CMajor

A Music Production Language

Andrew O’Reilly Stephanie Huang Jonathan Sun Laura Tang
ajoz2119 syh2115 Jjys2124 1t2510

CMajor COMS W4115: Final Report Fall 2015

Contents
1 Introduction 4
1.1 Background e e 4
2 Langauge Tutorial 6
2.1 Installation & Compilation 6
2.2 Compose with CMajor e 7
3 Language Reference Manual 9
4 Project Plan 10
4.1 Project Process L 10
4.1.1 Planning oL e 10
4.1.2 Specification 10
4.1.3 Development e 10
4.1.4 Testing 10
4.2 Style Guide e 10
4.3 Project Timeline e 11
4.4 Roles and Responsibilities oL oo 11
4.5 Development Environmento L Lo 11
4.6 Project Log 12
5 Architectural Design 13
5.1 Components e e e e e 13
5.1.1 Scanner e e e 13
5.1.2 Parser e e 13
5.1.3 Compiler & Analyzer 13
5.2 Imterfaces e 14
6 Test Plan 14
6.1 Testing Phases e 14
6.1.1 Unit Testing 14
6.1.2 Integration Testing e 14
6.1.3 System Testing L 14
6.2 Examples 14
6.3 Test Suites 15
6.3.1 Motivation 15
6.3.2 Automation 15
7 Lessons Learned 15
7.1 Andrew O'Reilly 15
7.2 Stephanie Huang L 15
7.3 Jonathan Sun 16
7.4 Laura Tang e 16
8 Appendix 16

CMajor COMS W4115: Final Report Fall 2015

8.1 Source Code e 16
8.2 Demos e 42

CMajor COMS W4115: Final Report Fall 2015

1 Introduction

CMajor is a procedural, imperative language used to create musical compositions for playback on a
MIDI device. It provides a set of types for abstracting time and frequency components of Western
music, as well as a notation for referencing frequencies and pitches commonly employed. CMajor
outputs the results of a composition to CSV bytecode, later to be interpreted by a Java program
and rendered via MIDI playback. In addition to data types which correspond to the duration and
pitch aspects of sound, it provides structured types which allow a programmer composer to organize
pitches into sequences and to layer them into chords and phrases, giving them control over harmonic
properties of musical composition as well as its melodic ones. Users of the language may also take
advantage of familiar programming constructs such as loops and conditional statements, allowing
them to easily repeat precomposed phrases, reuse previously composed structures, and conditionally
alter the course of a composition based on number of repetitions or whatever conditions they
choose to supply. CMajor possesses a C-style syntax, consisting of lists of expressions separated
by semicolons, each of which return types that can be operated upon according to the rules of the
language. Programmers may additionally write their own functions to modify pitches or return
composed elements.

1.1 Background

Perhaps one of the most fascinating aspects of music is that its generation entails complex math-
ematical calculations, and that these calculations can be made by a performer and perceived by
listeners regardless of their mathematical abilities. Further, the twelve tone western system fur-
ther abstracts these calculations by classifying different frequencies as named ”pitches” and uses
a system of fractions to describe durations. In this system, frequencies, here called pitches, are
given a letter and optionally a modifier to raise their frequency. Each key on a piano is made to
strike and therefore vibrate, a different string, each tuned to one of these frequencies. The keys of
a piano therefore provide a useful diagram for the arrangement of named pitches according to their
frequency:

CMajor COMS W4115: Final Report Fall 2015

D# Fi#
Eb Gb

The frequencies named above increase from left to right. The pitch that corresponds to the key
that would appear immediately to the right of the 7B / Cb” key would be named "B# / C”
along with the one that appears furthest to the left in the above diagram. This not-pictured pitch
has a frequency equal to twice that of the pitch to the far left; the one after it has a frequency
equal to twice that of the the one corresponding to the next pictured key (C# / Db), and so on.
The perceived difference between any two pitches is called an interval, and in the case where the
perceived difference is between a pitch and its corresponding one of doubled frequency, the interval
is called an octave. Pitches an octave apart share a certain auditory quality and are easily identified,
and so the pattern of keys on a piano repeats itself:
L

nrmwnrmwnrnm . n
! RRRRRRRRERER ‘
In CMajor, pitches are identified according to the naming scheme employed in the first picture

(a pitch with two names may be referred to by either one) and by their octave number, with
higher numbers referring to octaves with higher frequencies. CMajor further takes inspiration from
Western music in its classification of pitch duration as a basis for rhythm. All durations are stored
as a pair of integers, which represent the numerator and denominator of a rational number. The
actual duration in milliseconds depends upon the number of beats per minute, and further upon
the definition of a beat Western music tends to be flexible in this regard, but here a beat is defined
as 1/4, or a quarter note, and the beats per minute is set to 120:

CMajor COMS W4115: Final Report Fall 2015

Mumerator Denominator | Length (ms)

1 1 2000

1 2 1000

1 4 500

1 g 250

3 8 750

1 16 125

3 16 375

1 12 166.666666666
7

Above are a few durations that may be constructed, although any pair of integers may be used
to do so. By using a combination of a pitch and a duration, a note may be constructed, and a
sequence of notes may be used to create a song. Notes may also be played simultaneously to create
harmonies and interlocking rhythms that add complexity to a composition. Two other important
aspects of Western musical composition, timbre and volume, were not considered for this project
and are left to a future implementation.

2 Langauge Tutorial

2.1 Installation & Compilation

To install CMajor, run make from the root directory after extracting the tar file. This will build and
compile all the components needed for the CMajor compiler. Next, write your CMajor composition
in a file ending in .cmaj. Example CMajor programs can be found in the tests/directory, as well as
the demo/directory.

CMajor COMS W4115: Final Report Fall 2015

Compile your CMajor program by running: ./cmajor scale.cmaj

This will generate two output files: an out.csv file and a play.out file. out.csv is an intermediate
"bytecode” file, comparable to .class files generated by the Java compiler. play.out is the executable
file (a generated shell script), which can be executed with the following command in order to play
the music composed:

./play.out

Alternatively, out.csv can be manually played by executing the following command using the in-
cluded CSVPlayer:

java CSVPlayer out.csv

2.2 Compose with CMajor

Every CMajor file (.cmaj) is a self contained piece of music that contains the functions, sequences of
statements, and control structures necessary to describe and play that piece of music. All musicians
write music by composing. They listen to music by playing. This gives us our two most important
functions in CMajor: compose() and play().

Every CMajor file must contain a compose() function, and if the piece is to be played, must call
the built-in play() function. A simple CMajor program to play the single note middle C is shown
below:

/%
* play middle C
*/
int compose () {
// call play on a note literal
play ((SC, (1,4));
}

After compiling, we will get an out.csv and play.out file. These files are only generated when play()
is called within the compose() function.

CMajor uses C-like syntax with function return types in the function declarations, explicit typing,
brackets enclosing blocks of code, and semicolon line endings.

In the example above, we use the two methods of commenting. Inline/single line comments using
// and multiline comments enclosed by /* */. We also create a note literal, which is represented
by a tuple of pitch and duration. Pitch literals are simple note letters preceded by $. Octave and
sharps and flats can also be utilized (ex. $C#4 is a C# in octave 4, or the note a half step above
middle C).

CMajor supports common control structures such as ifelse statements and for loops. You can also
write your own functions. Example syntax is shown below:

// for loops
int i; // note that i is initialized outside the loop
for (i = 0; 1 < 4; 1i =1 + 1) {

CMajor COMS W4115: Final Report Fall 2015

// code here...
}
// ifelse statements
if (1 == 0) {
// code here...
}
else {
// code here...
}
// custom functions have the following syntax
returntype function_name (paramtype parameterl, paramtype parameter?,
// code here...
return foo;

CMajor has some special types that make music writing easier. These include pitch and duration
types, as well as structural types like notes, chords, phrases, and scores.

One key feature of CMajor is the special music related operators that we have. In particular, we
feature the layer (5 operator, which allows for creation of notes, chords, phrases, and scores from
layers of types such as pitches and durations (to form a phrase), or multiple phrases to form a
score. We also have an array concatenation operator (+4) and repeater operator for replication of

structural types such as notes or chords (**).

The Language Reference Manual is a self-contained document in the following pages.

C-Major Language Reference Manual

1. Expressions

An expression is a series of tokens that return a value. They consist of one or more literals and
zero or more operators. Expressions are grouped according to their operators (if present) and
evaluated according to operator precedence. One or more expressions may be combined at
terminated with a semicolon (;) to form an expression statement, or separated by commas (,) to
form a list for use in function calls. A list of expressions of variable size make up the body of
blocks, which are delimited by braces ({ }). An array of expressions separated by the comma (,)
character may be used to populate an array.

stmt_list — stmt_list stmt | €

stmt — expr;

actuals_list — expr | actuals_list, expr

Basic expressions consist of one or more identifiers (see Lexical Conventions) and zero or more

operators. An identifier may be a literal or a variable.
expr — expr op expr

Assignment expressions assign the value returned by an expression to an identifier The type of
value returned by the expression must match the type of the variable represented by the
identifier.

expr — id = expr

Function calls consist of an identifier followed by an open parenthesis, followed by an
expression array. The return value of the expression is the return value of the function.

expr — id(expr_array)

2. Data Types

2.1 Primitive Types

There are two primitive types in C-Major, int and pitch, upon which all other types in the
language are built.

2.1.1Int

Represents a whole number.

2.1.2 Pitch

Pitch represents a musical pitch, typically an integer that maps to an index on the piano keys
(0-88). It is stored internally as an integer. The default pitch is 40 (C4).

2.2 Non-Primitive/Structural Types

2.2.1 Array

An array type has the format {[] where t is a type that specifies the type of all elements of the
array. Thus, all elements of an array of type t[] must themselves have type t. Note that t itself
may be an array type.

Arrays can be initialized as an array literal of type literals:
int[] array = [1,2,3,4,5];

2.2.2 Tuple

A tuple is a pair of elements within parenthesis separated by a comma. Each element can be a

different type.

2.2.3 Duration

A duration is tuple of integers. The ratio of the first element to the second element represents

the fraction of a whole note the associated pitch will play.

2.2.4 Note

A note is a tuple consisting of a pitch and a duration. The pitch must be in the left element.

(pitch, duration)

2.2.5 Chord

A chord is a tuple wherein the left element is an array of pitches, and the right element is a
duration type element. All pitches in the array will be played for the duration specified by the
second element.

(pitch[], duration)

2.2.6 Phrase

A phrase is an array of chords. This would represent a single line or voice of music in a piece.
Every note will start and end individually; there are no overlaps. A second voice should be
designated with a separate phrase. A variable of type phrase may be initialized to or otherwise
assigned the value of an expression whose type is a chord array.

chord[]

2.2.7 Score

A Score is an array of phrases. Each element points to a single phrase which would represent
the multiple voices of a single piece. A variable of type score may be initialized to or assigned
the value of an expression whose type is an array of phrases.

phrase][]

3. Operators

3.1 Assignment Operator =

As previously stated, the assignment operator is denoted by the equals sign =.

3.2 Comparison Operators

Comparison operators are used to test for equality or inequality between identifiers or literals. A
expression consisting of a comparison operator and two other expressions return an integer
type whose value is 1 where the assertion is true and 0 where it is false. All comparison
operators test the value of their identifiers. The return type of each expression being operated
on by comparison operators must be the same.; The greater-than, greater-than-or-equal-to,
less-than, or less-than-or-equal-to operators (>, >=, <, and <=, respectively) may be used with
the following types:

int

pitch

duration

The equality and inequality operators (== and !=, respectively) may additionally be used with the

note type.

Production rule Description

expr — expr == expr Evaluates to 1 if the return values of the expressions in the
production body are equivalent, and 0 otherwise.

expr — expr != expr Evaluates to 1 if the return values of the expressions in the
production body are not equivalent, and 0 otherwise.

expr — expr > expr Evaluates to 1 if the expression on the left is greater in return
value than the return value of expression on the right, and 0
otherwise.

expr — expr < expr Evaluate to 1 if the expression on the right is greater in return
value than the return value of expression on the right, and 0
otherwise.

expr — expr >= expr Evaluates to 1 if the expression on the left is greater in return

value than the expression on the right, or if the return values of the
expressions are equal, and 0 otherwise.

expr — expr <= expr Evaluates to 1 if the expression on the right is greater in return
value than the expression on the left, or if the return values of the
expressions are equal, and 0 otherwise.

The inequality of integers is evaluated according to the standard ordering of integers from
negative infinity to infinity. In evaluations of pitch types, their inequality is evaluated according
to their frequency or the position of their corresponding keys on a piano-- pitches that
correspond to keys towards the right end of the piano are greater than pitches that correspond
to keys on the left. The inequality of durations is evaluated according to a standard ordering of

rational numbers from 0 to infinity-

3.3 Arithmetic Operators

Arithmetic operators are binary operators and consist of addition (+), subtraction (-),
multiplication (*), and division (/). The return type of expressions involving arithmetic operators
depends upon the return type of the expressions in the operation. Addition and subtraction are

commutative.
Operator Symbol Left Right Return value
expression expression
type type
Addition + int int The sum of the two integers.
pitch int A pitch raised the number of half
steps indicated by the integer.
dur int A duration. The integer is
converted to a fractionally
equivalent duration. The
durations are then added
according to fractional arithmetic.
(1,2)+1=(3,2)
dur dur The sum of the two durations

according to fractional arithmetic,

Multiplication

Subtraction

*

int

dur

dur

int

pitch

dur

pitch

chord

dur

note

int

int

dur

int

int

int

pitch

pitch

dur

dur

reduced to its least possible
denominator.

The product of the two integers.
The product of the fractional value
of the duration and the integer,
reduced to the least possible
denominator. (1,4) * 2 yields (1,2).
The fractional product of the two
durations. (1,4) * (1,2) yields
(1,8).

The difference between the left
integer and the right integer.

A pitch lowered by the number of
half steps specified by the integer
expression.

A duration whose length is the the
result of the fractional subtraction
of right integer converted to a
fraction from the fractional value
of the left duration expression. If
the result is negative, the absolute
value is returned. (5,4) - 1 = (1,4)
An integer representing the
difference between the two
pitches, in scale positions.

A chord with the right-expression
pitch removed, if it was present.
A duration whose length is equal
to the fractional subtraction of the
right duration from the left.
(1,2)-(1,4)=(1,4)

A note whose duration is equal to
the subtraction of the right
duration from the duration of the
left note expression.

Division

chord

int

dur

note

chord

int

dur

dur

int

int

int

int

dur

dur

A chord whose duration is equal
to the subtraction of the right
duration from the duration of the
left note expression.

A duration whose numerator is
equal to the left integer and
whose denominator is equal to the
right.

A duration whose fraction is equal
to the fractional division of the
fractional component of the left
expression by the integer value of
the right expression.
(1,2)/2=(1,4)

A note whose duration is equal to
the division of the duration of the
note in the left expression divided
by the integer value of the right
expression, as described above.
A chord whose duration is equal
to the division of the duration of
the chord in the left expression
divided by the integer value of the
right expression, as described
above.

A duration whose fractional
component is equal to the
fractional division of the integer by
the the fractional value of the
duration.

1/(1,2)=(2,1)

Fractional division of durations.
(1,2)/ (1,4)=(2,1)

note dur A note whose duration is equal to
the fractional division of the left
expression’s duration component
by the right expression’s duration.

chord dur A chord whose duration is equal
to the fractional division of the left
expression’s duration component
by the right expression’s duration.

dur note A note whose duration is equal to
the fractional division of the left
duration by the duration
component of the note in the right
expression.

dur chord A chord whose duration is equal
to the fractional division of the left
duration by the duration
component of the note in the right
expression.

dur chord A chord whose duration is equal
to the fractional division of the left
duration by the duration
component of the note in the right
expression.

