Fall 2015 COMS 4115
Programming Languages & Translators

Final Report

HTORYBOOK

Authors
Anna Lawson (aal2150)
Beth Green (blg2132)
Nina Baculinao (nb2400)
Pratishta Yerakala (py2211)

Table of Contents

I. Introduction
1. Overview
2. Motivation
I1. Language Tutorial
1. Crash Course in StoryBook
2. Examples
3. Installing the Compiler
4. Running the Compiler
III. Language Reference Manual
1. Introduction
2. Syntax Notation
3. Lexical Conventions
3.1 Comments
3.2 Tokens
3.2.1 Keywords
3.2.2 Identifiers
3.2.3 Operators
3.2.4 Constants
3.2.5 Separators
3.2.6 Newlines

3.3 Whitespace

4. Data Types
4.1 Primitive Data Types
4.2 Non-Primitive Data Types
4.2.1 Chapters
4.2.2 Characters
4.2.3 Lists
4.3 Scoping and Lifetime
5. Purpose of Identifiers
5.1 Chapters
5.2.1 Plot
5.2 Characters
5.2.1 Inheritance
5.3 Actions
5.4 Variables
5.5 Traits
6. Expressions
6.1 Primary Expressions
6.1.1 Identifiers
6.1.2 Constants
6.1.3 Parenthesized Expressions
6.1.4 Lists
6.2 Postfix Expressions
6.2.1 List Access and List Instantiation

6.2.2 Character Access: Traits

6.2.3 Character Access: Actions
6.2.4 Chapter Call, Action Call, and Character Instantiation

6.3 Prefix Expressions
6.3.1 Logical Negation
6.3.2 Character Instantiation
6.3.3 Character Access

6.4 Binary Operator Expressions
0.4.1 Arithmetic Operators
6.4.2 Concatenation Operator
6.4.3 Comparison Operators
6.4.5 Logical Operators
6.4.6 Assighment Operator
6.4.7 Sequence Operator

7. Statements

7.1 Expression Statement

7.2 Block Statement

7.2 Conditional Statement

7.3 Loop Statements
7.3.2 While Statement
7.3.2 For Statement

7.4 Return Statements

8. Declarations and Types
8.1 Type Signatures

8.2 Declarations

8.2.1 Variable Declarations
8.2.2 Chapter Declarations
8.2.3 Character Declaration and Instantiation
8.2.4 Character Subtype Declaration
8.2.5 Action Declarations
8.2.6 Trait Declarations
8.2.7 List Declarations
8. Program Structure
8.1 Required for Every Good StoryBook: a plot
8.2 Library Chapter: say
IV. Project Plan
1. Team Responsibilities
2. Style Guide
3. Project Timeline and Log
4. Git Activity
5. Development Environment
V. Architectural Design
Overview
VI. Testing Plan
1. Testing Structure
2. Automated Test Suite
3. Sample Tests
3.1 Return String

3.2 Princesses Audition

3.3 Character List Loop
1. Overview
2. Test Suite File Listings
2.1 Functions
2.2 Print Statements
2.3 Comments
2.4 Arithmetic Operators
2.5 Concatenation
2.6 Comparison Operators
2.7 Logical Operators
2.8 Not Operator
2.9 Assignment
2.10 For & While Loops
2.11 If Else Statements
2.12 Return Statements
2.13 Scoping
2.14 Recursion
2.15 Objects and Inheritance
VII. Lessons Learned
1. Anna Lawson
2. Beth Green
3. Nina Baculinao
4. Pratishta Yerakala

VIII. Appendix

A. Full Source Code
A.1 ast.ml
A.2 scanner.mll
A.3 parser.mly
A4 sast.ml
A.5 semantic_analyzer.ml
A.6 cast.ml
A7 pretty_print.ml
A.8 codegen.ml
A.9 Makefile
A.10 Test Script
A.11 Tests

A. Project Log

1. Introduction

1. Overview

StoryBook is a pedagogical programming language targeted toward novice programmers who are
just beginning to understand the basics of computer science and logical thinking. The language uses
intuitive, "story-like" syntax and structure to make object-oriented programming easier for children

and adult-beginners to read and implement.

This language analogizes the structure of object-oriented programming to the structure of a story.
An object-oriented language is comprised of functions and classes with instance variables and
methods that come together to create a program. Likewise, a story consists of chapters and
characters with traits and actions that come together to create a story. StoryBook synthesizes these
structures to create a platform to introduce object oriented programming and computer science to
children as well as adults. In storybook, characters are objects. Each character can have its own #raits
(instance variables) and actzons (methods). These characters can act in chapters (functions), and
multiple chapters can come together in sequence to form the p/of (main function) of a story. Just as
one character in a story can pass critical information along to another, and what happens in one
chapter might influence later events in a story, the subcomponents of a Storybook program can
communicate by sharing (returning) information about their "conclusions." This allows users to
learn the basics of computer science, and more specifically, object-oriented programming, in the

familiar, intuitive context of stoties.

Colloquial words are used for reserved keywords instead of symbols that are not intuitive to most.
Moreover, common symbols, such as =, are used as they are in basic math and vernacular, rather
than adhering to computer science conventions that may be counterintuitive to novices. This
minimizes the syntax learning curve for beginners, allowing them to instead focus on mastering basic
concepts of computer science and learning to think in a more logical way before moving on to more
complex languages.By allowing users to implement basic algorithms using simple syntax and the
familiar structure of stories, StoryBook serves as an introductory programming language that can be

a gateway to more complex languages and computer science concepts.

2. Motivation

Computer Science, programming especially, is rapidly becoming a larger part of the educational
curriculum from grades K-12. However, many students are expected to simply jump into logical
thinking via courses like AP Computer Science or haphazardly pick it up by reading endless threads

on StackOverflow. We propose StoryBook, a programming language that focuses on readability and

7

intuitiveness to help younger kids learn to think in a logical way and embrace computational
thinking. It helps bridge the gap between passively making logical sentences and the deliberate steps

it takes to use logic in solving a problem.

I1. Language Tutorial

1. Crash Course in StoryBook

Types: Example:

Comments: Character Honéter‘(words n; number s) {
words name is n.
number size is s.

number (float)

~Block~
words (string) Action scare(words scream) returns
~~In line~~ nothing {
letter (char) }Saﬂscmam‘
}
tof (boolean) Basic Program
Structures: Chapter plot() returns nothing {
Character Monster Frank is new
. Monster({”Frankenstein™; 99).
Operators: Characters (objects) say(Frank's name + “:").
Frank, scare("GLABARGHHHHH!").
+ - % [% s > < >= Actions (methods) }
<= 's and or not .
’ Chapters (function)

2. Examples
A simple "Hello world"-like program in StoryBook.

Chapter plot() returns nothing {
say("Once upon a time...").

}

3. Installing the Compiler

Installation of the StoryBook compiler requires the OCaml and C (gcc) compiler. If you are not in
possession of the tar files and have Git version control on your machine, you can download the

compiler via:

git clone git@github.com:blanksblanks/StoryBook.git

Run make in the source directory and voila, the compiler should be installed!

4. Running the Compiler

A StoryBook program file has a .sbk extension. Running make from the top level directory will
generate an executable, run, which converts StoryBook code into C code. The storybook script uses
run to pipe the C code into a C file, then compile it with gcc -std=c99, and run the output of the C
program, therefore producing the output of the StoryBook program.

Example of running the "Hello world" program:
./storybook hello_world.sbk

Output:
Once upon a time...

ITI. Language Reference Manual

1. Introduction

Once upon a time, the creators of Storybook were learning how to code for the first time. At first,
they fumbled with the tricky and alien syntax. It took a while for them to discover the joyful

creativity of computer programming.

StoryBook is a programming language targeted toward novice programmers who are just starting to
understand the basics of computer science and computational thinking. The language uses intuitive,
"story-like" syntax and structure to make object-oriented programming easier for children and
adult-beginners to read and implement. The backend of StoryBook generates C code which can be

compiled and run to produce the desired output from the StoryBook program.

2. Syntax Notation

The syntax notation of this manual is as follows. Any literals or words that belong to the StoryBook
language will be written in monospaced typeface. Syntactic categories are written in /#a/ic. Any items
with -/t appended to it refers to 1 or more of those items, while the subscript is for optional
terminal or nonterminal symbols. Sometimes these items will appear in shortened form. Therefore,

expr-list

e eans 0 or more expressions.

Grammar patterns are expressed throughout the document using regular expressions. r* means the

pattern r may appear zero or more times, r+ means r will appear one or more times, and r? means r

will appear one or zero times. rl |2 means that the pattern has either r1 or 2. r1r2 means that the

pattern rl is concatenated with r2.

3. Lexical Conventions

StoryBook programs are lexically composed of three elements: comments, tokens, and whitespace.

3.1 Comments

Symbol Description Example
e single line comment ~ ~~Single line comment
~o block comment ~Multi-line comment~

Single line comments may be nested in block comments, but block comments may not be nested

within other block comments.

3.2 Tokens

A token in StoryBook is a group of characters that hold meaning when considered as a group. These

consist of keywords, identifiers, operators, separators, and constants.

3.2.1 Keywords

These are all the keywords in StoryBook:

Chapter Character Action new my returns endwith list
number words letter tof true false nothing not
and or is if else repeatwhile repeatfor say

3.2.2 Identifiers
Z.deﬂfgﬁé’}" — [la|_12| IAI_VZI] [lal_|zl IAI_VZI V0|_191 '_']*
Identifiers are a collection of characters, numbers, and/or underscores, which must begin with at

least one character. The characters are the ASCII characters '

a'-'z' and 'A' -'Z', numbers are digits
0-9, and underscore '_". StoryBook is case sensitive. Identifiers hold values that are of the type to

which they are assigned.

3.2.3 Operators

operator —> +

N

v A

10

and
or
not
my
In StoryBook there are arithmetic, comparison, logical, access and instantiation operators. The

syntax and use of these operators are described in 6.2, 6.3 and 6.4.

3.2.4 Constants
boolean — [true false]
letter—['a'-"'z" 'A'-'Z"]
string =" CCNNTC/ NN e T Tt et)Y ([T)R
digit — [0-9]
number —> [=" 12 (digit+) | ['-" 12 (digir*" . " digitv) | ['-" 12 (digit+" . " digit*)
constant —> boolean
letter
string

number

Constant are values in StoryBook that always have the same value include true, false, any

character, any string, and any negative or non-negative number.

3.2.5 Separators

Separator —> ;

StoryBook uses ; to separate items in a list of function arguments or in a 1ist data structure. A . is

used to mark the end of an expression.

3.2.6 Newlines
StoryBook uses newlines to identify the end of a single line comment. Otherwise, newlines are

ignored by the compiler.

11

3.3 Whitespace

Tabs and spaces are used by StoryBookers to make their programs more readable. However,

whitespace is ignored by the compiler.

4. Data Types
4.1 Primitive Data Types

There are five primitive data types in Storybook: letter, words, tof, and number.

Type Example Definition

letter 'a' - Single character

words "apple" - Grouping of consecutive characters, a string

tof true - Boolean type, holds a value of true or false

number 1.5 - A decimal floating-point number with precision of about 24 bits or

about seven decimal digits

4.2 Non-Primitive Data Types

Beyond the four basic types, there is a class of derived data types that can be constructed from the

basic types into conceivably endless varieties of user configuration.

4.2.1 Chapters
A Chapter is a user-defined function that performs operations and may or may not take parameters
of a certain type and may or may not return a variable of a given type. Prewritten functions in

StoryBook are known as Library Chapters.

4.2.2 Characters

A Character is a user-defined data type comprised of traits (instance variables) and Actions

(methods). Traits can be of a primitive type or of a Character type.

4.2.3 Lists
A 1ist is a built-in data structure that can hold multiple instances of /fzers, tofs, numbers, or

user-defined Characters; all values in a list must be of the same type.

4.3 Scoping and Lifetime

A variable's scope is the block affer the variable is declared, with the exception of traits.

12

In the case of nested blocks, if a variable declared within an inner block and shares the same name
as a variable declared in the parent block, then the variable declared in the inner block takes
precedence, effectively overriding the one in the outer block. Thus, in this case, the outer block's
variable with the shared name is inaccessible from the inner block. If two variables are declared
within the same block level, consequently sharing the same scope, with the same name, the one
declared later will take precedence and the earlier one will be inaccessible after the point of the later

variable's declaration.

Traits have the lifetime of their object. All non-trait variables have a lifetime from their declaration's

execution to when the program counter exits the block in which the variable was defined.

There are no global variables in StoryBook. However, Chapters and Characters are global and their

identifiers are accessible to all Chapters for the life of the program.

5. Purpose of Identifiers

What's in a name? An identifier is an alphanumeric sequence of characters that amounts to either a
keyword or the name of a Chapter, Character, Action or a variable. This sections details the purpose

and scope of the possible types of non-keyword identifiers.

5.1 Chapters

In Storybook, a Chapter is any function that is not inside of a Character. Chapters enable users to
create reusable and versatile blocks of code that can be called in other Chapters. Chapters can take
zero or more arguments. Each Chapter can have zero or one return value. All argument and return

types must be declared in the Chapter header.

5.2.1 Plot

The plot is the main function and entry point for the program. The minimum requirement for a
valid and executable Storybook program is the declaration of a Chapter with the plot identifier and
nothing to return. Users can construct concise plots that are either comprised of or include

complex sequences of Chapter calls.

5.2 Characters

In Storybook, classes are called Characters. Characters are user-defined data types that represent a
type of object. Users can then instantiate Character objects of a specific Character type. Each

Character object has its own copy of instance variables known as traits and can perform Actions.

13

5.2.1 Inheritance

Inheritance can be employed to create subclasses of Characters and avoid duplication of code for
shared functionality. This structure allows users to define reusable data types and to abstract the
implementation details of story characters. Characters allow computer science novices to begin to
understand the key concepts object-oriented programming and inheritance in the familiar context of

story characters.

5.3 Actions

Actions are methods that can be invoked on instances of a Character. Actions are defined inside
the Character class definition. Like Chapters, they can have zero or more arguments and zero or

one return values, and all typed arguments and return types must be listed in the Actions header.

5.4 Variables

In StoryBook, variables are statically-typed. A variable is an identifier that is bound to a value of one
of the following types: Character, letter, words, tof, list, or a number. Variables of type number
are dynamically typed in that they can be initialized and re-assigned to any type of number. The

variables in StoryBook are mutable.

5.5 Traits

In StoryBook, traits represent the object-oriented concept of instance variables. Traits are variables
that are defined at the scope of a Character type. Each instantiated object of that Character type
has its own instance of each trait. When traits are inherited from a parent class to a subclass, the
traits from the parent class take precedence in terms of order when passing them in as parameters to
to instantiate a new subclass object. After the parent's traits, the subclass' own traits can be initialized

in the parameters.

6. Expressions

This section describes the syntax of StoryBook expressions. StoryBook uses postfix, prefix, or infix
operators. The precedence of expression operators mirrors the order of the major subsections of
this section, highest precedence first. Within each subsection, the operators have the same
precedence. The grammar of StoryBook incorporates the precedence and associativity of the

operatofs.

6.1 Primary Expressions
primary-expr —> constant

identifier

(expression)

14

Primary expressions include identifiers, constants, or expressions that can be evaluated to a single value in

parentheses.

6.1.1 Identifiers

An identifier for a variable is a primary expression, provided it has been fully declared and holds a
value. A variable # is a primary expression whose type is the same as the type of 4. Evaluation of an
identifier actually entails evaluation of the expression bound to that variable. Identifiers are

described in section 3.2.2.

6.1.2 Constants
A constant is a primary expression with the same type as the type of the literal, which can be of type

tof, letter, string, or number. See 3.2.4 for a discussion of constants.

6.1.3 Parenthesized Expressions
(expression)
A parenthesized expression is a primary expression whose type and value are identical to the final

evaluation of an un-parenthesized expression.

6.1.4 Lists

expr-list — [expression, 5 expression, ; .. ; expression,]

where 1 <7< and 7 is the length of the expr-/st.

A list is a primary expression that can contain zero or more expressions. The expressions in a list

must all be of the same type. List elements are assigned one by one.

6.2 Postfix Expressions

postfix-expr == primary-expr [expression]
primary-expr ' s expression
primary-expr, expression
primary-expr (expr-list,,,)

The operators in postfix expressions group from left to right.

6.2.1 List Access and List Instantiation
The expression expression,[expression,] denotes the accessing of list elements. First expression, is

evaluated, then expression, , then the [] operator. It returns the value at the position denoted by
expression, in the list denoted by expression,. Position numbers in the list begin at 0 and end with the
length of the list minus 1. List elements are assigned one by one. This is done to explicitly show

students how each element in a list is assigned to a position.

15

6.2.2 Character Access: Traits
The 's operator is used to access a Character's traits in external Chapters.

6.2.3 Character Access: Actions
The , operator is used to access a Character's Actions. The second expression should be an Action
call expression.

6.2.4 Chapter Call, Action Call, and Character Instantiation

Chapters and Character Actions can be called in the scope in which they were created by the
Chapter identifier and the appropriate arguments wrapped in a pair of parentheses (). A function
without any arguments is simply called with primary-expr ().

Unlike Chapters and Actions, a Character instantiation cannot happen without specifying the
Character's traits (instance variables) in the parameters. This is done so that students will not be
confused about how an object can have a certain trait but not define it from the very beginning.

6.3 Prefix Expressions
prefix-exipr —> not expression

my expression

new expression

Expressions with unary operators group right-to-left.

6.3.1 Logical Negation
The operand of the not operator must have a tof type. The result of the prefix expression not

true is false and the value of not false is true.

6.3.2 Character Instantiation

new is used to construct new Character instances.

6.3.3 Character Access
my is used in a Character's Action methods to access its own traits, as opposed to the 's operator

used in external functions.

6.4 Binary Operator Expressions
binary-expr — expression, operator expression,
The following categories of binary gperators exist in StoryBook, and are listed in order of decreasing

precedence: arithmetic, concatenation, comparison, logical, assighment and sequence.

16

6.4.1 Arithmetic Operators

arithmetic-expr —> expression, * expression,
excpression, | expression,
expression, % expression,
exPression, + expression,

expression, - expression,

Operator Description Example

* multiply 5%10 ~~evaluates to 50

/ divide 55/10 ~~evaluates to 5.5

% modulo 5%2 ~~evaluates to 1
5%2.5 ~~evaluates to 1

+ add 1+1 ~~evaluates to 2

- subtract 10-4 ~~evaluates to 6

The multiplicative operator *, the division operator / and the remainder operator % are all grouped
left-to-right. The operands must have number type. The binary operator * denotes multiplication of
the two operands. The binary / operator yields the quotient, which is always the result of floating
point division of the first operand by the second. The % operator converts the float operands to
integers, then takes the remainder of a product of the integer division. The remainder result is a float
number type. If the second operand is O for the / or % operator, the result is undefined.

Of lower precedence than the multiplicative operators, the additive operator + and
subtractive operator - also group left-to-right. As long as the operands are of the number type, the
result of the + operator is the sum of the operands. The + operator can also have operands of other
types, in which case the function of the operator changes to concatenation, which is discussed in the
next subsection. The result of the - operator is the difference of the operands. The operands for

subtraction must be of number type.

6.4.2 Concatenation Operator

concatenarion-expr —> expression,; + expression,

Allowed Operand Types Example
words and words "Story" + "Book". ~~"StoryBook"
words and letter "Hello" + "I ~~"Hello!"
words and number "Alibaba and the " + 40 + " thieves".
~~ "Alibaba and the 40 thieves"
words and tof "Today you are you! That is truer than " + true + "!

There is no one alive who is you-er than you!"
~~ "Today you are you! That is truer than true! There
is no one alive who is you-er than you!"

17

The + operator is distinguished from the other arithmetic operators because its operands do not
have to be of number type or even of the same type as each other. So long as one of the right-hand
ot left-hand operands is of type words, then the + operator performs concatenation, such that the
result of the + operator is the concatenated result of the two operands and is of type words. If one
operand is of type words and the other operand is a different data type, the non-words operand is
cast to type words; then regular string concatenation takes place, and the final concatenated result is
of type words.

The concatenation operator has the same level of precedence as addition and subtraction,
and also groups left-to-right. By this logic, 1 + 1 + "one" evaluates to "2one" while "one" + 1 + 1

evaluates to "onel1l".

6.4.3 Comparison Operators

comparison-expr —> expression, < expression,
excpression, > expression,
expression, <= expression,
expression, >= expression,
expression, = expression,

. [.
expression, = expression,

Operator Description

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

= tests equality

tests inequality

The operands must have number type. The final result of a comparison expression is of type tof.
The equality operator and the inequality operator have lower precedence than the other comparison
operators. Thus, expression, op expression, and expression, op expression,evaluate to true if both
expression, op expression, and expression; op expression, share the same tof value. In other words, both
the expressions1 < 2 = 3 < 4and1 > 2 = 3 > 4 will evaluate to true as they are respectively
equivalentto (1 < 2) = (3 < 4)and (1 > 2) = (3 > 4).

6.4.5 Logical Operators

logical-expr —> excpression, and expression,

18

excpression, or expression.,

Operator Description Example
and logical and true and true ~~evaluates to true
or logical or false or true ~~evaluates to true

The logical operators group left-to-right. The operands have to be of tof type and the result of a

logical expression is always of type tof.

and returns true if both its operands are unequal to false, otherwise it returns false. It guarantees
left-to-right evaluation and adopts short-circuit evaluation. The first operand is evaluated; if it is
equal to false, the value of the entire expression is immediately set to false. Otherwise, the right

operand is evaluated, and if it equal to false, the whole expression is false, otherwise true.

or returns true if either of its operands are not equal to false, otherwise it returns false. It also
guarantees left-to-right evaluation and adopts short-circuit evaluation. The first operand is evaluated;
if itis equal to true, the value of the entire expression is immediately set to true. Otherwise, the
right operand is evaluated, and if it equal to true, the whole expression is true, otherwise the

expression is equal to false.

6.4.6 Assignment Operator

assignment-expr —> lhs is expression

The is assighment operator groups right-to-left. The value of the expression replaces the value
stored in the identifier of the /bs. It can be of any of the primitives types or a Character type, but
must not be of type Chapter. The left operand must be a declared identifier. The type of an
expression is that of its left operand, and the value is the value stored in the left operand after the

assignment has taken place. The operand on the right must have the same type as the left operand.

For instance:

identifier is 5. ~~the identifier is set to the value of 5
identifier is (5+1). ~~the same identifier changes to the value of 6

6.4.7 Sequence Operator
sequence —> [expression; expression; |+
Expressions separated by semicolons are evaluated left-to-right. The expression x is 5; X + 6 is

therefore equivalent to the two expression statements:

X is 5.
X is x + 6.

See 7.1 immediately below for a discussion of expression statement syntax.

19

7. Statements

Statements are executed in sequence.

7.1 Expression Statement
expression .
Statements are marked with a period . to resemble regular English sentences. Most statements are

expression statements, and most expression statements are assignments or function calls.

7.2 Block Statement
block-stmt — { statement-list '}

Statement-list —> statement
statement statement-list

Block statements can contain one or more statements.

7.2 Conditional Statement
conditional-expr — if (expression) block-stmt

if (expression) block-stmt else block-stmt
Each expression after an if must be an expression of tof type that evaluates to true or false.
Parentheses around the expression condition are required. If the expression evaluates to true then the
expression following the subsequent then is executed. Otherwise, the expression following the
subsequent else is executed. In the case of multiple if statements preceding an else clause, then
the else binds to the immediately preceding if block with the { statement-list } immediately
preceding the else keyword. In the example below the last statement would be evaluated as the

first two conditions are not true.

if (1=2) {
StatementT

} else if (1 = 2) {
Statement?

