
FRAC: Recursive Art Compiler
Annie Zhang, Calvin Li, Justin Chiang, Kunal Kamath



Motivation

● Why fractals?

● Fractals are fascinating geometric objects that reflect natural patterns
○ Snowflakes

○ Pineapples

○ Saturn’s rings

● What if there was an easier way to visualize them?

● Better yet, what if we could visualize fractal generation in motion?





The FRAC Language

● Imperative, statically typed
● Primary feature: uses L-systems to generate fractals
● Grammar declarations consist of:

○ Alphabet
○ Init string
○ Rules (recursive and/or terminal)

● and are used to generate fractals when they are passed into system function calls
○ draw(gram g, int n)
○ grow(gram g, int n)



GCD



Koch Snowflake For a static BMP image:

For a growing GIF:



Compiler Structure

Scanner
FRAC
Program Parser AST

Semantic
Checker

SAST

Code
Generator

Target
C Program



Turtle Graphics in C

● In turtle graphics, a “turtle” is given commands to move around a grid, 

drawing out its path

● Commonly associated with the Logo programming language

● An adaptation for C was obtained from https://w3.cs.jmu.edu/lam2mo/cs240_2015_08/turtle.html,

● Recursive rules are evaluated to turtle functions to draw fractals

https://w3.cs.jmu.edu/lam2mo/cs240_2015_08/turtle.html


Init string

Rules

Draw function



Testing

● Regression test suite
○ Checks programs that should pass 
○ Confirms programs that should fail

● Tests every aspect of our language, from expressions to 
program structure

● Runs compiled C code and compares result with the expected 
output



Lessons Learned

● Do work incrementally
● Come up with more concrete goals for ourselves
● Even basic semantic checking can be tricky!
● Pair programming is the way to go
● Git/Github is your best friend



Demos!!

● Koch Snowflake
○ Static image

● Sierpinski Triangle
○ Static image

● Heighway Dragon
○ Growing image