3.4 Repeater Operator - **

Supplying an expression or any type followed by the repeater operator (**) and a subsequent
integer yields an array of size equal to the given integer with each element containing the return

value of the expression:

expr — expr ** int

3.5 Concatenation Operators (+, ++)

When used exclusively with notes, chords, and phrases, the + symbol is used as a
concatenation operator. The use of the + operator with any combination of notes, chords, and

phrases returns a phrase type.
expr — expr + expr

The left expression is appended to the beginning of the right within the resulting phrase. All

notes and chords are then intended to be read and/or played from left to right.

The ++ concatenation operator is used for array concatenation and always returns an array of
the base type of its operands. One or both operands may be an array whose base type matches
the base type of the other. The result is an array wherein the right expression is appended to
the end of the left.

3.6 Layer Operator (*)

The layer operator is used to create musical structures wherein pitches are played
simultaneously. It is a binary operator and its behavior is only defined for the pitch, note, chord,
phrase, and score types.

expr — expr * expr

A pitch may be layered with a duration to form a note. An array of n pitches may be layered
with an array of n durations to return an array of n notes, wherein the i" note of the resulting
array consists of the pitch at index i in the pitch array and the duration at index i in the duration
array. Pitches may also be layered with chords, and in this instance a chord is returned with the
pitch added. In all other cases a score is returned. When rendered, the arguments are
synchronized by their beginning; if one argument has a longer total duration than the other, it
continues playing after the shorter argument has completed. The layer operator is

commutative.

3.7 Operator Associativity and Precedence

The layer operator is applied first, followed by the arithmetic operators -in the standard order of
*. 1, -, +. Boolean operators are applied next, followed by the repeater operator, the array

concatenation operator, and finally the assignment operator.

4. Lexical Conventions

4.1 Comments

Comment syntax is similar to Java. Single line comments are preceded by //. Multiline
comments are enclosed with /* and */. For example:

// Single line comment

/*

* Multiline
* comment

* here

*/

4.2 Identifiers

An identifier names functions and variables and consists of a sequence of alphanumeric
characters and underscores (_) inthe set [fa’-z> <a’-2z> <’ <@’-’9’]. Identifiers are

case-sensitive and must begin within a character within the set [<_> <a’-’z’ <a’-22’ 1.

4.3 Keywords

The following keywords are reserved:

chord dur else
false for if

int note null
phrase pitch play
print return score

true void

4.4 Constants/Literals

Integer literals
Integer literals are of type int and are of the form ['0’-'9’]

Pitch Literals
Pitch literals are of type pitch and are of the form ‘$’ [A'-'G’] [# ‘©']? [(0°-'9]?
The capital letter corresponds to the note name, ‘# and ‘b’ denote sharp or flat, and the
integer denotes which octave the note is in. If ‘# or ‘b’ is omitted, a natural pitch is
assumed. If an octave integer is omitted, octave 4 is assumed, or the octave of the set
key (see more on setting keys later on). For example, $C4 denotes C in octave 4, or
middle C.

A rest literal is a specific pitch literal that represents a rest. (No pitch.) It is represented
as $R

Duration Literals
A duration literal is of type dur and is a 2-tuple of integers that correspond to note
durations used in music. It is of the form ‘(* ['1’-'97], [[1-'9']+).
For example, a quarter note can be represented as the duration literal (1,4).

Note Literals
A note literal is of type note and is a 2-tuple of pitch and duration of the form ‘(‘ (‘$’
[A-G1[# D17 [0-91? | “8R”) " (([1-9], [1-9]+°) °)

Chord Literals
A chord literal is of type chord and is a 2-tuple of an array of pitches and duration. It is of
the form ‘(" T (‘§' [A-GT[# T? [0-'97?)" | “SR™ T, ‘(' [1-'9], [1-9T+ "))

4.5 Separators

Separators separate tokens and expressions. White space is a separator. Other separators are
tokens themselves:
(X{L3I0T1s5, <>

4.6 White Space

White space consists of the space character, tab character, and newline character. White space
is used to separate tokens and is ignored other than when used to separate tokens. White

space is not required between operators and operands or other separators. Any amount of

white space can be used where one space is required.

5. Statements

5.1 Expression Statements

Any expression can become a statement by terminating it with a semicolon.

5.2 Declaration and Initialization Statements

Giving a type name keyword followed by an identifier terminated with a semicolon yields
a statement that allocates memory for a variable of the given type. Optionally, the
assignment operator may be supplied followed by an expression prior to the semicolon
in order to initialize the variable to a value. The value to which the variable is initialized
is the return value of the expression to the right of the assignment operator. As with the
assignment expression, the type of the variable and the type of the value to which it is

initialized must match.

5.3 iflelse

An if / else statement has the following structure:
if (expr) {
stmt_list
}
else if (expr) {
stmt_list
}
else {
stmt_list

The expression in parentheses must evaluate to true or false. If true, then the if block is
executed. Otherwise, the statement is tested. The else block is executed when no

conditional expression evaluates to true.

5.4 for

A for statement (for loop) has the following structure:
for (asn; expr1; expr2) {
stmt_list

}

First, asn is evaluated. asn is traditionally an assignment expression. Next, stmt_list is
evaluated if expr1 evaluates to true. expr2 is executed after stmt_list, and the condition
in expr1 is checked again. This repeats until expr? evaluates to false and the for
statement is exited.

5.5 return expr;

The return statement evaluates expr and returns program control to the function that
called it, and returns the evaluated value of expr into the higher level function. The type
of expr must be the same as declared in the function definition.

6. Functions

6.1 Defining Functions

Function definitions have the form:
type declarator compound-statement

The type specifies the return type. A function can return any type. The declarator in a function
declaration must specify explicitly that the declared identifier has a function type; that is, it must

be of the form

direct-declarator (expr_array)

The form and its parameters, together with their types, are declared in its parameter type list;
the declaration-list following the function’s declarator must be absent. Each declarator in the

parameter type list must contain an identifier.

A parameter-type-list is a list of expressions separated by commas. The parameters are
understood to be declared just after beginning of the compound statement constituting the
function’s body, and thus the same identifiers must not be redeclared there (although they may,
like other identifiers, be redeclared in inner blocks). An example:

int max(int a, int b) {
if (a > b) return a;
else return b;

}
Here int is the declaration specifier; max(int a, int b) is the function’s declarator, and { ... } is the

block giving the code for the function.

6.2 Calling Functions

A function call is an identifier followed by parentheses containing a possibly empty,
comma-separated list of assignment expressions which constitute the arguments to the
function, or an expression array. The term argument is used for an expression passed by a
function call; the term parameter is used for an input object (or its identifier) received by a
function definition, or described in a function declaration.

In preparing for the call to a function, a copy is made of each argument; all argument-passing is
strictly by value. A function may change the values of its parameter objects, which are copies of
the argument expressions, but these changes cannot affect the values of the arguments. The
types of parameters are explicit and are part of the type of the function - this is the function
prototype. The arguments are converted, as if by assignment, to the types of the corresponding
parameters of the function’s prototype. The number of arguments must be the same as the
number explicitly described parameters. Recursive calls to any function are permitted.

6.3 The play Function

The identifier play is reserved to let the compiler make MIDI calls in Java. Play takes either a
score type expression or phrase type expression. It returns an integer: 0 on success, 1 for
failure.

6.4 The compose Function

Every C-Major program must define the reserved identifier compose. The expression bound to
compose is evaluated and its value is the value of the C-Major program itself. That is, when a

C-Major program is compiled and run, the expression bound to compose is evaluated and the

result is converted to a value of type score or int. If a definition for compose is not included, or
the expression bound to it does not evaluated to score, a compile-time error will occur.

CMajor COMS W4115: Final Report Fall 2015

4 Project Plan

4.1 Project Process
4.1.1 Planning

We had a one hour meeting every Monday with all members in attendance. These meetings were led
by our manager Andrew, and we discussed project milestones including what we would accomplish
within the following week and made updates to the CMajor language design. Further into the
project, we averaged two to three meetings per week where we would discussed implementation
that overlapped between members and any debugging that needed to be done.

4.1.2 Specification

For the Proposal and LRM, we outlined what was to be included during our weekly meetings, and
assigned sections to different members. Led by Jonathan, who composed a larger chunk of the
reports and made the final transposition into LaTeX, each member wrote their own sections and
proofread the documents individually, making edits as needed.

4.1.3 Development

While developing our language, Andrew and Stephanie were the primary authors of the scanner,
parser, and analyzer/code generator code. Usually coding was done individually, and then reviewed
by peers after submitting pull requests to a master branch of our project on a GitHub repository.
Language features such as arrays, control structures, operators, and types were divided up and
implemented independently of each other, so that we had a working compiler early on and simply
expanded it out by adding features. This made testing much easier as well.

4.1.4 Testing

Testing was accomplished using the test suite written by Laura (described later on in detail in this
report). We made sure to test during the development process, especially when implementing new
features. Before and after merging every pull request that implemented a new feature, we would
run the test suite to make sure any conflicts or bugs were resolved. We wrote sample test cases
specific to the features being implemented while implementing those features.

4.2 Style Guide

All code was implemented using Unix line endings and spaces for indentation. Function bodies and
other nested blocks of code were indented with two spaces. Lines were broken and indented two
spaces when lines were longer than 84 characters. Match statements were similarly implemented,
with the -> operator on the same line as the match case and subsequent lengthy code on following
lines.

10

CMajor

COMS W4115: Final Report

Fall 2015

4.3 Project Timeline

Date
Sep.
Oct.
Oct.
Oct.
Oct.
Oct.
Nov.
Nov.
Dec.
Dec.
Dec.
Dec.
Dec.
Dec.

Commit Graph:

30, 2015
23, 2015
25, 2015
26, 2015
26, 2015
31, 2015
12, 2015
16, 2015
16, 2015
17, 2015
18, 2015
18, 2015
21, 2015
22, 2015

Milestone

Proposal Due

LRM Outlined

LRM Drafted

LRM Proofread

LRM Due

Scanner and Parser

Semantic Analyzer

Hello World Due

Scanner and Parser Completed
Semantic Analyzer Completed
Testing Completed
Presentation Due

Code Cleanup

Final Report Due

4.4 Roles and Responsibilities

Andrew O’Reilly

Manager

Stephanie Huang System Architect
Jonathan Sun
Laura Tang

Language Guru
Testing Suite

4.5 Development Environment

CMajor has been tested and built in both OS and Windows 8 (running cygwin and an Ubuntu
virtual machine) environments. Git was used for version control. Text editors used include vim,
Sublime Text, and Notepad++. Most of the CMajor language (scanner, parser, compiler) was

written in OCaml, utilizing features such as ocamllex.

In order to generate sound written by

11

CMajor COMS W4115: Final Report Fall 2015

CMajor programs, we also used Java 7 with the javax.sound.midi library. Testing suites, Makefiles,
and final output files utilize bash/shell scripting.

4.6 Project Log

(See following pages)

12

Hash

4b4447c
fb8d3f8
19a331d
3812bda
3d16371
17e8d93
71921c1
b31d5fe
ebade78
0da6088
81bd6fc
7711edf
592c2f2
f2b3513
7c8dfes
ff588ae
623fbe4d
d2c5e80
84ee8cb
bcdcale
6bc98d3
509204
df8fbof
3620671
3c34776
b34507c
8f2beod
2cAfdesd
17fadce
15988fa
cf66fb8
79d88dc
3906eec
blc1512
9256b4d
ba4c86b
837c¢8bl
ac49964
9180c7d

Author
Andrew
Stephanie
Stephanie
Jonathan
Andrew
Andrew
Jonathan
Jonathan
Jonathan
Andrew
Stephanie
Andrew
Stephanie
Andrew
Stephanie
Stephanie
Stephanie
Laura
Laura
Laura
Stephanie
Laura
Stephanie
Laura
Laura
Laura
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Stephanie
Andrew
Andrew
Andrew
Andrew
Andrew

Andrew

Date
Tue
Tue
Tue
Tue
Tue
Tue
Sat
Sat
Sat
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu

Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

Dec

22
22
22
22
22
22
19
19
19
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
17
17
17
17
17
17
17
17
17
17
17
17
17

Comment

‘Merge pull request #60 from phanieste/compiler
‘writes executable play.out file to play out.csv
-add authors to source code files

:Compile Java with make. Move java files to root
(Convert tabs to spaces

(Clean up comments

‘gitignore *.toc

:Additional .gitignores

:Initial final report latex template.

:Lengthen shepard

“implement layer for score with phrase

:Add demos

‘play works with single note

‘Move up precedence of repeater operator

:fix compile warnings with incomplete match case
.fixes csv output and pitch ordering

‘add note+note=phrase implementation

.fix failure report test.sh

‘update failure report

‘tests folder renaming

:fix runtime errors in play

‘renamed tests

“implements multi-note play

.test.sh updated with failure reports

.test.sh updated to compare to .outs

‘added .outs

.Add tests

.Implement if/else

.Add tests

.Implement for loops

.Add tests

.Fix block statement processing

.fixes issue #42

:Implement changes in execute.ml

‘Fix field names in compile.ml

‘Fix typos in function definitions

:Add missing arguments

:Implement find_var for environments and symtabs

:Implement update_var function

71dadc2
f473fbd
a319bof
7efabfe
99449
aeeldof
d99f5c8
7b2cda4d
d62bbfe
aldfd56
a3aca8l
5bd4571
00fced5
e0510a7
17d5053
75d1b64
8d3186b
5db8a33
b90e2b7
2dfcfel
4321d88
85d2377
6502b4d
ced3054
71leeca8
5a45cfo
111be24
£90761b

Laura
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Stephanie
Stephanie
Stephanie
Stephanie
Stephanie
Jonathan
Andrew
Andrew
Andrew
Andrew
Andrew

Andrew

8.49E+34 Andrew

dod27df
db@aesl
46ddd69
e3357f2
cd3953a
13cab5ad
62f90dd
faddffe
c355d51
0dba605
bb366ea

Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew

Andrew

Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Wed
Wed
Wed
Wed
Wed
Wed
Wed
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue

Mon

Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

Dec

17
17
17
17
17
17
17
17
17
17
17
16
16
16
16
16
16
16
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
14

‘modified test.sh testing script

‘More descriptive exception message

.Compiles without warnings

‘Resolve last compile.ml warning

:Resolve most match/unused case warnings in comg
:Clear several match warnings

(Merge pull request #43 from goodtimefamilyband/
(Add subtraction test

(Change subtraction ops to return correct types
(Suppress unmatched case warnings

(Implement -

.Add tests

:Implement * (multiply)

:Implement **

‘Merge branch 'phanieste-compiler-pitchfix' intc
:Additional fixes

‘remove sign from pitch literal
‘implement + operator for notes
.implement + operator for dur + int
.implement + operator for pitch
‘Fix merge conflicts between compiler and compil
:Cleanup & whitespace issues.