} else {

Statement3

}
7.3 Loop Statements

loops-stmt — repeatwhile (expression) block-stmt

repeatfor expressionl; expression; expression3 block-stmt

20

The substatement in the block executes iteratively until the value of the expression is no longer true

(hence the expression must be of type tof).

7.3.2 While Statement

repeatwhile (expression) block-stimt

The block of code defined in the repeatwhile loop will be executed while the expression, which must
be of type tof, evaluates to true. If the condition is always true, such as (7 = 7), the result

would be infinite loop. The parentheses around the expression is required.

Hypothetically, if we were to have a Character instance with the identifier SleepingBeauty with

the traits age and snore Action, then a while loop could look like:

repeatwhile (SleepingBeauty's age != 100) {
SleepingBeauty, snore.
SleepingBeauty's age is SleepingBeauty's age + 1.

7.3.2 For Statement

repeatfor expressionl; expression; expression3 block-stmt

This is the syntax of a StoryBook repeatfor loop is equivalent to:
expression].
repeatwhile expression2 {
Statement .

expression3 .

The first expression is evaluated only once and initializes the loop. There is no restriction on its type.
The second expression must evaluate to type tof and is typically a condition for the loop to
continue. Once the second expression evaluates to false, the loop ends. The third expression is
evaluated after each iteration and specifies a re-initialization for the loop. There is no restriction on
its type. The block of code defined after the repeatfor line will be executed as long as the
tof-expression evaluates to true.

The suggested pattern used in a for-/ogp is to have the sequence below, an assignment
expression, then a comparison expression to check for tof-ness, followed at last by a reassignment
expression to change the original variable assignhment in the sequence. In the example below, an
identifier is assigned to an initial number value, then this value is checked by a comparison operator,

and then the value is incremented with each iteration of the loop.

repeatfor (number x is 5; x < 10; x is x + 1) {

21

~~this will print "hello" 5 times
say("hello").

7.4 Return Statements

return-stmt —> endwith expression

A Chapter returns values to its caller via the endwith statement. Not all Chapters have endwith
statements, depending on their Chapter declarations, which will be discussed in the next section. If
the expression that is returned is a number literal, parentheses are required because a statement like
endwith(@). could be construed as an unfinished return statement as the period is interpreted by

the scanner and parser as a decimal point for the returning number value.

8. Declarations and Types

8.1 Type Signatures

Bipe-signature —> type identifier
type — number

letter

words

tof

charlist
toflist
numberlist
characterlist

Character identifier

When declaring a variable prepend each declaration with the data type, for example:

number age letter initial words dialogue tof asleepOrNot

8.2 Declarations

variable-declaration —> type identifier

chapter-declaration — Chapter identifier (var-decl-list,) returns type { stmt-list '}

o) returns fpe { Stnt-list '}

Character identifier is identifier (var-decl-list, ,) returns type { stmt-list '}

opt

) returns #ype { stmt-list '}

pt
character-declaration — Character identifier (var-decl-list,

action-declaration —> Action identifier (mr—dec/—/z'flopt

8.2.1 Variable Declarations
variable-declaration — type identifier

22

Variable declarations serve in many ways. When they immediately follow the identifier in a
chapter-declaration, action-declaration and character-declaration, these variables serve as parameters. Inside
the a stmt-list , variable declarations are often assigned values. Within a Chapter body, a list of
variable-declarations serve as local variables. Inside a Character body, a list of variable-declarations serve
as traits or instance variables. They are often defined immediately after declaration when they appear

in a statement block, as in.

tof asleepOrNot is false.

8.2.2 Chapter Declarations

chapter-declaration — Chapter identifier (var-decl-list,) returns type { stmt-list '}

pt
Chapters are declared with zero or more parameters, separated by semicolons, and a return value

preceded by the keyword returns. For instance:

Chapter sum (number x; words y) returns number {
endwith(x +y).

}

8.2.3 Character Declaration and Instantiation

character-declaration — Character identifier mr—dw/—/jﬂ‘ow) returns fpe { stmt-list '}

Character variable names are capitalized by convention. Inside the braces of a Character
declaration the user can declare zero or more traits and Actions. To create an instance of a
Character the Character identifier is prepended to the instance zdentifier and assigned to a new
Character of that type. Traits are defined during instantiation by passing the values in as

arguments‘

Character Monster(words n; number s) {
words name is n.
number size is s.

Action scare(words scream) returns nothing {
~~ print scream and name separated by a space
say (scream + ' ' + (my name)).
}
}

Monster Frank is new Monster(name is "Frankenstein"; size is 99).
say(Frank’s name). ~~prints Frankenstein
Frank, scare("AHHHHHH"). ~~prints AHHHHHH

23

8.2.4 Character Subtype Declaration

character-declaration — Character identifier is identifier (mr—dev/—/z'sz‘@pt) returns fpe { stmt-list '}
Subtypes are declared with very similar syntax as a normal Character. However note that after its
identifier, in the signature, the type signature of the Character is assigned to its superclass. The

resulting declaration reads very intuitively:

~We can also call scare on Giant because of inheritance, and Giant gets the same
traits: name and size~

Character Giant is Monster() {
Action crush(number personHeight) returns tof {
tof crushed is false.
if personHeight < size {
crushed is true.

} else {

crushed is false.
}
endswith crushed.

Character Giant has inherited all of Monster’s traits. Therefore, in order to to create a Giant

instance, the appropriate Character instantiation is:

Character Giant Fum is new Giant("Fum!" , 500). ~~need arguments
Fum, scream("Fee Fi Fo!") ~~print out "Fee Fi Fo! Fum!"
Fum, crush(6). ~~returns true

8.2.5 Action Declarations

action-declaration —> Action identifier (mr—dec/—/i;lopt) returns #ype { stmt-list '}

Action declarations are neatly identical to those of Chapters except the first keyword is Action
instead of Chapter. Otherwise, they are also are declared with zero or more parameters, separated by
semicolons, and a return value preceded by the keyword returns. These declarations have to be

inside of a Character body.

Action makeMoney(number initialAmnt, number salaryPerMonth, number monthsWorked)
returns number {
endwith(initialAmnt + salaryPerMonth + monthsWorked).

}

24

8.2.6 Trait Declarations

Trait declarations contain the exact same syntax as variable declarations, but must be declared inside
of a Character body. However, to access a trait variable outside of the Character requires the 's
operator to access the variable, while accessing the trait variable inside an Action requires the my

operator, as discussed in 6.3.3 Trait Access.

8.2.7 List Declarations

list-signature — type 1ist identifier

Lists are treated as variables in the compiler and can be declared as a regular data type by the user.
Lists can only contain one type of data type and therefore each type of list has its own type to
distinguish this fact: numberlist, letterlist, toflist, and characterlist.

numberlist dwarfAges is new numberlist[5]. ~declares an empty list of numbers of
length 5 called dwarfAges~

8. Program Structure

program —> chapter-decl-list ; character-decl-list,

A program in StoryBook comes down to a list of optional Chapter declarations and a list of

Character declarations. Such declarations have program-wide scope.

8.1 Required for Every Good StoryBook: a plot

The order of Chapter declaration in a StoryBook program is not important as all are visible when
the program starts. However one requirement for any executable StoryBook program is the

declaration of a Chapter by the identifier of plot with the signature:

Chapter plot() returns nothing

When a StoryBooker runs a Storybook program, the first function that is called is the plot.

As discussed in 5.2.1, the plot is the main function and entry point for the program. The program
executes with the first statement in the code block of the plot function. The program executes
sequentially, statement by statement, until the closing brace of the plot function. Only one plot is

allowed in a StoryBook program.

8.2 Library Chapter: say

The say function is a built-in Chapter that prints its input to standard output. It is a unique Chapter
in that it accepts any type of expression that can be evaluated to any of the four basic data types:

letter, words, tof, or number. It prints its input out as a string.

25

For instance:

words pirateName = "Captain Jack Sparrow".
say("Ah" + @ + "y, " + pirateName + '!'). ~~prints "Ah@y, Captain Jack Sparrow!"

IV. Project Plan

The processes for planning started with regularly meeting after our weekly meeting with our TA,
Richard Townsend, to discuss and work on the various aspects of the language. Initially, the
meetings consisted of how the planning will work, scheduling times when everyone is free to meet
and work, discussing strategies on teaming up for certain features of the program, version control,
etc. Facebook Messenger was used to schedule meetings and for checking in to see how each
member is proceeding and whether to adjust the timeline by either prioritizing and pushing some

features back or teaming up to push forward.

1. Team Responsibilities

While we had initial team roles, we discovered later that some members were better and motre
efficient with certain aspects of the language. These are the final "roles" to which we stuck, but are
definitely not reduced to as the members have contributed to many more aspects than the role

strictly defines.

Student Role

Anna Lawson System Architect
Beth Green Language Guru
Nina Baculinao Testing

Pratishta Yerakala Project Manager

Throughout the process, responsibilities were broken down into features. Specifically, Anna was in
charge of the main plot and functions; Beth was in charge of returns, assignment and loops; Nina
was in charge of types such as numbers and floats; Pratishta was in charge of arithmetic and logical
operations. Anna and Beth were the dynamic duo that brought Characters with inheritance and

Lists to life. A more detailed list of how features were implemented here (generally in this order):

26

Main function and functions: Anna
Say: Anna

Return values: Beth, Anna

Numbers and comments: Nina
Binary and Unary operators: Pratishta
Concatenation: Anna, Beth, Pratishta, Nina
Assignment: Beth, Anna, Nina

Loops: Beth

Characters: Anna, Beth, Nina, Pratishta
Inheritance: Beth, Anna, Nina

Lists: Anna, Beth

2. Style Guide

® Git commits and logs have been used extensively to see changes made by members

® Facebook Messenger was used most frequently to communicate whatever has been updated

® [very new feature added called for an accepted and rejected test case with special syntax for
being named. Each test case also called for dependent files such as the generated C file,
expected output file, the resultant output file in order for the automated test script to work

® The main branch was used to push changes that always compiled and ran as expected.
Occasionally, binary files or generated files were committed or pushed, but they were added
to the .gitignore and removed from the repository. Any feature that needed extended periods

of time to be worked on was done on a branch (e.g. arithmetic, lists, etc.)

3. Project Timeline and Log

Task Planned Completed
Meeting in Lerner: Language Ideas, Graphical, Educational... - 9/18 F
Meeting in Diana: Proposal Rough Draft = 9/27 U
Proposal Submission 9/30 W 9/30 W
Meeting 1: Proposal Feedback - 10/8 R
Meeting 2: Target Language? - 10/15 R
LRM Outline and Division of Responsibilities 10/11 U 10/11 U
LRM Peer Review and Edit 10/13'T 10/13T
Meeting 3: LRM Draft Feedback = 10/21 R

27

LRM Submission

Meeting 4: LRM Feedback

Meeting 5: Parser/Scanner

Tests for patrser / scanner (acceptable input / output)
Parser and Scanner MVP

Meeting 6: Compiling down to C

“Hello World”

Meeting 7: Plan for implementation of Objects
Miscellaneous functions (arithmetic, functions, loops, etc)
Meeting 8: CAST

Implementing Basic Objects

Implementing Inheritance

Implementing Lists

Code debugging, writing tests for demo, presentation slides
Final Presentation Demo

Final Report

4. Git Activity

Oct 4, 2015 - Dec 22, 2015

~ontributions to master, excluding merge commits

28

10/26 M

11/6 F
11/9M
11/12R

11/15M
11/19 R
12/2W

12/10
12/17R
12/17R

12/18 F

10/26 M
10/29 R
11/5R
11/6 F
11/9M
11/12R
11/15M
11/19 R
12/9W

12/10
12/17R
12/18 F

12/22
12/20 S
12/20 S

12/22°T

wns: Commits -

5. Development Environment

The development environment included: OCaml to write the compiler components, Bash to
automate testing, and C to compile and test the generated code. For the coding environment, we
used the Sublime Text Editor and Vim. Generally, Sublime was used for the compiler files (i.e. AST,
SAST, semantic analyzer, pretty printer, etc.) and Vim was used to debug and look at the generated
C files. The terminal was used to run the programs. Menhir was used to debug when building the
scanner, parser and AST. The command export OCAMLRUNPARAM=p was used to debug parser errors.
Github was used for version control. Final report and LRM were created using Google Docs, and

the presentation slides were created using Google Presentations.

V. Architectural Design

Overview

Scanner CodeGen - CAST
&
' |
l N Printer
AST - Semantic p
Analyzer

The above diagram describes the overall architecture of our language. The scanner reads input and
to generate tokens. The parser parsers through the tokens and defines the grammar rules of the
language. The AST builds a syntactic tree that represents basic types in the language using the items
from the parser. The semantic analyzer goes through the AST nodes, checking types and
determining whether the semantics of the program input are correct, converting the AST nodes to
SAST nodes as it walks through the program structure. The generated SAST nodes are used by the
codegen to generate the syntax tree for C (CAST). The key job of the CAST was to decouple the
Actions and traits in a Character object and represent them as virtual tables with function pointers
and structs holding different typed fields including a pointer to the structs virtual table. This is used
by the pretty printer to finally generate a C file that could be compiled and produce a result.

Anna and Nina started the base code for the framework of how the semantic analyzer would be

when working on the "Hello World" program and demo. After that MVP, the project was divided

into Language Features amongst group members and were supposed to be done by the set deadline.

29

After this, members made to the appropriate files so that when their respective features were

implemente € dependaent riles were upaate O accommodarte cm.
pl ted, the dependent fil pdated t date th

Language Proposal: Anna, Beth, Nina, Pratishta

LRM write-up: Beth, Nina, Anna, Pratishta

Scanner, Parser, AST: Anna, Beth, Nina, Pratishta

Static Semantic Analysis, SAST: Anna, Beth, Nina, Pratishta
CAST, Pretty Printer: Beth, Anna, Nina, Pratishta

Code Generator: Anna, Pratishta, Beth

Test cases: Nina, Pratishta, Anna, Beth

Testing automation: Anna, Nina, Pratishta

Final writeup: Pratishta, Nina, Beth

Powerpoint slides: Pratishta, Anna, Nina, Beth

VI. Testing Plan

1. Testing Structure

A shell script test.sh was used to automate the regression testing process. This script runs through
all the StoryBook files in the test folder. All unit test files ended in either _Accept.sbk or
_Reject.sbk to indicate whether that particular program in StoryBook should throw a compiler
error or pass. Additionally, for each acceptable unit test, _Out.txt and _Exp.txt files were created
to be passed into the main testing shell script and diff them. In this process a C file would also be
generated but because the generated C file had a lot more whitespace, syntax, and other
miscellaneous text dictated by the StoryBook compiler, we didn't do a diff between the generated
and expected C code.

Each member made test cases for the feature they worked on and generally it was a test-driven
development process, where we tried to write tests first, then implement the features such that
"accept” cases were successfully passed and "reject” tests fail for the right reasons.

As the project grew, implementing more complex features (e.g. objects) sometimes caused other
features to break (e.g. assighment, function parameters, etc). This called for testing with a slightly
more complex StoryBook program to ensure that all the parts could come together and not simply

just work individually.

2. Automated Test Suite

Calling ./test.sh in the test directory starts the automated test suite.

test.sh

30

#!/bin/sh

cd ../
make clean
make

cd test
echo "Accept Tests:
failcount=0
passcount=0
if 1s $1*_Accept.sbk 1> /dev/null 2>&1
then
for acceptname in $1* Accept.sbk;do
program="basename $acceptname _Accept.sbk"
echo "Test: $program” >> errors.txt
.././run < "$acceptname” > "${program}.c" 2>> errors.txt
if [-s "$program.c"]
then
gcc -g -std=c99 $program.c -o $program
if [-f "$program"]
then
./$program > "${program}_Out.txt"
rm $program
if diff -q "${program}_Out.txt" "${program}_Exp.txt"
then
let "passcount += 1"

>> test_results.txt

echo ": $program” >> test_results.txt;
else
let "failcount += 1"
echo ": $program -- Compiled and ran, but wrong output." >> test_results.txt
echo ": $program -- Compiled and ran, but wrong output.”
fi
else
let "failcount += 1"
echo ": $program -- C Code wouldn't compile" >> test_results.txt;
echo ": $program"
fi
else

let "failcount += 1"

echo ": $program -- Storybook didn't compile" >> test_results.txt;
echo ": $program -- Storybook didn't compile"
fi

done

fi

if 1s $1* Reject.sbk 1> /dev/null 2>&1
then
for rejectname in $1*_ Reject.sbk;do

program="basename $rejectname _Reject.sbk”
echo "Test: $program” >> errors.txt
.././run < "$rejectname” > "${program}.c" 2>> errors.txt
if [! -s "$program.c"]
then
let "passcount += 1"

echo ": $program” >> test_results.txt

else

let "failcount += 1"

echo ": $program -- Storybook compiled but should not have" >> test_results.txt
echo ": $program -- Storybook compiled but should not have"

fi

31

done
fi

echo "$passcount tests passed”
echo "$failcount tests failed"
rm -rf *.dSYM

./storybook

#!/bin/sh

Compile c file and run
program="basename $1 .sbk”
.././run < $1 > "${program}.c"

if [-s "$program.c"]

then
gcc -g -std=c99 $program.c -o $program
if [-f "$program”]

then
./$program
rm -rf *.dSYM
else
echo "C code didn't compile"
fi
else

echo "Storybook didn't compile”
echo " / /\\ !l _

=(one)= //

) /7
(/7"
fi

3. Sample Tests
3. 1 Return String

FncOneArg Accept.sbk

Chapter whatTimeIsIt(words x) returns words {
endwith("It's " + x + " o'clock.").

}

Chapter plot() returns nothing {
say(whatTimeIsIt("now" + " five")).

}

32

FncOneArg Accept.c

char * whatTimeIsIt(char * x) {

int

char buf__1[strlen("It's ") + strlen(x) + 1];
sprintf(buf__1, "%s","It's ");

sprintf(buf__1 + strlen(buf__1), "%s",x);

char * 1 = buf__1;char buf__2[strlen(_1) +
strlen(" o'clock.") + 1];

sprintf(buf__2, "%s", 1);

sprintf(buf__2 + strlen(buf__2), "%s"," o'clock.");
char * 2 = buf__2;

char *_ 3 = malloc(strlen(_2));

strepy(Z3, _2);

return _3;

main() {

char buf__4[strlen("now") + strlen(" five") + 1];
sprintf(buf__4, "%s","now");

sprintf(buf__4 + strlen(buf__4), "%s"," five");
char * 4 = buf__4;char * 5 = whatTimeIsIt (_ 4);
char _6[strlen(_5)];

strepy(_6, _5);

free(_5);

printf ("%s\n", _6);

./storybook FncOneArg_Accept.c

Output in the console:

It's now five o'clock.

33

3.2 Princesses Audition

PrincessesAudition_Accept.sbk

Character Princess(words n; number a; tof f) {
words name is n.
number age is a.
tof famous is f.

Action introduceSelf() returns nothing {
say(my name + ": Hi, my name is " + my name + "!").

}

Action audition(words part; words experience; words movie) returns nothing {
if(my famous = true) {
say(my name + "

: I am auditioning for the part of " + part + " in " + movie +

ll'll)-
say("In case you didn't recognize me, I was in Disney's " + experience + ".").
}
else {
say(my name + ": I'm auditioning for the part of " + part + " in " + movie +
ll'll)-

say("I don't have any experience, but I think I have great potential! Plus,
all of these old princesses only know how to play roles that depend on men. I can be
a strong, independent, and fearless princess!!").
}
}
}

Character DisneyPrincess is Princess(words m) {
words movie is m.
Action salary(number b) returns number {
number incSal is 2 * b.
say(my name + ": Just so you know, Walt payed me
at least " + incSal).
endwith(b).

+ b + " dollars so I expect

}
}

Chapter findActress(tof f; number s) returns nothing {
if(f = true and s < 10000){
say("Producers: You're hired!").
}
else if(f = false) {
say("Producers: You're hired! And we'll pay you " + s * 2 + " dollars!").
}
else{
say("Producers: No thanks.").

}

34

Chapter plot() returns nothing {

Character DisneyPrincess Aurora is new DisneyPrincess("Aurora"; 16; true;
"Sleeping Beauty").

Character Princess Anna is new Princess("Anna"; 16; false).

Aurora, introduceSelf().

Aurora, audition("Elsa"; Aurora's movie; "Frozen").

number money is Aurora, salary(10000000).

findActress(Aurora's famous; money).

Anna, introduceSelf().

Anna, audition("Anna"; "No exprience"; "Frozen").

findActress(Anna's famous; 56000).

