lit of int

Double_lit of float

Id of string

String lit of string

Bool 1lit of bool
ParenExpr of expr

Unop of op * expr

Binop of expr * op * expr
Assign of string * expr
Call of string * expr list
Noexpr

(* Statements *)
type stmt =
Expr of expr
| Block of stmt list
| Return of expr
| If of expr * stmt * stmt
| For of expr * expr * expr * stmt
| While of expr * stmt

(* Variable Declarations *)
type var_decl =
Var of var_type * string
| Var_Init of var_type * string * expr

type term =
Rturn of expr
| Lturn of expr
| Move of expr

(* Rule Definitions *)
type rule =
Rec of string * string list
| Term of string * term

(* Grammar Declarations *)
type gram_decl = {
gname : string;
alphabet : string list;
init : string list;
rules : rule list;

(* Function Declarations *)
type func_decl = {
fname : string;
formals : var_decl 1list;
locals : var_decl list;
body : stmt list;

(* Program entry point *)
type program = gram_decl list * func_decl list

8.4 Semantic Checker

semantic.ml

open Ast
open Sast

type symbol table = {
mutable vars: var_decl list;
mutable funcs: func_decl list;
mutable grams: gram_decl list;

}

(**************

* Exceptions *
**************)

exception Failure of string

let op_error t = match t with

Ast.Not -> raise (Failure("Invalid use of unop: '!'"))
Ast.Add -> raise (Failure("Invalid types for binop: '+'"))
Ast.Sub -> raise (Failure("Invalid types for binop: '-'"))

Ast.Mult -> raise (Failure("Invalid types for binop: '*'"))
Ast.Div -> raise (Failure("Invalid types for binop: '/'"))
Ast.Mod -> raise (Failure("Invalid types for binop: '%'"))

Ast.Or -> raise (Failure("Invalid types for binop: '[|'"))
Ast.And -> raise (Failure("Invalid types for binop: '&&'"))
Ast.Equal -> raise (Failure("Invalid types for binop: '=='"))
Ast.Neq -> raise (Failure("Invalid types for binop: '!='"))

Ast.Less -> raise (Failure("Invalid types for binop: '<'"))
Ast.Greater -> raise (Failure("Invalid types for binop: '>'"))
Ast.Leq -> raise (Failure("Invalid types for binop: '<='"))
Ast.Geq -> raise (Failure("Invalid types for binop: '>='"))

G

* Checking *
**************)

let rec check_expr (env : symbol table) (expr : Ast.expr) = match expr with
Noexpr -> Sast.Noexpr, Void
| Id(str) -> (match (find_vname str env.vars) with
Var(vt, s) -> Sast.Id(s), vt
| var_Init(vt, s, e) -> Sast.Id(s), vt)

Int_lit(i) -> Sast.Int_lit(i), Sast.Int
Double_lit(d) -> Sast.Double_lit(d), Sast.Double
String lit(s) -> Sast.String lit(s), Sast.String
Bool lit(b) -> Sast.Bool lit(b), Sast.Boolean
ParenExpr(e) -> check_paren_expr env e
Unop(_, _) as u -> check_unop env u
Binop(_, _, _) as b -> check_binop env b
Assign(_, _) as a -> check_assign env a
Call(_,) as c -> check_call env ¢

and check_paren_expr (env : symbol table) pe =
let e = check_expr env pe in
let (_, t) = e in

Sast.ParenExpr(e), t

and find_vname (vname : string) (vars : Sast.var_decl list) =
[T -> raise(Failure "variable not defined")
| hd :: t1 -> let name = (match hd with
Var(vt, s) -> s
| var_Init(vt, s, e) -> s) in
if(vname = name) then hd
else find_vname vname tl

and check_unop (env : symbol table) unop = match unop with
Ast.Unop(op, e) ->
(match op with
Not ->
let expr = check_expr env e in
let (_, t) = expr in
if (t <> Boolean)
then op_error op
else Sast.Unop(op, expr), t
| _ -> raise (Failure "Invalid unary operator"))
| _ -> raise (Failure "Invalid unary operator")