:Add tests

:Implement <=

for >=

:Implement <

‘Implement >=
:Add tests
‘Update gcd function to handle @

for >

‘Fix typo

‘Modify gcd function to handle negative numbers
:Implement > operator in syntactically correct f
:Add dur_sub function for comparators

(Add tests for != operator

(Implement != operator

(Add test for ==

(Implement == operator

(Fix missing Vdecl case for arrays

(Update tests
(Fix compile errors

.Fix line endings

a30746e
de8c422
7e8ee7f
6a49a48
@3aab2e
d9c8058
4de6091
be601d2
dae7eb8
b8b3942
02a77de
f4091af
bb438be
b1391bd
£23005c¢
clad9ad
aac4850
4416187
0c3fe22
3e@ebc7
072acOe
98b61c2
f33b78c
6b57379
6113545
a8bdbc6
d2d2091
5ad5706
b95al57
cd4eedf
65b3803
38818
5e92323
359086b
b86de3c
9b16265
b8bf861
bboe7eed
8e4e288
a24d2bb

Andrew
Laura
Jonathan
Jonathan
Andrew
Andrew
Andrew
Andrew
Andrew
Stephanie
Stephanie
Stephanie
Stephanie
Stephanie
Stephanie
Andrew
Stephanie
Andrew
Stephanie
Stephanie
Stephanie
Stephanie
Stephanie
Stephanie
Andrew
Andrew
Stephanie
Stephanie
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew

Andrew

Mon
Mon
Sat
Sat
Fri
Fri
Fri
Fri
Thu
Tue
Tue
Mon
Sat
Sat
Fri
Fri
Fri
Thu
Wed
Wed
Wed
Wed
Wed
Mon
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun
Fri

Fri

Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov

Nov

14
14
12
12
11
11
11

N N MNMNDNMNDNMN WA B P U TN 0O 00 W B

30
29
29
29
29
29
29
29
29
29
29
29
29
29
29
27
27

.Fix line endings

“JONATHAN: Implement rests (silent notes). Remov
(Clean newlines

(CSVPlayer can play multiple lines independently
:Change line endings to Unix format

:Convert line endings to Unix

:Add test and expected output for issue #32
1:Fix #32 parsing issues with pitch literals

2. Try using separate parser rule to fix pitch iss
2:implement ++ for concatenating two single eleme
2.implement layer operator with pitch[] * dur[]
1:implement array concatenation operator (++)

1 fix bug with assigning score and phrase types

1 implement layer operator

1'implement array set operation

1:Fix #32 parsing issues with pitch literals
@‘implement array get operation
2.Try using separate parser rule to fix pitch iss
2.implement phrases and scores
2:implement chords
2.implement array type checking
2:declare arrays using typename[] syntax
libasic array literal creation and array type
‘Fix merge conflicts merging compiler into compi
.Implement Call expression

.Add Missing_function exception

;add arrays to parser and ast

‘manually merge and fix compilation errors in pc
‘Update exec_fun to return environment
:Reorganize code

:Update toplevel test to test return

:Implement return statement

:Implement function to get string from s_type
‘Update tests to use new syntax

:Add script to convert existing tests to new syr
‘Make translate recursive to expose exec_fun fur
:Update global environment data type

:Remove option from globals type

:Change global environment var map to allow empt

:Add global_environment type

19bc53d
50fe379
a628d17

Andrew
Andrew

Andrew

5434298 Andrew

24d7al4
a66e496
1c48398
d18a5cd
cae256d
12c0c73
6d6dodl
f27ac50
£86b44d
e06ab57
blead69
ae69b29
7e41e20
9227498
15b0315
72baa53
58838af
ab7c25f
4ed9b7c
30f165a
0789bfa
423b8cd
3d19c29
e7008e0
41c80dc
f657f4b
b71d23a

Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Laura
Andrew
Stephanie
Andrew

Andrew

368599 Stephanie

lee5b63
ba0a887
9e25f2a
e224c69
ac7f876
f46cdd7
18fdd1la
d8afb17

Stephanie
Stephanie
Jonathan
Stephanie
Jonathan
Stephanie
Stephanie
Andrew

Fri
Fri
Fri
Fri
Fri
Sun
Sun
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Thu
Wed
Wed
Wed
Tue
Mon
Mon
Mon
Mon
Mon
Mon
Mon
Mon

Mon

Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov

Nov

27
27
27
27
27
29
29
26
26
26
26
26
26
26
24
24
24
24
24
24
24
24
24
24
24
24
19
18
18
18
17
16
16
16
16
16
16
16
16
16

‘Fix compile syntax errors

:Implement fxn call

:Implement code to create global environment
:Update AST program type to be two lists

(Update parser/compiler to accept top level synt
‘Add division test

:Simplify dur fractions

‘Fix basic test syntax

‘Fix missed variable rename

:Update execute module to handle new types
:Update main executable to handle new types

:Add List.rev to block

‘Update compiler to use returned values instead
(Fix syntax errors in test.cmaj

.More spacing/readability/code style

:More spacing/readability/code style
.Spacing/readability/code style

.Remove excess parentheses

.Implement divide operator for chords

.Implement divide Binop

.Remove excess parens from dur_divide fxn

.Add dur_divide function

:Change Pitch to 3 ints instead of 3 Ints
:Change Dur to be two ints instead of 2 Ints
‘Fix syntax errors

:Add Binop to expr function

‘made test folder and tests

‘Finish play function

‘start writing play() function

:Add missing line to compile

:Add new stmt type

.Fix some variable declaration errors. * Use Li
.switch env to hashtable

.attempt to fix variable declaration struggles
:Fix ocamldep issues.

~add execute.ml

‘Generate additional Makefile lines with ocamlde
‘Merge pull request #8 from phanieste/compiler
‘Fixed syntactical and logical compilation error

:Fix scanner ID/Typename conflict

94766b7
20ald24
b53047f
d25be59
40doesb
db58345
df124bf
13c52f0
200045
9309fdd
70006d3
9cb2e60
c5beco6
21f1e1d
eecfe5b
0b24a9e
993ca5d
a607e9f
4f6adbf
b21223e
bfeccf9
6d0ede8
9953a3a
240d856
559d148
703240a
9f59f3e
44c0b72
bd55d06
£96c439
76a6c¢ff
045f1f2
db42241
€c739bd5
3abc520
874db3a
£3d9184
6271431
57b3aa4
ba22901

Stephanie
Stephanie
Jonathan
Jonathan
Jonathan
Jonathan
Jonathan
Stephanie
Stephanie
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Stephanie
Stephanie

Mon
Mon
Sun
Sun
Sun
Sun
Sun
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Mon
Mon
Mon
Mon
Mon
Thu
Mon
Mon
Mon
Mon
Mon
Wed
Mon

Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov

Nov

16 Fix compilation errors in sast with c_type to s
16 (Start building out working hello world version.
15 .Ignore java *.class files.

15 :Rename 'readCSV' to 'play.' Add print statement
15 ;Remove duplicate file.

15 :Twinkle CSV example.

15 .CSVPlayer complete.

13 .Fix merge conflicts in semantics.ml

13 ;start compiler

13 :Resolve merge conflict in sast

13 :Add Makefile

13 :Update PITCH_SIGN token in scanner to mitigate
13 Add code to read cmajor code from stdin

13 :Fix typo in scanner

13 Fix parser compile errors

13 (Remove mergetool garbage

13 (Fix syntax errors

13 (Initial implementations of exec

13 (Fixing AST for temporarily simplified program s
12 :Removing mergetool garbage

12 ;Fixing conflicts with origin branch

12 .Fix syntax errors in compiler

12 :Fix additional syntax errors in SAST

12 .Fix syntax errors

12 !Fix undefined constructor in AST

12 :Implement variable lookup and update routines
12 :Add semantic types for checking

1¢Add main compiler file

1¢‘Change duration literal to tuple

1.Simplifying test prog further

1:Adding test program

O OV OV VvV LV

1.Basic test grammar - no functions
12 Adding Steph's initial SAST

1¢Add main compiler file

1¢‘Change duration literal to tuple
1.Simplifying test prog further
1:Adding test program

O OV OV VvV LV

1.Basic test grammar - no functions
11 .began sast and semantic analysis (pitch validat

9 1'modify pitch literals in scanner and parser to

e4884c2
940ec73
f4c7181
€0307d7
2ebbels

Stephanie
Stephanie
Andrew
Andrew

Andrew

1222568 Andrew

957e0b7
8ae08e5
cOeedb6
0822f4a
b58bc12
bb9732e
15c222b
€651053
66977cb
c700771
ebe5c74
bo35e52
82fec91l

Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew
Andrew

Andrew

Sun
Sun
Tue
Tue
Tue
Tue
Tue
Tue
Tue
Mon
Tue
Mon
Sat
Sat
Sat
Sat
Sat
Sat
Sat

Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Oct
Oct
Oct
Oct
Oct
Oct
Oct

N W D W W wWw w w w w 0o o

W W W W W w w
P PR R R R R R

1.add precedence/associativity to fix shift/reduc
1(fix typos in scanner and parser
1'Add PITCH_LIT ($) token
1'Add production rules
1'Add regexes for if
1'Add tokens for if
1'Add grouping operators described in previous cc
1°'Add return
1'Fix comments in parser
2.Add program start symbol
O(Fix syntax errors
2.Add program start symbol
:Add/fix comments
:Add some statement types to AST
:Add vdecl type for variable declarations
‘Fix regex quoting
:Add operators to AST
‘Very unfinished AST

(Initial commit

CMajor COMS W4115: Final Report Fall 2015

5 Architectural Design

Code
Listing
(.cmaj)

Compiler
s 4
—‘ AST ‘
, v Semantic Analyzer /
- Scanner Parser

Code Generator

NopIS

/

Shell
Script Lo oukesy Program
Environment]

CSVPlayer >

Audio
Qutput

5.1 Components
5.1.1 Scanner

The scanner is implemented in scanner.mll and identifies language tokens using regular expres-
sions.

5.1.2 Parser

Implemented in parser.mly. Creates the abstract syntax tree and passes it off as such to the
Semantic Analyzer / Code Generator.

5.1.3 Compiler & Analyzer

Performs a dual task of semantic analysis and the storage of environment information in mem-
ory.

13

CMajor COMS W4115: Final Report Fall 2015

5.2 Interfaces

Within the compiler, all information is stored in OCaml data types and records, including a
linkedlist symbol table which stores the contents of variables, a global environment type that stores
global variables and a mapping of function definitions to names, and an environment type that stores
a symbol table, a global environment, a return type for the current function, and its return value (if
set by a return statement). Once the program has been processed, if the program calls the play()
function, a CSV is output containing an intermediate form to be read by the CSVPlayer.

Andrew and Stephanie were primarily involved in the implementation of compiler components.
Jonathan devised many of the language features and details. He created the CSVPlayer in java and
detailed the format of the CSV files output by the compiler and read by the CSVPlayer.

6 Test Plan

6.1 Testing Phases
6.1.1 Unit Testing

Unit testing was done as language features were being completed during the coding phase of the
project. Whenever a feature was added, multiple tests were run to ensure these basic blocks were
parsed correctly.

6.1.2 Integration Testing

Once the unit testing was finished, the integration testing confirmed the correctness of semantic
analysis and code generation.

6.1.3 System Testing

The entire endtoend testing of the language framework is the final testing phase. The CMajor
compiler takes in an input program written in the language and produces an output file of the
environment which is compared against the expected output of listed pitches and durations. An
optional bytecode file and accompanying executable play.out file (if the play() function is present
in the input program) is also generated and tested against the reference bytecode file. Finally, to
test the bytecode, the play executable can be run. This utilizes the Java MIDI Player programs
to produce the correct sounds, which we can listen to to ensure correct output. An output log is
generated to list all the output of the test suites that are run, and a failure log is generated to list
the error messages thrown for failed tests.

6.2 Examples

See following pages

14

rowyourboat.cmaj:

int compose() {
pitch[] pitches = $C %x 3
++ $D ++ $E
++ $E ++ $D ++ $E ++ $F ++ $G
++ $C *xx 3 ++ $G xx 3
++ $E xx 3
++ $C *xx 3
++ $G ++ $F ++ $E ++ $D ++ $C;

dur dot8 = (3,16);
dur trip8 = (1,4) / 3;

dur[] durations = (1,4) %k 2
++ dot8 ++ (1,16) ++ (1,4)
++ dot8 ++ (1,16) ++ dot8 ++ (1,16)
++ (1,2)
++ trip8 *k 12
++ dot8 ++ (1,16) ++ dot8 ++ (1,16)
++ (1,2);

phrase mainphrase = pitches ”~ durations;
note rest = ($R,(1,1));

int 1i;
score song = newscore();

for(i=0; i<4; 1i=1+1) {
int j;
phrase round = mainphrase;
for(j =0; j<i; =3 +1) {
round = rest + round;

song = song ~ round;
}
play(song);
}

chord newchord(dur d) {
note nl = ($R,d);
return nl ~ $R;

phrase newphrase() {
chord c1 = newchord((0,1));
chord c2 = c1;
return cl + c2;

score newscore() {
phrase pl = newphrase();
return pl ~ pl;

—X—
.out of rowyourboat.cmaj:

dot8 = Dur(3,16)
durations =
Array(Dur(1,4),Dur(1,4),Dur(3,16),Dur(1,16),Dur(1,4),Dur(3,16),Dur(1,16),Dur(3,16),Dur(1,16),Dur(
1,2),bur(1,12),Dur(1,12),Dur(1,12),Dur(1,12),Dur(1,12),Dur(1,12),bur(1,12),bur(1,12),Dur(1,12),Du
r(1,12),bur(1,12),Dur(1,12),Dur(3,16),Dur(1,16),Dur(3,16),Dur(1,16),Dur(1,2))

i = Int(4)

mainphrase =
Phrase(Array(Chord(Array(Pitch(3,4)),Dur(
h(3,4)),Dbur(3,16)),Chord(Array(Pitch(5,4

4)),Chord(Array(Pitch(3,4)),

1,4) ur(1,4)),Chord(Array(Pitc
)),Dur(1,16)),Chord(Array(Pitch(7,4)

4)),
),Dur(1,4)),Chord(Arr

ay(Pitch(7,4)),Dur(3,16)),Chord(Array(Pitch(5,4)),Dur(1,16)),Chord(Array(Pitch(7,4)),Dur(3,16)),C
hord(Array(Pitch(8,4)),Dur(1,16)),Chord(Array(Pitch(10,4)),Dur(1,2)),Chord(Array(Pitch(3,4)),Dur(
1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(10

A)),Dur(1,12)),Chord(Array(Pitch(10,4)),Dur(1,12)),Chord(Array(Pitch(10,4)),Dur(1,12)),Chord(Arra
y(Pitch(7,4)),Dur(1,12)),Chord(Array(Pitch(7,4)),Dur(1,12)),Chord(Array(Pitch(7,4)),Dur(1,12)),Ch
ord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1

12)),Chord(Array(Pitch(10,4)),Dur(3,16)),Chord(Array(Pitch(8,4)),Dur(1,16)),Chord(Array(Pitch(7,4
)),Dur(3,16)),Chord(Array(Pitch(5,4)),Dur(1,16)),Chord(Array(Pitch(3,4)),Dur(1,2))))

pitches =
Array(Pitch(3,4),Pitch(3,4),Pitch(3,4),Pitch(5,4),Pitch(7,4),Pitch(7,4),Pitch(5,4),Pitch(7,4),Pit
ch(8,4),Pitch(10,4),Pitch(3,4),Pitch(3,4),Pitch(3,4),Pitch(10,4),Pitch(10,4),Pitch(10,4),Pitch(7,
4),Pitch(7,4),Pitch(7,4),Pitch(3,4),Pitch(3,4),Pitch(3,4),Pitch(10,4),Pitch(8,4),Pitch(7,4),Pitch
(5,4),Pitch(3,4))

rest = Note(Pitch(-1,4),Dur(1,1))

song =
Score(Array(Phrase(Array(Chord(Array(Pitch(-1,4),Pitch(-1,4)),Dur(0, 1)),Chord(Array(Pitch(—1,4),P
itch(-1,4)),Dur(0,1)))), Phrase(Array(Chord(Array(Pltch(-1,4), Pltch(4)),Dur(0,1)),Chord(Array(P
itch(-1,4),Pitch(-1, 4)),Dur(0,1)))),Phrase(Array(Chord(rray(Pitch(3 4)) Dur(,4)),Chord(Array(P1
tch(3,4)),Dur(1)),Chord(Array(Pitch(3,4)) Dur(3,16)), hord(Array(Pitch(S 4)),Dur(1,16)),Chord(A
rray(Pltch()) Dur(1,4)),Chord(Array(Pitch(7,4)),Dur(3 16)), Chord(Array(P1tch(5,4)) Dur(l 16))