PrincessesAudition_Accept.c

#include <stdio.h>

#include <string.h>
#tinclude <stdbool.h>
#tinclude <stdlib.h>

void *ptrs[2];
struct Princess;

struct table_Princess {
void(*audition)(char * part, char * experience, char * movie, struct Princess *_1);
void(*introduceSelf)(struct Princess *_2);

1

struct Princess{
const struct table_Princess *vtable;
bool famous;
float age;
char * name;

¥
void Princess_audition(char * part, char * experience, char * movie, struct Princess*_3) {
if(_3 -> famous == 1) {

char buf__4[strlen(_3 -> name) + strlen(": I am auditioning for the part of ") + 1];
sprintf(buf__4, "%s",_3 -> name);

sprintf(buf__4 + strlen(buf__4), "%s",": I am auditioning for the part of ");
char *_4 = buf__4;char buf__5[strlen(_4) + strlen(part) + 1];
sprintf(buf__5, "%s",_4);

sprintf(buf__5 + strlen(buf__5), "%s",part);

char * 5 = buf__5;char buf__6[strlen(_5) + strlen(" in ") + 17;
sprintf(buf__6, "%s",_5);

sprintf(buf__6 + strlen(buf__6), "%s"," in ");

char *_6 = buf__6;char buf__7[strlen(_6) + strlen(movie) + 1];
sprintf(buf__7, "%s", _6);

sprintf(buf__7 + strlen(buf__7), "%s",movie);

char *_7 = buf__7;char buf__8[strlen(_7) + strlen(".") + 1];

sprintf(buf__8, "%s",_7);

35

sprintf(buf__8 + strlen(buf__8), "%s",".");
char *_8 = buf__8;
printf ("%s\n",_8);

char buf__9[strlen("In case you didn't recognize me, I was in Disney's ") +
strlen(experience) + 1];

sprintf(buf__9, "%s","In case you didn't recognize me, I was in Disney's ");

sprintf(buf__9 + strlen(buf__9), "%s",experience);

char *_9 = buf__9;char buf__10[strlen(_9) + strlen(".") + 1];

sprintf(buf__10, "%s",_9);

sprintf(buf__10 + strlen(buf__10), "%s",".");

char *_ 10 = buf__10;

printf ("%s\n",_10);

}

else { ;
char buf__11[strlen(_3 -> name) + strlen(": I'm auditioning for the part of ") + 1];
sprintf(buf__11, "%s",_3 -> name);
sprintf(buf__11 + strlen(buf__11), "%s",": I'm auditioning for the part of ");
char *_ 11 = buf__11;char buf__12[strlen(_11) + strlen(part) + 1];
sprintf(buf__12, "%s",_11);
sprintf(buf__12 + strlen(buf__12), "%s",part);
char *_12 = buf__12;char buf__13[strlen(_12) + strlen(" in ") + 1];
sprintf(buf__13, "%s", 12);
sprintf(buf__13 + strlen(buf__13), "%s"," in ");
char *_13 = buf__13;char buf__14[strlen(_13) + strlen(movie) + 1];
sprintf(buf__14, "%s",_13);
sprintf(buf__14 + strlen(buf__14), "%s",movie);
char *_14 = buf__14;char buf__15[strlen(_14) + strlen(".") + 1];
sprintf(buf__15, "%s",_14);
sprintf(buf__15 + strlen(buf__15), "%s",".");
char *_15 = buf__15;
printf ("%s\n",_15);

printf ("I don't have any experience, but I think I have great potential! Plus, all of
these old princesses only know how to play roles that depend on men. I can be a strong,
independent, and fearless princess!!\n");

¥
}

void Princess_introduceSelf(struct Princess*_16) {

)

char buf__17[strlen(_16 -> name) + strlen(": Hi, my name is ") + 1];
sprintf(buf__17, "%s",_ 16 -> name);

sprintf(buf__17 + strlen(buf__17), "%s",": Hi, my name is ");

char *_17 = buf__17;char buf__18[strlen(_17) + strlen(_16 -> name) + 1];
sprintf(buf__18, "%s",_17);

sprintf(buf__18 + strlen(buf__18), "%s", 16 -> name);

char *_18 = buf__18;char buf__19[strlen(_18) + strlen("!") + 1];
sprintf(buf__19, "%s",_18);

sprintf(buf__19 + strlen(buf__19), "%s","!");

char *_ 19 = buf__19;

printf ("%s\n",_19);

}

static const struct table_Princess vtable_for_Princess = {
Princess_audition, Princess_introduceSelf};
struct DisneyPrincess;
struct table_DisneyPrincess {
float(*salary)(float b, struct DisneyPrincess *_20);

36

void(*DisneyPrincess_audition)(char * part, char * experience, char * movie, struct
DisneyPrincess *_21);
void(*DisneyPrincess_introduceSelf)(struct DisneyPrincess *_22);

1

struct DisneyPrincess{
const struct table_DisneyPrincess *vtable;
char * movie;
bool famous;
float age;
char * name;

1

float DisneyPrincess_salary(float b, struct DisneyPrincess*_23) {
float incSal = 2.* b;

char buf__24[strlen(_23 -> name) + strlen(": Just so you know, Walt payed me ") + 1];
sprintf(buf__24, "%s", 23 -> name);

sprintf(buf__24 + strlen(buf__24), "%s",": Just so you know, Walt payed me ");

char *_24 = buf__24;char buf__25[strlen(_24) + 5000 + 1];

sprintf(buf__25, "%s",_24);

sprintf(buf__25 + strlen(buf__25), "%g", b);

char * 25 = buf__25;char buf__26[strlen(_25) + strlen(" dollars so I expect at least ") +

115
sprintf(buf__26, "%s",_25);
sprintf(buf__26 + strlen(buf__26), "%s"," dollars so I expect at least ");
char * 26 = buf__26;char buf__27[strlen(_26) + 5000 + 1];
sprintf(buf__27, "%s",_26);
sprintf(buf__27 + strlen(buf__27), "%g", incSal);
char *_27 = buf__27;
printf ("%s\n",_27);
return b;
}

void DisneyPrincess_DisneyPrincess_audition(char * part, char * experience, char * movie,
struct DisneyPrincess*_28) {

if(_28 -> famous == 1) {

char buf__29[strlen(_28 -> name) + strlen(": I am auditioning for the part of ") + 1];

sprintf(buf__29, "%s",_28 -> name);

sprintf(buf__29 + strlen(buf__29), "%s",": I am auditioning for the part of ");

char *_ 29 = buf__29;char buf__30[strlen(_29) + strlen(part) + 1];

sprintf(buf__30, "%s",_29);

sprintf(buf__30 + strlen(buf__30), "%s",part);

char *_ 30 = buf__30;char buf__31[strlen(_30) + strlen("™ in ") + 1];

sprintf(buf__31, "%s",_30);

sprintf(buf__31 + strlen(buf__31), "%s"," in ");

char *_31 = buf__31;char buf__32[strlen(_31) + strlen(movie) + 1];

sprintf(buf__32, "%s", 31);

sprintf(buf__32 + strlen(buf__32), "%s",movie);

char *_32 = buf__32;char buf__33[strlen(_32) + strlen(".") + 1];

sprintf(buf__33, "%s",_32);

sprintf(buf__33 + strlen(buf__33), "%s",".");

char *_33 = buf__33;

printf ("%s\n",_33);

char buf__34[strlen("In case you didn't recognize me, I was in Disney's ") +
strlen(experience) + 1];

sprintf(buf__34, "%s","In case you didn't recognize me, I was in Disney's ");

37

sprintf(buf__34 + strlen(buf__34), "%s",experience);

char *_34 = buf__34;char buf__35[strlen(_34) + strlen(".") + 1];
sprintf(buf__35, "%s",_34);

sprintf(buf__35 + strlen(buf__35), "%s",".");

char *_35 = buf__35;

printf ("%s\n",_35);

}

else {

char buf__36[strlen(_28 -> name) + strlen(": I'm auditioning for the part of ") + 1];

sprintf(buf__36, "%s",_28 -> name);

sprintf(buf__36 + strlen(buf__36), "%s",": I'm auditioning for the part of ");

char *_36 = buf__36;char buf__37[strlen(_36) + strlen(part) + 1];

sprintf(buf__37, "%s",_36);

sprintf(buf__37 + strlen(buf__37), "%s",part);

char *_ 37 = buf__37;char buf__38[strlen(_37) + strlen(" in ") + 1];

sprintf(buf__38, "%s",_37);

sprintf(buf__38 + strlen(buf__38), "%s"," in ");

char *_38 = buf__38;char buf__39[strlen(_38) + strlen(movie) + 1];

sprintf(buf__39, "%s", 38);

sprintf(buf__39 + strlen(buf__39), "%s",movie);

char *_39 = buf__39;char buf__40[strlen(_39) + strlen(".") + 1];

sprintf(buf__4@, "%s",_39);

sprintf(buf__40 + strlen(buf__40), "%s",".");

char *_40 = buf__40;

printf ("%s\n",_40);

printf ("I don't have any experience, but I think I have great potential! Plus, all of
these old princesses only know how to play roles that depend on men. I can be a strong,
independent, and fearless princess!!\n");

}
}

void DisneyPrincess_DisneyPrincess_introduceSelf(struct DisneyPrincess*_41) {

char buf__42[strlen(_41 -> name) + strlen(": Hi, my name is ") + 1];
sprintf(buf__42, "%s", 41 -> name);

sprintf(buf__42 + strlen(buf__42), "%s",": Hi, my name is ");

char *_42 = buf__42;char buf__43[strlen(_42) + strlen(_41 -> name) + 1];
sprintf(buf__43, "%s", 42);

sprintf(buf__43 + strlen(buf__43), "%s",_41 -> name);

char *_43 = buf__43;char buf__44[strlen(_43) + strlen("!") + 1];
sprintf(buf__44, "%s",_43);

sprintf(buf__44 + strlen(buf__44), "%s","1");

char *_44 = buf__44;

printf ("%s\n",_44);

}

static const struct table_DisneyPrincess vtable_for_DisneyPrincess = {
DisneyPrincess_salary, DisneyPrincess_DisneyPrincess_audition,
DisneyPrincess_DisneyPrincess_introduceSelf};
void findActress(bool f, float s) {

if(f == 1 8& s < 10000.) {
printf ("You're hired!\n");

}

else {
if(f == 0) {

38

char buf__45[strlen("Producers: You're hired! And we'll pay you ") + 5000 + 1];
sprintf(buf__45, "%s","Producers: You're hired! And we'll pay you ");
sprintf(buf__45 + strlen(buf__45), "%g", s* 2.);

char *_45 = buf__45;char buf__46[strlen(_45) + strlen(" dollars!") + 1];
sprintf(buf__46, "%s",_45);

sprintf(buf__46 + strlen(buf__46), "%s"," dollars!");

char *_46 = buf__46;

printf ("%s\n",_46);

}
else {}
}

}

int main() {
ptrs[@] = malloc((int)sizeof(struct DisneyPrincess));
((struct DisneyPrincess *)ptrs[@0]) -> name = "Aurora";
((struct DisneyPrincess *)ptrs[@]) -> age = 16.;
((struct DisneyPrincess *)ptrs[@0]) -> famous = 1;
((struct DisneyPrincess *)ptrs[0]) -> movie = "Sleeping Beauty";
((struct DisneyPrincess *)ptrs[@0]) ->vtable = &vtable_for_DisneyPrincess;
struct DisneyPrincess * Aurora = ptrs[0];
ptrs[1] = malloc((int)sizeof(struct Princess));
((struct Princess *)ptrs[1]) -> name = "Anna";
((struct Princess *)ptrs[1]) -> age = 16.;
((struct Princess *)ptrs[1]) -> famous = 0;
((struct Princess *)ptrs[1]) ->vtable = &vtable_for_Princess;
struct Princess * Anna = ptrs[1];
Aurora->vtable->DisneyPrincess_introduceSelf (Aurora);
Aurora->vtable->DisneyPrincess_audition ("Elsa", Aurora -> movie, "Frozen", Aurora);
float money = Aurora->vtable->salary (10000000., Aurora);
findActress (Aurora -> famous, money);
Anna->vtable->introduceSelf (Anna);
Anna->vtable->audition ("Anna", "No exprience", "Frozen", Anna);
findActress (Anna -> famous, 1000.);

./storybook PrincessesAudition_accept.sbk

Output in the console:

Aurora: Hi, my name is Auroral

Aurora: I am auditioning for the part of Elsa in Frozen.

In case you didn't recognize me, I was in Disney's Sleeping Beauty.

Aurora: Just so you know, Walt payed me 1le+07 dollars so I expect at least 2e+07
Producers: No thanks.

Anna: Hi, my name is Anna!

Anna: I'm auditioning for the part of Anna in Frozen.

I don't have any experience, but I think I have great potential! Plus, all of these
old princesses only know how to play roles that depend on men. I can be a strong,
independent, and fearless princess!!

Producers: You're hired! And we'll pay you 10000 dollars!

39

3.3 Character List Loop

CharacterListLoop_Accept.sbk

Character Hero(words n; number st; words sp){
words name is n.
number strength is st.
words superpower is sp.

Action introduceYourself() returns nothing{
say(my name + ": Hi there! My name is " + my name + "
superpower + "! Nice to meet you guys.").

}

and I have " + my

}

Chapter plot() returns nothing {
characterlist heroes is new characterlist[5].
heroes[@] is new Hero("Wonder Woman"; 2000; "the power of flight").
heroes[1] is new Hero("Spider-Man"; 1500; "Spidey powers").
heroes[2] is new Hero("Superman"; 100000; "the power of flight and super
strength").
heroes[3] is new Hero("Invisible Woman"; 200; "the power of invisibility").
heroes[4] is new Hero("The Flash"; 500; "the power of speed").
repeatfor(number i is (©).; i < 5; i is i + 1){
Character Hero h is heroes[i].
h, introduceYourself().
}
say("Narrator: And then all the superheroes joined together to save the
world.").
say("THE END.").

}

CharacterListLoop_Accept.c

#tinclude <stdio.h>
#include <string.h>
#include <stdbool.h>
#include <stdlib.h>
void *ptrs[5];
struct Hero;
struct table Hero {
void(*introduceYourself)(struct Hero *_1);
s
struct Hero{
const struct table_Hero *vtable;
char * superpower;
float strength;
char * name;

¥
void Hero_introduceYourself(struct Hero*_2) {
char buf__3[strlen(_2 -> name) + strlen(": Hi there! My name is ") + 1];

40

sprintf(buf__3, "%s",_2 -> name);

sprintf(buf__3 + strlen(buf__3), "%s",": Hi there! My name is ");

char *_3 = buf__3;char buf__4[strlen(_3) + strlen(_2 -> name) + 1];
sprintf(buf__4, "%s", 3);

sprintf(buf__4 + strlen(buf__4), "%s",_ 2 -> name);

char *_4 = buf__4;char buf__5[strlen(_4) + strlen(" and I have ") + 1];
sprintf(buf__5, "%s",_4);

sprintf(buf__5 + strlen(buf__5), "%s"," and I have ");

char *_ 5 = buf__5;char buf__6[strlen(_5) + strlen(_2 -> superpower) + 1];
sprintf(buf__6, "%s",_5);

sprintf(buf__6 + strlen(buf__6), "%s",_2 -> superpower);

char * 6 = buf__6;char buf__7[strlen(_6) + strlen("! Nice to meet you guys.") + 1];
sprintf(buf__7, "%s", _6);

sprintf(buf__7 + strlen(buf__7), "%s","! Nice to meet you guys.");

char *_7 = buf__7;

printf ("%s\n",_7);

}

static const struct table_Hero vtable_for_Hero = {

Hero_introduceYourself};

int main() {
void ** heroes = malloc(5 * sizeof(void *));
ptrs[@] = malloc((int)sizeof(struct Hero));
((struct Hero *)ptrs[@]) -> name = "Wonder Woman";
((struct Hero *)ptrs[0]) -> strength = 2000.;
((struct Hero *)ptrs[@]) -> superpower = "the power of flight";
((struct Hero *)ptrs[0]) ->vtable = &vtable_for_Hero;
heroes[(int)@.] = ptrs[0o];
ptrs[1] = malloc((int)sizeof(struct Hero));
((struct Hero *)ptrs[1]) -> name = "Spider-Man";
((struct Hero *)ptrs[1]) -> strength = 1500.;
((struct Hero *)ptrs[1]) -> superpower = "Spidey powers";
((struct Hero *)ptrs[1]) ->vtable = &vtable_for_Hero;
heroes[(int)1.] = ptrs[1];
ptrs[2] = malloc((int)sizeof(struct Hero));
((struct Hero *)ptrs[2]) -> name = "Superman";
((struct Hero *)ptrs[2]) -> strength = 100000.;

((struct Hero *)ptrs[2]) -> superpower = "the power of flight and super strength";

)

((struct Hero *)ptrs[2]) ->vtable = &vtable_for_Hero;
heroes[(int)2.] = ptrs[2];
ptrs[3] = malloc((int)sizeof(struct Hero));

((struct Hero *)ptrs[3]) -> name = "Invisible Woman";
((struct Hero *)ptrs[3]) -> strength = 200.;
((struct Hero *)ptrs[3]) -> superpower = "the power of invisibility";

((struct Hero *)ptrs[3]) ->vtable = &vtable_for_Hero;
heroes[(int)3.] = ptrs[3];
ptrs[4] = malloc((int)sizeof(struct Hero));
((struct Hero *)ptrs[4]) -> name = "The Flash";
((struct Hero *)ptrs[4]) -> strength = 500.;
((struct Hero *)ptrs[4]) -> superpower = "the power of speed";
((struct Hero *)ptrs[4]) ->vtable = &vtable_for_Hero;
heroes[(int)4.] = ptrs[4];
float i = @.;
while(i < 5.){
struct Hero * h = heroes[(int)i];
h->vtable->introduceYourself (h);
i=1+1.;
}
printf ("Narrator: And then all the superheroes joined together to save the world
printf ("THE END.\n");

41

\n");

./storybook CharacterListLoop_Accept.sbk

Output in the console:

Wonder Woman: Hi there! My name is Wonder Woman and I have the power of flight! Nice
to meet you guys.

Spider-Man: Hi there! My name is Spider-Man and I have Spidey powers! Nice to meet
you guys.

Superman: Hi there! My name is Superman and I have the power of flight and super
strength! Nice to meet you guys.

Invisible Woman: Hi there! My name is Invisible Woman and I have the power of
invisibility! Nice to meet you guys.

The Flash: Hi there! My name is The Flash and I have the power of speed! Nice to meet
you guys.

Narrator: And then all the superheroes joined together to save the world.

THE END.

These test cases were chosen because they embody the main aspects of what StoryBook has to offer:
objects and inheritance. These two are the main parts of an object oriented programming language.
And because StoryBook is targeted toward beginners and one of the first things beginners generally
learn is object oriented programming, learning about objects and how they can be useful and flexible
to produce robust programs is important. The specific objects and the features they use is also
important in that it provides a narrative that the user can follow along and know what to expect
from. The built in list object also makes it much easier for beginners to learn the concept of
iteration, optimization, and code design. This way StoryBook not only can provide a start base for

novices but also a path for them to take on more challenging computer science concepts.

1. Overview

2. Test Suite File Listings

_99BottlesOfBeer_Accept.sbk
_99BottlesOfBeer Exp.txt
AssnBoolF_Accept.sbk
AssnBoolF_Exp.txt
AssnBoolT_Accept.sbk
AssnBoolT_Exp.txt
AssnChar_Accept.sbk
AssnChar_Exp.txt
AssnExpr_Accept.sbk
AssnExpr_Exp.txt
AssnNmbr_Accept.sbk

42

AssnNmbr_Exp.txt
AssnNum_Reject.sbk
AssnStr_Accept.sbk
AssnStr_Exp.txt
AssnStr_Reject.sbk
AssnTwice_Reject.sbk
boolListTest_Accept.sbk
boolListTest_ Exp.txt

c_exp
CharacterListLoop_Accept
CharacterlListLoop_Accept.c
CharacterListLoop_Accept.sbk
CharacterListLoop_Exp.txt
CharacterListTest_Accept.sbk
CharacterListTest_Exp.txt
CharImproperParams_Accept.sbk
CharImproperParams_Exp.txt
charListTest_Accept.sbk
charListTest_Exp.txt
charListTestExp.txt
CommentMultiline_Accept.sbk
CommentMultiline_ Exp.txt
CommentNested_Accept.sbk
CommentNested_Exp.txt
CommentNested_Reject.sbk
CommentNoEnd_Reject.sbk
CommentSingle_Accept.sbk
CommentSingle_ Exp.txt
CompareBool_Accept.sbk
CompareBool Exp.txt
CompareBool_Reject.sbk
CompareChar_Reject.sbk
CompareEqChars_Accept.sbk
CompareEqChars_Exp.txt
CompareEqNums2_Accept.sbk
CompareEgqNums2_Exp.txt
CompareEgqNums_Accept.sbk
CompareEqNums_Exp.txt
CompareEgNumString2_Reject.sbk
CompareEgNumString_Reject.sbk
CompareEqString_Accept.sbk
CompareEqString Exp.txt
CompareGreatEquall_Accept.sbk
CompareGreatEquall_Exp.txt
CompareGreatEqual2_Accept.sbk
CompareGreatEqual2_ Exp.txt
CompareGreatEqual3_Accept.sbk
CompareGreatEqual3_Exp.txt

43

CompareGreaterFalse_Accept.sbk
CompareGreaterFalse Exp.txt
CompareGreaterTrue_Accept.sbk
CompareGreaterTrue_Exp.txt
ComparelLessEquall_Accept.sbk
ComparelLessEquall Exp.txt
ComparelLessEqual2_Accept.sbk
ComparelLessEqual2_Exp.txt
ComparelLessEqual3_Accept.sbk
ComparelLessEqual3 Exp.txt
ComparelLessFalse_Accept.sbk
ComparelLessFalse_Exp.txt
ComparelLessTrue_Accept.sbk
ComparelLessTrue_Exp.txt
CompareString_Reject.sbk
ConcatBooleanandChar_Reject.sbk
ConcatBooleanAndString_Accept.sbk
ConcatBooleanAndString Exp.txt
ConcatNumberAndBoolean_Reject.sbk
ConcatNumberandChar_Reject.sbk
ConcatNumberAndStringl Accept.sbk
ConcatNumberAndStringl Exp.txt
ConcatNumberAndString2_Accept.sbk
ConcatNumberAndString2_Exp.txt
ConcatNumberAndString_ Accept.sbk
ConcatNumberAndString Exp.txt
ConcatStringandBooleanExpr_Accept.sbk
ConcatStringandBooleanExpr_Exp.txt
ConcatStringandChar_Accept.sbk
ConcatStringandChar_Exp.txt
ConcatStringandNumberExprl_Accept.sbk
ConcatStringandNumberExprl_Exp.txt
ConcatStringandNumberExpr2_Accept.sbk
ConcatStringandNumberExpr2_Exp.txt
ConcatStringandNumberExpr3_Accept.sbk
ConcatStringandNumberExpr3_Exp.txt
ConcatStringandString_Accept.sbk
ConcatStringandString Exp.txt

ConcatStringNumberExprandBoolean_Accept.sbk

ConcatStringNumberExprandBoolean_Exp.txt
FncArgMissingID_Reject.sbk
FncConcatArg_Accept.sbk
FncConcatArg_Exp.txt
FncDeclSay_Reject.sbk
FncHasArgs_Accept.sbk

FncHasArgs_Exp.txt

FncHasArgs_Reject.sbk
FncInvalidParamTypes_Reject.sbk

44

FncNoArgs_Accept.sbk
FncNoArgs_Exp.txt
FncNoArgs_Reject.sbk
FncNoPlot_Reject.sbk
FncNoReturnInDecl Reject.sbk
FncOneArg_Accept.sbk
FncOneArg_Exp.txt
FncTakingCharacterParam_Accept.sbk
FncTakingCharacterParam_Exp.txt
FncTooFewArgs_Reject.sbk
FncTooManyArgs_Reject.sbk
FncTwoSameName_Reject.sbk
FncUndefined_Reject.sbk
FncWrongTypeArg Reject.sbk
ForLoop_Accept.sbk
ForLoop_Exp.txt
_GCD_Accept.sbk
_GCD_Exp.txt
_HelloWorld_Accept.sbk
_HelloWorld_Exp.txt
IfElse_Accept.sbk
IfElse_Exp.txt
IfElseIfElse_Accept.sbk
IfElseIfElse_Exp.txt
IfElseSimple_Accept.sbk
IfElseSimple Exp.txt
IfNestedIfIfElse_Accept.sbk
IfNestedIfIfElse_Exp.txt
IfNoElse_Accept.sbk
IfNoElse_Exp.txt
IfSimple_Accept.sbk
IfSimple_Exp.txt
listAccessChar_Reject.sbk
ListAccess_Reject.sbk
listTestInstant_Accept
listWrongType_Reject.sbk
LogicalAnd2_Accept.sbk
LogicalAnd2_Exp.txt
LogicalAnd3_Accept.sbk
LogicalAnd3_Exp.txt
LogicalAnd4_Accept.sbk
LogicalAnd4_Exp.txt
LogicalAnd_Accept.sbk
LogicalAndBoolExpr_Accept.sbk
LogicalAndBoolExpr_Exp.txt
LogicalAndChain2_Accept.sbk
LogicalAndChain2_Exp.txt
LogicalAndChain_Accept.sbk

LogicalAndChain_Exp.txt
LogicalAnd_Exp.txt
LogicalAndNum_Reject.sbk
LogicalAndOrChain2_Accept.sbk
LogicalAndOrChain2_Exp.txt
LogicalAndOrChain_Accept.sbk
LogicalAndOrChain_Exp.txt
LogicalOr2_Accept.sbk
LogicalOr2_Exp.txt
LogicalOr3_Accept.sbk
LogicalOr3_Exp.txt
LogicalOr4_Accept.sbk
LogicalOrd_Exp.txt
LogicalOr_Accept.sbk
LogicalOrBoolExpr_Accept.sbk
LogicalOrBoolExpr_ Exp.txt
LogicalOrChain_Accept.sbk
LogicalOrChain_Exp.txt
LogicalOrDiffTypes_Reject.sbk
LogicalOr_Exp.txt
LogicalOrStringChar_Reject.sbk
MathAdd_Accept.sbk
MathAdd_Exp.txt
MathDivide_Accept.sbk
MathDivide_Exp.txt
MathMod2_Accept.sbk
MathMod2_Exp.txt
MathMod_Accept.sbk
MathMod_Exp.txt

MathMultiply Accept.sbk
MathMultiply_Exp.txt
MathSubtract_Accept.sbk
MathSubtract_Exp.txt
memtest.sh
NoReturn_Reject.sbk
NotEq2_Accept.sbk
NotEq2_Exp.txt
NotEq_Accept.sbk
NotEqDifTypes_Reject.sbk
NotEq_Exp.txt
NotGreater_Accept.sbk
NotGreaterEq_Accept.sbk
NotGreaterEq_Exp.txt
NotGreater_Exp.txt
NotLess_Accept.sbk
NotLessEq_Accept.sbk
NotLessEq_Exp.txt
NotLess_Exp.txt