and check_binop (env : symbol table) binop = match binop with
Ast.Binop(ex1l, op, ex2) ->
let el = check_expr env exl and e2 = check_expr env ex2 in
let (_, t1) = el and (_, t2) = e2 in
let t = match op with
Mod ->
if (t1 <> Int || t2 <> Int)
then op_error op
else Sast.Int
| Add | Sub | Mult | Div ->
if (t1 <> Int || t2 <> Int) then
if (t1l <> Double || t2 <> Double)
then op_error op
else Sast.Double
else Sast.Int
| Greater | Less | Leq | Geq ->
if (t1 <> Int || t2 <> Int) then
if (t1 <> Double || t2 <> Double)
then op_error op
else Sast.Boolean
else Sast.Boolean
| And | Or ->
if (tl <> Boolean || t2 <> Boolean)
then op_error op
else Sast.Boolean
| Equal | Neq ->
if (t1 <> Int || t2 <> Int) then
if (t1 <> Double || t2 <> Double) then
if (tl1 <> Boolean || t2 <> Boolean)
then op_error op
else Sast.Boolean
else Sast.Boolean
else Sast.Boolean
| _ -> raise (Failure "Invalid binary operator")
in Sast.Binop(el, op, e2), t
| _ -> raise (Failure "Not a binary operator")

and check_assign (env : symbol_table) a = match a with
Ast.Assign(id, expr) ->

match vars with

let vdecl = find_vname id env.vars in
let (t,n) = (match vdecl with

Var(vt, s) -> (vt,s)

| var_Init(vt, s, e) -> (vt,s)) in
let e = check_expr env expr in
let (_, t2) = e in
if t <> t2 then raise (Failure "Incorrect type for assignment") else
Sast.Assign(n, e), t
| _ -> raise (Failure "Not a valid assignment")

and check_call (env : symbol table) c = match c with
Ast.Call(f, actuals) -> (match f with
"print" -> (match actuals with
[1] -> raise(Failure "print() requires an argument")
| hd :: [] -> let (id, t) = check_expr env hd in (match t with
Sast.Void -> raise(Failure "cannot print an
expression of type void")
| _ -> sast.call(f, [(id, t)]), Sast.Void)
| hd :: t1 -> raise(Failure "print() only takes one argument"))
| "draw" -> (match actuals with
[g; i] -> (match (g, i) with
(Id(s), Int_lit(n)) -> ignore(try
List.find(fun gram ->
gram.gname = s) env.grams
with Not_found ->
raise(Failure ("gram " ~ s ~ " not defined")));
Sast.Call(f, [Sast.Id(s), Sast.Gram; Sast.Int_lit(n), Sast.Int]), Sast.Void
| _ -> raise(Failure "draw takes a gram g and int n as arguments"))
| _ -> raise(Failure "draw() requires two arguments"))
| "grow" -> (match actuals with
[g; i] -> (match (g, i) with
(Id(s), Int_lit(n)) -> ignore(try
List.find(fun gram -> gram.gname = s) env.grams
with Not_found -> raise(Failure ("gram " ~ s ~ " not defined")));
Sast.Call(f, [Sast.Id(s), Sast.Gram; Sast.Int_lit(n), Sast.Int]), Sast.Void
| _ -> raise(Failure "grow takes a gram g and int n as arguments"))
| _ -> raise(Failure "draw() requires two arguments"))
| _ -> let called func = (try
List.find(fun func -> func.fname = f) env.funcs
with Not_found -> raise(Failure ("function " ~ £ ~ " not defined"))) in
Sast.Call(f, (check_args env (called_func.formals, actuals))), called_func.rtype)
| _ -> raise (Failure "Not a valid function call")

and check_args (env : symbol table) ((formals : var_decl list), (actuals : Ast.expr list)) =
match (formals, actuals) with
(I, I -> 11
| (f_hd :: f_tl1, a_hd :: a_tl) ->
let f_type = (match f_hd with
Var(t, _) -> t
| var_Init(t, _, _) -> t) in
let (a_expr, a_type) = check_expr env a_hd in
if (f_type <> a_type) then raise (Failure "wrong argument type")
else (a_expr, a_type) :: check_args env (f_tl, a_tl)
| (_, _) -> raise (Failure "wrong number of arguments")

let check_vtype (t : Ast.var_type) = match t with
Int -> Sast.Int

Double -> Sast.Double

String -> Sast.String

Bool -> Sast.Boolean

Gram -> Sast.Gram

| _ -> raise (Failure "Variables cannot be of this type.")