Chord(Array(P1tch(7,4)),Dur(3,16)),Chord(Array(Pitch(8,4)),Dur(l 16)), Chord(Array(P1tch(10 4))
r(1,2)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)).Dur(1,12)),Chord(Array(P1tch(3

4)),Dbur(1,12)),Chord(Array(Pitch(10,4)),Dur(1,12)),Chord(Array(Pitch(10,4)),Dur(1,12)),Chord(Arra
y(Pitch(10,4)),Dur(1,12)),Chord(Array(Pitch(7,4)),Dur(1,12)),Chord(Array(Pitch(7,4)),Dur(1,12)),C
hord(Array(Pitch(7,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(
1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(10,4)),Dur(3,16)),Chord(Array(Pitch(8

A)).Dur(1,16)),Chord(Array(Pitch(7,4)) Dur(3,16)), Chord(Array(Pltch(S 4)),Dur(1,16)),Chord(Array(
Pitch(3,4)),Dur(1,2)))),Phrase(Array(Chord(Array(Pltch(4)),Dur(1,1)),Chord(Array(Pitch(3,4)),D
ur(1,4)),Chord(Array(Pitch(3,4)),Dur(1,4)), Chord(Array(P1tch(3 4)), Dur(3,16)) Chord(Array(Pitch(5

4)),Dur(1,16)),Chord(Array(Pitch(7,4)),Dur(1,4)),Chord(Array(Pitch(7,4)),Dur(3,16)),Chord(Array(P
itch(5,4)),Dur(1,16)),Chord(Array(Pitch(7,4)),Dur(3,16)),Chord(Array(Pitch(8,4)),Dur(1,16)),Chord
(Array(Pitch(10,4)),Dur(1,2)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12
)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(10,4)),Dur(1,12)),Chord(Array(Pitch(10,4)
),Dur(1,12)),Chord(Array(Pitch(10,4)),Dur(1,12)),Chord(Array(Pitch(7,4)),Dur(1,12)),Chord(Array(P
itch(7,4)),Dbur(1,12)),Chord(Array(Pitch(7,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord
(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(10,4)),Dur(3,1
6)),Chord(Array(Pitch(8,4)),Dur(1,16)),Chord(Array(Pitch(7,4)),Dur(3,16)),Chord(Array(Pitch(5,4))
,Dur(1,16)),Chord(Array(Pitch(3,4)),Dur(1,2)))),Phrase(Array(Chord(Array(Pitch(-1,4)),Dur(1,1)),C
hord(Array(Pitch(-1,4)),Dur(1,1)),Chord(Array(Pitch(3,4)),Dur(1,4)),Chord(Array(Pitch(3,4)),Dur(1

4)),Chord(Array(Pitch(3,4)),Dur(3,16)),Chord(Array(Pitch(5,4)),Dur(1,16)),Chord(Array(Pitch(7,4))
,Dur(1,4)),Chord(Array(Pitch(7,4)),Dur(3,16)),Chord(Array(Pitch(5,4)),Dur(1,16)),Chord(Array(Pitc
h(7,4)),Dur(3,16)),Chord(Array(Pitch(8,4)),Dur(1,16)),Chord(Array(Pitch(10,4)),Dur(1,2)),Chord(Ar
ray(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),
Chord(Array(Pitch(10,4)),Dur(1,12)),Chord(Array(Pitch(10,4)),Dur(1,12)),Chord(Array(Pitch(10,4)),
Dur(1,12)),Chord(Array(Pitch(7,4)),Dur(1,12)),Chord(Array(Pitch(7,4)),Dur(1,12)),Chord(Array(Pitc
h(7,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Ar
ray(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(10,4)),Dur(3,16)),Chord(Array(Pitch(8,4)),Dur(1,16))
,Chord(Array(Pitch(7,4)),Dur(3,16)),Chord(Array(Pitch(5,4)),Dur(1,16)),Chord(Array(Pitch(3,4)),Du
r(1,2)))),Phrase(Array(Chord(Array(Pitch(-1,4)),Dur(1,1)),Chord(Array(Pitch(-1,4)),Dur(1,1)),Chor
d(Array(Pitch(-1,4)),Dur(1,1)),Chord(Array(Pitch(3,4)),Dur(1,4)),Chord(Array(Pitch(3,4)),Dur(1,4)
),Chord(Array(Pitch(3,4)),Dur(3,16)),Chord(Array(Pitch(5,4)),Dur(1,16)),Chord(Array(Pitch(7,4)),D
ur(1,4)),Chord(Array(Pitch(7,4)),Dur(3,16)),Chord(Array(Pitch(5,4)),Dur(1,16)),Chord(Array(Pitch(
7,4)),Dur(3,16)),Chord(Array(Pitch(8,4)),Dur(1,16)),Chord(Array(Pitch(10,4)),Dur(1,2)),Chord(Arra
y(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Ch
ord(Array(Pitch(10,4)),Dur(1,12)),Chord(Array(Pitch(10,4)),Dur(1,12)),Chord(Array(Pitch(10,4)),Du
r(1,12)),Chord(Array(Pitch(7,4)),Dur(1,12)),Chord(Array(Pitch(7,4)),Dur(1,12)),Chord(Array(Pitch(
7,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(3,4)),Dur(1,12)),Chord(Arra
y(Pitch(3,4)),Dur(1,12)),Chord(Array(Pitch(10,4)),Dur(3,16)),Chord(Array(Pitch(8,4)),Dur(1,16)),C
hord(Array(Pitch(7,4)),Dur(3,16)),Chord(Array(Pitch(5,4)),Dur(1,16)),Chord(Array(Pitch(3,4)),Dur(
1,2))))))

trip8 = Dur(1,12)

—x—
56,56,

0,0,
1,1,

0,0,

1,1,

56,56,

0,0,

1,1,

56,56,

0,0,

1,1,

60,60,60,62,64,64,62,64,65,67,60,60,60,67,67,67,64,64,64,60,60,60,67,65,64,62,60,
1,1,3,1,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,
4,4,16,16,4,16,16,16,16,2,12,12,12,12,12,12,12,12,12,12,12,12, 16,16, 16, 16,2,
56,60,60,60,62,64,64,62,64,65,67,60,60,60,67,67,67,64,64,64,60,60,60,67,65,64,62,60,
1,1,1,3,1,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,
1,4,4,16,16,4,16,16,16,16,2,12,12,12,12,12,12,12,12,12,12,12,12, 16, 16,16, 16,2,
56,56,60,60,60,62,64,64,62,64,65,67,60,60,60,67,67,67,64,64,64,60,60,60,67,65,64,62,60,
1,1,1,1,3,1,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,
1,1,4,4,16,16,4,16,16,16,16,2,12,12,12,12,12,12,12,12,12,12,12,12, 16, 16, 16, 16, 2,
56,56,56,60,60,60,62,64,64,62,64,65,67,60,60,60,67,67,67,64,64,64,60,60,60,67,65,64,62,60,
1,1,1,1,1,3,1,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,
1,1,1,4,4,16,16,4,16,16,16,16,2,12,12,12,12,12,12,12,12,12,12,12,12, 16, 16, 16, 16, 2,

shepard.cmaj

int compose() {
dur d = (1,8);
pitch[] pitches = $C *x 8;
pitch base = $C0;
pitch max = $C8;
int i;
int n = 40;

//Initialize an array of pitches
for(i=0; 1 <8; i=1+1) {
pitches[i] = base + i *x 12;

//Main loop
phrase ph = newphrase();
for(i=0; i<n; 1i=1+1) {
int j;
for(j =0; j <8; j=3+1){
pitches[j] = pitches[j] + 1;
if(pitches[j] == max)
pitches[j] = base;

//Put them all on top of one another
chord ch = newchord(d);
for(j =0; j <8; j=3+1){

ch = ch ~ pitches[jl;

}

ph = ph + ch;
}
play(ph);

b

chord newchord(dur d) {
note nl = ($R,d);
return nl ~ $R;

b

phrase newphrase() {
chord c1 = newchord((0,1));
chord c2 = cl;
return cl + c2;

—X—

base = Pitch(3,0)

d = Dur(1,8)

i = Int(40)

max = Pitch(3,8)

n = Int(40)

ph =
Phrase(Array(Chord(Array(Pitch(-1,4),Pitch(-1,4)),Dur(0,1)),Chord(Array(Pitch(-1,4),Pitch(-1,4)),
Dur(@,1)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(4,0),Pitch(4,1),Pitch(4,2),Pitch(4,3),Pitch(4
4),Pitch(4,5),Pitch(4,6),Pitch(4,7)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(5,0),Pit
ch(5,1),Pitch(5,2),Pitch(5,3),Pitch(5,4),Pitch(5,5),Pitch(5,6),Pitch(5,7)),Dur(1,8)),Chord(Array(
Pitch(-1,4),Pitch(-1,4),Pitch(6,0),Pitch(6,1),Pitch(6,2),Pitch(6,3),Pitch(6,4),Pitch(6,5),Pitch(6
6),Pitch(6,7)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(7,0),Pitch(7,1),Pitch(7,2),Pit
ch(7,3),Pitch(7,4),Pitch(7,5),Pitch(7,6),Pitch(7,7)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4
),Pitch(8,0),Pitch(8,1),Pitch(8,2),Pitch(8,3),Pitch(8,4),Pitch(8,5),Pitch(8,6),Pitch(8,7)),Dur(1,
8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(9,0),Pitch(9,1),Pitch(9,2),Pitch(9,3),Pitch(9,4),Pi
tch(9,5),Pitch(9,6),Pitch(9,7)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(10,0),Pitch(1
0,1),Pitch(10,2),Pitch(10,3),Pitch(10,4),Pitch(10,5),Pitch(10,6),Pitch(10,7)),Dur(1,8)),Chord(Arr
ay(Pitch(-1,4),Pitch(-1,4),Pitch(11,0),Pitch(11,1),Pitch(11,2),Pitch(11,3),Pitch(11,4),Pitch(11,5
),Pitch(11,6),Pitch(11,7)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(0,1),Pitch(0,2),Pi
tch(e,3),Pitch(@,4),Pitch(0,5),Pitch(0,6),Pitch(@,7),Pitch(@,8)),Dur(1,8)),Chord(Array(Pitch(-1,4
),Pitch(-1,4),Pitch(1,1),Pitch(1,2),Pitch(1,3),Pitch(1,4),Pitch(1,5),Pitch(1,6),Pitch(1,7),Pitch(
1,8)),bur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(2,1),Pitch(2,2),Pitch(2,3),Pitch(2,4),P
itch(2,5),Pitch(2,6),Pitch(2,7),Pitch(2,8)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(3
1),Pitch(3,2),Pitch(3,3),Pitch(3,4),Pitch(3,5),Pitch(3,6),Pitch(3,7),Pitch(3,0)),Dur(1,8)),Chord(
Array(Pitch(-1,4),Pitch(-1,4),Pitch(4,1),Pitch(4,2),Pitch(4,3),Pitch(4,4),Pitch(4,5),Pitch(4,6),P
itch(4,7),Pitch(4,0)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(5,1),Pitch(5,2),Pitch(5
3),Pitch(5,4),Pitch(5,5),Pitch(5,6),Pitch(5,7),Pitch(5,0)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitc
h(-1,4),Pitch(6,1),Pitch(6,2),Pitch(6,3),Pitch(6,4),Pitch(6,5),Pitch(6,6),Pitch(6,7),Pitch(6,0)),
Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(7,1),Pitch(7,2),Pitch(7,3),Pitch(7,4),Pitch(7
5),Pitch(7,6),Pitch(7,7),Pitch(7,0)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(8,1),Pit
ch(8,2),Pitch(8,3),Pitch(8,4),Pitch(8,5),Pitch(8,6),Pitch(8,7),Pitch(8,0)),Dur(1,8)),Chord(Array(
Pitch(-1,4),Pitch(-1,4),Pitch(9,1),Pitch(9,2),Pitch(9,3),Pitch(9,4),Pitch(9,5),Pitch(9,6),Pitch(9
7),Pitch(9,0)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(10,1),Pitch(10,2),Pitch(10,3),
Pitch(10,4),Pitch(10,5),Pitch(10,6),Pitch(10,7),Pitch(10,0)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pi
tch(-1,4),Pitch(11,1),Pitch(11,2),Pitch(11,3),Pitch(11,4),Pitch(11,5),Pitch(11,6),Pitch(11,7),Pit
ch(11,0)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(0,2),Pitch(0,3),Pitch(0,4),Pitch(0,
5),Pitch(@,6),Pitch(@,7),Pitch(0,8),Pitch(®@,1)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pit
ch(1,2),Pitch(1,3),Pitch(1,4),Pitch(1,5),Pitch(1,6),Pitch(1,7),Pitch(1,8),Pitch(1,1)),Dur(1,8)),C
hord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(2,2),Pitch(2,3),Pitch(2,4),Pitch(2,5),Pitch(2,6),Pitch(2
’
7),Pitch(2,8),Pitch(2,1)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(3,2),Pitch(3,3),Pit
ch(3,4),Pitch(3,5),Pitch(3,6),Pitch(3,7),Pitch(3,0),Pitch(3,1)),Dur(1,8)),Chord(Array(Pitch(-1,4)
,Pitch(-1,4),Pitch(4,2),Pitch(4,3),Pitch(4,4),Pitch(4,5),Pitch(4,6),Pitch(4,7),Pitch(4,0),Pitch(4
1)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(5,2),Pitch(5,3),Pitch(5,4),Pitch(5,5),Pit
ch(5,6),Pitch(5,7),Pitch(5,0),Pitch(5,1)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(6,2
),Pitch(6,3),Pitch(6,4),Pitch(6,5),Pitch(6,6),Pitch(6,7),Pitch(6,0),Pitch(6,1)),Dur(1,8)),Chord(A
rray(Pitch(-1,4),Pitch(-1,4),Pitch(7,2),Pitch(7,3),Pitch(7,4),Pitch(7,5),Pitch(7,6),Pitch(7,7),Pi
tch(7,0),Pitch(7,1)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(8,2),Pitch(8,3),Pitch(8,
4),Pitch(8,5),Pitch(8,6),Pitch(8,7),Pitch(8,0),Pitch(8,1)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitc
h(-1,4),Pitch(9,2),Pitch(9,3),Pitch(9,4),Pitch(9,5),Pitch(9,6),Pitch(9,7),Pitch(9,0),Pitch(9,1)),
Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(10,2),Pitch(10,3),Pitch(10,4),Pitch(10,5),Pit
ch(10,6),Pitch(10,7),Pitch(10,0),Pitch(10,1)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch
(11,2),Pitch(11,3),Pitch(11,4),Pitch(11,5),Pitch(11,6),Pitch(11,7),Pitch(11,0),Pitch(11,1)),Dur(1
8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(0,3),Pitch(0,4),Pitch(@,5),Pitch(0,6),Pitch(0,7),Pi
tch(o,8),Pitch(0,1),Pitch(0,2)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(1,3),Pitch(1,
4),Pitch(1,5),Pitch(1,6),Pitch(1,7),Pitch(1,8),Pitch(1,1),Pitch(1,2)),Dur(1,8)),Chord(Array(Pitch
(-1,4),Pitch(-1,4),Pitch(2,3),Pitch(2,4),Pitch(2,5),Pitch(2,6),Pitch(2,7),Pitch(2,8),Pitch(2,1),P
itch(2,2)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(3,3),Pitch(3,4),Pitch(3,5),Pitch(3
’
6),Pitch(3,7),Pitch(3,0),Pitch(3,1),Pitch(3,2)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pit
ch(4,3),Pitch(4,4),Pitch(4,5),Pitch(4,6),Pitch(4,7),Pitch(4,0),Pitch(4,1),Pitch(4,2)),Dur(1,8)),C
hord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(5,3),Pitch(5,4),Pitch(5,5),Pitch(5,6),Pitch(5,7),Pitch(5