46

Not_Reject.sbk
numberListTest_Accept.sbk
numberListTest_exp.txt
ObjectActionConcatParam_Accept.sbk
ObjectActionConcatParam_Exp.txt

ObjectActionWithMyInheritedTrait_Accept.sbk

ObjectActionWithMyInheritedTrait_Exp.txt

ObjectHasActions_Accept.sbk
ObjectHasActions_Exp.txt
ObjectHasTraits_Accept.sbk

ObjectHasTraitsAndActions_Accept.sbk

ObjectHasTraitsAndActions_Exp.txt
ObjectHasTraits_Exp.txt
ObjectInheritance_Accept.sbk
ObjectInheritance_Exp.txt
ObjectInstInLoop_Accept.sbk
ObjectInstInLoop_ Exp.txt
ObjectMonster_Accept.sbk
ObjectMonster_Exp.txt
ObjectOverrideFunc_Accept.sbk
ObjectOverrideFunc_Exp.txt
ObjectsMultiple Accept.sbk
ObjectsMultiple_Exp.txt
ObjectTraitAssignment_Accept
ObjectTraitAssignment_Accept.sbk
ObjectTraitAssignment_Exp.txt
ObjectTraitWrongType_Reject.sbk
PrincessCharacterAsParam_Accept.sbk
Princesses_Accept.sbk
PrincessesAudition_Accept
PrincessesAudition_Accept.c
PrincessesAudition_Accept.sbk
PrincessesAudition_Exp.txt
PrintBool Accept.sbk
PrintBool_Exp.txt
PrintFncRet_Accept.sbk
PrintFncRet_Exp.txt
PrintNum_Accept.sbk
PrintNum_Exp.txt
PrintVar_Accept.sbk
PrintVar_Exp.txt
ReAssnNum2_Accept.sbk
ReAssnNum2_Exp.txt
ReAssnNum_Accept. sbk
ReAssnNum_Exp.txt
ReAssnStr_Accept.sbk
ReAssnStr_Exp.txt
RecursionSimple_Accept.sbk

47

RecursionSimple_Exp.txt

ReturnEndswithWithoutParens_Accept.sbk

ReturnEndswithWithoutParens_Exp.txt
ReturnInvalidType_Reject.sbk
ReturnNum_Accept.sbk
ReturnNum_Exp.txt
ReturnVoid_Accept.sbk
ReturnVoid_Exp.txt
ReturnVoid_Reject.sbk
ReturnWrongStringNotNumber_Reject.sbk
ScopeSimple_Reject.sbk
ScopingObjects_Accept
ScopingObjects_Accept.sbk
ScopingObjects Exp.txt
ScopingObjectsNoReturn_Reject.sbk
storybook

test

testfileayo

test.sh

testsuitefilelist.txt

testTree.sh
TraitInheritRightHandSide_Accept
TraitInheritRightHandSide_Accept.sbk
TraitInheritRightHandSide_Exp.txt
TraitOverride_Reject.sbk

tree

unitTests.sh

WhileLoop_Accept

WhilelLoop_Accept.c
WhilelLoop_Accept.sbk
WhilelLoop_Exp.txt

2.1 Functions

FncArgMissingID Reject.sbk
FncConcatArg_Accept.sbk
FncConcatArg_Exp.txt
FncDeclSay_Reject.sbk
FncHasArgs_Accept.sbk
FncHasArgs_Exp.txt
FncHasArgs_Reject.sbk
FncInvalidParamTypes_Reject.sbk
FncNoArgs_Accept.sbk
FncNoArgs_Exp.txt
FncNoArgs_Reject.sbk
FncNoPlot_Reject.sbk
FncNoReturnInDecl_Reject.sbk
FncOneArg_Accept.sbk
FncOneArg_Exp.txt

48

FncTakingCharacterParam_Accept.sbk
FncTakingCharacterParam_Exp.txt
FncTooFewArgs_Reject.sbk
FncTooManyArgs_Reject.sbk
FncTwoSameName_Reject.sbk
FncUndefined_Reject.sbk
FncWrongTypeArg_Reject.sbk

2.2 Print Statements

PrintBool Accept.sbk
PrintBool_Exp.txt
PrintFncRet_Accept.sbk
PrintFncRet_Exp.txt
PrintNum_Accept.sbk
PrintNum_Exp.txt
PrintVar_Accept.sbk
PrintVar_Exp.txt

2.3 Comments

CommentMultiline_Accept.sbk
CommentMultiline_ Exp.txt
CommentNested_Accept.sbk
CommentNested_Exp.txt
CommentNested_Reject.sbk
CommentNoEnd_Reject.sbk
CommentSingle_Accept.sbk
CommentSingle_Exp.txt

2.4 Arithmetic Operators

MathAdd_Accept.sbk
MathAdd_Exp.txt
MathDivide_Accept.sbk
MathDivide Exp.txt
MathMod2_Accept. sbk
MathMod2_Exp.txt
MathMod_Accept.sbk
MathMod_Exp.txt
MathMultiply Accept.sbk
MathMultiply Exp.txt
MathSubtract_Accept.sbk
MathSubtract_Exp.txt

2.5 Concatenation

ConcatBooleanandChar_Reject.sbk
ConcatBooleanAndString Accept.sbk
ConcatBooleanAndString_Exp.txt
ConcatNumberAndBoolean_Reject.sbk
ConcatNumberandChar_Reject.sbk
ConcatNumberAndStringl_Accept.sbk

49

ConcatNumberAndStringl Exp.txt
ConcatNumberAndString2 Accept.sbk
ConcatNumberAndString2_Exp.txt
ConcatNumberAndString_Accept.sbk
ConcatNumberAndString Exp.txt
ConcatStringandBooleanExpr_Accept.sbk
ConcatStringandBooleanExpr_Exp.txt
ConcatStringandChar_Accept.sbk
ConcatStringandChar_Exp.txt
ConcatStringandNumberExprl_Accept.sbk
ConcatStringandNumberExprl_Exp.txt
ConcatStringandNumberExpr2_Accept.sbk
ConcatStringandNumberExpr2_Exp.txt
ConcatStringandNumberExpr3_Accept.sbk
ConcatStringandNumberExpr3_Exp.txt
ConcatStringandString_Accept.sbk
ConcatStringandString_ Exp.txt

ConcatStringNumberExprandBoolean_Accept.sbk

ConcatStringNumberExprandBoolean_Exp.txt

2.6 Comparison Operators

CompareBool Accept.sbk
CompareBool_Exp.txt
CompareBool Reject.sbk
CompareChar_Reject.sbk
CompareEqChars_Accept.sbk
CompareEqChars_Exp.txt
CompareEgqNums2_Accept.sbk
CompareEqNums2_Exp.txt
CompareEgNums_Accept.sbk
CompareEgNums_Exp.txt
CompareEgNumString2_ Reject.sbk
CompareEgNumString_Reject.sbk
CompareEqString_Accept.sbk
CompareEqString_Exp.txt
CompareGreatEquall_Accept.sbk
CompareGreatEquall Exp.txt
CompareGreatEqual2_Accept.sbk
CompareGreatEqual2_Exp.txt
CompareGreatEqual3_Accept.sbk
CompareGreatEqual3_Exp.txt
CompareGreaterFalse_ Accept.sbk
CompareGreaterFalse_Exp.txt
CompareGreaterTrue_Accept.sbk
CompareGreaterTrue_Exp.txt
ComparelLessEquall Accept.sbk
ComparelLessEquall_Exp.txt
ComparelLessEqual2_Accept.sbk

50

ComparelLessEqual2_Exp.txt
ComparelLessEqual3_Accept.sbk
ComparelLessEqual3_Exp.txt
ComparelLessFalse_Accept.sbk
ComparelLessFalse_Exp.txt
ComparelLessTrue_Accept.sbk
ComparelLessTrue_Exp.txt
CompareString_Reject.sbk

2.7 Logical Operators

LogicalAnd2_Accept.sbk
LogicalAnd2_Exp.txt
LogicalAnd3_Accept.sbk
LogicalAnd3_Exp.txt
LogicalAnd4_Accept.sbk
LogicalAnd4_Exp.txt
LogicalAnd_Accept.sbk
LogicalAndBoolExpr_Accept.sbk
LogicalAndBoolExpr_Exp.txt
LogicalAndChain2_Accept.sbk
LogicalAndChain2_Exp.txt
LogicalAndChain_Accept.sbk
LogicalAndChain_Exp.txt
LogicalAnd_Exp.txt
LogicalAndNum_Reject.sbk
LogicalAndOrChain2_Accept.sbk
LogicalAndOrChain2_Exp.txt
LogicalAndOrChain_Accept.sbk
LogicalAndOrChain_Exp.txt
LogicalOr2_Accept.sbk
LogicalOr2_Exp.txt
LogicalOr3_Accept.sbk
LogicalOr3_Exp.txt

LogicalOr4 Accept.sbk
LogicalOr4 _Exp.txt
LogicalOr_Accept.sbk
LogicalOrBoolExpr_Accept.sbk
LogicalOrBoolExpr_ Exp.txt
LogicalOrChain_Accept.sbk
LogicalOrChain_Exp.txt
LogicalOrDiffTypes_Reject.sbk
LogicalOr_Exp.txt
LogicalOrStringChar_Reject.sbk

2.8 Not Operator

NotEq2_Accept.sbk
NotEq2_Exp.txt
NotEq_Accept.sbk

51

NotEqDifTypes_Reject.sbk
NotEq_Exp.txt
NotGreater_Accept.sbk
NotGreaterEq_Accept.sbk
NotGreaterEq_Exp.txt
NotGreater_Exp.txt
NotLess_Accept.sbk
NotLessEq_Accept.sbk
NotLessEq_Exp.txt
NotLess_Exp.txt
Not_Reject.sbk

2.9 Assignment

AssnBoolF_Accept.sbk
AssnBoolF_Exp.txt
AssnBoolT_Accept.sbk
AssnBoolT_Exp.txt
AssnChar_Accept.sbk
AssnChar_Exp.txt
AssnExpr_Accept.sbk
AssnExpr_Exp.txt
AssnNmbr_Accept.sbk
AssnNmbr_Exp . txt
AssnNum_Reject.sbk
AssnStr_Accept.sbk
AssnStr_Exp.txt
AssnStr_Reject.sbk
AssnTwice_Reject.sbk
ReAssnNum2_Accept.sbk
ReAssnNum2_Exp.txt
ReAssnNum_Accept.sbk
ReAssnNum_Exp.txt
ReAssnStr_Accept.sbk
ReAssnStr_Exp.txt

2.10 For & While Loops

CharacterListLoop_Accept
CharacterlListLoop_Accept.c
CharacterListLoop_Accept.sbk
CharacterListLoop_Exp.txt
ForLoop_Accept.sbk
ForLoop_Exp.txt
ObjectInstInLoop_Accept.sbk
ObjectInstInLoop_Exp.txt
WhilelLoop_Accept
WhileLoop_Accept.c
WhileLoop_Accept.sbk
WhilelLoop_ Exp.txt

2.11 If Else Statements

IfElse_Accept.sbk
IfElse_Exp.txt
IfElseIfElse_Accept.sbk
IfElseIfElse Exp.txt
IfElseSimple_Accept.sbk
IfElseSimple_Exp.txt
IfNestedIfIfElse_Accept.sbk
IfNestedIfIfElse Exp.txt
IfNoElse_Accept.sbk
IfNoElse_Exp.txt
IfSimple_Accept.sbk
IfSimple_Exp.txt

2.12 Return Statements

ReturnEndswithWithoutParens_Accept.sbk
ReturnEndswithWithoutParens_Exp.txt
ReturnInvalidType_Reject.sbk
ReturnNum_Accept.sbk

ReturnNum_Exp.txt
ReturnVoid_Accept.sbk
ReturnVoid_Exp.txt
ReturnVoid_Reject.sbk
ReturnWrongStringNotNumber_Reject.sbk

2.13 Scoping

ScopeSimple_Reject.sbk
ScopingObjects_Accept
ScopingObjects_Accept.sbk
ScopingObjects_Exp.txt
ScopingObjectsNoReturn_Reject.sbk

2.14 Recursion

RecursionSimple_Accept.sbk
RecursionSimple_ Exp.txt

2.15 Objects and Inheritance

ObjectActionConcatParam_Accept.sbk
ObjectActionConcatParam_Exp.txt
ObjectActionWithMyInheritedTrait_Accept.sbk
ObjectActionWithMyInheritedTrait_Exp.txt
ObjectHasActions_Accept.sbk
ObjectHasActions_Exp.txt
ObjectHasTraits_Accept.sbk
ObjectHasTraitsAndActions_Accept.sbk
ObjectHasTraitsAndActions_Exp.txt
ObjectHasTraits_Exp.txt
ObjectInheritance_Accept.sbk

53

ObjectInheritance_Exp.txt
ObjectInstInLoop_ Accept.sbk
ObjectInstInLoop_Exp.txt
ObjectMonster_Accept.sbk
ObjectMonster_Exp.txt
ObjectOverrideFunc_Accept.sbk
ObjectOverrideFunc_Exp.txt
ObjectsMultiple_Accept.sbk
ObjectsMultiple Exp.txt
ObjectTraitAssignment_Accept
ObjectTraitAssignment_Accept.sbk
ObjectTraitAssignment_Exp.txt
ObjectTraitWrongType_Reject.sbk

VI1I. Lessons Learned

1. Anna Lawson

Ocaml is great. Use pattern matching lots--it’s awesome and if/elses are horrendously clunky in
ocaml so get a good grasp of pattern matching before you start. Dividing by feature may not be the
best because features vary extremely in difficulty. Start by doing a small feature end to end--thing
become a lot easier once you've got the “hello world” running. Don’t try to do too much for hello
world, because a lot of it you’ll have to go back and fix because you didn’t know what you were
doing the first time. Think ahead when you start code--and think ahead to the smallest details--is this
structure going to work for all possible inputs? Set standards early for naming, indentation, etc; it

makes the code a lot more readable/workable if everyone’s code looks the same.

2. Beth Green

At first, Ocaml seems crazy and extremely difficult to use, but once you get the hang of it you soon
realize how cool functional programming is! I've come to really appreciate pattern matching. This
project has removed another black box from my programming knowledge. I have gained a very very
good understanding of what happens when you compile code. Additionally, I've learned a lot about
working with a team. You have to be willing to tell your teammates when they need to pick up the
slack and you have to be able to recognize when you yourself need to be contributing more. If
everyone is honest and hardworking you'll end up with a great team and really getting along.
Additionally, it is very helpful to split up the basic features in the beginning. However, once you get
into the heart of your language it is helpful to code pair. It is easy to get lost in the code and having

an extra set of eyes and another person to bounce ideas off of it extremely productive.

54

3. Nina Baculinao

Test driven development and version control are awesome. Pair programming, especially early on,
both reduce merges conflicts and bridges gaps in knowledge. Don't be afraid to ask questions or
take ownership and always strive for open communication. Keep your eye on the goal and try to get
the end to end flow as early as possible. Split up your task into small features to feel more
manageable, think about what's the bare minimum, and try to keep your focus narrow rather than be
overwhelmed by the unfinished ocean before you. I wasted valuable time writing this beautiful and
efficient C file to represent virtual tables only to realize it was a rather unfeasible, so spend as much
time as you can writing this quirky and fun lingo of OCaml. There will be compromises between
how you had hoped to implement a thing and how it turns out, but don't be nitpicky, be hacky, and
keep trying!

4. Pratishta Yerakala

One of the most important lessons is to organize so that every member of the team can work on a
feasible part of the language. It's easy to fall behind or lose track of where people are, especially
when there's a break in consistency (e.g. not communicating as much over Thanksgiving break or
spring break, etc). Regardless of how long, there should be frequent check ins even just to make sure
everyone's on the same page and can efficiently do work. Also, we should have compiled to C++
instead of C. We would have still been able to use pointers but avoid verbose generated C files that

would be difficult to read and understand to debug.

VIII. Appendix

A. Full Source Code
A.1 ast.ml

(* Possible data types *)
type data_type =
| void
| Number
| Boolean
| Sstring
| char
| object of string
| NumberList
| BooleanList
| CharList
| CharacterList (* list of pointers to point to Characters *)

(* Operators *)
type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq| Mod|
OR | AND | NOT

(* Expressions *)
type expr =

55

LitNum of float
| LitBool of bool
| LitString of string (* quoted string literal *)
| LitChar of char (* 'c' *)
| Noexpr
| Id of string (* foo unquoted *)
| Assign of string * expr (* x is 5 *)
| TraitAssign of expr * expr (* SleepingBeauty's x is 5 *)
| Instantiate of string * expr list (* object type and constructor parameters *)
| ListInstantiate of data_type * expr (* type, size -> e.g. int, 5 *)
| ListAccess of string * expr
| ListAssign of expr * expr (* mylList[2 + 3] = 5+ 7 *)
| Access of string * string (* Member value access: SleepingBeauty's x or my x within class
itself *)

| Binop of expr * op * expr (* a + b *)

| Unop of op * expr

| FCall of string * expr list (* chapterl() *)

| ACall of string * string * expr list (* SleepingBeauty, setX(5) *)

(* Variable Declarations *)
type var_decl = {

vtype: data_type;

vname : string;

vexpr : expr;

}

(* Statements *)
type stmt =
Block of stmt list
| Expr of expr
| varDecl of var_decl
| Return of expr
| If of expr * stmt * stmt
| For of stmt * expr * expr * stmt
| While of expr * stmt

(* Functions *)
type func_decl = {
fname : string; (* name of the function *)
fformals : var_decl list; (* formal params *)
freturn : data_type; (* return type *)
fbody : stmt list; (* statements, including local variable declarations *)

}

(* Actions *)
type act_decl = {
mutable aname : string; (* Name of the action *)
aformals: var_decl list; (* formal params *)
areturn : data_type; (* return type *)
abody : stmt list; (* statements, including local variable declarations *)

}

(* Class Declarations *)
type cl_decl = {
cname : string; (* name of the class *)
cparent : string;
cformals: var_decl list; (* formal params *)
cinstvars : var_decl list; (*instance variables *)
cactions: act_decl list; (*lists of actions (methods) *)

56

(* Program is class declarations and function declarations *)
(* Method declarations are contained in class declarations *)
type program = cl_decl list * func_decl list (* classes, funcs. no global vars *)

A.2 scanner.mll

{ open Parser }

let whitespace = [' ' "\t' '"\r' '"\n']
let comment = "~~" [~ "\n']* "\n"
let digit = ['0'-'9"]

rule token = parse
(* Whitespace and Comments *)
whitespace { token lexbuf }
| comment { token lexbuf }
| '~ { comment lexbuf }

(* Punctuation *)

6 LPAREN
RPAREN
LBRACE
RBRACE
LBRACK
RBRACK
SEMI }
COMMA }
PERIOD }
APOST }

~
T S S

P T N e e

(* Binary Operators *)
{ PLUS }
MINUS }
TIMES }
DIVIDE }
MOD }

LT }

LEQ }

GT }

GEQ }

EQ }

NEQ }
ASSIGN }

vV V A A
P e T N T R S N e

(* Logical Operators *)
| "not™" { NOT }
| "and" { AND }
| "or" { OR }

57

(* Control flow *)

| "if" { IF }

| "else" { ELSE }

| "repeatfor" { FOR }

| "repeatwhile" { WHILE }

| "endwith" { ENDWITH }
| "returns" { RETURNS }

(* Primitives--booleans, chars, strings, numbers *)

"tof" { BOOL }

"true" as bool _val { LIT_BOOL(bool of string bool val)}
"false" as bool val { LIT_BOOL(bool of string bool val)}

|

|

|

| "number" { NUMBER }

| "words" { STRING }

| "letter" { CHAR }

| "numberlist" { NUMBERLIST }
| "toflist" { BOOLLIST }

| "letterlist" { CHARLIST }

| "characterlist" { CHARACTERLIST }
| "nothing" { voiDp }

| "Chapter" { FUNCTION }

| "Character" { CHARACTER }
| "Action" { METHOD }

| "trait" { TRAIT }

| "new" { NEW }

| "my" { My}

| eof { EOF }

| ['-']?(digit+'. 'digit*)|['-"]?(digit*"'. 'digit+)|['-"']?(digit+) as 1xm {
LIT _NUM(float_of string 1xm) }

(* String regex modified from:

realworldocaml.org/vl/en/html/parsing-with-ocamllex-and-menhir.html *)

| CCNWTCZTINT R L e] et |)]) as Lam
LIT_STRING(1xm) }

| ['\'"] (_as 1) ['\''] {LIT_CHAR(1) }

| ['a'-'z" 'A'-'Z']['a'-"z" 'A'-'Z' '@'-'9" '_'1* as 1lxm { ID(1lxm) }

| _ as char { raise (Failure("illegal character " ~ Char.escaped char)) }

and comment = parse
"~" { token lexbuf }
| _ { comment lexbuf }

A.3 parser.mly

%{ open Ast %}

%token SEMI LPAREN RPAREN LBRACE RBRACE LBRACK RBRACK COMMA PERIOD APOST
%token PLUS MINUS TIMES DIVIDE ASSIGN MOD

58

%token EQ NOT AND OR NEQ LT LEQ GT GEQ

%token ENDWITH

%token RETURNS IF ELSE FOR WHILE

%token VOID NUMBER BOOL TRUE FALSE STRING CHAR FUNCTION
%token NUMBERLIST BOOLLIST CHARLIST CHARACTERLIST
%token CHARACTER METHOD TRAIT NEW MY

%token <float> LIT_NUM

%token <bool> LIT_BOOL

%»token <string> LIT_STRING

%token <char> LIT_CHAR

%token <string> ID

%token EOF

%nonassoc NOELSE
%nonassoc ELSE

%right ASSIGN

%left OR

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS

%left TIMES DIVIDE MOD
%right NEW

%right NOT

%left COMMA APOST /* function call and member access */

%start program
%type <Ast.program> program

%%

/* Program is comprised of class declarations and function declarations */
program:
decls EOF { $1 }

decls:
/* nothing */ { [1, []}
| decls cdecl { ($2 :: fst $1), snd $1 } /* class decl */
| decls fdecl { fst $1, ($2 :: snd $1) } /* func decl */

/* Function declarations */
fdecl:
FUNCTION ID LPAREN formals_opt RPAREN RETURNS type_label LBRACE stmt_list RBRACE
{ { fname = $2;
fformals = $4;
freturn = $7;
fbody = List.rev $9 } }

59

formals_opt:
/* nothing */ { [] }
| formal_list { List.rev $1 }

/* Formal param list. */
/* Params are represented as variable declarations with no expr for assignment */
formal_list:
type_label ID
{ [{ vtype = $1;
vname = $2;
vexpr = Noexpr }] }
| formal_list SEMI type_label ID
{ { vtype = $3;
vname = $4;
vexpr = Noexpr } :: $1}

/* Data type names */

type_label:
VOID { void }
NUMBER { Number }
BOOL { Boolean }
STRING { String }

CHARACTER ID { Object($2) }
NUMBERLIST { NumberList }
BOOLLIST { BooleanList }

/*| STRING LIST { List(String)}*/

| CHARLIST { CharList }

| CHARACTERLIST { CharacterList}

|
|
|
| CHAR { Char }
|
|
|

/* Variable Declarations */
vdecl list:

/* nothing */ { [] }

| vdecl list vdecl { $2 :: $1}

vdecl:
/* Uninitialized regular variable */
type_label ID PERIOD
{ { vtype=$1;
vhame=$2;
vexpr = Noexpr } }
/* Uninitialized instance variable */
| type_label TRAIT ID PERIOD
{ { vtype = $1;
vname = $3;
vexpr = Noexpr } }