let rec check_dup_vdecl (vname : string) (vars : Sast.var_decl list) = match vars with
[1 -> vname
| hd :: t1 -> (match hd with
Var(_, name) -> if(name = vname) then raise(Failure ("variable " ~
vname ~ " already declared"))
else check_dup_vdecl vname tl
| var_Init(_, name, _) -> if(name = vname) then raise(Failure ("variable " ~
vname ~ " already declared"))
else check_dup_vdecl vname tl

let check_vdecl (env : symbol_table) (v : Ast.var_decl) =
(match v with
Var(t, name) ->

ignore(check_dup_vdecl name env.vars);
let t = check_vtype t in Sast.Var(t, name)

| var_Init(t, name, expr) ->
ignore(check_dup_vdecl name env.vars);
let t = check_vtype t in
let expr = check_expr env expr in
let (_, t2) = expr in
if t <> t2 then raise (Failure "Incorrect type for variable initialization")
else Sast.vVar_Init(t, name, expr))

let rec check _vdecl list (env : symbol table) (vl : Ast.var_decl list) = match vl with
[1->11]
| hd :: t1 -> let checked vdecl = check vdecl env hd in
checked _vdecl :: (check vdecl list { vars = (checked_vdecl :: env.vars);
funcs = env.funcs; grams = env.grams } tl)

let rec check_stmt (env : symbol_table) (s : Ast.stmt) = match s with
Block(sl) -> Sast.Block(check stmt _list env sl)
| Expr(e) -> Sast.Expr(check_expr env e)
| Return(e) -> Sast.Return(check_expr env e)
| If(e, s1, s2) ->
let expr = check_expr env e in
let (_, t) = expr in
if t <> Sast.Boolean then
raise (Failure "If statement uses a boolean expression")
else
let stmtl = check_stmt env sl in
let stmt2 = check_stmt env s2 in
Sast.If(expr, stmtl, stmt2)
| For(el, e2, e3, s) ->
let ex1l = check_expr env el in
let ex2 = check_expr env e2 in
let (_, t) = ex2 in
if t <> Sast.Boolean then
raise (Failure "For statement uses a boolean expression™)
else
let ex3 = check_expr env e3 in
let stmt = check_stmt env s in
Sast.For(exl, ex2, ex3, stmt)
| While(e, s) ->
let expr = check_expr env e in
let (_, t) = expr in
if t <> Sast.Boolean then
raise (Failure "While statement uses a boolean expression")
else

let stmt = check_stmt env s in
Sast.While(expr, stmt)

and check_stmt_list (env : symbol table) (sl : Ast.stmt list) = match sl with
[1->11]
| hd :: t1 -> (check_stmt env hd) :: (check_stmt_list env t1)

let rec find_rtype (env : symbol table) (body : Ast.stmt list) (rtype : Sast.var_type) =

match body with

[1 -> rtype
| hd :: t1 -> (match hd with

Return(e) -> if (rtype <> Sast.Void)
then raise(Failure "function cannot have multiple return statements")
else let (_, t) = (check_expr env e) in find_rtype env tl t
| _ -> find_rtype env tl rtype)

let sast_fdecl (env : symbol table) (f : Ast.func_decl) =
let checked_formals = check_vdecl_list env f.formals in
let formals_env = { vars = env.vars @ checked_formals; funcs = env.funcs; grams = env.grams } in
let checked_locals = check_vdecl list formals_env f.locals in

let new_env = { vars = formals_env.vars @ checked_locals; funcs = env.funcs; grams = env.grams } in

{ fname = f.fname; rtype = (find_rtype new_env f.body Sast.Void);
formals = checked formals; locals = checked_locals; body = (check_stmt_list new_env f.body) }