0),Pitch(5,1),Pitch(5,2)),Dur(1,8)),Chord(Array(Pitch(-1,4),Pitch(-1,4),Pitch(6,3),Pitch(6,4),Pit
ch(6,5),Pitch(6,6),Pitch(6,7),Pitch(6,0),Pitch(6,1),Pitch(6,2)),Dur(1,8)),Chord(Array(Pitch(-1,4)

,Pitch(-1,4),Pitch(7,3),Pitch(7,4),Pitch(7,5),Pitch(7,6),Pitch(7,7),Pitch(7,0),Pitch(7,1),Pitch(7

,2)),bur(1,8))))

pitches =

Array(Pitch(7,3),Pitch(7,4),Pitch(7,5),Pitch(7,6),Pitch(7,7),Pitch(7,0),Pitch(7,1),Pitch(7,2))

—X—

99,40,101,42,
87,52,89,54,9
75,64,77,66,7
63,76,65,78,6

N ~ ~ =~ =~ ~ =~ =~ =~ =~ = =~ =~ ~ =~ = ~ =~ =

NSNS0 ONHOOMEA0S ~c00N ~100 <

rrrrrrrrrrrrr O ~ =~ ~00 =~ =~ =~

ON—HOON—EHONO—EHOON—EHON M—A0M
rrrrrrrrr <t ~ ~ ~0) ~ ~ =00 =~ =~ =~
OMed 0 OHEAOT ~H00O ~0000 ~—0S
M =~ alNAN =~ a—ALN =~ =a(NO ~ ~MSO =~ =~LN
~ ~acd 0 ~ a0 ~OcH00 ~N—00 ~~Nc—00 =~
NO ~ ~alNWOW ~ ~MdA =~ ~d =~ = =0 =~ ~ =~
N0 ON—HON ~—=d00O0OMEAO0FTH—=H00M
rrrrrrrrr <t ~ ~ =0 ~ =~ =00 =~ =~ =~
A A 0N A0 <F 00 ~ed00cd ~cd00
I ™M ~ =l = ~ o] ~=~=]WO ~=~]10 =~ ~1
~ A & A MO AN A0S =
AO ~ ~HO ~ ~HASO =~ ~d =~ ~ ad =~~~
Il |Neod | v e |l OO |

51,88,53,90,5
39,100,41,102
,14,56,16,56,
,26,56,28,56,

~ =~ ~ ~00 ~ ~ ~ = ~ =~
00 =~ — 00 =~ 00 =~ — 00 < — 00
~ =0 ~ a~ ~ =0 ~ a ~ =

~ I~ ~ ~00 ~ -0 ~ ~ = ~ =
00 =~ 00 =~ 00 =~ — 00N ~— 00
~ I~ ~ ~ln ~ =0 ~ a ~ =

~ =~ ~ =00 ~ =0 ~ =lN -~ =
— 00 =~ 0 =~ =00 =~ a0 ~ ~—00
NN ~AardO ~ A 00 AT ~
—om 1821185218w418

A~ 00O ~d000DN—HOSSO 00O

N =~ =~ 20O =~ ~ =~ =~ =~ =~ =~ =~ = S ~ ~ =~

A A ONDHOAS 0L N 0L M 0
N =~ ~ alN =~ ~ ~d =~ =~ =~ ~ =~ =~ ~ =~ ~ =
~ed0ON ~cd 0O ~v100 O WO 000 W0
N =~ ~O< =~ ~N1N ~ ~0L =~ ~OL =~ =
OO ~OOHO ~tHOO =~ ~—=H00 =~ =~00
~ o~ AN~ ~ 2N ~ ~ 20O =~ ~ON ~ =
QDA ONN A0 AT =0 MN 00 M 0
O ~ ~ alN ~ ~ ~O =~~~ =~ =~ n =~ =~ =~ =~
~rd1 00 ~cd00 v v e100 OO 00O Y00
© ~ ~I N ~=~| =~ =~ =N =~ =N =~ =
0O ~0OOS0d ~ MO ~ - ~ -~
~ m ad ~m At =~ 200 ~ OO =~ =~
NeoH | NS | SO NEHO A INMSO

CMajor COMS W4115: Final Report Fall 2015

6.3 Test Suites
6.3.1 Motivation

Test cases were chosen to test individual features of the language (such as variable declaration,
operator functionality, control structures, etc.) as independently of each other as possible. This
makes it easier to debug our compiler and feature implementation. Test cases were also written to
be as thorough as possible. For example, for operators, the operator is tested using all the different
possible type operand combinations.

6.3.2 Automation

Testing is automated using the test.sh file and the test suite can be run by executing the command
./test.sh on the command line.

Laura was our Lead Tester and wrote the test suite, automated test script, and expected output
files. Most of the individual test cases testing different components and features of the language
were written by the person who implemented the features.

7 Lessons Learned

7.1 Andrew O’Reilly

If you have six tasks and three people, and you tell each of them to pick two and do them, very
little will get done. The most invasive and dictatorial management styles are probably the most
effective, to the extent that they do not upset everyone else. If your personality renders you
incapable of this, or if your management style relies on sticks as well as carrots, you should not be
the manager of this project, as the sticks available to you in this context will be limited (as will
the carrots). Communication is of the utmost importance, and if there are team members who do
not communicate effectively be sure to communicate this to them. If you set your own internal
deadlines aside from those given by the professor, write them down or post them somewhere.

I have further learned that functional programming is all about answering questions and elucidation
of meaning in a programming context. A functional compiler is constantly asking you what is
returned by some set of code, what that result means, and whether it makes sense. Try to keep
this in mind if you are to write functional code.

7.2 Stephanie Huang

Learning OCaml was a challenging, but rewarding experience. One of the key takeaways I got from
the overall experience of writing in OCaml and also designing a programming language is the idea
that you should try to do more with less. OCaml is all about doing a lot with a little bit of code,
and similarly, our programming language is trying to do a lot with a few lines of code.

15

CMajor COMS W4115: Final Report Fall 2015

As for working as a team, and projects in general: communication is key. It’s important to always
keep in touch, schedule regular meeting times and checkins, communicate your own ideas and what
you’ve been working on. A lot of project work is also taking the initiative to do something, especially
when working with peers when there isn’t as much of a topdown structure as there might be in
some real world working environments. Try to set milestones and plan a timeline in advance, maybe
even from day one.

7.3 Jonathan Sun

Keep things simple. Have a written long term game plan from the start. Don’t be married to
any initial idea, learn to let go, allow yourself to be convinced of new ideas. Make attempts at
documentation. Don’t touch working code. Always ask for help right away. Any embarrassment
that holds you back will damage the group’s progress.

7.4 Laura Tang

For many students, including myself, this class is one of the first where you are required to complete
a semester long group project with a team of other students. On top of that, the project requires
you to get used to programming in OCaml, employing the functional programming paradigm rather
than imperative programming that most are more familiar with. This lack of global view may cause
analysis paralysis, so to resolve that, it is best to have an organized leader and to break down the
tasks early after a thorough brainstorm with your members. Personally assigned tasks made of
smaller chunks also are best, as they pre-commit members to have ownership of their own small
goal.

I learned that it’s best to remain transparent: any changes that are made to the design should be
communicated to all members, whether it is through the group chat, Github updates, a workboard,
etc. Any work that you do on the project, work that may take longer than expected, and bugs you
found should all be reported. In addition, I found that it?s important that each member keeps up
to date on those changes, because the implementation of the language features will definitely be
modified along the way.

8 Appendix

8.1 Source Code

ast.ml

(*

CMa jor AST

by PLT Sandwich

Andrew OReilly, Stephanie Huang
*)

(x All operators. TODO: make sure this is complete x)

16

CMajor COMS W4115: Final Report

Fall 2015

type operator = Add | Sub | Mul | Div | Layer | Arrcat | Rep
| Eg | Neq | Gt | Gte | Lt | Lte

(* Variable declaration. See parser for initialization *)
type vdecl = string * string

(x Literal types x)
type literal =

Intlit of int (* Integers — 42 x*)
| Pitchlit of int x int (# Pitches — $Cb7 %)
| Tuple of expr » expr (+ Tuples — notes, durations *)
and expr =
Binop of expr » operator x expr (% Binary operations x)
| Noexpr (x Empty expression x)
| Lit of literal (x Literals are expressions x*)
| Asn of string * expr (* Variable assignment *)
| Id of string (*# Identifiers #)
| Call of string * expr list (* Function call +*)
| Arr of expr list (* Arrays +*)
| Arrget of string * expr (* Array reference x)
|

Arrmod of string x expr x expr (* Array modification)

(* Statements =)
type stmt =
Block of stmt list
| Expr of expr
| Return of expr
| If of expr * stmt * stmt
| For of expr % expr % expr * stmt
| Vdecl of string * string
| VdeclAsn of stmt x expr
(* Function declaration. Args list is now a vdecl 1list x)
type func_decl = {
ftype: string;
fname: string;
formals: vdecl list;
locals : string list;
body: stmt list;
}

(* type program = stmt *)
type program = vdecl list = func_decl list

cmajor.ml

(*

cmajor.ml

Main executable for C-Major

By PLT Sandwich

Andrew OReilly, Stephanie Huang
*)

open Ast

open Sast

open Compile
open Semantics

17

CMajor COMS W4115: Final Report

Fall 2015

open Printf

let _ =
let chan = if Array.length Sys.argv = 2
then

try
Some (open_in Sys.argv. (1))
with Sys_error(s) ->
print_endline ("Error: " © s); None
else (

Some (stdin)
)
in match chan with
Some (channel) ->
let lexbuf = Lexing.from_channel channel in

Execute.execute_prog prog
| _ —> exit 1;

let prog = Parser.program Scanner.token lexbuf in

compile.ml

(*

compile.ml

Main compiler for the CMajor programming language
by PLT Sandwich

Andrew OReilly, Stephanie Huang

*)

open Ast

open Sast

open Semantics
open Printf

exception Invalid_play of string
exception Illegal_operation of string
exception Type_error of string
exception Duplicate_name of string

exception Not_implemented of string

(* Symbol map *)
module NameMap = Map.Make (String)

type global_environment = {
variables : (c_type * s_type) NameMap.t;
functions : func_decl NameMap.t

type symbol_table = {
parent : symbol_table option;
variables : (c_type * s_type) NameMap.t

type env = {
glob_env : global_environment;
scope : symbol_table;

return_type : s_type;

(* Environment: symbol tables for functions, global, local vars *)

18

CMajor COMS W4115: Final Report Fall 2015

38 return_val : c_type;

11 type composition = {

42 durl : int list;
13 dur2 : int list;
14 pitches : int array list

45 }

47 (* extract value from c_type * s_type tuple *)

18 let get_value (v, t) = match v with

49 | None -> raise Not_found

50 | _ > v

51

52 (* execute play by writing pitches and durations to composition *)

53 | let play s =

54 (# next is a phrase #)

55 let handle_phrase next 1 = match next with Phrase (chords) ->

56 let comp = { durl = []; dur2 = []; pitches = [Array.make (Array.length chords) (-1)
1}

57 in let rec match_length llen alen 1 =

58 if llen >= alen then 1 else

59 match_length (llen + 1) alen ((Array.make (Array.length chords) (-1)) :: 1)

60 in

61 (* handles the pitches x)

62 let (na, new_pitches) = (
63 Array.fold_left (fun (i, comp_pitches) chord ->
64 match chord with Chord(p,d) ->
65 let new_pitches =
66 List.rev (match_length (List.length comp_pitches) (Array.length p)
comp_pitches)
67 in Array.iteri (fun pidx pitch ->
68 (List.nth new_pitches pidx). (i) <- (pitch_to_int pitch)
69) p; (i + 1, new_pitches)
70 | _ —> raise (Type_mismatch ("Error in play"))
) (0, comp.pitches) chords)
(*# handles the durations #)
3 in (Array.fold_right (fun chord comp —> match chord with Chord(p,d) —>
74 (match d with Dur (dl, d2) —->
5 {

76 durl = dl :: comp.durl;

77 dur2 = d2 :: comp.dur2;

78 pitches = new_pitches;

79 }

80 | _ —-> raise (Type_mismatch ("Error in play")))
81 | _ —> raise (Type_mismatch ("Error in play"))

82) chords comp

83) 8g A

84 | _ —> raise (Type_mismatch ("Error in play"))

85 in match s with Score (phrases) ->

86 Array.fold_right handle_phrase phrases []

87 | _ —> raise (Type_mismatch ("Error in play"))

88

89 let csv_ints (listarg : int list) =

90 List.fold_right

91 (fun next str -> (string_of_int next) ~ "," ° str)
92 listarg ""

93

19

CMajor COMS W4115: Final Report

Fall 2015

(* Get the value of a variable from a symbol table x)
let rec find_symtab_var symtab name =
try
NameMap.find name symtab.variables
with Not_found —->
match symtab.parent with
Some (parent) -> find_symtab_var parent name
| _ —-> raise Not_found

(# Get the value of a variable from an environment =)
let find_var env name =
try
find_symtab_var env.scope name
with Not_found -> try
find_symtab_var {
parent = None;
variables = env.glob_env.variables
} name
with Not_found -> raise Not_found

(* Set the value of a variable within a symbol table x)

let rec update_var symtab name newval (t : s_type) =
try
(* update local scope %)
let (oldval, typ) = NameMap.find name symtab.variables in
if t <> typ then raise (Type_mismatch (name))
else

(# check array typing *)
if t = SArray then if get_arr type newval <> get_arr_type oldval

then raise (Type_mismatch (name)) (*else ()x*)
else (); {
parent = symtab.parent;

variables = NameMap.add name (newval, t) symtab.variables
}
with Not_found —->
match symtab.parent with
Some (psymtab) —>
let newparent = update_var psymtab name newval t in
{
parent = Some (newparent);
variables = symtab.variables
}

| _ —> raise Not_found

(*» Set the value of a variable within an environment x)
let update_symtab env name newval (t : s_type) =
try
let new_symtab = update_var env.scope name newval t in
newval, {
glob_env = env.glob_env;
scope = new_symtab;
return_type = env.return_type;
return_val = env.return_val
}
with Not_found -> (
try
let new_glob_scope = update_var {

parent = None;

20

CMajor COMS W4115: Final Report Fall 2015
variables = env.glob_env.variables
} name newval t in
newval, {
glob_env = {
variables = new_glob_scope.variables;
functions = env.glob_env.functions
}i
scope = env.scope;
return_type = env.return_type;
return_val = env.return_val

)

}

with Not_found -> raise Not_found
| Match_failure(s,1l,c) -> raise (Type_error (name ~ c_type_str (newval)))
let rec translate block env = (

(* translate all expressions to cmaj type *)
let rec expr expenv = function

Id(s) —> (
try
let (c,s) = find_var expenv s in
(c, expenv)
with Not_found -> raise (Missing_variable ("Error: " "\"" g "\"" " pot
defined!"))
)
| Asn(s, e) —> (
try
let (c, envl) = (expr expenv e) in
(* cast array to phrase or score as necessary x*)
let cast_check = function
SPhrase -> (match c with Array (SChord, dat) -> Phrase(dat) | _ -> c)
| SScore —-> (match c with Array (SPhrase, dat) —-> Score(dat) | _ —> c)
| _ —>c¢c
in let ¢ = cast_check (snd (find_var envl s)) in

(* assign value in environment =)
update_symtab envl s ¢ (c_to_s_type c)

with Not_found -> raise (Missing_variable ("Error: "“"\""“g""\"""" not defined!")
)

