The Towel Programming Language

W4115 PLT, Fall 2015

Zihang Chen (zc2324) Baochan Zheng (bc2269) Guanlin Chen (gc2666)
December 21, 2015

Columbia University



Introduction

What is Towel anyway?

Itis ...

= )\ : tail recursion, function as first-class citizen, etc.

Stack-based and postfix-syntaxed
= Dynamically strong-typed
= General-purpose

42



Introduction

What does it look like?

import 'std' @

bind Fold-left ,\ Acc Xs Fun,
(Xs 7# ift Acc,
(Acc Xs #hd Fun Xs #tl Fun”~ Fold-left@))
also Sum (0 (+° Fold-left /flip))
then ([1 10 11 20] Sum !println)




How to recognize different parts of the example

Let me do some syntax-highlighting here.
import 'std' @

bind Fold-left ,\ Acc Xs Fun,
(Xs ?# ift Acc,
(Acc Xs #hd Fun Xs #tl Fun~ Fold-left@))
also Sum (0 (+° Fold-left /flip))
then ([1 10 11 20] Sum !println)

L] Language Structures: Sequence, if forms, Function, Backquote,

bind-then forms, import form, export form



How to recognize different parts of the example

Let me do some syntax-highlighting here.
import 'std' @

bind Fold-left ,\ Acc Xs Fun,
(Xs ?# ift Acc,
(Acc Xs #hd Fun Xs #tl Fun®~ Fold-left@))
also Sum (0O (+° Fold-left /flip))
then ([1 10 11 20] Sum !println)

Tail recursive function call

L] Language Structures: Sequence, if forms, Function, Backquote,

bind-then forms, import form, export form



How to recognize different parts of the example

Let me do some syntax-highlighting here.
import 'std' @

bind Fold-left ,\ Acc Xs Fun,
(Xs ?# ift Acc,
(Acc Xs #hd Fun Xs #tl Fun®~ Fold-left@))
also Sum (0 (+° Fold-left /flip))
then ([1 10 11 20] Sum !println)

Partial function application

L] Language Structures: Sequence, if forms, Function, Backquote,

bind-then forms, import form, export form



How to recognize different parts of the example

Let me do some syntax-highlighting here.
import 'std' @

bind Fold-left ,\ Acc Xs Fun,
(Xs 7# ift Acc,
(Acc Xs #hd Fun Xs #tl Fun®~ Fold-left@))
also Sum (0 (+° Fold-left /flip))
then ([1 10 11 20] Sum !println)

= Literals: literals for atoms, numbers, strings, lists, tuples are

supported



How to recognize different parts of the example

Let me do some syntax-highlighting here.
import 'std' @

bind Fold-left ,\ Acc Xs Fun,
(Xs 7# ift Acc,
(Acc Xs #hd Fun Xs #tl1 Fun®~ Fold-left@))
also Sum (0 (+° Fold-left /flip))
then ([1 10 11 20] Sum !println)

= [Names: extensive characters supported, flexible naming



How to recognize different parts of the example

Let me do some syntax-highlighting here.

import 'std' @

bind Fold-left ,\ Acc Xs Fun,
(Xs 7# ift Acc,
(Acc Xs #hd Fun Xs #tl1 Fun®~ Fold-left@))
also Sum (0 (+° Fold-left /flip))
then ([1 10 11 20] Sum !println)

= Language Structures
= Literals
= Names

The above three are what we call words in Towel. A program in Towel is

essentially a sentence of words.



Types in Towel

Towel supports the following type:

= Int — Big integer
= FixedInt — Signed 64-bit integer
= UFixedInt — Unsigned 64-bit integer
= Float — |IEEE754 floating point
= Atom
— A constant with a name (see also Erlang atoms)
= String
— String (one of the Enumerable types)
= List
— Linked list (one of the Enumerable types)
= Tuple
— Fixed, random accessible enumerable data type
= Function
— Passing around a piece of code

10



The Towel Standard Library, a.k.a. Towelibs

In module Std, you will find ...

= Arithmetic Functions: +, -, etc. So no operators.

= Conversion and Reflection Functions: ~int, ~str, etc.

= Routines: functions with side(or stack)-effects, e.g. !println,
!''pop, !!dup, etc.

= Functions that work with enumerables: #hd, #t1, #cons, etc.

= The Fun Functions: /foldl, /map, /filter, etc.

= Variadic Functions: a pacman that eats arguments until the stack is
empty. See manual for more detail.

11



The Towel Compiler, codename weave

How weave compiles a piece of towel: it ...

1. Source — Tokens
tokenizes the source code using a scanner

2. Tokens — AST

parses the tokens with a parser

3. AST — IR AST
traverses and transforms AST to IR AST (along with some scope
analysis that will detect unbound names)

4. IR AST — Bytecode
compiles IR AST into bytecode representation

Bytecode is runnable via the Towel Virtual Machine!

12



The Towel Virtual Machine

The Towel Virtual Machine is a piece of software that ...

1. Bytecode — IR AST
decompiles bytecode to IR AST

2. IR AST — 42
interprets the IR AST (essentially an array of instructions) one by

one so you can get the answer

You can use the Extension mechanism to call OCaml functions from
within the Towel Virtual Machine! See manual for more detail.

13



The future of Towel

A native compiler that compiles IR to C code.

= Better error messages, both for the compiler and the virtual machine.

= Better debugging facilities: need to make use the dynamicness
feature of Towel.

= Enrich the standard library so that it's batteries-included and
general-purpose.

= Statically typed Towel!
A stack-based language is very dynamic due to its unclearness of the
data (i.e. type) flow. A static-typed Towel could be made by
analyzing each function’s stack-effect.

14



And now for something completely different...

The DEMO

= Partial function application

= Tail calls

= Standard library

= Extensions to the Towel Virtual Machine

= The test suite

= Anything you would like to ask 5