(* returns an updated func_decl with return type *)
let check_fdecl (env : symbol_table) (f : Ast.func_decl) = match f.fname with
"main" -> (match f.formals with
[T -> let sast_main = sast_fdecl env f in if (sast_main.rtype <> Sast.Void)
then raise(Failure "main function should not return anything")
else sast_main
| _ -> raise(Failure "main function cannot have formal parameters"))
| _ -> sast_fdecl env f

(* checks the list of function declarations in the program *)
let rec check_fdecl_list (env : symbol_table) (fdecls : Ast.func_decl list) = match fdecls with

[] -> raise(Failure "Valid FRAC program must have at least a main function")
| hd :: [] -> if hd.fname <> "main" then raise(Failure "main function must be defined last")
else (check_fdecl env hd) :: env.funcs
| hd :: t1 -> if (List.exists (fun func -> func.fname = hd.fname) env.funcs)

then raise(Failure("function " ~ hd.fname ~ "() defined twice"))
else match hd.fname with
"print" -> raise(Failure "reserved function name 'print'")

| "draw" -> raise(Failure "reserved function name 'draw'")

| "grow" -> raise(Failure "reserved function name 'grow'")

| "main" -> raise(Failure "main function can only be defined once")
| _ -> check_fdecl list { vars = env.vars;

funcs = (check_fdecl env hd) :: env.funcs; grams = env.grams } tl

let rec find_rule (id : string) (rules : Ast.rule list) = match rules with
[1 -> raise(Failure "all elements of the alphabet must have corresponding rules")
| hd :: t1 -> (match hd with
Rec(c, rl) -> if(c = id) then c
else find_rule id tl
| Term(c, t) -> if(c = id) then c
else find_rule id tl)

let rec check_alphabet (checked : string list) (rules : Ast.rule list) (a : string list) =
match a with
[1->11
| hd :: t1 -> if(List.mem hd checked) then raise(Failure "cannot have duplicates in alphabet™)
else let checked_c = find_rule hd rules in

checked_c :: (check_alphabet (checked_c :: checked) rules tl)

let rec check_rule (a : string list) (i : string list) = match i with
[1->11
| hd :: t1 -> ignore(try List.find (fun id -> id = hd) a with Not_found ->
raise(Failure "contains a rule not found in alphabet"));
hd :: (check_rule a tl)

let check_turn_expr (e : Ast.expr) = match e with
Int_lit(i) -> Sast.Int_lit(i)
| Double 1lit(d) -> Sast.Double_lit(d)
| _ -> raise(Failure "turn functions must have argument of type int or double")

let check_move_expr (e : Ast.expr) = match e with
Int_1lit(i) -> Sast.Int_lit(i)
| _ -> raise(Failure "move functions must have argument of type int")

let rec check_rules (recs : Sast.rule list) (terms : Sast.rule list) (a : string list)
(rules : Ast.rule list) = match rules with
[1] -> recs, terms
| hd :: t1 -> (match hd with
Rec(c, rl) -> ignore(try List.find (fun id -> id = c) a
with Not_found -> raise(Failure "rule not found in alphabet"));
ignore(if(List.exists (fun (rl : Sast.rule) -> match rl with
Rec(id, _) -> if(id = c) then true else false
| Term(_, _) -> false) recs)
then raise(Failure "multiple recursive rules of the same name")
else check_rule a rl); let checked_rec = Sast.Rec(c, rl) in
check_rules (checked_rec :: recs) terms a tl
| Term(c, t) -> ignore(try List.find (fun id -> id = ¢) a
with Not_found -> raise(Failure "rule not found in alphabet"));
if(List.exists (fun (t : Sast.rule) -> match t with
Term(id, _) -> if(id = c) then true else false
| Rec(_, _) -> false) terms)
then raise(Failure "multiple terminal rules of the same name")
else let checked_t = (match t with
Rturn(e) -> Sast.Rturn(check_turn_expr e)
| Lturn(e) -> Sast.Lturn(check_turn_expr e)
| Move(e) -> Sast.Move(check_move_expr e)) in
let checked_term = Sast.Term(c, checked_t) in
check_rules recs (checked_term :: terms) a tl