Arr(e) -> (

let arr_type = c_to_s_type (fst (expr expenv (List.hd e))) in

let arr_check elem =

let c_elem = fst (expr expenv elem) in

if (is_valid_elem c_elem arr_type) then c_elem

else raise (Type_error ("Error: unexpected type encountered"))
in let arr_data = Array.of_list (List.map arr_check e) in
Array (arr_type, arr_data), expenv

Arrget (s, e) -> (

try
let (arr, envl) = expr expenv (Id(s)) in
let index = match (fst (expr envl e)) with
Int (1) -> 1

| _ —-> raise (Type_error ("Error: index value is not an integer")
in let arr_data = match arr with

Array (typ, dat) -> dat
| _ -> raise (Type_error ("Error: \"""s”""\" is not an array"))

21

CMajor COMS W4115: Final Report Fall 2015
in arr_data. (index), envl
with Invalid_argument x -> raise (Invalid_argument ("index out of bounds"))
)
| Arrmod(s, i, e) —> (
try
let (arr, envl) = expr expenv (Id(s)) in
let index = match (fst (expr envl i)) with
Int (1dx) -> idx
| _ —-> raise (Type_error ("Error: index value is not an integer")
in let arr_data = match arr with
Array (typ, dat) —-> dat
| _ -> raise (Type_error ("Error: \"""s”""\" is not an array"))
in let newval = fst (expr envl e)
in if is_valid_elem newval (get_arr_type arr)
then arr_data. (index) <- newval
else raise (Type_error ("Error: unexpected type encountered"));
newval, envl
with Invalid_argument x -> raise (Invalid_argument ("index out of bounds"))
)
| Lit(x) —-—> (

match x with

)
I

Intlit (x) —-> Int(x), expenv
| Pitchlit(l,0) —-> Pitch(l, o), expenv
| Tuple(x, y) —> (
let (ex, envl) = expr expenv X in
let (ey, env2) = expr envl y in
match ex, ey with
Int (a), Int(b) -> Dur(a, b), env2
| Pitch(l, o), Dur(a, b) -> Note(Pitch(l,o), Dur(a,b)), env2
| Array (SPitch, d), Dur(a, b) -> Chord(d, Dur(a,b)), env2
| _ —> raise (Type_error("Invalid tuple"))

Call (name, elist) -> (
let argc, argv, callenv = List.fold_left
(
fun (c,v,envb) next ->
let 1it, enva = expr envb next in
c + 1, 1lit :: v, enva
)
(0, [1, expenv) elist

in
match name with
"play" _> (

match argv with
[_ as s] —> (
let master_score = match s with
Score (phrases) —> Score (phrases)
| Phrase(chords) as p —> Score([|pl])
| Chord(p,d) as c —> Score([|Phrase([lcl])I])
| Note(p,d) —-> Score([|Phrase([|Chord([lpl]l,d)I])I]
| _ —> raise (Invalid_play("Invalid call to play"))
in let comp_list = play master_score in
let ofile = open_out "out.csv" in
List.iter (fun comp ->
let (durlstr, dur2str) =
(csv_ints comp.durl, csv_ints comp.dur?2)
in List.iter (fun parray ->

)

22

302
303
304
305
306
307
308
309
310
311

312

316
317
318
319

320

SIS
[

CMajor

COMS W4115: Final Report Fall 2015

)

1),

let pitchstr = csv_ints (Array.to_list parray) in
fprintf ofile "%$s\n%s\n%s\n" pitchstr durlstr dur2str;
) comp.pitches
) comp_list;
close_out ofile;
Int (1), expenv

| _ —> raise (Invalid_play("Invalid call to play"))

| >
try
let fxn = NameMap.find name callenv.glob_env.functions in
let funenv = exec_fun callenv fxn (List.rev argv) in
funenv.return_val, {

glob_env = funenv.glob_env;

scope = callenv.scope;

return_type = callenv.return_type;
return_val = callenv.return_val

}
with Not_found -> raise (Missing_function ("Unknown function "
(#raise (Not_implemented("Custom functions")) x)

name))

| Binop (el, op, e2) —> (
let (litl, envl) = expr expenv el in
let (1it2, binenv) = expr envl e2 in

match op with
Add —-> (

match (1itl, 1it2) with
Int(x), Int(y) —-> Int(x + y), binenv
| (Pitch(l,0) as p), (Int(y) as i)
| (Int(y) as i), (Pitch(l,0) as p) —-> raise_pitch i p, binenv
| Dur (x,y), Int(z)
| Int(z), Dur(x,y) -> dur_add (Dur(z,1l)) (Dur(x,y)), binenv
| Dur(x,y), Dur(z,w) -> dur_add (Dur(x,y)) (Dur(z,w)), binenv
(# as concatenation x*)
| Note(pl,dl), Note(p2,d2) -> Phrase([| Chord([|pl|],dl); Chord([Ip2]|]1,d2)
binenv
| Note(p,d), (Chord(p2,d2) as c) —-> Phrase([| Chord([Ipl]l, d); c |]), binenv
(Chord (p2,d2) as c), Note(p,d) -> Phrase([| c; Chord([|lpl]l, d) 1]), binenv
Note (p,d), Phrase(c) —-> Phrase(Array.append [| Chord([|pl|]l,d) |] c), binenv

|
\
| Phrase(c), Note(p,d) —-> Phrase (Array.append c [| Chord([|lpl]l,d) |]), binenv
| Chord(pl,dl) as cl, (Chord(p2,d2) as c2) -> Phrase([| cl; c2 |]), binenv
| Phrase(c), (Chord(p,d) as ch) -> Phrase(Array.append c [|ch|]), binenv
| Chord(p,d) as ch, Phrase(c) -> Phrase(Array.append [|ch|] c), binenv
| Phrase(cl), Phrase(c2) -> Phrase(Array.append cl c2), binenv
| _ as f, (_ as s) —>
raise (Illegal_operation((c_type_str f) °= "+" ° (c_type_str s)))

Sub —>

let 1it = (

match 1itl, 1it2 with
Int (x), Int(y) —> Int(x-y)
| Pitch(letr,oct), Int(x) —->

let rcomp = letr - x in
if rcomp < 0 then
let posval = rcomp * -1 in

let mdls = posval mod 12 in
let submod = 12 - mdls in

23

356

358
359
360
361
362
363
364
365

366

368
369

370

CMajor

COMS W4115: Final Report

Fall 2015

let oreduce = posval/l2 in
let oret = oct - (oreduce+l) in
if oret < 0
then Pitch (0,0)
else Pitch (submod, oret)
else Pitch (rcomp, oct)
Dur (num, den) as d, Int(x) —->
dur_sub_abs (d, Dur(x,1))
Pitch(11l,0l) as pl, (Pitch(1l2,02) as p2) ->
let i1 = pitch_to_int pl in
let i2 = pitch_to_int p2 in
Int (11 - 1i2)
Chord(p_array,d), (Pitch(l,o) as p) —>
let pitch_list = Array.fold_left
(fun plist next —>
if next = p then plist else next :: plist
) [1 p_array
in let pitches = Array.of_list pitch_list
in Chord (pitches,d)
Dur(_,_) as dl, (Dur(_,_) as d2) —>
dur_sub_abs (dl1,d2)
Note (p,dl), (Dur(_,_) as d2) ->
Note (p, (dur_sub_abs (d1l,d2)))
Chord(p,dl), (Dur(_,_) as d2) —->
Chord (p, (dur_sub_abs (dl,d2)))
| _ as f, (_ as s) —>

raise (Illegal_operation((c_type_str f) =~ "-" ° (c_type_str s)))

) in 1lit, binenv
Mul —->
let 1it = (
match 1itl, 1it2 with
Int (x), Int(y) —> Int (xxy)
| Dur(n,d), Int(x)
| Int(x), Dur(n,d) ->
let rn = n*x in
let g = gcd rn d in
Dur (rn/g,d/qg)
| Dur(nl,dl), Dur(n2,d2) ->
let n = nl » n2 in
let d = dl1 » d2 in
let g = gcd n d in
Dur (n/g,d/qg)
| _ as £, (_ as s) —>

raise (Illegal_operation((c_type_str f) = "x" ° (c_type_str s)))

) in 1lit, binenv

Div —> (
match (1itl, 1it2) with
Int (x), Int(y) -> Dur(x, y), binenv
(* int / int #*)
| Dur(n,d), Int(i) —> dur_divide (Dur(n,d), Int(i)), binenv
(# dur / int #*)
| Note(p, d), Int(i) -> Note(p, dur_divide (d, Int(i))), binenv
(* note / int *)
| Chord(p, d), Int(i) -> Chord(p, dur_divide (d, Int(i))), binenv
(x chord / int %)
| Int(x), Dur(n,d) -> dur_divide (Int(x), Dur(n,d)), binenv

(% int / dur =*)
| Dur(nl,dl), Dur(n2,d2) —> dur_divide (Dur (nl,dl),

Dur (n2,d2)),

24

CMajor COMS W4115: Final Report Fall 2015

binenv (* dur / dur #*)

376 | Note(p, dur), Dur(n,d) -> Note(p, dur_divide (dur, Dur(n,d))),
binenv (# note / dur x)

377 | Chord(p, chdur), Dur(n,d) -> Chord(p, dur_divide (chdur, Dur(n,d))),
binenv (* chord / dur =*)

378 | Dur(n,d), Note(p, dur) -> Note (p, dur_divide (Dur(n,d), dur)),
binenv (* dur / note %)

379 | Dur(n,d), Chord(p, chdur) -> Chord(p, dur_divide (chdur, Dur(n,d))),
binenv (x dur / chord x)

380 | _ as f, (_ as s)

381 -> raise (Illegal_operation((c_type_str f) ~ "/" ° (c_type_str s)))

382)

383 | Layer —> (

384 match (1itl, 1it2) with

385 (Dur (n,dl) as d), (Pitch(l,o0) as p)

386 | (Pitch(l,0) as p), (Dur(n,dl) as d) -> Note(p, d), binenv

387 (* TODO: array of pitches and array of durations (* Done? *)*)

388 | Array (SPitch, p), Array(SDur, d)

389 | Array(Sbur, d), Array(SPitch, p) —-> (

390 if (Array.length p) != (Array.length d) then

391 raise (Illegal_operation ("Error: pitch[] and dur[] must be same length")

392 else
393 let ph = Array.mapi (fun i e -> Chord([lel], d.(i))) p in
394 Phrase (ph), binenv

395)

396 (Pitch(l,0) as pitch), Note(p,d)
Note (p,d), (Pitch(l,o0) as pitch) ->
398 Chord([| p; pitch |], d), binenv
(Pitch(l,0) as pitch), Chord(p,d)

Chord(p,d), (Pitch(l,0) as pitch) ->

397

399

100

101 Chord (Array.append p [| pitch [], d), binenv

402 | Note(pl,dl), (Chord(p_array,d2) as c) —>

103 Score ([| Phrase([|Chord([|pl|],dl)|]1); Phrase([lcl]) [|]1), binenv
404 | (Chord(p_array,d2) as c), Note(pl,dl) —->

105 Score([| Phrase([lcl|]); Phrase([|Chord([|pl]],dl)]|]) [|]1), binenv
106 | (Chord(pl,dl) as cl), (Chord(p2,d2) as c2) ->

107 Score ([| Phrase([|cl|]); Phrase([|c2]|]) |]), binenv

108 | (Chord(p,d) as c), (Phrase(s) as ph) —>

109 Score([| Phrase([lcl]); ph |]), binenv

410 | (Phrase(s) as ph), (Chord(p,d) as c) —>

411 Score ([| ph; Phrase([lcl]) |]1), binenv

112 | (Phrase(cl) as pl), (Phrase(c2) as p2) ->

413 Score([| pl; p2 |]1), binenv

114 | (Phrase(c) as p), Score(ph)

115 | Score(ph), (Phrase(c) as p) -> Score(Array.append ph [|p|]), binenv
116 | _ as £, (_ as s) —>

417 raise (Illegal_operation((c_type_str £) =~ """ (c_type_str s)))
418)

119 | Arrcat -> (

420 match (1itl, 1it2) with

121 Array(tl, dl), Array(t2, d2) ->

122 if t1 = t2 then Array(tl, Array.append dl d2), binenv

23 else raise (Illegal_ operation("Error: cannot concatenate arrays of two

types"))
424 | Array(t, d), x —>
125 if c_to_s_type x = t then Array(t, Array.append d [|x]|]), binenv
426 else raise (Illegal_operation("Error: type mismatch"))

25

CMajor

COMS W4115: Final Report

Fall 2015

‘ X 14

)
Rep

Xy

Array(t,d) —->

if c_to_s_type x =

else raise (Illegal_operation("Error:
y —>

if c_to_s_type x = c_to_s_type y then
Array(c_to_s_type x, [| x; y |]1), binenv

else raise(Illegal_operation("Error:

=>

let lit = (

match 1itl, 1it2 with
_ as nonint, Int (x)
| Int(x), (_ as nonint)
let arr_type = c_to_s_type nonint
in let arr_data = Array.make x nonint
in Array(arr_type, arr_data)
| _as £, (_ as s) —>
raise (Illegal_operation (
"xx must be used with at least 1 int,

=2

t then Array(t, Array.append [|x]]
type mismatch"))

d), binenv

type mismatch"))

here used with "

~ (c_type_str f) © " and " ° (c_type_str s)
))
) in 1lit, binenv
Eq -> (match 1itl, 1it2 with
Int (x), Int(y) —>

let r = if x = y then 1 else 0 in Int(r),binenv

| Dur(nl,dl), Dur(n2,d2) ->
let r = if nl = n2 && dl = d2 then 1 else 0

)

Gt —>

in Int(r),binenv
Pitch(1l1l,01), Pitch(1l2,02)
let r = if 11 = 12
&& ol = o2
then 1 else 0
in Int(r),binenv
Note (pl,dl), Note(p2,d2)

=>

—>

(c_type_str s)))

let r = if pl = p2 && dl = d2 then 1 else 0

in Int (r),binenv
as f, (as s) —>

raise (Illegal_operation((c_type_str f) = "==" "
-> (match 1itl, 1it2 with
Int (x), Int(y) —>

let r = if x = y then 0 else 1 in Int(r),binenv
Dur (nl,dl), Dur(n2,d2) ->

let r = if nl = n2 && dl = d2 then 0 else 1

in Int (r),binenv
Pitch(11l,01), Pitch(12,02) —>

let r = if 11 = 12

&& ol = o2

then 0 else 1
in Int(r),binenv

Note (pl,dl), Note(p2,d2) ->
let r = if pl = p2 && dl =
in Int(r),binenv

as f, (as s) —>
raise (Illegal_operation((c_type_str f)

lit2 with
—>

(match 1it1,
Int (x), Int(y)

d2 then 0 else 1

A mp—n ~

(c_type_str s)))

26

CMajor

COMS W4115: Final Report Fall 2015

)

let r = if x > y then 1 else 0 in Int(r),binenv
Dur (nl,dl) as durl, (Dur(n2,d2) as dur2) ->

let ctype = dur_sub (durl,dur2) in

(match ctype with

Dur(sn,sd) -> let r = if sn > 0 then 1 else 0 in
Int (r),binenv
| _ —> raise (Illegal_operation("Problem with dur_sub"))

)
Pitch(pl,ol) as pitchl, (Pitch(p2,02) as pitch2) ->
let i1 = pitch_to_int pitchl in
let i2 = pitch_to_int pitch2 in
let r = if i1 > i2 then 1 else 0 in
Int (r),binenv
as f, (_ as s) —>
raise (Illegal_operation((c_type_str f)

n">n (c_type_str s)))

| Gte —> (match 1litl, 1it2 with

)