/* Initialized regular variable */

60

| type label ID ASSIGN expr PERIOD
{ { vtype = $1;
vhame = $2;
vexpr = $4 } }

/* Uninitialized instance variable */

| type_label TRAIT ID ASSIGN expr PERIOD
{ { vtype = $1;
vname = $3;
vexpr = $5 } }

/* Character (Class) Declarations */
cdecl:
CHARACTER ID LPAREN formals_opt RPAREN LBRACE vdecl list action_list RBRACE
{{ cname = $2;
cparent = $2;
cformals = $4;
cinstvars = $7;
cactions = $8;
3
/* inheritance */
| CHARACTER ID ASSIGN ID LPAREN formals_opt RPAREN LBRACE vdecl list action_list
RBRACE
18
chame = $2;
cparent = $4;
cformals = $6;
cinstvars = $9;
cactions = $10;

1}

/* Action (Method) Declarations */
action_list:

/* nothing */ {[]}

| action_list adecl {$2::$1}

adecl:
METHOD ID LPAREN formals_opt RPAREN RETURNS type_label LBRACE stmt_list RBRACE
18
aname = $2;
aformals = $4;
areturn = $7;
abody = List.rev $9;
3

/* Statements */
stmt_list:
/* nothing */ { [] }

61

stmt_list stmt { $2 :: $1 }

/* added vdecl to statements so that stmt list could include vdecls */
stmt:

expr PERIOD { Expr($1) }
vdecl {VarDecl($1)}
ENDWITH LPAREN expr RPAREN PERIOD { Return($3) }
LBRACE stmt_list RBRACE { Block(List.rev $2) }
IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }
IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
FOR LPAREN stmt SEMI expr SEMI expr RPAREN stmt
{ For($3, $5, $7, $9) }
WHILE LPAREN expr RPAREN stmt{ While($3, $5) }

/* Expressions */
expr:

LIT_NUM {LitNum($1)}
LIT_BOOL {LitBool($1)}
LIT_STRING {LitString($1)}
LIT_CHAR {LitChar($1)}
1D {Id($1)}

expr PLUS expr {Binop($1, Add, $3)}

expr MINUS expr {Binop($1, Sub, $3)}

expr TIMES expr {Binop($1, Mult, $3)}

expr DIVIDE expr {Binop($1, Div, $3)}

expr MOD expr {Binop($1, Mod, $3)}

expr EQ expr {Binop($1, Equal, $3)}

expr NEQ expr {Binop($1, Neq, $3)}

expr LT expr {Binop($1, Less, $3)}

expr LEQ expr {Binop($1, Leq, $3)}

expr GT expr {Binop($1, Greater, $3)}

expr GEQ expr {Binop($1, Geq, $3)}

expr OR expr {Binop($1, OR, $3)}

expr AND expr {Binop($1, AND, $3)}

NOT expr {Unop(NOT, $2)}

LPAREN expr RPAREN {$2}

ID ASSIGN expr {Assign($1, $3)} /* variable assign */

ID LPAREN actuals_opt RPAREN {FCall($1, $3)} /* function call */
/* Object stuff */

NEW ID LPAREN actuals_opt RPAREN {Instantiate($2, $4)} /*object declaration */
ID APOST ID {Access($1, $3)} /* member access */

MY ID {Access("my", $2)} /* self member access */

ID APOST ID ASSIGN expr {TraitAssign(Access($1, $3), $5)} /* member assign */
MY ID ASSIGN expr {TraitAssign(Access("my", $2), $4)}

ID COMMA ID LPAREN actuals opt RPAREN {ACall($1, $3, $5)} /* action call */
/* List stuff */

ID LBRACK expr RBRACK {ListAccess($1, $3)} /* myList [1 + 1] */

62

| ID LBRACK expr RBRACK ASSIGN expr {ListAssign(ListAccess($1, $3), $6)} /* List
assign a[5] = 3 */

| NEW NUMBERLIST LBRACK expr RBRACK {ListInstantiate(NumberList, $4)} /* new int
list[5 + 3] -> ListInstantiate (int, 8) */

| NEW BOOLLIST LBRACK expr RBRACK { ListInstantiate(BooleanList, $4)}

| NEW CHARLIST LBRACK expr RBRACK { ListInstantiate(CharList, $4) }

| NEW CHARACTERLIST LBRACK expr RBRACK { ListInstantiate(CharacterList, $4) }

/* Actual Parameters */
actuals_opt:
/* nothing */ { [] }
| actuals list { List.rev $1 }

actuals_list:

expr { [$1] }
| actuals_list SEMI expr { $3 :: $1 }

A.4 sast.ml
open Ast

type data_type =
Void
Number
Boolean
String
Char
Object of class_decl
NumberlList
BooleanlList
CharList
CharacterList (* list of pointers to point to Characters *)

and expr_detail =
LitNum of float

| LitBool of bool

| LitString of string (* quoted string literal *)

| LitChar of char (* 'c' *)

| Noexpr

| Id of variable decl

| Assign of string * expression (* x is 5 *)

| TraitAssign of expression * expression (* SleepingBeauty's x is 5 *)

| Instantiate of class_decl * expression list (* object type and constructor
parameters *)
| ListInstantiate of data_type * expression (* list type and size *)
| ListAccess of variable decl * expression (* ages[5] *)
| ListAssign of expression * expression (* ages[5] is 10 *)

63

| Access of variable decl * variable decl (* Member value access:
SleepingBeauty's. Or, my to access traits within a character*)

| FCall of function_decl * expression list

| ACall of variable_decl * action_decl * expression list

| strCat of expression * expression

| MathBinop of expression * op * expression (* a + b *)

| Unop of op * expression

(* Tuple of expression and the type it evaluates to *)
and expression = expr_detail * data_type

(* Variable declaration *)
(* All variable declarations have a type and a name
If variable is initialized upon instantiation, the variable declaration
also has an expression attached to it *)
and variable_decl =
{
vtype: data_type;
mutable vname : string;
mutable vexpr : expression; (* e.g.: 543 in : "number x is (5 + 3)." *)
istrait: bool; (* boolean denoting whether variable is character trait *)
listsize: float; (* to prevent list variables to access beyond the lenght of the
list*)
}

(* Statements *)
and statement =
Block of statement 1list
| Expression of expression
| varDecl of variable_decl
| Return of expression
(* If statements: boolean expr, if statement, else statement *)
| If of expression * statement * statement
(* For loops: variable decl, boolean stopping condition, increment expr, loop body
*)
| For of statement * expression * expression * statement
(* While loops: boolean expr, loop body *)
| While of expression * statement

(* Functions *)
and function_decl = {
fname : string; (* name of the function *)
fformals : variable _decl list; (* formal params *)
freturn : data_type; (* return type *)
funcbody : statement list; (* statements, including local variable declarations *)
isLib : bool; (* boolean denoting whether function is library function *)

64

(* Actions *)
and action_decl = {
aname : string; (* Name of the action *)
aclass : string;
aformals: variable_decl list; (* formal params *)
areturn : data_type; (* return type *)
abody : statement list; (* statements, including local variable declarations *)

(* Class Declarations *)
and class_decl = {
cname : string; (* name of the class *)
cparent: string;
cformals: variable_decl list; (* formal params *)
cinstvars : variable_decl 1list; (*instance variables *)
cactions: action_decl 1list; (*lists of actions (methods) *)

(* Program --class declarations and function declarations *)
and program = class_decl list * function_decl list

A.5 semantic_analyzer.ml

open Ast
open Sast

let new_count = ref ©
let increment_new_count() = new_count := !new_count + 1

type symbol table = {
name : string;
parent : symbol_table option;
mutable functions: Sast.function_decl list;
mutable variables : Sast.variable_decl list;
mutable characters: Sast.class_decl list;
mutable actions: Sast.action_decl list;

type translation_environment = {
scope : symbol_table;
return_type : Sast.data_type;
}

type func_wrapper =
Some of Sast.function_decl
| None

65

let rec find_function (scope: symbol table) name =
try
List.find(fun f -> f.fname = name) scope.functions
with Not_found ->
match scope.parent with
Some(parent) -> find_function parent name
| _ -> raise (Failure("function '" ~ name ~ "' not found"))

let rec is_func_name_already used (scope: symbol table) name : func_wrapper =
try
Some(List.find(fun f -> f.fname = name) scope.functions)
with Not_found ->
match scope.parent with
Some(parent) -> is_func_name_already_used parent name
| _ -> None

let find_plot (1 : Sast.function_decl list) =
try
List.find(fun f -> f.fname = "plot") 1
with Not_found -> raise (Failure("No plot found"))

let has_super (scope : symbol table) =
(List.length scope.characters) > @

(* Check to see that character trait exists *)
let find_trait env name =

let is_inherit = has_super env.scope in match

is_inherit with

true -> List.find(fun x-> x.vname = name) (List.nth env.scope.characters
@) .cinstvars

| false -> raise(Failure("var not found: " * name))

(* Check to see if variable exists *)
let rec find_variable (scope : symbol_table) orig_env name =
try
List.find(fun v -> v.vname = name) scope.variables
with Not_found ->
match scope.parent with
Some(parent) -> find_variable parent orig_env name
| _ -> find_trait orig_env name

(* Find all characters in scope *)
let rec find_class_decl (scope: symbol_table) name =
try
List.find(fun c -> c.cname = name) scope.characters
with Not_found ->
match scope.parent with

66

Some(parent) -> find_class_decl parent name
| _ -> raise (Failure("Character '"™ ~ name ~ "' not found"))

(* Check that all variables in a character are in scope *)
let rec find_class_var (scope: symbol table) c_dec name =
try List.find(fun v-> v.vname = name) c_dec.cinstvars

with Not_found ->
raise(Failure("invalid trait name:

A name))

let find_character (scope: symbol table) =
let len = List.length scope.characters in
match len with
0 ->
(match scope.parent with
Some(parent) -> List.nth parent.characters ©
| _ -> raise(Failure("No inherited characters"))

)

| _ -> List.nth scope.characters 0

(* Ensure only 's and my access on characters *)
let get_class_decl_from_type (scope: symbol table) ctype =
match ctype with
Sast.Object(typDecl) -> find_class_decl scope typDecl.cname
| _ -> raise(Failure("Not an object. can't access instance vars"))

(* Check for action in scope*)
let find_action_decl (actions : Sast.action_decl list) name className =
try
List.find(fun a -> (a.aname = name)) actions
with Not_found ->
try
List.find(fun a -> (a.aname = (className ~ "_" ~ name))) actions
with Not_found -> raise (Failure("action not found " ~ name))

(* Checking types for binop; takes the op anad the two types to do checking *)
let analyze binop (scope: symbol table) op tl t2 = match op with
Add ->
if (t1 == Sast.String || t2 == Sast.String) then Sast.String
else if (tl == Sast.Number || t2 == Sast.Number) then
if (tl1 == Sast.Boolean || t2 == Sast.Boolean) then raise
(Failure("Invalid use of + for operands' types"))
else if (tl1l == Sast.Number && t2 == Sast.Number) then Sast.Number
else if (tl == Sast.Char || t2 == Sast.Char) then raise (Failure("Invalid use
of + for operands' types"))
else Sast.String
else if (t1 == Sast.Char || t2 == Sast.Char) then
if (tl == Sast.Boolean || t2 == Sast.Boolean) then raise

(Failure("Invalid use of + for operands' types"))

67

use

use

use

|
type
|
type
|

use

use

(Fai

use

use

(Fai
|
(Fai

let
NOT

let

else Sast.String
else raise (Failure("Invalid use of + for operands' types"))

Sub -> if (tl <> Sast.Number || t2 <> Sast.Number) then raise (Failure("Invalid
of - for operands' types")) else Sast.Number

Mult -> if (t1 <> Sast.Number || t2 <> Sast.Number) then raise (Failure("Invalid
of * for operands' types")) else Sast.Number

Div -> if (tl <> Sast.Number || t2 <> Sast.Number) then raise (Failure("Invalid
of / for operands' types")) else Sast.Number

Equal -> if (tl1l <> t2) then raise (Failure("Invalid use of = for operands’

s")) else Sast.Boolean

Neqg -> if (tl1 <> t2) then raise (Failure("Invalid use of not= for operands'

s")) else Sast.Boolean

Less -> if (tl <> Sast.Number || t2 <> Sast.Number) then raise (Failure("Invalid
of < for operands' types")) else Sast.Boolean

Leq -> if (tl1l <> Sast.Number || t2 <> Sast.Number) then raise (Failure("Invalid
of <= for operands' types")) else Sast.Boolean

Greater -> if (t1 <> Sast.Number || t2 <> Sast.Number) then raise

lure("Invalid use of > for operands' types")) else Sast.Boolean

Geq -> if (t1 <> Sast.Number || t2 <> Sast.Number) then raise (Failure("Invalid
of >= for operands' types")) else Sast.Boolean

Mod -> if (t1 <> Sast.Number || t2 <> Sast.Number) then raise (Failure("Invalid
of % for operands' types")) else Sast.Number

OR -> if (tl1 <> Sast.Boolean || t2 <> Sast.Boolean) then raise

lure("Invalid use of or for operands' types")) else Sast.Boolean

AND -> if (tl1l <> Sast.Boolean || t2 <> Sast.Boolean) then raise

lure("Invalid use of and for operands' types")) else Sast.Boolean

NOT -> raise (Failure("Invalid use of ! for two operands"))

analyze unop (scope: symbol table) op tl = match op with

-> if (t1 <> Sast.Boolean) then raise (Failure("Invalid use of ! for
operand type")) else Sast.Boolean

-> raise (Failure("Invalid unary operator™))

listClass = {cname = "listAcc"; cparent = "None"; cformals = []; cinstvars = [];

cact

ions = []}

(* Mainly used for errors to display types as strings *)

let
with

rec type_as_string t = match t

Sast.Number -> "float"

Sast.Boolean -> "bool"

Sast.String -> "char *"

Sast.Char -> "char"

Sast.Void -> "void"

Sast.Object(n) -> "object" ”~ n.cname
Sast.NumberList -> "float list”

68

| sa
| sa
| sa

(* Conv
let fin

st.BooleanlList -> "bool list"
st.CharList -> "char list"
st.CharacterList -> "character list"

ert list type to type of element on list access *)
d_listAcc_type t = match t with

Sast.NumberList -> Sast.Number

| sas
| sas
| sas
|__

(* AST
let rec

Ast.
Ast.
Ast.
Ast.
Ast.
Ast.

t.BooleanList -> Sast.Boolean

t.CharList -> Sast.Char

t.CharacterList -> Sast.Object(listClass) (* check type in analyze expr *)
> raise(Failure("Not list type"))

data type to SAST data type *)

convert_data_type env old_type = match old_type with
Void -> Sast.Void

Number -> Sast.Number

Boolean -> Sast.Boolean

String -> Sast.String

Char -> Sast.Char

Object(n) ->

let obj_dec = try find_class_decl env.scope n
with Not_found -> raise(Failure("classdecl not found")) in
Sast.Object(obj_dec)

Ast
Ast

.NumberList -> Sast.NumberList
.BooleanlList -> Sast.BooleanlList

Ast.CharacterList -> Sast.CharacterList

|
|
| Ast.CharList -> Sast.Charlist
|

(* Compare parameter types *)
let rec compare_p_types formalVars actualExprs = match formalVars, actualExprs with

[1, [] -> true

[[1, y::ytail ->raise(Failure("wrong number of params"))

| x::xtail, [] -> raise(Failure("wrong number of params"))
|x::[], y::y2::ytail -> raise(Failure("wrong number of params"))
[x::x2::[], y::[] -> raise(Failure("wrong number of params"))
|x::xtail, y::ytail -> let (_, actual_typ) =y in

if(actual_typ) == x.vtype then begin compare_p types xtail ytail end
else raise(Failure("wrong parameter type"))

(* Expression Environment *)
let rec analyze_expr env = function
Ast.LitNum(v) -> Sast.LitNum(v), Sast.Number

| Ast.LitBool(v) -> Sast.LitBool(v), Sast.Boolean
| Ast.LitString(v) -> Sast.LitString(v), Sast.String
| Ast.LitChar(v) -> Sast.LitChar(v), Sast.Char
| Ast.Id(vname) ->
let vdecl = try
find_variable env.scope env vname (* locate a variable by name *)

69

with Not_found ->
raise (Failure("undeclared identifier " ~ vname))
in Sast.Id(vdecl), vdecl.vtype (* return type *)

| Ast.Assign(vname, expr) ->

let vdecl = try

find_variable env.scope env vname

with Not_found ->

raise (Failure("undeclared identifier " ”~ vname))

in let (e, expr_typ) = analyze expr env expr

in if vdecl.vtype <> expr_typ then raise(Failure("Expression does not match
variable type"))

else

Sast.Assign(vname, (e, expr_typ)), expr_typ

| Ast.TraitAssign(objAccess, ex) ->

let (var, vtype) = analyze_expr env objAccess in

let (e, exp_type) = analyze expr env ex in

if vtype <> exp_type then

raise(Failure("Incorrect type assignment to character trait"))
else

Sast.TraitAssign((var, vtype), (e, exp_type)), exp_type

| Ast.Instantiate(objType, exprs) ->

let objDecl = try

find_class_decl env.scope objType

with Not_found ->
raise (Failure("class not found " ~ objType))

in

let actual p typed = List.map (fun e -> analyze expr env e) exprs in

if (compare_p_types objDecl.cformals actual_p_typed) = true then begin
increment_new_count(); (Sast.Instantiate(objDecl, actual_p_ typed),

Sast.Object(objDecl))
end
else raise (Failure("invalid parameters to function"))

| Ast.ListInstantiate(list_type, s) ->

(

let 1ltype = convert_data_type env list_type in

let (size, typ) = analyze_expr env s in

if typ = Sast.Number then

(Sast.ListInstantiate(ltype, (size, typ)), ltype)

else raise(Failure("Must specify size of list as number™))

)

| Ast.ListAccess(id, indx) ->

(
let var = try

70

find_variable env.scope env id
with Not_found ->
raise (Failure("Undeclared identifier " # id)) in
let (e, etype) = analyze_expr env indx in
let accessType = find_listAcc_type var.vtype in
(
match (e, etype) with
(Sast.LitNum(n), Sast.Number) ->
(* print_string (string_of_float n); *)
if (n > (var.listsize -. 1.0)) then (* prevent access beyond end of list

*)
raise(Failure("Cannot access beyond the size of the list"))
else
(Sast.ListAccess(var, (e, etype)), accessType)

-> (Sast.ListAccess(var, (e, etype)), accessType)

| _
)
)

| Ast.ListAssign(access, assn) ->
(
let (access, etype) = (analyze_expr env access) in
let (new_val, vtype) = analyze expr env assn in
(
match etype with
(* If list is character type, use dummy class object to check that the
assignment type is also a Sast.Object(n) *)
(* Using void * so actual class decl equivalence doesn't matter, only the fast
that it is a Sast.Object *)
| sast.Object(n) ->
(
match vtype with
| Sast.Object(x) -> (Sast.ListAssign((access, etype), (new_val, vtype)),
vtype)
| _ -> raise(Failure("Assignment value type does not match type of list
element"))

| _ >
(
if etype <> vtype then
raise(Failure("Assignment value type does not match type of list
element™))

else
(Sast.ListAssign((access, etype), (new_val, vtype)), vtype)
)

)

)

| Ast.Access(objName, varName) -> (* character access *)

71

(* "self" reference *)
(
if (objName = "my") then begin
let classDec = find_character env.scope in (*only class dec in scope is
itself, may be in outer scope because of block *)
let classVar = try find_class_var env.scope classDec varName
with Not_found ->
raise(Failure("instance variable not found" ~ varName))
in let objVvar = {vtype = Object(classDec); vname = ""; vexpr = (Sast.Noexpr,
Sast.Void); istrait = true; listsize = 0.0 } in
(Sast.Access(objVvar, classVar), classVar.vtype)
end
(* Regular access *)
else begin
let objDec = try find_variable env.scope env objName
with Not_found ->
raise(Failure("object variable not found"™ ~ objName))
in let classDec = try get_class_decl from_type env.scope objDec.vtype
with Not_found -> raise(Failure("class not found"))
in let class_var =
try find_class_var env.scope classDec varName
with Not_found ->
raise(Failure("instance variable not found" ~ varName))
in (Sast.Access(objDec, class_var), class_var.vtype)
end

)

| Ast.Binop(el, op, e2) ->

let el = analyze_expr env el (* Check left and right children *)
and e2 = analyze_expr env e2 in

let _, t1 = el (* Get the type of each child *)

and _, t2 = e2 in (*let valid = *)

let validbinop = try analyze_binop env.scope op t1 t2

with Not_found -> raise (Failure("Invalid binary operator"))

in if validbinop = Sast.String then Sast.StrCat(el, e2), validbinop

else Sast.MathBinop(el, op, e2), validbinop (* Success: result is int *)

| Ast.Unop(op, el) ->
let el = analyze_expr env el in
let _, t1 = el in
let validunop = try
analyze_unop env.scope op tl
with Not_found -> raise (Failure("Invalid unary operator"))
in Sast.Unop(op, el), validunop

| Ast.FCall(fname, params) ->
let actual_p_typed = List.map (fun e -> analyze_expr env e) params in
let fdecl = try

72

find_function env.scope fname

with Not_found -> raise (Failure("function '" ~ fname ~ "' not found"))

in let formal_p_list = fdecl.fformals in

let ret_type = fdecl.freturn in

if fname <> "say" then begin

if (compare_p_types formal p list actual p typed) = true then
(Sast.FCall(fdecl, actual_p_typed), ret_type)

else raise (Failure("invalid parameters to function"))

end

else Sast.FCall(fdecl, actual p typed), ret_type

| Ast.ACall(objName, actName, expr_list) ->

(* Grab object variable *)

let objDec = try find_variable env.scope env objName

with Not_found -> raise(Failure("variable not found " ~ objName))
(* Find corresponding class variable *)

in let classDec =

get_class_decl _from_type env.scope objDec.vtype

(* Check that action is valid *)
in let actionDec = try find_action_decl classDec.cactions actName
classDec.cname

with Not_found -> raise (Failure("action not found " ~ actName))

in

(*check that params are correct *)
let formal p list = actionDec.aformals in
let actual_p typed = List.map(fun a -> analyze_expr env a) expr_list in
let ret_type = actionDec.areturn in
if (compare_p_types formal_p list actual p typed) = true then
(Sast.ACall(objDec, actionDec, actual_ p typed), ret_type)
else raise (Failure("invalid parameters to action " ~ actName))

| Ast.Noexpr -> Sast.Noexpr, Sast.Void

(* convert ast.var_decl to sast.variable_decl*)
(* check types and add variable to scope's variable list *)
let check_var_decl (env: translation_environment) (var: Ast.var_decl) =
let reserve_var_names = Str.regexp "['_"]['©'-'9']*" in
let is_reserved = Str.string_match reserve_var_names var.vname @ in
if is_reserved <> true then begin
let typ = convert_data_type env var.vtype in
let (e, expr_typ) = analyze_expr env var.vexpr in match e
(* If Uninitialized and var type is a character, throw error *)
(* Else, the variable is valid *)
with Sast.Noexpr ->
(match typ with
Sast.Object(o) -> raise(Failure("must assign to character variable on
declaration"))