let check_gdecl (g : Ast.gram_decl) =
let checked_alphabet = check_alphabet [] g.rules g.alphabet in
let (checked_recs, checked_terms) = check_rules [] [] checked_alphabet g.rules in
let checked_init = check_rule checked_alphabet g.init in
{ gname = g.gname; alphabet = checked_alphabet; init = checked_init;
rec_rules = checked_recs; term_rules = checked_terms }

let rec check_gdecl list (checked_gdecls : Sast.gram_decl list) (gdecls : Ast.gram_decl list) =
match gdecls with
[1 -> checked_gdecls
| hd :: t1 -> if (List.exists (fun gram -> gram.gname = hd.gname) checked_gdecls)
then raise(Failure("gram " ~ hd.gname ~ " defined twice"))
else check_gdecl list ((check_gdecl hd) :: checked_gdecls) tl

(* entry point *)
let check_program (prog : Ast.program) =
let (gdecls, fdecls) = prog in
let env = { vars = []; funcs = []; grams = [] } in

let checked_gdecls = check_gdecl list [] (List.rev gdecls) in

let grams_env = { vars = env.vars; funcs = env.funcs; grams = checked_gdecls } in
let checked_fdecls = check_fdecl list grams_env (List.rev fdecls) in
checked_gdecls, checked_fdecls

8.5. SAST

sast.ml

open Ast

(* Variable types *)
type var_type =
Void

| Int
| Double
| String
| Boolean
| Gram

(* Variable Declarations*)
and var_decl =
Var of var_type * string
| Var_Init of var_type * string * expression

and term =
Rturn of expr
| Lturn of expr
| Move of expr

(* Rule Definitions *)
and rule =
Rec of string * string list
| Term of string * term

(* Grammar Declarations *)
and gram_decl = {
gname : string;
alphabet : string list;
init : string list;
rec_rules : rule list;
term _rules : rule list;

(* Function Declarations *)
and func_decl = {
fname: string;
rtype: var_type;
formals: var_decl 1list;
locals: var_decl list;
body: stmt list;

}

(* Expressions *)

and expr =
Noexpr

| Int_lit of int

| Double 1it of float

| Id of string

| String lit of string

| Bool 1it of bool

| ParenExpr of expression
| Unop of op * expression

| Binop of expression * op * expression
| Assign of string * expression

| Call of string * expression list

and expression = expr * var_type
(* Statements *)
and stmt =

Expr of expression

Block of stmt list

Return of expression

| If of expression * stmt * stmt
| For of expression * expression * expression * stmt

While of expression * stmt

type program = gram_decl list * func_decl list

8.6. Code Generator

compile.ml

open Ast
open Sast

let suffix_char s c = s ~ String.make 1 c

let c_print_types t = match t with
Void -> "

Int => "\"%d\\n\""

Double -> "\"%.2f\\n\""
String -> "\"%s\\n\""

Boolean -> "\"%d\\n\""

Gram -> """

let rec expr = function
Int_lit(i) -> string_of_int i

| Bool lit(b) -> if b == true then "1" else "@"

| Double_lit(d) -> if String.get (string_of float d) (String.length
(string_of _float d) - 1) == "'.'

then suffix_char (string_of_float d) '@’
else string of_float d

Id(str) -> str
String_lit(s) -> "\"" A~ s A "\""
ParenkExpr((e,_)) -> "(" ~ (expr e) ~ ")"
Unop(op, (e,_)) -> (match op with

Not -> " I "
>
) ~ (expr e)
| Binop ((el,_), op, (e2,_)) -> (expr el) ~ (match op with
Add > " "
| sub -> "
| Mult - oA
| Div => " 4"
| Mod > "t
| Equal -> " == "
| Neq -> "=
| Less > e
| Leq -> "= "
| Greater -> " > "
| Geq -> M=
| And -> " R& "
| or >
| _ ->
) ~ (expr e2)
| Assign (str, (e,_)) -> str A~ " =" A (expr e)

(* This DEFINITELY needs to be made more efficient *)
| call (fname, actuals) -> (match fname with
"print" -> "printf(" ~
(let actuals_type = function