Int (x), Int(y) —>
let r = if x >= y then 1 else 0 in Int(r),binenv
Dur (nl,dl) as durl, (Dur(n2,d2) as dur2) ->
let ctype = dur_sub (durl,dur2) in
(match ctype with
Dur (sn,sd) -> let r = if sn >= 0 then 1 else 0 in
Int (r),binenv
| _ —> raise (Illegal_operation("Problem with dur_sub"))
)
Pitch(pl,o0l) as pitchl, (Pitch(p2,02) as pitch2) ->
let i1 = pitch_to_int pitchl in
let i2 = pitch_to_int pitch2 in
let r = if i1 >= i2 then 1 else 0 in
Int (r),binenv
as f, (_ as s) —>
raise (Illegal_operation((c_type_str f)

n">=n (c_type_str s)))

| Lt —=> (match 1itl, 1it2 with

)

Int(x), Int(y) —>
let r = if x < y then 1 else 0 in Int(r),binenv
Dur (nl,dl) as durl, (Dur(n2,d2) as dur2) ->
let ctype = dur_sub (durl,dur2) in
(match ctype with
Dur (sn,sd) -> let r = if sn < 0 then 1 else 0 in
Int (r),binenv
| _ —> raise (Illegal_operation("Problem with dur_sub"))
)
Pitch(pl,o0l) as pitchl, (Pitch(p2,02) as pitch2) ->
let i1 = pitch_to_int pitchl in
let i2 = pitch_to_int pitch2 in
let r = if i1 < i2 then 1 else 0 in
Int (r),binenv
as £, (_ as s) —>
raise (Illegal_operation((c_type_str f)

DWW (c_type_str s)))

| Lte => (match 1itl, 1it2 with

Int (x), Int(y) ->

let r = if x <= y then 1 else 0 in Int(r),binenv
Dur (nl,dl) as durl, (Dur(n2,d2) as dur2) ->

let ctype = dur_sub (durl,dur2) in

(match ctype with

27

598
599

600

CMajor COMS W4115: Final Report Fall 2015

Dur (sn,sd) -> let r = if sn <= 0 then 1 else 0 in
Int (r),binenv
| _ -> raise (Illegal_operation("Problem with dur sub"))
)
| Pitch(pl,ol) as pitchl, (Pitch(p2,02) as pitch2) ->
let i1l = pitch_to_int pitchl in
let i2 = pitch_to_int pitch2 in

let r = if i1 <= i2 then 1 else 0 in
Int (r),binenv
| _ as f, (_ as s) —>

raise (Illegal_operation((c_type_str f) "<=" (c_type_str s)))
)

| Noexpr -> Int(l), expenv

(* Processes a single statement; returns updated environment x)
in let rec stmt stenv e =

if stenv.return_val <> None then stenv

else match e with

Expr e -> let ¢, renv = expr stenv e in renv
| vdecl(t, id) —-> (
try
let _ = NameMap.find id stenv.scope.variables
in raise (Duplicate_name(id ~ " already defined"))

with Not_found ->
let typ = type_from_str t in
let new_entry typ = (
match typ with
SArray -> (Array(arr_type_from_str t, [[|[|]), typ)
| _ —> (None, typ)
)
in let newval, newtyp = new_entry typ
in let new_scope = {
parent = stenv.scope.parent;
variables =
NameMap.add id (newval, newtyp) stenv.scope.variables
}oin {
glob_env = stenv.glob_env;
scope = new_scope;
return_type = stenv.return_type;
return_val = stenv.return_val

)
| VdeclAsn (s, e) —-> (#print_endline ("VdeclAsn");*)
let newstenv = stmt stenv s in

let ¢, newenv = expr newstenv e in newenv
| Return(e) —-> (#print_endline "Return";)
let ¢, renv = expr stenv e in

let stype = c_to_s_type c in
if stype <> renv.return_type
then raise (Type_mismatch (
"Function type " (str_from_type renv.return_type)
" "does not match function return type " © (str_from type stype)
))
else {
glob_env = renv.glob_env;
scope = renv.scope;

return_type = renv.return_type;

28

601
602
603
604
605
606
607
608

609

CMajor COMS W4115: Final Report

Fall 2015

return_val = c

}
| Block(sl) —-> (#print_endline "Block"; %)
let block_scope = {

parent = Some (stenv.scope) ;
variables = NameMap.empty
} in

let block_env = {
glob_env = stenv.glob_env;
scope = block_scope;
return_type = stenv.return_type;

return_val = stenv.return_val
} in
let post_block_env = List.fold_left stmt block_env sl in
let post_block_scope = (match post_block_env.scope.parent with
Some (parent) —-> parent

_ —> stenv.scope
n

.

)

{
glob_env = post_block_env.glob_env;
scope = post_block_scope;

return_type = stenv.return_type;
return_val = stenv.return_val
}
| If(e,s_if,s_else) ->

let ¢, ifenv = expr stenv e in (
match ¢ with
Int (x) when x > 0 -> stmt ifenv s_if
| Int(0) -> stmt ifenv s_else
| _ -> raise (
Type_error ("Conditional must be of type int instead of "
~ (c_type_str c))

)

| For(init,cond,iter,st) —>
let cinit, initenv = expr stenv init in
exec_loop initenv cond iter st

and exec_loop env cond iter st =
let c_cond, condenv = expr env cond in
match c_cond with
Int (x) when x > 0 —>
let loopenv = stmt condenv st in

let _, iterenv = expr loopenv iter in
exec_loop iterenv cond iter st

| Int (0) -> env

| =>

raise (Type_error ("For loop conditional must be of type int instead of
(c_type_str c_cond)))

in stmt env block

)

(» Function execution *)

and exec_fun env fxn args =

let params = List.fold_left
(
fun amap (t, id) -> NameMap.add id (None, type_from_str t) amap

) NameMap.empty fxn.formals

n

29

660
661
662
663
664
665
666
667
668

669

CMajo

T

COMS W4115: Final Report

Fall 2015

1

1

et _, fun_e

(

in

let funscope = {
parent = None;
variables = params

} in

let empty_fun_env = {
glob_env = env.glob_env;
scope = funscope;
return_type = type_from_str fxn.ftype;
return_val = None

} in

try

nv = List.fold_left2
fenv) (t, id) c_expr —->
te_symtab fenv id c_expr (c_to_s_type c_expr)

ype_mismatch (s) ->
e (Type_mismatch("Invalid argument to function "

) (None,empty_fun_env) fxn.formals args

fun (_,
try
upda
with T
rais
id))
in

et post_fun
(fun nexte

translat

) fun_env
in

post_fun_env

env = List.fold left

nv nextstmt ->
e nextstmt nextenv
fxn.body

[AP [

fxn.fname

(* DO NOT MIX THIS UP WITH THE CALLER’S ENVIRONMENT x*)

(

)

in
let
(

fun vmap (

t, id) —>

if NameMap.mem id vmap

then rai

n

se (Duplicate_name (id already defined"))

else NameMap.add id (None, (type_from_str t)) vmap

fun_map =

NameMap.empty vdecls

List.fold_ left

fun map fdec -> NameMap.add fdec.fname fdec map

with Invalid_argument (s) —-> raise (Invalid_argument (fxn.fname ": Wrong number of
arguments"))
execute.ml
(*
Andrew OReilly, Stephanie Huang
*)
open Ast
open Sast
open Compile
open Semantics
open Printf
let execute_prog (vdecls, fdecls) =
let print_env key (c, s)
print_endline (key = " = " "~ (Sast.c_type_str c)) in
let var_map = List.fold_left

30

CMajor COMS W4115: Final Report Fall 2015

)
NameMap.empty fdecls

in

let globals = {
variables = var_map;
functions = fun_map;

} in

let scp = {

parent = None;
variables = NameMap.empty

} in

let env = {
glob_env = globals;
scope = scp;
return_type = SInt;
return_val = None

} in

let _, postexec_env =
if NameMap.mem "compose" env.glob_env.functions
then (), (exec_fun
env
(NameMap.find "compose" env.glob_env.functions)
[]
)
else (print_endline "No compose function"), env
in let ofile = open_out "play.out" in
NameMap.iter print_env postexec_env.scope.variables;
fprintf ofile "#!/bin/bash\njava CSVPlayer out.csv";
close_out ofile

parser.mly

% {

(*

Parser for CMajor

By PLT Sandwich

Andrew OReilly, Stephanie Huang
*)

open Ast

%}

%$token PLUS MINUS TIMES DIVIDE LAYER REPEAT ARRCAT ASSIGN EQ NEQ GT GTE LT LTE EOF
%token LPAREN RPAREN LCBRACE RCBRACE LSBRACE RSBRACE COMMA SEMI RETURN IF ELSE FOR
%$token PITCH_LIT

$token <int> INT_LIT

%$token <int> PITCH_LETTER

$token <int> PITCH_SIGN

$token <string> ID

$token <string> TYPENAME

%$nonassoc NOELSE
%nonassoc ELSE
$right ASSIGN

$left ARRCAT

$left REPEAT

$left EQ NEQ

$left LT GT LTE GTE

%left PLUS MINUS

31

16

CMajor COMS W4115: Final Report

Fall 2015

%left TIMES DIVIDE
%$left LAYER

$start program

stype < Ast.program> program
$type < Ast.expr> expr

stype < Ast.vdecl> vdecl

oo
o

program:
decls EOF { $1 }

decls:
{ [1, 11}
| decls vdecl SEMI { (S$2 fst $1), snd $1 }
| decls fdecl { fst $1, ($2 snd $1) }

vdecl:
TYPENAME ID { $1, $2
| TYPENAME LSBRACE RSBRACE ID ({

(# Variable declaration *) }
$1°"[]", $4 (# Array declaration %) }
fdecl:

TYPENAME ID LPAREN formals_opt RPAREN LCBRACE stmt_list RCBRACE
{

ftype = $1;

fname = $2;

formals = $4;
locals = [];

body = List.rev $7;

formals_opt:
{01}
| formal_list { List.rev $1 }

formal_list:

vdecl { [$1] }
| formal_list COMMA vdecl { $3 S1 }
stmt_list:
{ [1 1}
| stmt_1list stmt { $2 $1 1}
stmt:
expr SEMI { Expr(s$l) }
| vdecl SEMI { Vdecl(fst $1, snd $1) }
| vdecl ASSIGN expr SEMI { VdeclAsn (Vdecl (fst $1, snd $1),
$1, $3)) 1}
| RETURN expr SEMI { Return($2) }
| LCBRACE stmt_list RCBRACE { Block (List.rev $2) }
| IF LPAREN expr RPAREN stmt %$prec NOELSE { If($3, $5, Block([])) }
| IF LPAREN expr RPAREN stmt ELSE stmt { I£(s$3, $5, $7) }
| FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RPAREN stmt
1 Ter (83, 85, $7, 89))
expr_opt:

Asn (snd

32

CMajor COMS W4115: Final Report Fall 2015

84 { Noexpr }

85 | expr { $1 }

86

87 | expr:

88 ID ASSIGN expr Asn($1, $3) }

89 LSBRACE actuals_opt RSBRACE Arr ($2) }

90 ID LPAREN actuals_opt RPAREN Call($1, $3) 1}

91 expr PLUS expr Binop ($1, Add, $3) (* Arithmetic operators *) }

expr MINUS expr
expr TIMES expr
expr DIVIDE expr
expr LAYER expr

\
\
\
| Binop ($1, Sub, $3)
\

\

\

96 | expr REPEAT expr

\

\

\

\

\

\

\

\

}
Binop ($1, Mul, $3) 1}
Binop ($1, Div, $3) }

)

Binop ($1, Layer, $3 (* Layer operator %) }

Binop ($1, Rep, $3) (* Array init operator #*) }
97 expr ARRCAT expr Binop ($1, Arrcat, $3) (* Array concat operator *) }
98 expr EQ expr Binop ($1, Eg, $3) (* Equality operators #*) }
99 expr NEQ expr Binop ($1, Neq, $3) }
00 expr GT expr Binop ($1, Gt, $3) }
101 expr GTE expr Binop ($1, Gte, $3) 1}
102 expr LT expr Binop ($1, Lt, $3) }
103 expr LTE expr { Binop($1l, Lte, $3) }
04 ID LSBRACE expr RSBRACE ASSIGN expr
105 { Arrmod($1, $3, $6) (* modify array *) }
106 | ID LSBRACE expr RSBRACE { Arrget ($1, $3) (* array reference x*) }
107 | literal { Lit ($1) (# Lit ($1) Any literal.
Should make
108 type-checking easier x) }
109 | ID { Id(s1) (# Identifier #*) }
110
111
112 actuals_opt:
113 {01}
114 | actuals_list { List.rev $1 }
115
116 | actuals_list:
117 expr { [s1]1 }
118 | actuals_list COMMA expr { $3 :: $1 }
119
120
121 literal:
122 INT_LIT { Intlit($1) }
123 | PITCH_LETTER INT_LIT { Pitchlit ($1, $2) }
124 | PITCH_LETTER { Pitchlit(s1, 4) }
125 | LPAREN expr COMMA expr RPAREN { Tuple($2, $4) }

sast.ml

1 (*

> | Semantic AST

3 | by Andrew OReilly, Stephanie Huang
1 *)

6 open Ast

s | exception Type_mismatch of string

o | exception Missing_variable of string
10 | exception Missing_function of string
11 | exception Invalid_type of string

33

36

CMajor COMS W4115: Final Report Fall 2015

module StringMap = Map.Make (String) ;;

(* Types for semantic checking *)
type s_type = SInt | SPitch | SDur | SNote | SChord | SPhrase
| SScore | SArray | None

(* cmajor types +*)
type c_type =
Int of int
| Pitch of int % int
| Dur of int x int
| Note of c_type * c_type
| Chord of c_type array * c_type
| Phrase of c_type array
| Score of c_type array
| Array of s_type * c_type array
| None
(* Get the semantic type of a storage type %)
let rec c_to_s_type = function
Int x -> SInt

| Pitch (1,0) —-> SPitch

| Dur (a,b) —-> SDur

| Note (p,d) —-> SNote

| Chord (p,d) —> SChord

| Phrase x —> SPhrase

| Score x —> SScore
| Array (s,l) -> SArray
| None —-> None

(* Get string representation of a c_type %)

let rec c_type_str = function
Int (x) —> "Int (" " string_of_int x =~ ")"
Pitch(l, o) -> "Pitch("" (string_of_int 1)"","" (string_of_int o)~")"
Dur (a,b) -> "Dur ("" (string_of_int a)"","" (string_of_int b)"")"
Note (p,d) -> "Note("" (c_type_str p) ","" (c_type_str d)"")"

Phrase(p) -> "Phrase("” (c_type_str (Array (SChord, p)))~")"
Score(s) —-> "Score("" (c_type_str (Array(SPhrase, s)))"")"
Array(s,a) —-> "Array(""Array.fold_ left (

fun prev x —>
if (prev = "") then (c_type_str x) else prev™","” (c_type_str x)
) "matm)"
| None -> "None"

I
|
I
| Chord(p,d) -> "Chord("" (c_type_str (Array(SPitch, p)))"","" (c_type_str d)"")"
|
|
I

scanner.mll

{

(*

Scanner for CMajor

By PLT Sandwich

Andrew OReilly, Stephanie Huang
*)

open Parser

}

(+ let pitch = 78’ ['A’='G’] ["# ’b’]? <- Not used, but handy *)
let id = [I_r FAT—TZr T gl gt] [I_I TAY T Zr T gr_rgr r(Qr_rgr]*