73

| ->
let sast_var_decl = { vtype = typ; vname = var.vname; vexpr = (e,
expr_typ); istrait = false; listsize = 0.0 }
in env.scope.variables <- List.append env.scope.variables
[sast_var_decl];
sast_var_decl)
(* If variable is initialized, check that the two types match *)
| ->
if typ <> expr_typ & & (type_as_string expr_typ) <> "objectlistAcc" then

begin

raise(Failure(

"Variable assignment does not match variable type " ~(type_as_string
typ) ~ " " ~ (type_as_string expr_typ)))

end

else begin

(

match (e, expr_typ) with
(Sast.ListInstantiate(_, (size, _)), _) ->
(
match size with
| LitNum(s) ->
let sast_var_decl = { vtype = typ; vname = var.vname; vexpr = (e,
expr_typ); istrait = false; listsize = s }
in env.scope.variables <- List.append env.scope.variables
[sast_var_decl];
sast_var_decl
| _ -> raise(Failure("List size must be specified as number"))
)
| ->
let sast_var_decl = { vtype = typ; vnhame = var.vname; vexpr = (e,
expr_typ); istrait = false; listsize = 0.0 }
in env.scope.variables <- List.append env.scope.variables
[sast_var_decl];
sast_var_decl

)
end
end
else begin
raise(Failure(

"variable name " ~ var.vname ~ "invalid. cannot use \"_\"" ~ "or \"_\"
followed only by numerical digits"
)) end

let rec analyze_stmt env = function
Ast.Expr(e) -> Sast.Expression(analyze_expr env e) (* expression *)
| Ast.VarDecl(var_decl) ->
if List.exists (fun x -> x.vname = var_decl.vname) env.scope.variables then
raise(Failure("Variable already declared in this scope"))

74

else
let sast_var = check_var_decl env var_decl in
let _ = env.scope.variables <- sast_var :: env.scope.variables in (*
save new var_decl in symbol table *)
Sast.VarDecl(sast_var);
| Ast.If(e, s1, s2) ->
let sastexpr = analyze_expr env e in (* Check the predicate *)
let (_, typ) = sastexpr in
if typ = Sast.Boolean then
Sast.If(sastexpr, analyze_stmt env sl1, analyze stmt env s2)
else raise(Failure("invalid if condition™))
| Ast.Return(e) -> let sastexpr = analyze_expr env e in Sast.Return(sastexpr)
| Ast.For(el, e2, e3, s) ->
let sastexprl = analyze_stmt env el in
let sastexpr2 = analyze_expr env e2 in
let (_, typ) = sastexpr2 in
if typ <> Sast.Boolean then
raise(Failure("For loop must have boolean condition™))
else let sastexpr3 = analyze_expr env e3 in
let s = analyze_stmt env s in
Sast.For(sastexprl, sastexpr2, sastexpr3, s)
| Ast.While(e, s) ->
let sastexpr = analyze_expr env e in
let (_, typ) = sastexpr in
if typ <> Sast.Boolean then
raise(Failure("While condition must be a boolean expression"))
else let s = analyze_stmt env s in
Sast.While(sastexpr, s)
| Ast.Block(stmts) ->

let scope' = {name = "new block"; parent = Some(env.scope); functions = [];
variables = []; characters = []; actions = []}
in let env' = { env with scope = scope'} in

let sast_blck =

List.map(fun s -> analyze stmt env' s) stmts in
Sast.Block(sast_blck)

let library_funcs = [

{

fname = "say";

fformals = [{vtype = (Sast.String);
vname = "str";

vexpr = (Sast.Noexpr, Sast.String);

istrait = false;

listsize = 0.0

s
freturn = Sast.String;
funcbody = [Sast.Expression(Sast.LitString(""), Sast.String)];
isLib = true;

75

}
]
(* Check return type matches return *)
let check_ret (expTyp: Sast.data_type) (env: translation_environment) (f:
Sast.statement) = match f with
Sast.Return(e) -> let (_, typ) = e in
if expTyp = typ then true
else if expTyp = Sast.Void then raise (Failure("Void function cannot return a
value"))
else raise (Failure ("Incorrect return type"))
| _ -> false

(* If return is not void, ensure value is returned *)
let find_return (body 1 : Sast.statement list) (env: translation_environment)
(expTyp: Sast.data_type) =
try
List.find(check_ret expTyp env) body_1
with Not_found -> if expTyp <> Sast.Void then raise (Failure("No return found"))
else Expression(Noexpr, Void)

let analyze_func (fun_dcl : Ast.func_decl) env : Sast.function_decl = (*Why is env of
type Sasy.function_decl??*)
let name = fun_dcl.fname in
if name = "say"
then raise(Failure("Cannot use library function name: " ~ name))
else begin
let is_name_taken = is_func_name_already_used env.scope name in
if is_name_taken != None then raise(Failure("Function name: " ~ name ~ "is
already in use.™))
else begin
let old_ret_type = fun_dcl.freturn
and old_body = fun_dcl.fbody in (*?*)
let ret_type = convert_data_type env old_ret_type in
let formals = List.map(fun st-> check var_decl env st) fun_dcl.fformals in
env.scope.functions <- List.append env.scope.functions [{fname=name; fformals
= formals; freturn = ret_type; funcbody= []; islLib = false}];
let body = List.map (fun st -> analyze stmt env st) old_body in
let _ = find_return body env ret_type in
let sast_func_dec = {fname = name; fformals = formals; freturn = ret_type;
funcbody= body; islLib = false} in
env.scope.functions <- List.filter (fun f -> f.fname <> name)
env.scope.functions; (* remove dummy func for recursion *)
env.scope.functions <- List.append env.scope.functions [sast_func_dec]; (* add
real func *)
sast_func_dec
end
end

76

let has_super (scope : symbol table) =
(List.length scope.characters) > @

let check_parent (var : Ast.var_decl) (class_env : translation_environment) =

if has_super class_env.scope then

(* Check direct parent, which will have all inherited traits *)

if List.exists (fun x -> x.vname = var.vname) (List.nth
class_env.scope.characters 0).cinstvars then

raise(Failure("Cannot override inherited trait: " ~ var.vname))

else if List.exists (fun x -> Xx.vname = var.vname) class_env.scope.variables
then

raise(Failure("Trait " ~ var.vname ~ " already declared in this Character"))

(* Check trait not declared twice. Don't allow overriding of inherited traits. *)
let analyze_classvars (var : Ast.var_decl) (class_env : translation_environment) =

let _ = check_parent var class_env in

let sast_var = check_var_decl class_env var in

let _ = class_env.scope.variables <- sast_var :: class_env.scope.variables in
(* save new class variable in symbol table *)

sast_var

let analyze_acts (act : Ast.act decl) (class_env : translation_environment) =
if List.exists (fun x -> x.aname = act.aname) class_env.scope.actions then
raise(Failure("Action " ~ act.aname ~ " already declared for this character"))
else
let name = act.aname in
if name = "say" then raise(Failure("Cannot use library function name: " *
name))
else
let ret_type = convert_data_type class_env act.areturn in
let formals = List.map (fun param -> check_var_decl class_env param)
act.aformals in
let body = List.map (fun st -> analyze stmt class_env st) act.abody in
let cdecl = find_character class_env.scope in
let sast_act = {aname = name; aclass = cdecl.cname; aformals = formals;
areturn = ret_type; abody = body} in
let _ = class_env.scope.actions <- sast_act :: class_env.scope.actions in
sast_act

let find_parent parent child (env: translation_environment)=
(* if parent and child name same, then no inheritance, otherwise yes inheritance *)
if parent <> child then
(* If inheriting, find parent class *)
List.find (fun c -> c.cname = parent) env.scope.characters
else {cname = child; cparent = child; cinstvars = []; cactions = []; cformals = []}

let analyze class (clss_dcl : Ast.cl_decl) (env: translation_environment) =
let name = clss_dcl.cname in

77

let parent = clss_dcl.cparent in
if List.exists (fun x -> x.cname = name) env.scope.characters then
raise(Failure("Character " ”~ name ~ " already exists"))
else if (parent <> name) && ((List.exists (fun x -> x.cname = clss_dcl.cparent)
env.scope.characters) = false)
then raise(Failure("Character " ”~ clss_dcl.cparent ~ " does not exist"))
else
let full parent = find_parent parent name env in
(* First get parent instance variables and actions and store *)
let parent_acts =
if full_parent.cname <> name then
List.map(fun a ->
{aname = (name ~ "_" ~ a.aname); aclass = name; aformals = a.aformals; areturn
= a.areturn; abody = a.abody}
) full parent.cactions
else [] in
let parent_ivars = if full_parent.cname <> name then full_parent.cinstvars
else [] in
(* create new scope for the class *)
(* let self = {cname = name; cinstvars = []; cactions = []; cformals = []} in *)
let class_scope =
{name = name; parent = None; functions = library_ funcs; variables = [];
characters = [full_parent]; actions = []} in
let class_env = {scope = class_scope; return_type = Sast.Void} in

(* Now check current inst vars and formals *)

let newcformals = List.map(fun f-> check_var_decl class_env f)
clss_dcl.cformals in

let inst_vars = List.map (fun st -> analyze classvars st class_env)
clss_dcl.cinstvars in

(* Combine parent and child instance variables and formal parameters *)
let all_ivars = inst_vars @ parent_ivars in
let all formals = full parent.cformals @ newcformals in

(* Add class to it's own character scope list so that "self" references work
*)

class_env.scope.characters <-

{cname = name; cparent = name; cinstvars = all_ivars; cactions = parent_acts;
cformals = all_formals} :: class_env.scope.characters;

let all actions = (List.map (fun a -> analyze_acts a class_env)
clss _dcl.cactions) @ parent_acts in

let new_class = {cname = name; cparent = full_parent.cname; cinstvars =
all_ivars; cactions = all_actions; cformals = all_formals} in

(* add the new class to the list of classes in the symbol table *)

let _ = env.scope.characters <- new_class :: (env.scope.characters) in

new_class

78

let a

nalyze_semantics prgm: Sast.program =

let prgm_scope = {name= "prgrm"; parent = None; functions = library funcs;
variables = []; characters = []; actions = []} in
let env = {scope = prgm_scope; return_type = Sast.Number} in
let (class_decls, func_decls) = prgm in
let new_class_decls = List.map (fun f -> analyze class f env)
(List.rev(class_decls)) in
let new_func_decls = List.map (fun f -> analyze_func f env) (List.rev(func_decls))
in
(* Search for plot *)
let plot_decl= try
find_plot new_func_decls
with Not_found -> raise (Failure("No plot was found.")) in
match plot_decl.freturn with

Sas

t.Void -> (new_class_decls, List.append new_func_decls library_funcs)
-> raise(Failure("plot cannot return anything"))

A.6 cast.ml

open
open

(* Ob
type

(* Ea

Ast
Sast

jects in storybook are converted to structs *)
class_struct = {

sname: string;

sivars: Sast.variable_decl list;

svtable: vtable

ch struct points to a virtual table containing pointers to their functions *)

and vtable = {

*)

(* c
(* vi
and p

class_name: string; (* will tell us the name of the struct to create a ptr to
vfuncs: action_decl list;
Program consists of structs and function declarations *)

rtual tables are held by class_struct record *)
rgrm = class_struct list * Sast.function_decl list

A.7 pretty_print.ml

open
open
open
open
open
open

Printf

Ast

Sast

Cast
Semantic_analyzer
Lexing

79

open Codegen
(* current_ptr keeps track of index of each object in the array of c structs *)
let current_ptr = ref (-1)

let increment_cur_ptr() = current_ptr := l!current_ptr + 1

(* current_var is an int that keeps track of the current variable name

used in the code -- we convert this to string name *)
let current_var = ref 0
let increment_current_var() = current_var := l!current_var + 1
let get_next_var_name() = increment_current_var(); "_" ”~ (string_of_int !current_var)

(* Convert operations to strings *)
let get_op o = match o
with Add -> " + "

| Sub -> " - "

| Mult -> "* "

| Div -> " / "

| Mod -> " % "

| Equal -> " == "
| Neg -> " I="
| Less -> " < "

| Leq -> " <= "

| Greater -> " > "
| Geq -> " >= "

| OR -> " | "

| AND -> " && "

| NOT -> ™ 1"

let type_as_string t = match t
with

Sast.Number -> "float"
Sast.Boolean -> "bool"
Sast.String -> "char *"
Sast.Char -> "char"
Sast.Void -> "void"
Sast.Object(n) -> "struct " ”~ n.cname ~ " *"
Sast.NumberList -> "float *"
Sast.BooleanList -> "bool *"
Sast.CharList -> "char *"
Sast.CharacterList -> "void **"

let listClass = {cname = "listAcc"; cparent = "None"; cformals = []; cinstvars = [];
cactions = []}

(* find type of element returned on list access *)
let find_listAcc_type t = match t with
Sast.NumberList -> Sast.Number

80

| Sast.BooleanList -> Sast.Boolean
| Sast.CharList -> Sast.Char
| Sast.CharacterList -> Sast.Object(listClass)
| _ -> raise(Failure("Not list type"))
let get_bool _str b = match b with
true -> "1"
| _ -> "o

let get_str_len expr_str typ = match typ

with Sast.Number -> "5000"
| sast.Boolean -> "5"
| sast.String -> "strlen(" ~ expr_str ~ ")
| sast.char -> "1"

| -> "10000"

let get_str_cat_code exprl_str typl expr2_str typ2 v_name=

let buf_name = "buf_" ”~ v_name in

let convert_exprl = match typl

with Sast.Number -> "sprintf(" #~ buf_name ~ ", \"%g\"," ~ exprl_str ~ ");\n"

| Sast.Boolean -> "sprintf(" ~ buf_name ~ ", \"%s\", " " exprl_str ~ " ?
\"true\" : \"false\");\n"

| sast.String -> "sprintf(" ~ buf_name ~ ", \"%s\"," " exprl_str ~ ");\n"

| sast.Char -> "sprintf(" ~ buf_name ~ ", \"%c\", \'" ~ exprl_str ~ "\');\n"

| _ -> "" in

let convert_expr2 = match typ2

with Sast.Number -> "sprintf(" ~ buf_name ~ " + strlen(" ”~ buf_name ~ "),
\"%g\", " ~ expr2_str ~ ");\n"

| Sast.Boolean -> "sprintf(" ~ buf _name ~ " + strlen(" ”~ buf_name ~ "),
\"%s\"," ~ expr2_str ~ " ? \"true\" : \"false\");\n"

| sast.String -> "sprintf(" ~ buf_name ~ " + strlen(" ~ buf_name ~ "),
\"%s\"," ~ expr2_str ~ ");\n"

| sast.Char -> "sprintf(" ~ buf_name ~ " + strlen(" ~ buf_name ~ "), \"%c\", "
A expr2_str ~ ");\n"

| _ -> "" in

let exprl_len = get_str_len exprl_str typl in

let expr2_len = get_str_len expr2_str typ2 in

let buf_code = "char " ~ buf_name ~ "[" ”~ exprl_len ~ " + " ~ expr2_len ~ " +
1];\n" in
buf_code ~ convert_exprl ~ convert_expr2 #~ "char *" ~ v_name ~ " = buf_" *

vV_name ~ ";

let idx = ref (@)
let increment_idx() = idx := lidx + 1

81

let rec get_init_str frm actl name =

let (actl_exp_str, prec_code) = get_expr actl in

let init_str = prec_code ~ "\n" %

"((struct " ~ name ~" *)ptrs[" ~ (string_of_int !current_ptr) ~ "]) -> " ~
frm.vname ~ " ="

AN actl_exp_str ~ ";\n" in

init_str

and initalize_inst_vars (forms: Sast.variable decl list) actuals name
let p_list = List.fold_left (
fun str £ ->
let actl_i = List.nth actuals !idx in
let new_str = get_init_str f actl_i name
in
increment_idx();
str * new_str

) "" forms
in let vtable_str = "((struct " ~ name ~" *)ptrs[" ~ (string_of_int !current_ptr) ~
n]) _>|| A

"vtable = &vtable_for_" ~ name ~ ";\n\n" in
(p_list ~ vtable_str)

and get_expr (e, t) = match e
with Sast.LitString(s) -> (s, "")
| sast.LitBool(b) -> let b_str = get_bool_str b in (b_str, "")
| sast.LitNum(n) -> (string_of float n, "")
| sast.LitChar(c) -> ("\'" ~ Char.escaped ¢ ~ "\'", "")
| sast.Id(var) -> (var.vname, "")

| sast.Assign(id, e) ->
let (exp, prec_assign) = get_expr e in
(id ~ " =" ~ exp, prec_assign)

| sast.Instantiate(c_dec, exprs) ->
increment_cur_ptr();
let rev_vars = List.rev c_dec.cinstvars in
let _ = idx := 0 in
let init_str = (initalize_inst_vars rev_vars exprs c_dec.cname) in
let obj_inst_str = "\tptrs[" ~ string_of_int !current_ptr ~ "]" ~
" = malloc((int)sizeof(struct " ~ c_dec.cname ~ "));\n" ~ init_str in
("ptrs[" ~ string_of_int !current_ptr ~ "];\n", obj_inst_str)

| sast.ListInstantiate(typ, s) ->
let dtyp = type_as_string typ in
let dataType = String.sub dtyp @ (String.length dtyp - 1) in (* get rid of ptr
to get size*)

82

let (size, prec_code) = get_expr s in

let intSize = String.sub size @ (String.length size - 1) in (* turn float into
int *)

("malloc(" ~ intSize ~ " * sizeof(" ~ dataType ~ "))", prec_code)

| Sast.ListAccess(vdecl, i) ->
let (indx, prec_access) = get_expr i in
let listId = vdecl.vname in
(listId ~ "[(int)"™ ~ indx ~ "]", prec_access)

| Sast.ListAssign(access, v) ->

let (elem, prec_access) = get_expr access in
let (assn, prec_assign) = get_expr v in

(elem ~ " = " ~ assn, prec_access " prec_assign)

| sast.Unop(op, expr) ->
let op_str = get_op op in let (expr_str, prec_unop) = get_expr expr in
(op_str ~ "(" ~ expr_str ~ ")", prec_unop)

| Ssast.MathBinop(exprl, op, expr2) ->
let (expr_str_1, prec_binl) = get_expr exprl in
let (expr_str_2, prec_bin2) = get _expr expr2 in
if op = Equal then
let op_str = get_op op in
let (detl, typl) = exprl in
match typl with
Sast.String -> ("strcmp(" ~ expr_str_1 ~ "," ~ expr_str_2
Aty " A op_str A " @", prec_binl”prec_bin2)
| _ -> (expr_str_1”op_str ~ expr_str 2,
prec_binl~prec_bin2)
else if op = Mod then
let op_str = get_op op in
("(double)™ ~ "((int) (" ~ expr_str_1”~ ") " ~ op_str ~ "(int) (" ~ expr_str_2
A "Y)", prec_binl”prec_bin2)
else
let op_str = get_op op in
(expr_str_17op_str ~ expr_str_2, prec_binl”prec_bin2)

| sast.StrCat(exprl, expr2) -»>
let (expril_str, prec_strcatl) get_expr exprl in
let (expr2_str, prec_strcat2) get_expr expr2 in
let (_, typl) = exprl and (_, typ2) = expr2 in
let v_name = get_next_var_name() in
let str_cat_code = get_str_cat_code exprl_str typl expr2_str typ2 v_name in
(v_name, prec_strcatl ~ prec_strcat2 ~ str_cat_code)

| Ssast.TraitAssign(accessVar, expr) ->
let (varAccess, prec_var) = get_expr accessVar in

83

let (new_value, prec_new) = get _expr expr in
(varAccess ~ "=" ~ new_value, prec_var " prec_new)

| Sast.Access(obj_dec, var_dec) ->
(obj_dec.vname ~ " -> " 2~ var_dec.vname ,"")

| sast.FCall (f_d, e 1) ->
if f_d.fname = "say" then begin
let (strExp, typ) = (List.nth e_1 @) in match strExp
with Sast.LitString(s) ->
let 1it_str = (String.sub s @ (String.length s - 1)) ~ ("\\n\"") in
("printf" ~ " (" A~ lit_str ~ ™))", "")
| sast.LitNum(n) -> ("printf" ~ " (\"%g\", " ~ (string_of float n) ~
DRI
| Ssast.LitBool(b) -> ("printf(\"%s\", " ~ (get_bool str b) ~ " ?
\"true\" : \"false\");\n", "")
| sast.LitChar(c) -> ("printf(\"%c\", \'" ~ Char.escaped ¢ ~ "\')",
")
| Ssast.MathBinop(el, op, e2) ->
let (expr_str, prec_expr) = get_expr (strExp, typ) in
if typ = Sast.Number
then ("printf (\"%g\\n\", " ~ expr_str ~ ")" , prec_expr)
else
("printf (\"%s\\n\", " 2~ expr_str ~ " ? \"true\" : \"false\")",
prec_expr)
| sast.Unop(op, e) ->
let (expr_str, prec_expr) = get_expr(strExp, typ) in
if typ = Sast.Number
then ("printf (\" oops, unops for numbers are not implemented \")",
prec_expr)
else
("printf (\"%s\\n\", " 2~ expr_str ~ " ? \"true\" : \"false\")",
prec_expr)
| Sast.StrCat(el, e2) -> let (str_expr, prec_code str) = get expr
(strExp, typ) in
let whole_str = prec_code_str ~ "\n\tprintf (\"%s\\n\"," ~str_expr ~ ")"
in
(whole_str, "")
| Sast.Id(var) -> let typ = var.vtype in
(match typ with
Sast.String -> ("printf (\"%s\\n\", " ~ var.vname ~ ")", "")

| Sast.Number -> ("printf (\"%g\"," ~ var.vname ~ ")", "")

| sast.Boolean -> ("printf(\"%d\\n\", " ~ var.vname ~ ")", "")
| Sast.Char -»> ("pPintf(\"%C\", " A var.vname ~ ")", uu)

| >)

| Sast.ListAccess(vdecl, i) ->
let (indx, _) = get_expr i in
let listId = vdecl.vname in

84

prec_code)
prec_code)
prec_code)

prec_code)

let listAccess = (listId ~ "[(int)" ~ indx ~ "]") in

let accessType = find_listAcc_type vdecl.vtype in

(match accessType with
Sast.Number -> ("printf(\"%f\", " ~ listAccess ~ ")", "")
| sast.Boolean -> ("printf(\"%d\"," ~ listAccess ~ ")", "")
| sast.Char -> ("printf(\"%c\", " ~ listAccess ~ ")", "")
| _ >)

)

| Sast.Access(objvar, instVar) ->

let typ = instVar.vtype in

let (expr_str, prec_code) = get_expr (strExp, typ) in

(match typ with
Sast.Number -> ("\tprintf (\"%g\\n\", " ~ expr_str ~ ")",

| Sast.Boolean ->("\tprintf (\"%d\"," ~ expr_str ~ ")",
| sast.String -> ("\tprintf(\"%s\\n\", " ~ expr_str ~ ")",
| sast.Char -> ("\tprintf(\"%c\", " ~ expr_str ~ ")",
| _ -> raise(Failure("not a printable type")))
| sast.FCall(f_d_inner, e_l_inner) ->
let (inner_func_str, prec_inner_func) = get_expr (strExp, typ) in

(match typ with
Sast.String -> ("\tprintf (\"%s\\n\", " ~ inner_func_str ~ ")",

prec_inner_func)

| Ssast.Number -> ("\tprintf (\"%g\"," ~ inner_func_str ~ ")",

prec_inner_func)

| Sast.Boolean -> ("\tprintf(\"%d\\n\", " ~ inner_func_str ~ ")",

prec_inner_func)

| Sast.Char -> ("\tprintf(\"%c\", " ~ inner_func_str A~ ")",

prec_inner_func)

end

| _ -> (Illl’ llll))
(* | sast.ACall(objDec, actDec, exprs) -> *)
| sast.Noexpr -> ("", "")

| >)

(* Regular function call --i.e., not "say" *)
else begin
let (param_str, prev_code) = List.fold left(fun str_tup e ->

let (cur_str, cur_prec_code) = get _expr e in
let (prev_str, prev_prec_code) = str_tup in