[1-> "
(,t)::[] -> c_print_types t
in actuals_type actuals)

P

(let rec gen_actuals = function
[(1-> "
| (e,)::[] -> expr e
[_->""
in gen_actuals actuals) ~ ")
| "draw" -> "turtle_init(2000, 2000);\n" ~
(match actuals with
[Sast.Id(s), Sast.Gram; Sast.Int _lit(n), Sast.Int] ->
(s ~ "_start(" ~ (string_of_int n) ~ ");\nturtle_save_bmp(\"" *
s A ".bmp\");\nturtle_cleanup()")
| _ -> raise(Failure "wrong argument types in draw()"))

| "grow" -> (match actuals with
[Sast.Id(s), Sast.Gram; Sast.Int_lit(n), Sast.Int] ->
"char buf[1024];\nint i;\nfor(i = @; i <" ~ (string_of_int n) ~
"; i++) {\nturtle_init(2000, 2000);\n" * s
A" start(i+l);\n" ~ "sprintf(buf, \"" ~ s ~
"%02d.bmp\", i);\nturtle_save_bmp(buf);\nturtle_cleanup();\n}\n"
| _ -> raise(Failure "wrong argument types in grow()"))
-> fname ~ "(" ~
(let rec gen_actuals = function
[]-> "
| (e,)::[] -> expr e
| (e,)::tl -> expr e ~ ", " ~ gen_actuals tl
in gen_actuals actuals) ~ ")")

Noexpr ->

let rec stmt = function
Block sl -> String.concat "" (List.map stmt sl)
Expr (e,_) -> (match e with
Call(f, _) -> (match f with
"grow" -> (expr e)
| _ -> (expr e) ~ ";\n")
| _ -> (expr e) ~ ";\n")
| Return (e,) -> "return " ~ (expr e) ~ ";\n"
If ((e,_), st, Block[]) -> "if(" ~ (expr e) ~ ") {\n" ~ (stmt st) ~ "}\n"
| If ((e,_), st1, st2) -> "if(" ~ (expr e) ~ ") {\n" ~ (stmt st1l) ~ "}\n" ~
"else" ~ "{\n" ~ (stmt st2) ~ "}\n"
| For ((e1,), (e2,_), (e3,_), st) -> "for(" ~ (expr el) ~ "; " ~ (expr e2) "
"5 " A (expr e3) A ") {\n" 2 (stmt st) ~ "}\n"
| while ((e,_), st) -> "while(" ~ (expr e) ~ ") {\n" ~ (stmt st) ~ "}\n"

let rec gen_var_types = function
Void -> "void "

Int -> "int "

Double -> "double "
String -> "char *"
Boolean -> "
Gram -> ""

int

let gen_formals v =
(match v with
Var(var_type, str) -> gen_var_types var_type * str
| var_Init(var_type, str, _) -> gen_var_types var_type ” str)

let gen_locals v =
(match v with
Var(var_type, str) -> gen_var_types var_type * str
| var_Init(var_type, str, (e,_)) -> gen_var_types var_type ~ str ~ " = " 2 (expr e))

let rec gen_formals_list fl = match fl with

[]-> "
| hd::[] -> gen_formals hd
| hd::tl -> gen_formals hd ~ ", " ~ gen_formals_list tl

let rec gen_locals_list 11 = match 11 with
[]->""
| hd::[] -> gen_locals hd ~ ";\n"
| hd::tl -> gen_locals hd ~ ";\n" ~ gen_locals_list tl

let gen_fdecl fdecl =
(match fdecl.fname with
"main" -> "int main()"