34

CMajor

COMS W4115: Final Report

Fall 2015

(# Pitch literals are split
(= {
[[70"="971+ as 1lit {
| typename as type_str {
| id as id_str {
| eof {

and bcomment = parse
"x/" { token lexbuf }
(— { bcomment lexbuf }

and icomment = parse

"\n’ { token lexbuf }

(— { icomment lexbuf }
and ptoken = parse

| "A" {

let typename = "int" | "pitch" | "dur" | "note" | "chord" | "phrase" | "score"
rule token = parse
[7 7 "\t’” "\r’ ’\n’] { token lexbuf } (* Whitespace #*)
| "/x" { bcomment lexbuf } (* Block comments (/x */) *)
["//" { icomment lexbuf } (* Inline comments (//) *)
[{ LPAREN } (* Punctuation)
[)’ { RPAREN }
AR { LCBRACE }
(A { RCBRACE }
[[{ LSBRACE }
1 { RSBRACE }
| 7g” SEMI }
[, COMMA }
| 7=’ { ASSIGN }
|7+ { PLUS }
| 7=v { MINUS }
[7%’ { TIMES }
|/’ { DIVIDE }
| w==t { EQ }
| Mi=T { NEQ }
| 7> { GT }
] D=0 { GTE }
| < { LT }
| Te=0 { LTE }
[ror LAYER }
] Dae® { REPEAT }
| PeReE { ARRCAT }
(+ keywords =)
["if" { IF }
| "else" { ELSE }
| "return" { RETURN }
| "for" { FOR }

into separate symbols to make parsing easier *)
ptoken lexbuf }
INT_LIT(int_of_string 1lit) }
TYPENAME (type_str) }
ID(id_str) }

EOF }

(* integers x)

(* type names x*)
(*» identifiers #)
(» end-of—-file #*)

(* Should this be quoted? x)

PITCH_LETTER(O0) }

35

CMajor COMS W4115: Final Report

Fall 2015

| "A#" | "Bb" { PITCH_LETTER(1) }
| "B" | "Cb" { PITCH_LETTER(2) }
| TBHET | TEw { PITCH_LETTER(3) }
| "C#" | "Db" { PITCH_LETTER(4) }
| "D" { PITCH_LETTER(5) }
| "D#" | "Eb" { PITCH_LETTER(6) }
| "E" | "Fb" { PITCH_LETTER(7) }
| "E" | "EF" { PITCH_LETTER(8) }
| "F4" | "Gb" { PITCH_LETTER(9) }
["G" { PITCH_LETTER(10) }
| "G#" | "Ab" { PITCH_LETTER(11) }
| 'R’ { PITCH_LETTER(-1) }
|

_ { token lexbuf }

semantics.ml

(*
Functions for semantic analysis
Andrew OReilly, Stephanie Huang
*)

open Ast
open Sast

(* Returns true if pitch is valid %)

let is_valid_pitch (letter, oct) = match letter, oct with
-1, _ —-> true
| 1, o when 0 <=1 && 1 <= 11 && 0 <= 0 && 0 <= 8 —-> true
| _, _ -> false

let raise_pitch n p = match n, p with
Int (x), Pitch(l,o0) —> (
let o =0 + (1 + x) / 12 in

let 1 = (1 + x) mod 12 in
Pitch(1l,0)
)
| _, _ —> raise (Invalid_type("raise_pitch: invalid type"))

(* Convert a pitch literal to an integer value %)
let pitch_to_int p =
match p with Pitch(l, o) -> 9 + o * 12 + 1
| -> raise (Invalid_type ("pitch_to_int: invalid type"))

(*# Matches a string with correspondin s_type %)
let type_from_str t = match t with
"int" -> Sast.SInt

| "pitch" -> Sast.SPitch

| "dur" -> Sast.SDur

| "note" -> Sast.SNote

| "chord" -> Sast.SChord

|

|

|

"phrase" -> Sast.SPhrase
"score" -> Sast.SScore
"int[]" | "pitch[]" | "dur[]" | "note[]" | "chord[]" | "phrase[]"
| "score[]" -> Sast.SArray
| _ —-> raise (Invalid_type ("\""“t""\"""" is an invalid type"))

(* get components of Array type x)

36

90
91
92
93
94
95
96
97
98
99
100

CMajor COMS W4115: Final Report

Fall 2015

let get_arr type a = match a with Array(typ, dat) -> typ
| _ —> raise (Invalid_type ("Get get array type from non-array"))

let get_arr_data a = match a with Array(typ, dat) -> dat
| _ -> raise (Invalid_type ("Get get array data from non-array"))

(+* Check that element and array type match up x)
let is_valid_elem elem arr_type =
if ((c_to_s_type elem) = arr_type) then true else false

(*x Gets type of array from string *)
let arr_type_from_str t =
let typ =
if String.contains t ’ [’ then
if String.contains t ’]’ then String.sub t 0 (String.length t - 2)
else raise (Invalid_type ("\"""t""\"""" is an invalid array type"))
else raise (Invalid_type ("\"""t""\"""" is an invalid array type"))
in type_from_str typ

let str_from_type = function
Sast.SInt —-> "int"
| Sast.SPitch -> "pitch"
| Sast.SDur -> "dur"
| Sast.SNote -> "note"
| Sast.SChord -> "chord"
| Sast.SPhrase -> "phrase"
| Sast.SScore —-> "score"
| Sast.SArray -> "array"
| None -> "none"

(* For reducing fractions x)
let rec gcd a_arg b_arg =
let a = if a_arg < 0 then a_arg * -1 else a_arg in
let b = if b_arg < 0 then b_arg x* -1 else b_arg in
if a = 0 then b
else if b = 0 then a
else if a = b then
a
else if a > b then
gcd (a - b) b
else
ged a (b - a)

(* Handles cases of dur / int, int / dur, dur / dur =*)
let dur_divide (al, a2) =
let n, d = match al, a2 with
Dur (dn,dd), Int (i) -> dn, dd=*i
| Int (i), Dur (dn,dd) —> ddxi, dn
| Dur(dnl,ddl), Dur(dn2,dd2) -> dnl*dd2, ddlxdn2
| _,_ —> 0,0
in
let g = gcd n d in
Dur(n / g, d / g)

(* Duration subtraction — returns negative values *)
let dur_sub = function
Dur (nl,dl), Dur(n2,d2) —>

let nlsub = d2 * nl in

37

CMajor COMS W4115: Final

Report

Fall 2015

let dlsub = d2 % dl in
let n2sub = dl1 * n2 in
let n = nlsub - n2sub in
let g = gcd n dlsub in
Dur(n / g, dlsub / g)

(* Same as dur._sub, but returns absolute value %)
let dur_sub_abs = function
Dur(_,_) as dl, (Dur(_,_) as d2) ->
(match dur_sub (dl,d2) with
Dur (n,d) -> Dur (Pervasives.abs n, d)

(+» Add durations x*)
let dur_add dl d2 = match dl1, d2 with
Dur (nl,dl), Dur(n2,d2) -> (
let n = nl » d2 + n2 * dl in
let a4 dl * d2 in
let g = gcd n d in
Dur(n / g, d / g)

| _,_ —> raise (Invalid_type("Error: invalid type. Dur expected."))

| _ —> raise (Invalid_type ("This should never happen"))

| _,_ —> raise (Invalid_type("Error: invalid type. Dur expected."))

| _, _ —> raise (Invalid_type ("Error: invalid type. Dur expected."))

Makefile

Andrew O’Reilly, Jonathan Sun

cmajor.cmo
Choose one
YACC = ocamlyacc
YACC = menhir --explain

SRCS = $(wildcard =*.x)
JAVA_SRCS = $(shell find java —name ’«')

DEMOS = $(shell find finaldemo x.cmajor -name ’=x')

TARFILES = Makefile $(SRCS) $(JAVA_SRCS) $(TESTS)

cmajor : $(OBJS) CSVPlayer
ocamlc -g —-o cmajor $(OBJS)

CSVPlayer
javac CSVPlayer.java

scanner.ml : scanner.mll
ocamllex scanner.mll

parser.ml parser.mli : parser.mly
$ (YACC) parser.mly

TESTS := $(shell find tests -name ’x.cmajor’ -o —-name "x.out")

$ (DEMOS)

OBJS = ast.cmo parser.cmo scanner.cmo sast.cmo semantics.cmo compile.cmo execute.cmo

38

CMajor COMS W4115: Final Report Fall 2015

o

.cmi @ $.mli
ocamlc -g —-c $<

o

.cmo : %.ml
ocamlc -g -c $<

.PHONY : clean

clean
rm —-f cmajor parser.ml parser.mli parser.ouput scanner.ml \
*.cmo *.cmi x.out x.diff x.log x.txt x.gz

.PHONY : cleanJava
cleandJdava
rm —-f java/function_x java/output.java java/x.class

.PHONY : test
test : cmajor testall.sh
./testall.sh

.PHONY : all
all : clean cmajor CSVPlayer

Generated by ocamldep *.ml x.mli >> Makefile

ast.cmo
ast.cmx
cmajor.cmo : parser.cmi execute.cmo compile.cmo
cmajor.cmx : parser.cmx execute.cmx compile.cmx
compile.cmo : semantics.cmo sast.cmo ast.cmo
compile.cmx : semantics.cmx sast.cmx ast.cmx
execute.cmo : sast.cmo compile.cmo
execute.cmx : sast.cmx compile.cmx
parser.cmo : ast.cmo parser.cmi
parser.cmx : ast.cmx parser.cmi
sast.cmo : ast.cmo
sast.cmx : ast.cmx
semantics.cmo : sast.cmo ast.cmo
semantics.cmx : sast.cmx ast.cmx
parser.cmi : ast.cmo # this was extra, after an unsuccessful make.
CSVPlayer.java

Jhx

* Jonathan Sun

*/

import java.io.File;

import java.io.FileNotFoundException;
import java.util.ArrayList;

import java.util.Scanner;

public class CSVPlayer {

final static int MEASURE_DUR = 2000; // Default measure duration, milliseconds.

39

CMajor COMS W4115: Final Report Fall 2015

final static int PITCH = 0;
final static int DUR = 1;

public static void printUsage() {
System.err.println(
"Usage: java CSVPlayer </my/path/to/file.csv>"
)i
System.exit (1) ;
}

public static int[] calcDurs(int[] durls, int[] dur2s) {
int[] durs = new int[durls.length];
for (int i = 0; i < durls.length; i++)
durs[i] = (int) ((double)MEASURE_DUR x ((double)durls[i] / (double)dur2s[i])
)i
return durs;

}
VT

* Converts a string of comma separated integers to an array of integers.
* @param csv comma separated integers
* @return integer array
*/
public static int[] scanInts(String csv) {
String[] nums = csv.split(",");
int[] ints = new int [nums.length];
for (int i = 0; i < nums.length; i++)
ints[i] = Integer.parselnt (nums([i]);
return ints;

}

public static ArrayList<int[][]> buildScore (Scanner input) {
ArrayList<int[] []> score = new ArrayList<int[][]>();

/#* no error handling... */

while (input.hasNextLine()) {
int[][] voice = new int[2][];
int[] pitches = scanlInts (input.nextLine());
int[] durls = scanlInts (input.nextLine());
int[] dur2s = scanlInts (input.nextLine());
int[] durs = calcDurs (durls, durls);

voice [PITCH] = pitches;
voice [DUR] = durs;

score.add (voice);
}
return score;

}

public static void play (ArrayList<int[][]> score) {
ArrayList<NotesPlayer> voices = new ArrayList<NotesPlayer>();
for (int[][] voice : score)
voices.add (new NotesPlayer (voice));
for (NotesPlayer notes : voices)
(new Thread (notes)) .start ();

40

CMajor COMS W4115: Final Report Fall 2015

public static void main(String[] args) throws FileNotFoundException {

if (args.length != 1) printUsage();
Scanner input = new Scanner (new File (args[0]));
ArrayList<int[] []> score = buildScore (input) ;

input.close();
play (score);
System.out.println(

"Thank you for your patronage. Have a nice day."

) 7

NotesPlayer.java

J xA
* Jonathan Sun
*/

import javax.sound.midi.MidiSystem;

import javax.sound.midi.MidiChannel;

import javax.sound.midi.MidiUnavailableException;
import javax.sound.midi.Synthesizer;

import java.lang.Runnable;

import java.lang.Thread;

public class NotesPlayer implements Runnable {

final static int VOLUME = 100;

final static int PITCH = 0;

final static int DUR = 1;

final static int MEASURE_DUR = 2000; // Default measure duration

public NotesPlayer (int[][] notes) {
this.notes = notes;
}

@Override
public void run() {
try {
playNotes () ;
} catch (MidiUnavailableException e) {
threadMessage ("Midi Unavailable");
} catch (InterruptedException e) {
threadMessage ("Thread interrupted.");

}

private void playNotes () throws MidiUnavailableException, InterruptedException {
Synthesizer synth = MidiSystem.getSynthesizer();
MidiChannel[] channels = synth.getChannels();
synth.open () ;

for (int i = 0; i < notes[0].length; i++) {
System.out.println ("Playing: " + notes[PITCH][i]);
if (notes[PITCH][i] == -1) {

Thread.sleep (notes[DUR] [1i]);

41

CMajor COMS W4115: Final Report Fall 2015

} else {
channels[0] .noteOn (notes[PITCH] [i], VOLUME) ;
Thread.sleep (notes[DUR] [1]);
channels[0] .noteOff (notes[PITCH] [i], VOLUME) ;

}
synth.close () ;

}

private void threadMessage (String message) {
String threadName = Thread.currentThread() .getName () ;
System.out.format ("%$s: %s%n", threadName, message);

}

private int[][] notes;

8.2 Demos

Row Your Boat

int compose () {
pitch[] pitches = $C % 3

++ $D ++ SE
++ SE ++ SD ++ SE ++ SF ++ $G
++ $C ** 3 ++ $G x*x 3
++ SE ** 3
++ SC x* 3
++ $G ++ SF ++ SE ++ $D ++ S$C;

dur dot8 = (3,16);
dur trip8 = (1,4) / 3;

dur([] durations = (1,4) xx 2
++ dot8 ++ (1,16) ++ (1,4)
++ dot8 ++ (1,16) ++ dot8 ++ (1,16)
++ (1,2)
++ trip8 xx 12
++ dot8 ++ (1,16) ++ dot8 ++ (1,16)
++ (1,2);

phrase mainphrase = pitches durations;

note rest = ($R, (1,1));

int i;

score song = newscore();

for(i = 0; 1 < 4; 1 =41 + 1) {
int j;

phrase round = mainphrase;
for(j = 0; 3 <i; 3 =3+ 1) {
round = rest + round;

}

42

CMajor COMS W4115: Final Report

Fall 2015

song = song ~ round;

play (song) ;

chord newchord (dur d) {
note nl = ($R,d);
return nl ~ S$R;

phrase newphrase () {
chord ¢l = newchord((0,1));
chord c2 = cl;
return cl + c2;

score newscore () {
phrase pl = newphrase();
return pl =~ pl;

Shepard Scale

int compose () {
dur d = (1,38);
pitch[] pitches = $C % 8;
pitch base = $CO;
pitch max = $C8;
int i;
int n = 40;

//Initialize an array of pitches

for(i = 0; i < 8; i =1i + 1) {
pitches[i] = base + i * 12;

}

//Main loop
phrase ph = newphrase();

for(i =0; 1 <n; 1 =1+ 1) {
int j;
for(3j =0; jJ <8 J=3+ 1) {
pitches[]j] = pitches[j] + 1;
if (pitches[j] == max)

pitches[]j] = base;
}

//Put them all on top of one another
chord ch = newchord(d);
for(j = 0; j <8; =3+ 1) {
ch = ch " pitches[3j];
}

ph = ph + ch;

43

CMajor COMS W4115: Final Report

Fall 2015

play (ph);
}

chord newchord (dur d) {
note nl = ($R,d);
return nl ~ S$R;

}

phrase newphrase () {
chord cl = newchord((0,1));
chord c2 = cl;
return cl + c2;

}

44