(prev_str ~ cur_str ~ ", ", prev_prec_code * "\n" ”~ cur_prec_code)

)y (""", "") e_l in

let clean_param_str =

if (String.length param_str) > @ then (String.sub param_str @ ((String.length
param_str) - 2))

85

in

else param_str in

let fcall_str = "\t " ~ f_d.fname ~ " " ~ " (" ~ clean_param_str ~ ")" in
match f_d.freturn with
| sast.String ->

let ret_var = get_next_var_name() in

let call_and_store = "char *" ~ ret_var ~ " =" » fcall_str ~ ";\n" in
let save_var = get_next_var_name() in

let save_buf = "char " ” save_var ~ "[strlen(" ~ ret_var ~ ")];\n" in
let copy = "strcpy(" ”~ save var ~ ", " ~ ret_var ~ ");\n" in

let free = "free(" ~ ret_var ~ ");\n" in

(save_var, (prev_code ”~ call _and_store ~ save_buf *~ copy " free))

| _ -> (fcall_str, prev_code)
end

(* Action call: takes in object variable declaration, action declaration,

and actual parameters *)

| sast.ACall(objDec, actDec, exprs) ->

let (param_str, prev_code) = List.fold_left(fun str_tup e ->

let (cur_str, cur_prec_code) = get_expr e in

let (prev_str, prev_prec_code) = str_tup in

(prev_str ~ cur_str ~ ", ", prev_prec_code * "\n" " cur_prec_code)

) ("", "") exprs in

let full param_str = param_str ”~ objDec.vname in

let access_vtbl _act = objDec.vname ~ "->vtable->" ”~ actDec.aname in

let acall_str = "\t " ~ access_vtbl_act ~ " " ~ " (" ~ full_param_str ~ ")"

(* Figure out what type the return is *)
(match actDec.areturn with
(* If action returns a string, must free the malloc'ed string *)
| sast.String ->
let ret_var = get_next_var_name() in

let call_and_store = "char *" ~ ret_var ~ " =" 7 acall_str ~ ";\n" in
let save_var = get_next_var_name() in

let save_buf = "char " ” save_var ~ "[strlen(" ~ ret_var ~ ")];\n" in
let copy = "strcpy(" ”~ save var ~ ", " ~ ret_var ~ ");\n" in

let free = "free(" ~ ret_var ~ ");\n" in

(save_var, (prev_code ”~ call _and_store ~ save_buf *~ copy " free))
(* If action returns anything else, no need to malloc *)
| -> (acall_str, prev_code))

| sast.Noexpr -> ("", "")

let get form_param (v: Sast.variable decl) =

let typ = type_as_string v.vtype in
typ ~ " " ~ v.vname

86

let get_formals params =
let p_list = List.fold_left (fun str v -> let v_str = get _form_param v in str *
v_str A~ ", ") "" params in (* need to remove the last comma if function not action*)
p_list

let rec write_stmt s = match s with
Sast.Expression(e) ->
let (expr_str, prec_expr) = get _expr e in
print_string ("\t" ”~ prec_expr); print_string ";\n\t";
print_string expr_str; print_string ";\n\t"

| sast.Block(stmts) -> List.iter (fun s -> write_ stmt s) stmts

| sast.varDecl(vdecl) ->
let vtyp = type_as_string vdecl.vtype in
let vname = vdecl.vname in let (vexp, prec_expr) = get_expr vdecl.vexpr in
print_string ("\t" ”~ prec_expr ~ vtyp ~ " " ~ vname * " = " " vexp);
print_string ";\n"

| sast.While(e, s) ->
let (boolEx, prec_code) = get expr e in
print_string("\t" ~ prec_code ~ "\n\t");
print_string ("while(" » boolEx ~ "){ \n\t");
write_stmt s;
print_string "\n\n\t}\n\t";

| sast.For(ex1, ex2, ex3, s) ->
let (boolEx, bool prec_code) = get_expr ex2 in
let (incr, incr_prec_code) = get _expr ex3 in
print_string("\t" ~ bool_prec_code ~ "\n\t");
print_string("\t" ~ incr_prec_code ~ "\n\t");
write_stmt ex1;
print_string ("\twhile("™ ~ boolEx ~ "){ \n\t");
write_stmt s;
print_string (incr ~ ";\n\t");
print_string "\n}\n\t";

| sast.Return(e) -> 1let (expr_str, prec_code) = get_expr e in
let (det, typ) = e in (match typ with
| sast.String ->
(* If return type is a string, malloc *)
(* MUST FREE IN FUNCTION CALLER *)
let next_var = get_next_var_name() in
let malloc_str = "char *" ~ next_var ~ " =" 7
"malloc(strlen(" ~ expr_str ~ "));\n" ~
"strcpy(" ~ next_var ~ ", " ~ expr_str ~ ");\n
print_string(prec_code ~ "\t\n");

in

87

print_string(malloc_str ~ "return " ~ next_var ~ ";\n")
| _ -> print_string (prec_code ~ "\t\n");
print_string "return "; print_string expr_str; print_string ";\n")

| sast.If(condExpr, ifstmt, elsestmt) ->
let (condExprStr, condPrec) = get _expr condExpr in
print_string (condPrec ~ "\nif(" ~ condExprStr ~ ") {\n");
write_stmt ifstmt;
print_string ("\n}\nelse {");
write_stmt elsestmt;
print_string("}\n")

let write_func funcdec
let ret_and_name_str =
if funcdec.fname = "plot"
then "int main”
else begin
let typ_str = type_as_string funcdec.freturn in typ_str ~ " " ~ funcdec.fname
end in
let forms = get_formals funcdec.fformals in
let len = String.length forms in
let clean_forms =
if len > @ then (String.sub forms © ((String.length forms) - 2))
else forms in (* remove the extra comma from the formals list *)
print_string ret_and_name_str;
print_string ("(" ”~ clean_forms ~ ")");
print_string " { \n\t";
List.iter (fun s -> write_stmt s) funcdec.funcbody;
print_string " \n} \n"

(* Convert my expression--ie: my name--to use pointer of struct *)
let rec convert_my expr (e, t) sptr = match e with

Sast.Access(v, _) -> if v.istrait then v.vname <- sptr
Sast.Assign(_, e) -> convert_my expr e sptr
Sast.Unop(_, exp) -> convert_my_expr exp sptr
Sast.MathBinop(ex1, _, ex2) -> convert_my_expr exl sptr; convert_my_expr ex2 sptr
Sast.StrCat(exl, ex2) -> convert_my_expr exl sptr; convert_my_expr ex2 sptr
Sast.FCall(_, el) -> List.iter(fun e -> convert_my_expr e sptr) el
Sast.ACall(_, _, exps) -> List.iter(fun e -> convert_my_expr e sptr) exps
Sast.TraitAssign(v, e) -> convert_my_expr v sptr; convert_my_expr e sptr;

>0

let rec convert_my stmt (stmt: Sast.statement) sptr =
match stmt with
Sast.Expression(e) -> convert_my_expr e sptr
| sast.Block(stmts) -> List.iter (fun s -> convert_my stmt s sptr) stmts
| sast.varDecl(v) -> convert_my_expr v.vexpr sptr
| sast.While(e, s) -> convert_my expr e sptr; convert_my stmt s sptr

88

| sast.For(exl, ex2, ex3, s) -> convert_my stmt exl sptr; convert_my expr ex2
sptr;
convert_my_expr ex3 sptr; convert_my_stmt s sptr
| sast.Return(e) -> convert_my expr e sptr
| sast.If(c, ifst, elst) -> convert_my expr c sptr; convert_my stmt ifst sptr;
convert_my_stmt elst sptr

let write_action s_ptr_name action =
let ret_type = type_as_string action.areturn in
let ret_and_name = ret_type ~ " " ~ action.aclass ~ "_" ~ action.aname in
let formals = get_formals action.aformals in
let ptr_name = get_next_var_name() in
let ptr = ("struct " ~ s_ptr_name ~ "*" ~ ptr_name) in
let all formals = (formals ~ ptr) in
List.iter (fun s -> convert_my_stmt s ptr_name) action.abody;
print_string ret_and_name;
print_string ("(" ~ all_formals ~ ")");
print_string " { \n\t";
List.iter (fun s -> write_stmt s) action.abody;
print_string " \n\t} \n\t"

let create_fptrs cname (cact: Sast.action_decl) =
let fptr = ("(*" ~ cact.aname ~ ")") in
let freturn = type_as_string cact.areturn in
let fforms = get_formals cact.aformals in
let ptr_name = get next_var_name() in
let ptr = ("struct " ~ cname® " *" 2~ ptr_name) in
let all_formals = ("(" »~ fforms ~ ptr ~ ");\n") in
(freturn ~ fptr ~ all _formals)

let write_structs (cstruct: Cast.class_struct) =
let dec_struct = "struct " ~ cstruct.sname ~ ";\n" in
let vtable_def = "struct table " ~ cstruct.sname ~ " {\n" in
let func_ptrs = (List.fold_left(fun str f -> let f_str = create_fptrs
cstruct.sname f in str ~ f_str) "" cstruct.svtable.vfuncs) in
let ivars = (List.map (fun v -> get_form_param v) cstruct.sivars) in
let vtable_dec = ("static const struct table_" ”~ cstruct.sname ~ " vtable for_" ~
cstruct.sname ~ " = { \n") in
let vtable_fncs = List.fold_left(fun str a -> str ~ cstruct.sname ~ "_" ~ a.aname ~
", ") "\t" cstruct.svtable.vfuncs in
let clean_vtable_fncs = (let len = String.length vtable_fncs in
if len > 1 then (String.sub vtable fncs © (len-2))
else vtable_fncs) in
print_string (dec_struct ~ vtable_def ~ func_ptrs ~ "\n};\n");
print_string ("struct " ~ cstruct.sname ~ "{\n");
print_string ("\tconst struct table " ~ cstruct.sname ~ " *vtable;\n");
List.iter (fun v -> print_string ("\t" ~ v ~ "; \n")) ivars;
print_string "\n}; \n";

89

List.iter (fun a -> write_action cstruct.sname a) cstruct.svtable.vfuncs;
print_string (vtable_dec ~ clean_vtable fncs ~ "};\n")

let print_code pgm =
let (cstructs, funcdecs) = pgm in
print_string "#include <stdio.h> \n#include <string.h> \n#include

<stdbool.h>\n #include <stdlib.h> \n\t";
print_string ("void *ptrs[" ” string _of_int !new_count * "];\n");
List.iter (fun c -> write_structs c) cstructs;
let userFuncs = List.filter (fun f -> f.islLib = false) funcdecs in
List.iter (fun f -> write_func f) userFuncs;

flush

let lexbuf = Lexing.from_channel stdin
let ast = Parser.program Scanner.token lexbuf

let sast = analyze_semantics ast
let cast = sast_to_cast sast
let _ = print_code cast

A.8 codegen.ml

open Sast
open Cast
open Semantic_analyzer

(* To handle inheritance, make virtual tables for each object type *)
let class_to_vtable (cdecl: Sast.class_decl) =
{class_name = cdecl.cname; vfuncs = cdecl.cactions}

(* Convert Storybook classes to C Struct types *)
let class_to_struct (cdecl: Sast.class_decl) =
let vtable = class_to_vtable cdecl in
{sname = cdecl.cname; sivars = cdecl.cinstvars; svtable = vtable }

(* Convert classes to structs *)
let sast_to_cast prgm: Cast.prgrm =
let (c_dcs, f_dcs) = prgm in

let cstructs = List.map (fun c -> class_to_struct c) c_dcs in
(cstructs, f_dcs)
A.9 Makefile

OBJS = parser.cmo scanner.cmo semantic_analyzer.cmo ast.cmo sast.cmo cast.cmo
codegen.cmo pretty _print.cmo

TARFILES = Makefile scanner.mll parser.mly \

$(TESTS:%=tests/test-%.mc) \
$(TESTS:%=tests/test-%.out)

90

run : $(0BJS)
ocamlc -o run str.cma $(OB3S)

scanner.ml : scanner.mll
ocamllex scanner.mll

parser.ml parser.mli : parser.mly
ocamlyacc parser.mly

%.cmo : %.ml
ocamlc -c $<

%.cmi @ %.mli
ocamlc -c $<

.PHONY : clean
clean
rm -f test/*.c test/*Out.txt test/test_results.txt test/errors.txt
rm -f parser.ml parser.mli scanner.ml
rm -f test/tree/test_results.txt
rm -f *.cmo *.cmi *.out *.diff run
rm -rf *.dSYM
Generated by ocamldep *.ml *.mli
semantic_analyzer.cmo : sast.cmo ast.cmo
semantic_analyzer.cmx : sast.cmx ast.cmx
code_gen.cmo : sast.cmo
code_gen.cmx : sast.cmx
parser.cmo : ast.cmo parser.cmi
parser.cmx : ast.cmx parser.cmi
run.cmo : scanner.cmo sast.cmo parser.cmi codegen.cmo ast.cmo semantic_analyzer.cmo
run.cmx : scanner.cmx sast.cmx parser.cmx codegen.cmx ast.cmx semantic_analyzer.cmx
sast.cmo : ast.cmo
sast.cmx : ast.cmx
scanner.cmo : parser.cmi
scanner.cmx : parser.cmx
parser.cmi : ast.cmo

A.10 Test Script

#!/bin/sh

cd ../
make clean
make

cd test
echo "Accept Tests:

>> test_results.txt

91

failcount=0
passcount=0
if 1s $1* Accept.sbk 1> /dev/null 2>8&1

then
for acceptname in $1* Accept.sbk;do
program="basename $acceptname _Accept.sbk’
echo "Test: $program" >> errors.txt
.././run < "$acceptname" > "${program}.c" 2>> errors.txt
if [-s "$program.c”]
then
gcc -g -std=c99 $program.c -o $program
if [-f "$program”]
then
./$program > "${program}_Out.txt"
rm $program
if diff -q "${program}_Out.txt" "${program} Exp.txt"
then
let "passcount += 1"
echo ": $program" >> test_results.txt;
else
let "failcount += 1"
echo ": $program -- Compiled and ran, but wrong output." >>
test_results.txt
echo ": $program -- Compiled and ran, but wrong output."
fi
else
let "failcount += 1"
echo ": $program -- C Code wouldn't compile" >> test_results.txt;
echo ": $program"
fi
else
let "failcount += 1"
echo ": $program -- Storybook didn't compile" >> test results.txt;
echo ": $program -- Storybook didn't compile"
fi
done
fi

if 1s $1* Reject.sbk 1> /dev/null 2>8&1
then
for rejectname in $1* Reject.sbk;do
program="basename $rejectname _Reject.sbk’
echo "Test: $program” >> errors.txt
.././run < "$rejectname” > "${program}.c" 2>> errors.txt
if [! -s "$program.c"]
then
let "passcount += 1"
echo ": $program" >> test_results.txt

92

else
let "failcount += 1"

echo ": $program -- Storybook compiled but should not have" >>
test_results.txt

echo ": $program -- Storybook compiled but should not have"

fi

done

fi

echo "$passcount tests passed"
echo "$failcount tests failed"
rm -rf *.dSYM

A1 Tests

==> 99BottlesOfBeer_Accept.sbk <==
Chapter Sing99BottlesOfBeer() returns nothing {
number bottles is (99).
repeatwhile(bottles > 9) {
say(bottles + " bottles of beer on the wall").
say(bottles + " bottles of beer").
say("Take 1 down, pass it around").
bottles is (bottles - 1).
say(bottles + " bottles of beer on the wall").

Chapter plot() returns nothing {
Sing99BottlesOfBeer().

}

==> AssnBoolF_Accept.sbk <==
Chapter plot() returns nothing {
tof x is false.

say(x).

==> AssnBoolT_Accept.sbk <==
Chapter plot() returns nothing {
tof x is true.

say(x).

==> AssnChar_Accept.sbk <==
Chapter plot() returns nothing {
letter x is 'h'.

say(x).

93

==> AssnExpr_Accept.sbk <==
Chapter plot() returns nothing {
number x is (9).
number y is (1).
x is y + (1).

==> AssnNmbr_Accept.sbk <==
Chapter plot() returns nothing {
number x is (5).

say(x).

==> AssnNum_Reject.sbk <==
Chapter plot() returns nothing {
number x is "hi".

say(x).

==> AssnStr_Accept.sbk <==
Chapter plot() returns nothing {
words x is "hi".

say(x).

==> AssnStr_Reject.sbk <==
Chapter plot() returns nothing {
words x is true.
say(x).

==> AssnTwice_Reject.sbk <==
Chapter plot() returns nothing {
words x is "hi".
number x is (7).

say(x).

==> boollListTest_Accept.sbk <==
Chapter plot() returns nothing {
toflist truth is new toflist[10].
repeatfor(number i is (@).; i < 10; i is i + 1){
if(i % 2 = 0){
truth[i] is true.
}
else {
truth[i] is false.

94

==> CharacterListLoop_Accept.sbk <==
Character Hero(words n; number st; words sp){
words name is n.
number strength is st.
words superpower is sp.

Action introduceYourself() returns nothing{
say(my name + ": Hi there! My name is
superpower + "! Nice to meet you guys.").

}

+ my name + " and I have " + my

Chapter plot() returns nothing {
characterlist heroes is new characterlist[5].
heroes[@] is new Hero("Wonder Woman"; 2000; "the power of flight").
heroes[1] is new Hero("Spider-Man"; 1500; "Spidey powers").
heroes[2] is new Hero("Superman"; 100000; "the power of flight and super
strength").
heroes[3] is new Hero("Invisible Woman"; 200; "the power of invisibility").
heroes[4] is new Hero("The Flash"; 500; "the power of speed").
repeatfor(number i is (©).; i < 5; i is i + 1){
Character Hero h is heroes[i].
h, introduceYourself().
}
say("Narrator: And then all the superheroes joined together to save the
world.").
say("THE END.").

==> CharacterListTest_Accept.sbk <==
Character Hero(words n; number st; words sp){
words name is n.
number strength is st.
words superpower is sp.

Chapter plot() returns nothing {
characterlist heroes is new characterlist[5].
heroes[@] is new Hero("Wonder Woman"; 2000; "fly").
Character Hero a is heroes[0].
say(a's name).

95

==> CharImproperParams_Accept.sbk <==
Character Monster() {

}

Chapter plot() returns nothing {
say("hello world").

==> charListTest_Accept.sbk <==
Chapter plot() returns nothing {
letterlist alphabet is new letterlist[26].
alphabet[0] is 'a’.
alphabet[1] is 'b".
alphabet[2] is 'c'.
alphabet[3] is 'd’'.
alphabet[4] is 'e’.
alphabet[5] is 'f'.
alphabet[6] is 'g'.
alphabet[7] is 'h".
repeatfor(number i is (@0).; i < 8; i is i +1){
say(alphabet[i]).

==> CommentMultiline_Accept.sbk <==
~This is a

multiline

comment.~

Chapter plot() returns nothing{
say("Once upon a time...").

}

==> CommentNested_ Accept.sbk <==
~ Hello
~~ This is a nested comment.

Chapter plot() returns nothing {
say("Once upon a time...").

}

==> CommentNested_Reject.sbk <==
~ Hello
~~ This is a nested comment.
~ This is another nested comment that will result in rejection.
Because you cannot have a block comment inside another block comment.

96

Chapter plot() returns nothing {
say("Hello World").

}

==> CommentNoEnd_Reject.sbk <==
~This is a

multiline

comment.

Chapter plot() returns nothing {
say(Once upon a time...).

}

==> CommentSingle_ Accept.sbk <==

~~Hello, this is a single line comment.

Chapter plot() returns nothing {
say("Once upon a time...").

}

==> CompareBool_Accept.sbk <==
Chapter plot() returns nothing {
say((true = true)).

==> CompareBool_Reject.sbk <==
Chapter plot() returns nothing {
say((-8 < true)).

==> CompareChar_Reject.sbk <==
Chapter plot() returns nothing {

say((-8 < 'a')).

==> CompareEqChars_Accept.sbk <==
Chapter plot() returns nothing {

say(('a’ = 'b")).

==> CompareEqNums2_Accept.sbk <==
Chapter plot() returns nothing {

say((8 = 8)).

==> CompareEgNums_Accept.sbk <==

97

Chapter plot() returns nothing {
say((-8 = 8)).

==> CompareEgNumString2_Reject.sbk <==
Chapter plot() returns nothing {
say((-8 = "-8")).

==> CompareEgNumString Reject.sbk <==
Chapter plot() returns nothing {

say((-8 = hi)).

==> CompareEqString_Accept.sbk <==
Chapter plot() returns nothing {
say(("hi" = "hi")).

==> CompareGreatEquall_Accept.sbk <==
Chapter plot() returns nothing {
say((5 >= 1)).

==> CompareGreatEqual2_Accept.sbk <==
Chapter plot() returns nothing {

say((-5 >= -5)).

==> CompareGreatEqual3_Accept.sbk <==
Chapter plot() returns nothing {
say((-8 >= -6)).

==> CompareGreaterFalse_Accept.sbk <==
Chapter plot() returns nothing {

say((3 > 3)).

==> CompareGreaterTrue_Accept.sbk <==
Chapter plot() returns nothing {
say((3 > 1)).
}

==> ComparelLessEquall_Accept.sbk <==
Chapter plot() returns nothing {

say((-5 <= 1)).

==> ComparelLessEqual2_Accept.sbk <==
Chapter plot() returns nothing {

say((-5 <= -5)).

==> ComparelLessEqual3_Accept.sbk <==
Chapter plot() returns nothing {

say((-5 <= -6)).

==> ComparelLessFalse_Accept.sbk <==
Chapter plot() returns nothing {
say((-5 < -5)).

==> ComparelLessTrue_Accept.sbk <==
Chapter plot() returns nothing {

say((-5 < 1)).

==> CompareString Reject.sbk <==
Chapter plot() returns nothing {
say(-8 >= hello).

==> ConcatBooleanandChar_Reject.sbk <==
Chapter plot() returns nothing {
say(true + 'c').

==> ConcatBooleanAndString_Accept.sbk <==
Chapter plot() returns nothing {
say(true + "string").

==> ConcatNumberAndBoolean_Reject.sbk <==
Chapter plot() returns nothing{
say(1l + true).

==> ConcatNumberandChar_Reject.sbk <==
Chapter plot() returns nothing{
say(1 + 'c').

==> ConcatNumberAndStringl_Accept.sbk <==
Chapter plot() returns nothing {

99

say("hello" + 1).

==> ConcatNumberAndString2_ Accept.sbk <==
Chapter plot() returns nothing {
say(1l + "hello").

==> ConcatNumberAndString_ Accept.sbk <==
Chapter plot() returns nothing {
say("hello" + 1).

==> ConcatStringandBooleanExpr_Accept.sbk <==
Chapter plot() returns nothing {
say("This is " + (1 = 1)).

==> ConcatStringandChar_Accept.sbk <==
Chapter plot() returns nothing {

say("hello" + 'i').

}

==> ConcatStringandNumberExprl_Accept.sbk <==
Chapter plot() returns nothing {
say("hello" + (1+1)).

}

==> ConcatStringandNumberExpr2_Accept.sbk <==
Chapter plot() returns nothing {
say(1+1 + "hello" + (143)).

}

==> ConcatStringandNumberExpr3_Accept.sbk <==
Chapter plot() returns nothing {
say("hello" + 143).

}

==> ConcatStringandString_ Accept.sbk <==
Chapter plot() returns nothing {
say("This is " + "Sparta!").

==> ConcatStringNumberExprandBoolean_Accept.sbk <==

100

Chapter plot() returns nothing {
say("hello" + 1 + 1 + true).

==> FncArgMissingID_Reject.sbk <==

Chapter whatTimeIsIt(number) returns words {
endwith("It's crunchy time").