-> (match fdecl.rtype with
Sast.Void -> "void "
| sast.Int -> "int "
| Sast.Double -> "double "
| sast.String -> "char *"
| Sast.Boolean -> "int
| sast.Gram -> "")
A fdecl.fname ~ "(" ~ (gen_formals_list fdecl.formals) ~ ")") ~ "{\n" ~
(gen_locals_list fdecl.locals) ~ String.concat "" (List.map stmt fdecl.body) ~
(match fdecl.fname with
"main" -> "return 0;\n"
| _ -> ")
A "}\n"

let rec divide_term_rules (tm, rtm) (recs : Sast.rule list) (terms : Sast.rule list) =
match terms with
[1 -> tm, rtm
| hd :: t1 -> let id = (match hd with
Term(name, _) -> name
| Rec(name, _) -> name) in
if(List.exists (fun (rl : Sast.rule) -> match rl with
Rec(s, _) -> if(s = id) then true else false
| Term(_, _) -> false) recs) then divide_term_rules (tm, hd :: rtm) recs tl
else divide_term_rules (hd :: tm, rtm) recs tl

let gen_term_arg (e : Sast.expr) = match e with
Int_lit(i) -> string_of int i
| Double 1lit(d) -> string_of_float d
| _ _> nn

let rec gen_term_rules (terms : Sast.rule list) = match terms with
[1->""
| hd :: t1 -> let (id, t) = (match hd with
Term(name, tp) -> name, tp
| Rec(_, _) -> raise(Failure "should be a terminal rule")) in
"if (var == '" ~did ~ "") {\n" 7
(match t with
Rturn(e) -> "turtle_turn_right(" ~ (gen_term_arg e) ~ ");\n"
| Lturn(e) -> "turtle_turn_left(" ~ (gen_term_arg e) ~ ");\n"
| Move(e) -> "turtle_ forward(" ~ (gen_term_arg e) ~ ");\n"
) A~ "I\n" ~ gen_term_rules tl

let rec gen_init (gname : string) (rl : string list) = match rl with

[] -> """
| hd :: t1 -> gname ~ "('" ~ hd ~ "', iter);\n" 7~ gen_init gname tl

let rec gen_rule (gname : string) (rl : string list) = match rl with

[] ->""
| hd :: t1 -> gname ~ "('" ~ hd ~ "', iter - 1);\n" ~ gen_rule gname tl

let rec gen_rec_rules (gname : string) (recs : Sast.rule list) = match recs with
[1->""
| hd :: t1 -> let (id, rl) = (match hd with
Rec(name, rule) -> name, rule
| Term(_, _) -> raise(Failure "should be a recursive rule")) in
"if(var == '" ~id ~ "') {\n" ~ (gen_rule gname rl) ~ "}\n" A~
(gen_rec_rules gname tl)

let gen_gdecl (g : Sast.gram_decl) =
let (terms, rterms) = divide_term_rules ([], []) g.rec_rules g.term_rules in
"void " ~ g.gname ~ "(char var, int iter) {\n" ~ "if (iter < 0) {\n" *

(gen_term_rules rterms) ~ "} else {\n" ”~ (gen_rec_rules g.gname g.rec_rules) ~
(gen_term_rules terms) ~ "}\n}\n" 7
"void " ~ g.gname ~ "_start(int iter) {\n" ~ (gen_init g.gname (List.rev g.init)) ~ "}\n"

let generate (grams : Sast.gram_decl 1list) (funcs : Sast.func_decl list) (name : string) =
let outfile = open_out (name ~ ".c") in
let translated_program = (if List.length grams > ©
then "#include \"turtle.h\"\n#include \n" else "") ~ "#include \n\n" *
String.concat "" (List.rev (List.map gen_gdecl grams)) *
String.concat (List.rev (List.map gen_fdecl funcs)) ~ "\n" in
ignore(Printf.fprintf outfile "%s" translated_program);
close_out outfile;

8.7. FRAC

frac.ml

type action = Semantic | Compile

(* Get the name of the program from the file name. *)

let get _prog name source file path =
let split_path = (Str.split (Str.regexp_string "/") source_file_path) in
let file_name = List.nth split_path ((List.length split_path) - 1) in

let split name = (Str.split (Str.regexp string ".") file name) in
List.nth split_name ((List.length split_name) - 2)

let =
let name = get_prog name Sys.argv.(1) in
let path = Sys.getcwd() ~ "/" ” name in

let input = open_in Sys.argv.(1) in

let lexbuf = Lexing.from_channel input in

let program = Parser.program Scanner.token lexbuf in
let (grams, funcs) = Semantic.check_program program in
Compile.generate grams funcs path