}

Chapter plot() returns nothing {
whatTimeIsIt(1).

}

==> FncConcatArg_Accept.sbk <==

Chapter whatTimeIsIt(words x) returns words {
endwith("It's " + x + " o'clock.").

}

Chapter plot() returns nothing {
say(whatTimeIsIt("hi" + " friend")).

}

==> FncDeclSay_Reject.sbk <==

Chapter say(words w) returns words {
endwith(w).

}

Chapter plot() returns nothing {
say("Hello").

}

==> FncHasArgs_Accept.sbk <==

Chapter whatTimeIsIt(number Xx; number y) returns words {
endwith("It's " + x + " o' " +y).

}

Chapter plot() returns nothing {
say(whatTimeIsIt(9; 5)).

}

==> FncHasArgs_Reject.sbk <==

Chapter whatTimeIsIt(number Xx; number y) returns words {
endwith("It's crunchy time").

}

Chapter plot() returns nothing {
whatTimeIsIt().

}

==> FncInvalidParamTypes_Reject.sbk <==
Chapter whatTimeIsIt(blah x) returns words {
endwith("It's crunchy time").

}
101

Chapter plot() returns nothing {
whatTimeIsIt(1).

}

==> FncNoArgs_Accept.sbk <==
Chapter whatTimeIsIt() returns words {
endwith("It's crunchy time.").

}

Chapter plot() returns nothing {
say("What time is it?").
say(whatTimeIsIt()).

}

==> FncNoArgs_Reject.sbk <==

Chapter whatTimeIsIt() returns words {
endwith("It's crunchy time").

}

Chapter plot() returns nothing{
whatTimeIsIt(1; 2).

}

==> FncNoPlot_Reject.sbk <==
Chapter noPlot() returns nothing {
say("Once upon a time").

}

==> FncNoReturnInDecl_Reject.sbk <==
Chapter plot() {
say("I won't work. I refuse.").

}

==> FncOneArg_Accept.sbk <==

Chapter whatTimeIsIt(number x) returns words {
endwith("It's " + x + " o'clock.").

}

Chapter plot() returns nothing {
say(whatTimeIsIt(9)).

}
==> FncTakingCharacterParam_Accept.sbk <==
Character Princess(words n) {

words name is n.

Action goToDinner() returns nothing {
say (my name + " is at dinner.").

102

Chapter createMonster(Character Princess p is new Princess("Mulan")) returns
Character Princess{

Character Princess p is new Princess("Mulan").

endwith(p).

}

Chapter plot() returns nothing {
Character Princess x is new Princess("Dummy").
X is createMonster(x).

X, goToDinner().

}

==> FncTooFewArgs Reject.sbk <==

Chapter whatTimeIsIt(number x; number y) returns words {
endwith("It's crunchy time").

}

Chapter plot() returns nothing {
whatTimeIsIt(1).

}

==> FncTooManyArgs Reject.sbk <==

Chapter whatTimeIsIt(number x) returns words {
endwith("It's crunchy time").

}

Chapter plot() returns nothing {
whatTimeIsIt(1; 2).

}

==> FncTwoSameName_Reject.sbk <==

Chapter whatTimeIsIt() returns words {
endwith("It's crunchy time").

}

Chapter whatTimeIsIt() returns words {
endwith("It's crunchy time").

}

Chapter plot() returns nothing {
whatTimeIsIt().

}

==> FncUndefined_Reject.sbk <==
Chapter plot() returns nothing {
print("Once upon a time").

}

==> FncWrongTypeArg_Reject.sbk <==
Chapter whatTimeIsIt(number x) returns words {
endwith("It's crunchy time").

103

}
Chapter plot() returns nothing {

whatTimeIsIt("hello").
}

==> ForlLoop_Accept.sbk <==
Chapter plot() returns nothing{
repeatfor(number i is (©).; i < 5; i is 6){
say("hi").

==> _GCD_Accept.sbk <==
Chapter GCD(number a; number b) returns number {
repeatwhile (not(a=b)){

if (a > b) {
a is (a - b).
} else {
b is (b - a).
}

}

endwith(a).

}

Chapter plot() returns nothing {
say(GCD(30; 60) + "").
}

==> _HelloWorld_Accept.sbk <==
Chapter plot() returns nothing {
say("Once upon a time...").

}

==> IfElse_Accept.sbk <==

Chapter plot() returns nothing {
if (1=2){
say("so true").
} else {
say("so not true").

==> IfElseIfElse_Accept.sbk <==
Chapter plot() returns nothing {
if (1 =2) {
say("nothing").
} else if (2 = 2) {

104

say("2 true!").
} else {
say("nothing").

==> IfElseSimple_Accept.sbk <==
Chapter plot() returns nothing {

if (1 =0) {

say ("if was true").

} else {

say ("if was false").

}
}

==> IfNestedIfIfElse_Accept.sbk <==
Chapter plot() returns nothing {
if(1=1) {
say("so true").
if (1=1) {
say("doubly true").

}
} else {
say("so not true").
}
}

==> IfNoElse_Accept.sbk <==

Chapter plot() returns nothing {
if (1=1)¢{
say("so true").

==> IfSimple_Accept.sbk <==
Chapter plot() returns nothing {
if (1 =1) {
say ("if was true").

==> listAccessChar_Reject.sbk <==

Chapter plot() returns nothing {
letterlist alphabet is new letterlist[3].
alphabet[1] is 'a’.
alphabet[4] is 'b".

105

==> ListAccess_Reject.sbk <==

Chapter plot() returns nothing {
numberlist scores is new numberlist[3].
scores[5] is (92).

==> listWrongType_Reject.sbk <==
Chapter plot() returns nothing {
numberlist scores is new numberlist[5].

scores[4] = 'a'.

==> LogicalAnd2_Accept.sbk <==
Chapter plot() returns nothing {
say(true and false).

}

==> LogicalAnd3_Accept.sbk <==
Chapter plot() returns nothing {
say(false and true).

}

==> LogicalAnd4_Accept.sbk <==
Chapter plot() returns nothing {
say(false and false).

}

==> LogicalAnd_Accept.sbk <==
Chapter plot() returns nothing {
say(true and true).

}

==> LogicalAndBoolExpr_Accept.sbk <==

Chapter plot() returns nothing {
say(1>2 and true).

}

==> LogicalAndChain2_Accept.sbk <==
Chapter plot() returns nothing {
say(true and true and false).

}

==> LogicalAndChain_Accept.sbk <==
Chapter plot() returns nothing {
say(true and true and true).

}

106

==> LogicalAndNum_Reject.sbk <==

Chapter plot() returns nothing {
say(1 and 2).

}

==> LogicalAndOrChain2_Accept.sbk <==
Chapter plot() returns nothing {
say(false or true and false or true).

}

==> LogicalAndOrChain_Accept.sbk <==
Chapter plot() returns nothing {

say((false or true) and (false and true)).
}

==> LogicalOr2_Accept.sbk <==
Chapter plot() returns nothing {
say(true or false).

}

==> LogicalOr3_Accept.sbk <==
Chapter plot() returns nothing {
say(false or true).

}

==> LogicalOrd4_Accept.sbk <==
Chapter plot() returns nothing {
say(false or false).

}

==> LogicalOr_Accept.sbk <==
Chapter plot() returns nothing {
say(true or true).

}

==> LogicalOrBoolExpr_Accept.sbk <==

Chapter plot() returns nothing {
say(false or (1=1)).

}

==> LogicalOrChain_Accept.sbk <==
Chapter plot() returns nothing {
say(true or true or false).

}

==> LogicalOrDiffTypes_Reject.sbk <==
Chapter plot() returns nothing {
say(true or 2).

107

==> LogicalOrStringChar_Reject.sbk <==
Chapter plot() returns nothing {
say(me or 'u').

}

==> MathAdd_Accept.sbk <==
Chapter plot() returns nothing {
say(4+5).

==> MathDivide_Accept.sbk <==

Chapter plot() returns nothing {
say(4/2).

}

==> MathMod2_Accept.sbk <==

Chapter plot() returns nothing {
say(5.5 % 4).

}

==> MathMod_Accept.sbk <==

Chapter plot() returns nothing {
say(5%4).

}

==> MathMultiply_ Accept.sbk <==
Chapter plot() returns nothing {
say(4*4).

==> MathSubtract_Accept.sbk <==

Chapter plot() returns nothing {
say(4 - 3).

}

==> NoReturn_Reject.sbk <==
Chapter whatTimeIsIt() returns words {
say("time to return").

}

Chapter plot() returns nothing {
say(whatTimeIsIt()).

}

==> NotEq2_Accept.sbk <==
Chapter plot() returns nothing {

108

say(not(5 = 4)).

==> NotEq_Accept.sbk <==
Chapter plot() returns nothing {
say(5 != 4).

==> NotEqDifTypes_Reject.sbk <==
Chapter plot() returns nothing {
say((-8 not = hi)).

==> NotGreater_Accept.sbk <==
Chapter plot() returns nothing {
say(not(-8 > 8)).

==> NotGreaterkEq_Accept.sbk <==
Chapter plot() returns nothing {
say(not(8 >= 8)).

==> NotlLess_Accept.sbk <==
Chapter plot() returns nothing {
say(not(-8 < 8)).

==> NotlLessEq_Accept.sbk <==
Chapter plot() returns nothing {
say(not (-8 <= -18)).

==> Not_Reject.sbk <==
Chapter plot() returns nothing {
say((8 not 8)).

==> numberListTest_Accept.sbk <==

Chapter plot() returns nothing {
numberlist ages is new numberlist[5].
ages[4] is (6).
say(ages[4]).

==> ObjectActionConcatParam_Accept.sbk <==
Character Monster() {
Action scare(words scream) returns nothing {

109

say (scream).

Chapter plot() returns nothing {
Character Monster Frank is new Monster().
Frank, scare("GLABARGHHHHH!" + "wahhhhhhhh").
}
==> ObjectActionWithMyInheritedTrait_Accept.sbk <==
Character Monster(words n; number s) {
words name is n.
number size is s.

Action scare(words scream) returns nothing {
say (my name).

Character Zombie is Monster(number a) {
number age is a.

Action sayhi() returns nothing {
say("BOO! I'm a Zombie. My name is

+ my name).

}
Chapter plot() returns nothing {

Character Monster Frank is new Monster("Frankenstein"; 99).
Frank, scare("Aghhhhhhhh").

Character Zombie Zoe is new Zombie("Zoe"; 6; 16).
Zoe, sayhi().

==> ObjectHasActions_Accept.sbk <==
Character Monster() {
Action scare(words scream) returns nothing {
say (scream).

Chapter plot() returns nothing {
Character Monster Frank is new Monster().
Frank, scare("GLABARGHHHHH!").

}

==> ObjectHasTraits_Accept.sbk <==
Character Monster(words n; number s) {
words name is n.

110

number size is s.

Chapter plot() returns nothing {
Character Monster Frank is new Monster("Frankenstein"; 99).
say(Frank's name).
say(Frank's size).

}

==> ObjectHasTraitsAndActions_Accept.sbk <==
Character Monster(words n; number s) {
words name is n.
number size is s.

Action scare(words scream) returns nothing {
say (my name).

Chapter plot() returns nothing {
Character Monster Frank is new Monster("Frankenstein"; 99).
Frank, scare("GLABARGHHHHH!").

}

==> ObjectInheritance_Accept.sbk <==
Character Monster(words n; number s) {
words name is n.
number size is s.

Action scare(words scream) returns nothing {
say (scream + " I'm a Monster").
say (" My name is " + my name).

Character Zombie is Monster(number a) {
number age 1is a.

Action sayhi() returns nothing {
say("BOO! I'm a Zombie.").

Character Person(words nam; number pos){
words name is nam.
number position is pos.

Action run() returns number {

111

endwith(my position + 100).

Chapter plot() returns nothing {
Character Monster Frank is new Monster("Frankenstein"; 99).
Frank, scare("Aghhhhhhhh").
Character Zombie Zoe is new Zombie("Zoe"; 6; 16).
Zoe, sayhi().
Zoe, scare("RAAAAAWWWWRRRR™).
Character Person Stephen is new Person("Stephen"; 100).
number mpos is (100).
number ppos is Stephen, run().
say(Stephen's name + "'s position is " + ppos + ".").
say(Frank's name + "'s position is " + mpos + ".").
if(ppos < mpos){
say(Stephen's name +

will be eaten by " + Frank's name + ".").

}
else {

say(Stephen's name + " will outrun " + Frank's name + "!").
}

==> ObjectInstInLoop_Accept.sbk <==
Character Animal(words n; words s)
{

words name is n.

words species is s.

Chapter plot() returns nothing {
repeatfor(number i is (©).; i < 3; i is i + 1){
Character Animal dog is new Animal("skip"; "canine").

==> ObjectMonster_Accept.sbk <==
Character Monster (words n) {

Chapter plot() returns nothing {
say("hello world").

}

==> ObjectOverrideFunc_Accept.sbk <==
Character Monster(words n; number s) {
words name is n.

112

number size is s.

Action scare(words scream) returns nothing {
say (scream + "I'm a Monster").
say (my name).

Character Zombie is Monster(number a) {
number age is a.

Action sayhi() returns nothing {
say("BOO! I'm a Zombie.").
say (my name).

}

Action scare(words scream) returns nothing {
say ("I'm overriding!!!!l").

}

}
Chapter plot() returns nothing {

Character Monster Frank is new Monster("Frankenstein"; 99).
Frank, scare("Aghhhhhhhh").

Character Zombie Zoe is new Zombie("Zoe"; 6; 16).

Zoe, sayhi().

Zoe, scare("ZOE SCREAMING").

==> ObjectsMultiple_Accept.sbk <==
Character Monster(words n; number s) {
words name is n.
number size is s.

Action scare(words scream) returns nothing {
say (my name).

Character Zombie (number a; words n) {
number age is a.
words name is n.

Action sayhi() returns nothing {
say("Hi! I'm a Zombie. My name is " + my name).
}

}
Chapter plot() returns nothing {

Character Monster Frank is new Monster("Frankenstein"; 99).
Frank, scare("GLABARGHHHHH!").

113

Character Zombie Zoe is new Zombie(5; "Zoe").
Zoe, sayhi().
}

==> ObjectTraitAssignment_Accept.sbk <==
Character Princess(words n; words s) {
words name is n.
words sister is s.

Chapter plot() returns nothing {
Character Princess Elsa is new Princess("Elsa"; "Anna").
say(Elsa's name).
say(Elsa's sister).
Elsa's name is "Anna".
say(Elsa's name).

==> ObjectTraitWrongType_Reject.sbk <==
Character Princess(words n; words s) {
words name is n.
words sister is s.

Chapter plot() returns nothing {
Character Princess Elsa is new Princess("Elsa"; "Anna").
say(Elsa's name).
say(Elsa's sister).
Elsa's name is (9).
say(Elsa's name).

==> PrincessCharacterAsParam_Accept.sbk <==
Character Princess(words n) {
words name is n.

Action introduceSelf() returns nothing {
say("Hi, I'm " + my name + "I!").

Character LittleMermaid is Princess(Character Princess p) {
words ability is a.

Action talkToPrincess(Character Princess b) returns nothing {
say("Hi " + b's name).

114

Chapter plot() returns nothing {
Character Princess Cinderella is new Princess("Cinderella").
Character LittleMermaid Ariel is new LittleMermaid(Cinderella).
Ariel, talkToPrincess(Cinderella).

}

==> Princesses_Accept.sbk <==

Character Princess(words n) {
words name is n.

Action goToDinner() returns nothing {
say (my name + "is at dinner.").

Character LittleMermaid is Princess(Character Princess p) {
Character Princess prin is p.

Action talkToPrincess(Character Princess b) returns nothing {
say("Hi " + b's name + ", I'm " + my name + "!").

Chapter plot() returns nothing {
Character Princess Cinderella is new Princess("Cinderella").
Character LittleMermaid Ariel is new LittleMermaid("Ariel"; Cinderella).
Ariel, talkToPrincess(Cinderella).
}
==> PrincessesAudition_Accept.sbk <==
Character Princess(words n; number a; tof f) {
words name is n.
number age is a.
tof famous is f.

Action introduceSelf() returns nothing {
say(my name + ": Hi, my name is " + my name + "!").

Action audition(words part; words experience; words movie) returns nothing {
if(my famous = true) {
say(my name + ":

I am auditioning for the part of " + part + " in " + movie +

")

say("In case you didn't recognize me, I was in Disney's " + experience + ".").

}

else {

115

say(my name + I'm auditioning for the part of " + part + " in " + movie +

ll.ll).

say("I don't have any experience, but I think I have great potential! Plus,
all of these old princesses only know how to play roles that depend on men. I can be
a strong, independent, and fearless princess!!").

}

Character DisneyPrincess is Princess(words m) {
words movie is m.
Action salary(number b) returns number {
number incSal is 2 * b.
say(my name + ": Just so you know, Walt payed me
at least " + incSal).
endwith(b).

+ b + " dollars so I expect

Chapter findActress(tof f; number s) returns nothing {
if(f = true and s < 10000){
say("Producers: You're hired!").
}
else if(f = false) {
say("Producers: You're hired! And we'll pay you " + s * 2 + " dollars!"™).
}
elseq
say("Producers: No thanks.").

}

Chapter plot() returns nothing {

Character DisneyPrincess Aurora is new DisneyPrincess("Aurora"; 16; true;
"Sleeping Beauty").

Character Princess Anna is new Princess("Anna"; 16; false).

Aurora, introduceSelf().

Aurora, audition("Elsa"; Aurora's movie; "Frozen").

number money is Aurora, salary(10000000).

findActress(Aurora's famous; money).

Anna, introduceSelf().

Anna, audition("Anna"; "No exprience"; "Frozen").

findActress(Anna's famous; 5000).

==> PrintBool_Accept.sbk <==
Chapter plot() returns nothing {

116

say(true).

==> PrintFncRet_Accept.sbk <==

Chapter getSum() returns number {
endwith(5 + 3).

}

Chapter plot() returns nothing {
say(getSum()).

==> PrintNum_Accept.sbk <==
Chapter plot() returns nothing {
say(5).

==> PrintVar_Accept.sbk <==
Chapter plot() returns nothing {
words x is "hi".

say(x).

==> ReAssnNum2_Accept.sbk <==
Chapter plot() returns nothing {
number x is (5).
x is (6).
x is (10).

==> ReAssnNum_Accept.sbk <==
Chapter plot() returns nothing {
number x is (5).
number y is (1).
number z is (x + y).
say(z).

==> ReAssnStr_Accept.sbk <==
Chapter plot() returns nothing {
words x is "hi".
x is "bye".

x is "cow".
say(x).

==> RecursionSimple_ Accept.sbk <==

Chapter gcd(number a; number b) returns

if (b = @) {

number {

117

endwith (a).
}
endwith(gcd(b; a %b)).
}

Chapter plot() returns nothing {
say(gcd(54; 24)).
}

==> ReturnEndswithWithoutParens_Accept.sbk <==
Chapter plot() returns nothing {
say("Once upon a time...").

}

==> ReturnInvalidType_Reject.sbk <==
Chapter plot() returns blah {
endwith(9).

==> ReturnNum_Accept.sbk <==
Chapter fncReturnsNumber() returns number {
endwith(1).

Chapter plot() returns nothing {
say(fncReturnsNumber()).

}

==> ReturnVoid_Accept.sbk <==
Chapter plot() returns nothing {
say("nothing returned").

}

==> ReturnVoid_Reject.sbk <==

Chapter plot() returns nothing {
endwith (0).

}

==> ReturnWrongStringNotNumber_Reject.sbk <==
Chapter moo() returns number {

say ("Once Upon a time").

endwith ("cow").

}

Chapter plot() returns nothing {
moo().

118

==> ScopeSimple_Reject.sbk <==
Chapter plot() returns nothing {
if (1=1) {
number five is 5.
}
say (five).
}

==> ScopingObjects_Accept.sbk <==
Character Monster(words n; number s) {
words name is n.
number size is s.

Action scare() returns nothing {
say (my name).

Chapter createMonster() returns Character Monster{
Character Monster Frank is new Monster("Frankenstein"; 99).
endwith(Frank).

}

Chapter plot() returns nothing {
Character Monster f is new Monster("Dummy"; 69).
f is createMonster().
f, scare().

}

==> ScopingObjectsNoReturn_Reject.sbk <==
Character Monster(words n; number s) {
words name is n.
number size is s.

Action scare() returns nothing {
say (my name).

Chapter createMonster() returns nothing{
Character Monster Frank is new Monster("Frankenstein"; 99).

}

Chapter plot() returns nothing {
Character Monster f is new Monster("Dummy"; 69).
f is createMonster().
f, scare().

}
119

==> TraitInheritRightHandSide_ Accept.sbk <==
Character Princess(words n; number a; tof f) {
words name is n.
number age 1is a.
tof famous is f.

Action introduceSelf() returns nothing {
say(my name + ": Hi, my name is " + my name + "I").

Character DisneyPrincess is Princess(words m) {
words movie is m.

Action growup() returns nothing {
my age is (my age + 1).

Chapter plot() returns nothing {

Character DisneyPrincess Aurora is new DisneyPrincess("Aurora"; 16; true;
"Sleeping Beauty").

Aurora, growup().

say(Aurora's age).

}

==> TraitOverride_Reject.sbk <==

Character Princess(words n; number a; tof f) {
words name is n.
number age 1is a.
tof famous is f.

Action introduceSelf() returns nothing {
say(my name + ": Hi, my name is " + my name + "I").

Action audition(words part; words experience; words movie) returns nothing {
if(my famous = true) {
say(my name + ":

I am auditioning for the part of " + part + " in " + movie +

II.II)-
say("In case you didn't recognize me, I was in Disney's " + experience + ".").
}
else {
say(my name + ": I'm auditioning for the part of " + part + " in " + movie +
ll.ll).

120

say("I don't have any experience, but I think I have great potential! Plus,
all of these old princesses only know how to play roles that depend on men. I can be
a strong, independent, and fearless princess!!").

}

Character DisneyPrincess is Princess(words m) {
words movie is m.
tof famous is true.

Action salary(number b) returns number {
number incSal is 2 * b.
say(my name + ": Just so you know, Walt payed me
at least " + incSal).
endwith(b).

+ b + " dollars so I expect

Chapter findActress(tof f; number s) returns nothing {
if(f = true and s < 10000){
say("You're hired!").
}
else if(f = false) {
say("Producers: You're hired! And we'll pay you " + s * 2 + " dollars!").

}

Chapter plot() returns nothing {

Character DisneyPrincess Aurora is new DisneyPrincess("Aurora"; 16; true;
"Sleeping Beauty").

Character Princess Anna is new Princess("Anna"; 16; false).

Aurora, introduceSelf().

Aurora, audition("Elsa"; Aurora's movie; "Frozen").

number money is Aurora, salary(10000000).

findActress(Aurora's famous; money).

Anna, introduceSelf().

Anna, audition("Anna"; "No exprience"; "Frozen").

findActress(Anna's famous; 1000).

==> WhilelLoop_Accept.sbk <==
Chapter plot() returns nothing{
number x is (10).
repeatwhile(x > 5){
say("hi").

121

x is (x - 1).

A. Project Log

Committers:

ast.ml: Anna, Beth, Nina

scanner.mll: Anna, Beth, Nina

parser.mly: Anna, Beth, Nina

sast.ml: Anna, Beth, Nina, Pratishta
semantic_analyzer.ml: Anna, Beth, Nina, Pratishta
cast.ml: Anna, Beth

pretty_print.ml: Anna, Beth, Pratishta, Nina
codegen.ml: Anna, Beth, Pratishta
Makefile: Anna, Beth, Nina, Pratishta
test.sh: Anna, Beth, Nina, Pratishta

tests/: Anna, Beth, Nina, Pratishta

122

